WorldWideScience

Sample records for arabidopsis root growth

  1. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    Science.gov (United States)

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  2. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  3. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  4. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  5. Effects of lanthanum on abscisic acid regulation of root growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    王建荣; 王蕾; 胡婷; 李文超; 薛绍武

    2014-01-01

    Rare earth elements (REEs) were reported to have adverse biology effects on plant growth and production. However, whether REEs are involved in plant hormone abscisic acid signal is not clear. Here we reported that REE lanthanum (La) interacted with abscisic acid (ABA) in the regulation of seed germination and root growth in model plant Arabidopsis. La3+at a concentration of 10 µmol/L alleviated ABA depression of seed germination and reversed ABA inhibition of root elongation growth in Arabidopsis. Previous studies showed that ABA could promote root hair development. In the present study, La3+inhibited root hair development promoted by ABA. Moreover, La3+inhibited H2O2 generation induced by ABA in root cells. Therefore we inferred that La3+might interact with ABA upstream of H2O2 generation.

  6. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency.

    Science.gov (United States)

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.

  7. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  8. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle.

    NARCIS (Netherlands)

    Dhondt, S.; Coppens, F.; Winter, F. de; Swarup, K.; Merks, R.M.H.; Inze, D.; Bennett, M.J.; Beemster, G.T.S.

    2010-01-01

    SHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis (Arabidopsis thaliana) root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity, resulting in the ce

  9. Role of Ascorbate in the Regulation of the Arabidopsis thaliana Root Growth by Phosphate Availability

    Directory of Open Access Journals (Sweden)

    Jarosław Tyburski

    2012-01-01

    Full Text Available Arabidopsis root system responds to phosphorus (P deficiency by decreasing primary root elongation and developing abundant lateral roots. Feeding plants with ascorbic acid (ASC stimulated primary root elongation in seedlings grown under limiting P concentration. However, at high P, ASC inhibited root growth. Seedlings of ascorbate-deficient mutant (vtc1 formed short roots irrespective of P availability. P-starved plants accumulated less ascorbate in primary root tips than those grown under high P. ASC-treatment stimulated cell divisions in root tips of seedlings grown at low P. At high P concentrations ASC decreased the number of mitotic cells in the root tips. The lateral root density in seedlings grown under P deficiency was decreased by ASC treatments. At high P, this parameter was not affected by ASC-supplementation. vtc1 mutant exhibited increased lateral root formation on either, P-deficient or P-sufficient medium. Irrespective of P availability, high ASC concentrations reduced density and growth of root hairs. These results suggest that ascorbate may participate in the regulation of primary root elongation at different phosphate availability via its effect on mitotic activity in the root tips.

  10. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Science.gov (United States)

    Bouteillé, Marie; Rolland, Gaëlle; Balsera, Crispulo; Loudet, Olivier; Muller, Bertrand

    2012-01-01

    Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i) that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii) that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs) colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines), we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  11. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Marie Bouteillé

    Full Text Available Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines, we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  12. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana

    Science.gov (United States)

    Humphrey, Tania V.; Haasen, Katrina E.; Aldea-Brydges, May Grace; Sun, He; Zayed, Yara; Indriolo, Emily; Goring, Daphne R.

    2015-01-01

    The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered. PMID:25262228

  13. Arabidopsis root growth movements and their symmetry: progress and problems arising from recent work.

    Science.gov (United States)

    Migliaccio, Fernando; Fortunati, Alessio; Tassone, Paola

    2009-03-01

    Over the last fifteen years, an increasing number of plant scientists have become interested in the Arabidopsis root growth pattern, that is produced on the surface of an agar plate, inclined from the vertical. In this situation, the roots wave intensely and slant preferentially towards one side, showing torsions in the epidermal cell files alternately right-and left handed. In addition, the pattern switches to the formation of large or strict coils when the plate is set horizontally. After this finding, different hypotheses were advanced attempting to explain the forces that shape these patterns. These basically appear to be gravitropism, circumnutation and negative thigmotropism. With regard to the symmetry, the coils and the slanting in the wild-type are essentially right-handed, but mutants were also reported which show a left-handed symmetry, while some do not show a regular growth pattern at all. This review article discusses the earlier as well as the most recent findings on the topic, and investigates the possibility of describing the different mechanisms shaping the root growth patterns via unifying hypothesis.

  14. Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis.

    Science.gov (United States)

    Li, Guangjie; Xu, Weifeng; Kronzucker, Herbert J; Shi, Weiming

    2015-04-01

    Iron (Fe) is an essential microelement but is highly toxic when in excess. The response of plant roots to Fe toxicity and the nature of the regulatory pathways engaged are poorly understood. Here, we examined the response to excess Fe exposure in Arabidopsis wild type and ethylene mutants with a focus on primary root growth and the role of ethylene. We showed that excess Fe arrested primary root growth by decreasing both cell elongation and division, and principally resulteds from direct external Fe contact at the root tip. Pronounced ethylene, but not abscisic acid, evolution was associated with excess Fe exposure. Ethylene antagonists intensified root growth inhibition in the wild type, while the inhibition was significantly reduced in ethylene-overproduction mutants. We showed that ethylene plays a positive role in tissue Fe homeostasis, even in the absence of iron-plaque formation. Ethylene reduced Fe concentrations in the stele, xylem, and shoot. Furthermore, ethylene increased the expression of genes encoding Fe-sequestering ferritins. Additionally, ethylene significantly enhanced root K(+) status and upregulated K(+)-transporter (HAK5) expression. Our findings highlight the important role of ethylene in tissue Fe and K homeostasis and primary root growth under Fe stress in Arabidopsis.

  15. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana.

    Science.gov (United States)

    Ichikawa, Mie; Hirano, Tomoko; Enami, Kazuhiko; Fuselier, Taylor; Kato, Naohiro; Kwon, Chian; Voigt, Boris; Schulze-Lefert, Paul; Baluška, František; Sato, Masa H

    2014-04-01

    Root hairs are fast-growing tubular protrusions on root epidermal cells that play important roles in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is accomplished by the secretion of newly synthesized materials to the tip via the polarized membrane trafficking mechanism. Here, we report the function of two different types of plasma membrane (PM) Qa-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), SYP123 and SYP132, in the growth of root hair in Arabidopsis. We found that SYP123, but not SYP132, localizes in the tip region of root hairs by recycling between the brefeldin A (BFA)-sensitive endosomes and the PM of the expanding tip in an F-actin-dependent manner. The vesicle-associated membrane proteins VAMP721/722/724 also exhibited tip-focused localization in root hairs and formed ternary SNARE complexes with both SYP123 and SYP132. These results demonstrate that SYP123 and SYP132 act in a coordinated fashion to mediate tip-focused membrane trafficking for root hair tip growth.

  16. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  17. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    Science.gov (United States)

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  18. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning.

    Directory of Open Access Journals (Sweden)

    Irina Malinova

    Full Text Available Phosphoglucomutase (PGM catalyses the interconversion of glucose 1-phosphate (G1P and glucose 6-phosphate (G6P and exists as plastidial (pPGM and cytosolic (cPGM isoforms. The plastidial isoform is essential for transitory starch synthesis in chloroplasts of leaves, whereas the cytosolic counterpart is essential for glucose phosphate partitioning and, therefore, for syntheses of sucrose and cell wall components. In Arabidopsis two cytosolic isoforms (PGM2 and PGM3 exist. Both PGM2 and PGM3 are redundant in function as single mutants reveal only small or no alterations compared to wild type with respect to plant primary metabolism. So far, there are no reports of Arabidopsis plants lacking the entire cPGM or total PGM activity, respectively. Therefore, amiRNA transgenic plants were generated and used for analyses of various parameters such as growth, development, and starch metabolism. The lack of the entire cPGM activity resulted in a strongly reduced growth revealed by decreased rosette fresh weight, shorter roots, and reduced seed production compared to wild type. By contrast content of starch, sucrose, maltose and cell wall components were significantly increased. The lack of both cPGM and pPGM activities in Arabidopsis resulted in dwarf growth, prematurely die off, and inability to develop a functional inflorescence. The combined results are discussed in comparison to potato, the only described mutant with lack of total PGM activity.

  19. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    Science.gov (United States)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow

  20. Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yue Zhou; Zijun Yang; Guangqin Guo; Yan Guo

    2010-01-01

    The microfilament (MF) cytoskeleton has crucial functions in plant development. Recent studies have revealed the function of MFs in diverse stress response. Alkaline stress is harmful to plant growth;however, it remains unclear whether the MFs play a role in alkaline stress. In the present study, we find that blocking MF assembly with latrunculin B (Lat B) leads to inhibition of plant root growth, and stabilization of MFs with phalloidin does not significantly affect plant root growth under normal conditions. In high external pH conditions, MF de-polymerization is induced and that associates with the reduction of root growth; phalloidin treatment partially rescues this reduction. Moreover, Lat B treatment further decreases the survival rate of seedlings growing in high external pH conditions. However, a high external pH (8.0) does not affect MF stability in vitro. Taken together, our results suggest that alkaline stress may trigger a signal that leads the dynamics of MFs and in turn regulates root growth.

  1. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings.

    Science.gov (United States)

    Lehmann, Thomas; Janowitz, Tim; Sánchez-Parra, Beatriz; Alonso, Marta-Marina Pérez; Trompetter, Inga; Piotrowski, Markus; Pollmann, Stephan

    2017-01-01

    Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.

  2. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  3. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.

    Science.gov (United States)

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian

    2012-05-22

    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  4. Genetic identification of a second site modifier of ctr1-1 that controls ethylene-responsive and gravitropic root growth in Arabidopsis thaliana.

    Science.gov (United States)

    Shin, Kihye; Lee, Rin-A; Lee, Inhye; Lee, Sumin; Park, Soon Ki; Soh, Moon-Soo

    2013-07-01

    Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane carboxylic acid (ACC) resistant root1-1 (are1-1) in Arabidopsis thaliana (L.) Heynh. The CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) encodes a Raf-related protein, functioning as an upstream negative regulator of ethylene signaling in Arabidopsis thaliana. We found that the ctr1-1, a kinase-inactive allele exhibited slightly, but significantly, longer root length, compared to ACC-treated wild-type or ctr1-3, a null allele. Our genetic studies unveiled the existence of are1-1 mutation in the ctr1-1 mutant, as a second-site modifier which confers root-specific ethylene-resistance. Based on well-characterized crosstalk between ethylene and auxin during ethylene-responsive root growth, we performed various physiological analyses. Whereas are1-1 displayed normal sensitivity to synthetic auxins, it showed modest resistance to an auxin transport inhibitor, 1-Nnaphthylphthalamic acid. In addition, are1-1 mutant exhibited ectopically altered DR5:GUS activity upon ethylenetreatment. The results implicated the involvement of are1-1 in auxin-distribution, but not in auxin-biosynthesis, -uptake, or -sensitivity. In agreement, are1-1 mutant exhibited reduced gravitropic root growth and defective redistribution of DR5:GUS activity upon gravi-stimulation. Taken together with genetic and molecular analysis, our results suggest that ARE1 defines a novel locus to control ethylene-responsive root growth as well as gravitropic root growth presumably through auxin distribution in Arabidopsis thaliana.

  5. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  6. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis.

    Science.gov (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A

    2016-04-26

    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.

  7. Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis.

    Science.gov (United States)

    Lee, Seong Hee; Chung, Gap Chae; Jang, Ji Young; Ahn, Sung Ju; Zwiazek, Janusz J

    2012-05-01

    The effects of low root temperature on growth and root cell water transport were compared between wild-type Arabidopsis (Arabidopsis thaliana) and plants overexpressing plasma membrane intrinsic protein 1;4 (PIP1;4) and PIP2;5. Descending root temperature from 25°C to 10°C quickly reduced cell hydraulic conductivity (L(p)) in wild-type plants but did not affect L(p) in plants overexpressing PIP1;4 and PIP2;5. Similarly, when the roots of wild-type plants were exposed to 10°C for 1 d, L(p) was lower compared with 25°C. However, there was no effect of low root temperature on L(p) in PIP1;4- and PIP2;5-overexpressing plants after 1 d of treatment. When the roots were exposed to 10°C for 5 d, L(p) was reduced in wild-type plants and in plants overexpressing PIP1;4, whereas there was still no effect in PIP2;5-overexpressing plants. These results suggest that the gating mechanism in PIP1;4 may be more sensitive to prolonged low temperature compared with PIP2;5. The reduction of L(p) at 10°C in roots of wild-type plants was partly restored to the preexposure level by 5 mm Ca(NO(3))(2) and protein phosphatase inhibitors (75 nm okadaic acid or 1 μm Na(3)VO(4)), suggesting that aquaporin phosphorylation/dephosphorylation processes were involved in this response. The temperature sensitivity of cell water transport in roots was reflected by a reduction in shoot and root growth rates in the wild-type and PIP1;4-overexpressing plants exposed to 10°C root temperature for 5 d. However, low root temperature had no effect on growth in plants overexpressing PIP2;5. These results provide strong evidence for a link between growth at low root temperature and aquaporin-mediated root water transport in Arabidopsis.

  8. Spiralizations and tropisms in Arabidopsis roots.

    Science.gov (United States)

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  9. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.

  10. Germination of arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation

    NARCIS (Netherlands)

    Manzano, A.I.; Matia, I.; Gonzalez-Camacho, F.; Carnero-Diaz, E.; van Loon, J.J.W.A.; Dijkstra, C.; Larkin, O.; Anthony, P.; Davey, M.R.; Marco, R.; Medina, F.J.

    2009-01-01

    Changes have been reported in the pattern of gene expression in Arabidopsis on exposure to microgravity. Plant cell growth and proliferation are functions that are potentially affected by such changes in gene expression. In the present investigation, the cell proliferation rate, the regulation of ce

  11. Interactions of auxinic compounds on a Ca2+ signaling and root growth in Arabidopsis thaliana

    Science.gov (United States)

    Auxinic-like compounds have been widely used as weed control agents. Over the years, the mode of action of auxinic herbicides have been elucidated, but most studies thus far have focused on their effects on later stages of plant growth. Here, we show that some select auxins and auxinic-like herbicid...

  12. Functional overlap of the Arabidopsis leaf and root microbiota.

    Science.gov (United States)

    Bai, Yang; Müller, Daniel B; Srinivas, Girish; Garrido-Oter, Ruben; Potthoff, Eva; Rott, Matthias; Dombrowski, Nina; Münch, Philipp C; Spaepen, Stijn; Remus-Emsermann, Mitja; Hüttel, Bruno; McHardy, Alice C; Vorholt, Julia A; Schulze-Lefert, Paul

    2015-12-17

    Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.

  13. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    Science.gov (United States)

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.

  14. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    Science.gov (United States)

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  15. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    Science.gov (United States)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  16. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  17. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  18. Ubiquitin-related modifiers of Arabidopsis thaliana influence root development.

    Directory of Open Access Journals (Sweden)

    Florian John

    Full Text Available Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation. Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.

  19. Identification and characterization of Arabidopsis AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium.

    Science.gov (United States)

    Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2015-09-01

    GDP-d-mannose (GDP-d-Man) is an important intermediate in ascorbic acid (AsA) synthesis, cell wall synthesis, protein N-glycosylation, and glycosylphosphatidylinositol-anchoring in plants. Thus, the modulation of intracellular levels of GDP-d-Man could be important for maintaining various cellular processes. Here an Arabidopsis GDP-d-Man pyrophosphohydrolase, AtNUDX9 (AtNUDT9; At3g46200), which hydrolysed GDP-d-Man to GMP and mannose 1-phosphate, was identified. The K m and V max values for GDP-d-Man of AtNUDX9 were 376±24 μM and 1.61±0.15 μmol min(-1) mg(-1) protein, respectively. Among various tissues, the expression levels of AtNUDX9 and the total activity of GDP-d-Man pyrophosphohydrolase were the highest in the roots. The GDP-d-Man pyrophosphohydrolase activity was increased in the root of plants grown in the presence of ammonium. No difference was observed in the levels of AsA in the leaf and root tissues of the wild-type and knockout-nudx9 (KO-nudx9) plants, whereas a marked increase in N-glycoprotein levels and enhanced growth were detected in the roots of KO-nudx9 plants in the presence of ammonium. These results suggest that AtNUDX9 is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots.

  20. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth.

    Science.gov (United States)

    Sašek, Vladimír; Janda, Martin; Delage, Elise; Puyaubert, Juliette; Guivarc'h, Anne; López Maseda, Encarnación; Dobrev, Petre I; Caius, José; Bóka, Károly; Valentová, Olga; Burketová, Lenka; Zachowski, Alain; Ruelland, Eric

    2014-08-01

    Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.

  1. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-07-08

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes.

  2. Molecular Genetics of Root Thigmoresponsiveness in Arabidopsis thaliana

    Science.gov (United States)

    Masson, Patrick H.

    2002-01-01

    The molecular mechanisms that allow plant roots to use gravity and touch as growth guides are investigated. We are using a molecular genetic strategy in Arabidopsis thaliana to study these processes. When Arabidopsis thaliana seedlings grow on tilted hard-agar surfaces, their roots develop a wavy pattern of growth which appears to derive from a succession of left-handed and right-handed circumnutation-like processes triggered by gravity and touch stimulation (Okada and Shimura, 1990; Rutherford et al., 1998; Rutherford and Masson, 1996). Interestingly, mutations that affect root waving on tilted hard-agar surfaces can be identified and characterized. Some of these mutations affect root gravitropism, while others appear to be responsible for the production of abnormal waves (no waves, compressed or square waves, coils) without affecting gravitropism. The specific objectives of this project were to functionally characterize two genes (WVD2 and WVD6) which are required for root waving on tilted agar surfaces, but not for root gravitropism. Specific objectives included a physiological and cytological analysis of the mutants, and molecular cloning and characterization of the corresponding genes. As summarized in this paper, we have reached these objectives. We have also identified and partially characterized other mutations that affect root skewing on hard-agar surfaces (sku5-1 and ago1), and have completed our work on the root-wave phenotype associated with mutations in genes of the tryptophan biosynthesis pathway (Lynn et al., 1999; Rutherford et al., 1998; Sedbrook et al., 2000, 2002). We briefly describe our progress on the cloning and characterization of WVD6, WVD2 and SKU5, and provide a list of papers (published, or in preparation) that derived from this grant. We also discuss the biological implications of our findings, with special emphasis on the analysis of WVD2.

  3. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots.

    Science.gov (United States)

    Vahabi, Khabat; Camehl, Iris; Sherameti, Irena; Oelmüller, Ralf

    2013-11-01

    The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+ -dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.

  4. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    Science.gov (United States)

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  5. Lateral root development in Arabidopsis: fifty shades of auxin.

    Science.gov (United States)

    Lavenus, Julien; Goh, Tatsuaki; Roberts, Ianto; Guyomarc'h, Soazig; Lucas, Mikaël; De Smet, Ive; Fukaki, Hidehiro; Beeckman, Tom; Bennett, Malcolm; Laplaze, Laurent

    2013-08-01

    The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.

  6. Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis

    Science.gov (United States)

    Mullen, J. L.; Hangarter, R. P.

    2003-05-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.

  7. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root.

    Science.gov (United States)

    Shani, Eilon; Weinstain, Roy; Zhang, Yi; Castillejo, Cristina; Kaiserli, Eirini; Chory, Joanne; Tsien, Roger Y; Estelle, Mark

    2013-03-19

    Plant hormones are small-molecule signaling compounds that are collectively involved in all aspects of plant growth and development. Unlike animals, plants actively regulate the spatial distribution of several of their hormones. For example, auxin transport results in the formation of auxin maxima that have a key role in developmental patterning. However, the spatial distribution of the other plant hormones, including gibberellic acid (GA), is largely unknown. To address this, we generated two bioactive fluorescent GA compounds and studied their distribution in Arabidopsis thaliana roots. The labeled GAs specifically accumulated in the endodermal cells of the root elongation zone. Pharmacological studies, along with examination of mutants affected in endodermal specification, indicate that GA accumulation is an active and highly regulated process. Our results strongly suggest the presence of an active GA transport mechanism that would represent an additional level of GA regulation.

  8. Phytochrome mediates red-light-based positive phototropism in Arabidopsis roots

    Science.gov (United States)

    Correll, M.; Mullen, J.; Hangarter, R.; Kiss, J.

    Plants rely on sophisticated mechanisms to interpret the constant bombardment of incoming signals so they can adjust their growth accordingly. The environmental cues of gravity and light are particularly important for plant growth and development. While gravitropism has been extensively studied in roots, there has been increased emphasis on understanding the cellular and molecular basis of root phototropism. In addition to the blue-light-based negative phototropism, roots also exhibit a recently discovered positive phototropism in response to red light. In this paper, we characterize this red-light-based phototropism in roots of Arabidopsis.

  9. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  10. Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.

    Science.gov (United States)

    Peng, Yuancheng; Ma, Wenying; Chen, Liangliang; Yang, Lei; Li, Shengjun; Zhao, Hongtao; Zhao, Yankun; Jin, Weihuan; Li, Na; Bevan, Michael W; Li, Xia; Tong, Yiping; Li, Yunhai

    2013-03-01

    The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance and thus control root meristem size. However, the genetic and molecular mechanisms that determine root meristem size still remain largely unknown. Here, we report that da1-related protein2 (dar2) mutants produce small root meristems due to decreased cell division and early cell differentiation in the root meristem of Arabidopsis (Arabidopsis thaliana). dar2 mutants also exhibit reduced stem cell niche activity in the root meristem. DAR2 encodes a Lin-11, Isl-1, and Mec-3 domain-containing protein and shows an expression peak in the border between the transition zone and the elongation zone. Genetic analyses show that DAR2 functions downstream of cytokinin and SHORT HYPOCOTYL2 to maintain normal auxin distribution by influencing auxin transport. Further results indicate that DAR2 acts through the PLETHORA pathway to influence root stem cell niche activity and therefore control root meristem size. Collectively, our findings identify the role of DAR2 in root meristem size control and provide a novel link between several key regulators influencing root meristem size.

  11. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.

    Science.gov (United States)

    Dong, Jinsong; Piñeros, Miguel A; Li, Xiaoxuan; Yang, Haibing; Liu, Yu; Murphy, Angus S; Kochian, Leon V; Liu, Dong

    2017-02-13

    The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe(3+) in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe(3+) accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.

  12. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana

    OpenAIRE

    Aceves-García, Pamela; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz

    2016-01-01

    Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12...

  13. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Takao Araya; Takuya Kubo; Nicolaus von Wiren; Hideki Takahashi

    2016-01-01

    Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system archi-tecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were gener-ated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(i ) rapid progression of lateral root emergence in response to ammonium; and (i i) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.

  14. Phototropism and gravitropism in lateral roots of Arabidopsis.

    Science.gov (United States)

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  15. Plasticity of the Arabidopsis root system under nutrient deficiencies.

    Science.gov (United States)

    Gruber, Benjamin D; Giehl, Ricardo F H; Friedel, Swetlana; von Wirén, Nicolaus

    2013-09-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.

  16. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.

    Science.gov (United States)

    Tatematsu, Kiyoshi; Kumagai, Satoshi; Muto, Hideki; Sato, Atsuko; Watahiki, Masaaki K; Harper, Reneé M; Liscum, Emmanuel; Yamamoto, Kotaro T

    2004-02-01

    We have isolated a dominant, auxin-insensitive mutant of Arabidopsis thaliana, massugu2 (msg2), that displays neither hypocotyl gravitropism nor phototropism, fails to maintain an apical hook as an etiolated seedling, and is defective in lateral root formation. Yet other aspects of growth and development of msg2 plants are almost normal. These characteristics of msg2 are similar to those of another auxin-insensitive mutant, non-phototropic hypocotyl4 (nph4), which is a loss-of-function mutant of AUXIN RESPONSE FACTOR7 (ARF7) (Harper et al., 2000). Map-based cloning of the MSG2 locus reveals that all four mutant alleles result in amino acid substitutions in the conserved domain II of an Auxin/Indole-3-Acetic Acid protein, IAA19. Interestingly, auxin inducibility of MSG2/IAA19 gene expression is reduced by 65% in nph4/arf7. Moreover, MSG2/IAA19 protein binds to the C-terminal domain of NPH4/ARF7 in a Saccharomyces cerevisiae (yeast) two-hybrid assay and to the whole latter protein in vitro by pull-down assay. These results suggest that MSG2/IAA19 and NPH4/ARF7 may constitute a negative feedback loop to regulate differential growth responses of hypocotyls and lateral root formation.

  17. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon

    2009-01-23

    The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.

  18. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators.

    Science.gov (United States)

    Rahman, Abidur; Hosokawa, Satoko; Oono, Yutaka; Amakawa, Taisaku; Goto, Nobuharu; Tsurumi, Seiji

    2002-12-01

    The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.

  19. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  20. Red-light-induced positive phototropism in Arabidopsis roots.

    Science.gov (United States)

    Ruppel, N J; Hangarter, R P; Kiss, J Z

    2001-02-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  1. Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42.

    Science.gov (United States)

    Dietel, Kristin; Beator, Barbara; Budiharjo, Anto; Fan, Ben; Borriss, Rainer

    2013-03-01

    Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to Arabidopsis seedlings. The fates of root colonization in mutant strains impaired in synthesis of alternative sigma factors, non-ribosomal synthesis of lipopeptides and polyketides, biofilm formation, swarming motility, and plant growth promoting activity were analyzed by confocal laser scanning microscopy. Whilst the wild-type strain heavily colonized surfaces of root tips and lateral roots, the mutant strains were impaired in their ability to colonize root tips and most of them were unable to colonize lateral roots. Ability to colonize plant roots is not only dependent on the ability to form biofilms or swarming motility. Six mutants, deficient in abrB-, sigH-, sigD-, nrfA-, yusV and RBAM017410, but not affected in biofilm formation, displayed significantly reduced root colonization. The nrfA- and yusV-mutant strains colonized border cells and, partly, root surfaces but did not colonize root tips or lateral roots.

  2. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.

  3. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  4. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis.

    Science.gov (United States)

    Eapen, Delfeena; Barroso, María Luisa; Campos, María Eugenia; Ponce, Georgina; Corkidi, Gabriel; Dubrovsky, Joseph G; Cassab, Gladys I

    2003-02-01

    For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap.

  5. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana

    Science.gov (United States)

    Aceves-García, Pamela; Álvarez-Buylla, Elena R.; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz

    2016-01-01

    Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions. PMID:27379140

  6. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots.

    Science.gov (United States)

    Konishi, Noriyuki; Ishiyama, Keiki; Beier, Marcel Pascal; Inoue, Eri; Kanno, Keiichi; Yamaya, Tomoyuki; Takahashi, Hideki; Kojima, Soichi

    2016-12-21

    Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.

  7. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Directory of Open Access Journals (Sweden)

    Francesco Dovana

    Full Text Available Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E and roots (root-E of Mentha aquatica L. (water mint were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L. Heynh., 14 and 21 days after inoculation (DAI. Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW and dry weight (DW was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  8. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Science.gov (United States)

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  9. An auxin-responsive endogenous peptide regulates root development in Arabidopsis.

    Science.gov (United States)

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi

    2014-07-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  10. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives

    OpenAIRE

    Schlaeppi, K.; Dombrowski, N.; Oter, R. G.; Ver Loren van Themaat, E.; Schulze-Lefert, P

    2014-01-01

    All plants carry distinctive bacterial communities on and inside organs such as roots and leaves, collectively called the plant microbiota. How this microbiota diversifies in related plant species is unknown. We investigated the diversity of the bacterial root microbiota in the Brassicaceae family, including three Arabidopsis thaliana ecotypes, its sister species Arabidopsis halleri and Arabidopsis lyrata, and Cardamine hirsuta. We show that differences in root microbiota profiles between the...

  11. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes.

    Science.gov (United States)

    Bidzinski, Przemyslaw; Noir, Sandra; Shahi, Shermineh; Reinstädler, Anja; Gratkowska, Dominika Marta; Panstruga, Ralph

    2014-12-01

    Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.

  12. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    Science.gov (United States)

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  13. The Roots of Growth

    Science.gov (United States)

    Synder, Agnes

    1973-01-01

    Effective planning for child growth through the curriculum takes into account three things: 1) the pace at which children grow, 2) the individuality of every child, and 3) the need for guidance in meeting the problems of living. (ST)

  14. An auxin-responsive endogenous peptide regulates root development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fengxi Yang; Yu Song; Hao Yang; Zhibin Liu; Genfa Zhu; Yi Yang

    2014-01-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, rootmorphology, including lateral root number and adventitious roots, differed greatly between transgenic and wildtype plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wildtype plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxinmediated root development.

  15. Growth and development of the root apical meristem.

    Science.gov (United States)

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development.

  16. In vivo localization in Arabidopsis protoplasts and root tissue.

    Science.gov (United States)

    Lee, Myoung Hui; Lee, Yongjik; Hwang, Inhwan

    2013-01-01

    In eukaryotic cells, a large number of proteins are transported to their final destination after translation by a process called intracellular trafficking. Transient gene expression, either in plant protoplasts or in specific plant tissues, is a fast, flexible, and reproducible approach to study the cellular function of proteins, protein subcellular localizations, and protein-protein interactions. Here we describe the general method of protoplast isolation, polyethylene glycol-mediated protoplast transformation and immunostaining of protoplast or intact root tissues for studying the localization of protein in Arabidopsis.

  17. Root Growth Patterns and Morphometric Change Based on the Growth Media

    Science.gov (United States)

    Schultz, Eric R.; Paul, Anna-Lisa; Ferl, Robert J.

    2016-12-01

    Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.

  18. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    Science.gov (United States)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-05-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  19. AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana

    KAUST Repository

    Li, Bo

    2017-01-05

    The accumulation of high concentrations of chloride (Cl) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl sensitive plant species those that exclude relatively more Cl from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl into the root xylem, which affects the accumulation of Cl in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl efflux from roots, and a greater Cl accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, NO- content in 3 the shoot remained unaffected. Accumulation of Cl in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl efflux from the root, contributing to exclusion of Cl from the shoot of Arabidopsis.

  20. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2014-02-01

    Full Text Available Nitrogen (N is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than two thousand genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and eleven highly co-expressed gene clusters (modules. Four of these gene network modules have robust nitrate responsive functions such as transport, signaling and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.

  1. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    Science.gov (United States)

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis.

  2. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Pietra, Stefano; Lang, Patricia; Grebe, Markus

    2015-03-01

    Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning.

  3. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

    Science.gov (United States)

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel

    2004-05-01

    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  4. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA.

  5. ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis.

    Science.gov (United States)

    Chandrika, Nulu Naga Prafulla; Sundaravelpandian, Kalaipandian; Yu, Su-May; Schmidt, Wolfgang

    2013-05-01

    Phosphate (Pi) starvation in plants induces dense and elongated root hairs, which increase the absorptive surface area of the roots and play a critical role in Pi uptake. The molecular mechanism underlying these changes remains unclear. Forward and reverse genetic approaches were employed to identify novel genes involved in root hair formation on Pi starvation. The mutant per2, with defects in root hair elongation specifically under low Pi conditions, was identified in a large-scale genetic screen of T-DNA insertion lines. The phenotype was caused by a mutation in the homeodomain protein ALFIN-LIKE 6 (AL6). From a screen of mutants defective in genes that showed lower transcript abundance in per2 relative to wild-type roots on low Pi medium, we identified four putative downstream targets of AL6, namely ETC1, NPC4, SQD2 and PS2, all of which were critical in root hair elongation of Pi-deficient plants. The results further indicate that AL6 is involved in the control of growth and several key responses to Pi starvation. Our findings demonstrate that AL6 controls the transcription of a suite of genes critical for root hair elongation under low Pi conditions, suggesting a novel physiological function for an Alfin gene in Arabidopsis.

  6. Arabidopsis Growth Simulation Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Junmei Zhang

    2014-01-01

    Full Text Available This paper aims to provide a method to represent the virtual Arabidopsis plant at each growth stage. It includes simulating the shape and providing growth parameters. The shape is described with elliptic Fourier descriptors. First, the plant is segmented from the background with the chromatic coordinates. With the segmentation result, the outer boundary series are obtained by using boundary tracking algorithm. The elliptic Fourier analysis is then carried out to extract the coefficients of the contour. The coefficients require less storage than the original contour points and can be used to simulate the shape of the plant. The growth parameters include total area and the number of leaves of the plant. The total area is obtained with the number of the plant pixels and the image calibration result. The number of leaves is derived by detecting the apex of each leaf. It is achieved by using wavelet transform to identify the local maximum of the distance signal between the contour points and the region centroid. Experiment result shows that this method can record the growth stage of Arabidopsis plant with fewer data and provide a visual platform for plant growth research.

  7. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  8. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  9. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  10. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  11. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  12. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ivan Baxter

    2009-05-01

    Full Text Available Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1 mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast.

  13. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  14. NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuanting Li; Xinhua Dai; Youfa Cheng; Yunde Zhao

    2011-01-01

    Plants can sense the direction of gravity and orient their growth to ensure that roots are anchored in soil and that shoots grow upward. Gravitropism has been studied extensively using Arabidopsis genetics, but the exact mechanisms for gravitropism are not fully understood. Here, we demonstrate that five NPY genes play a key role in Arabidopsis root gravitropism. NPY genes were previously identified as regulators of auxin-mediated organogenesis in way with the AGC kinases PID, PID2, WAG1, and WAG2. We show that all five NPY genes are highly expressdd in primary root tips. The single npy mutants do not display obvious gravitropism defects, but the npyl npy2 npy3 npy5 quinntuple mutants show dramatic gravitropic phenotypes. Systematic analysis of all the npy double, triple, and qudruple combinations demonstrates that the five NPY genes all contribute to gravitropism. Our work indicates that gravitropism,phototropism, and organogenesis use analogous mechanisms in which at least one AGC kinase, one NPH3/NPY gene, and one ARF are required.

  15. Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root

    Science.gov (United States)

    Romero-Arias, J. Roberto; Hernández-Hernández, Valeria; Benítez, Mariana; Alvarez-Buylla, Elena R.; Barrio, Rafael A.

    2017-03-01

    Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.

  16. Starch-related carbon fluxes in roots and leaves of Arabidopsis thaliana.

    Science.gov (United States)

    Malinova, Irina; Steup, Martin; Fettke, Joerg

    2011-07-01

    Both photoautotrophic and heterotrophic tissues from plants are capable of synthesizing and degrading starch. To analyse starch metabolism in the two types of tissue from the same plant, several starch-related mutants from Arabidopsis thaliana were grown hydroponically together with the respective wild type control. Starch contents, patterns of starch-related enzymes, and the monomer patterns of the cytosolic starch-related heteroglycans were determined. Based on the phenotypical data obtained, three comparisons were made: First, data from leaves and roots of the mutants were compared with the respective wild type controls. Secondly, data from leaves and roots from the same plant were compared. Third, we included data obtained from soil-grown plants and compared them with those from hydroponically grown plants. Thus, phenotypical features reflecting altered gene expression can be distinguished from those that are due to the specific growth conditions. Implications on the carbon fluxes in photoautotrophic and heterotrophic cells are discussed.

  17. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    Science.gov (United States)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  18. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter–reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  19. Potassium Transporter KUP7 Is Involved in K(+) Acquisition and Translocation in Arabidopsis Root under K(+)-Limited Conditions.

    Science.gov (United States)

    Han, Min; Wu, Wei; Wu, Wei-Hua; Wang, Yi

    2016-03-07

    Potassium (K(+)) is one of the essential macronutrients for plant growth and development. K(+) uptake from environment and K(+) translocation in plants are conducted by K(+) channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K(+) uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on low-K(+) medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K(+) uptake rate and K(+) content in xylem sap under K(+)-deficient conditions. Thus, the K(+) content in kup7 shoot was significantly reduced under low-K(+) conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K(+) transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level in Arabidopsis root. Together, our data demonstrated that KUP7 is crucial for K(+) uptake in Arabidopsis root and might be also involved in K(+) transport into xylem sap, affecting K(+) translocation from root toward shoot, especially under K(+)-limited conditions.

  20. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives.

    Science.gov (United States)

    Schlaeppi, Klaus; Dombrowski, Nina; Oter, Ruben Garrido; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2014-01-14

    Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼ 35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales.

  1. A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells.

    Directory of Open Access Journals (Sweden)

    Robert J H Payne

    Full Text Available Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom(eb.We show how interactions between Rho GTPases (in this case ROPs and regulatory molecules (in this case auxin could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.

  2. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    Science.gov (United States)

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  3. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis.

    Science.gov (United States)

    Ren, Maozhi; Venglat, Prakash; Qiu, Shuqing; Feng, Li; Cao, Yongguo; Wang, Edwin; Xiang, Daoquan; Wang, Jinghe; Alexander, Danny; Chalivendra, Subbaiah; Logan, David; Mattoo, Autar; Selvaraj, Gopalan; Datla, Raju

    2012-12-01

    Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.

  4. PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2.

    Directory of Open Access Journals (Sweden)

    Ján Jásik

    Full Text Available The steady state level of integral membrane proteins is dependent on a strictly controlled delivery and removal. Here we show that Dendra2, a green-to-red photoconvertible fluorescent protein, is a suitable tool to study protein turnover in plants. We characterized the fluorescence properties of Dendra2 expressed either as a free protein or as a tag in Arabidopsis thaliana roots and optimized photoconversion settings to study protein turnover. Dendra2 was fused to the PIN2 protein, an auxin transporter in the root tip, and by time-lapse imaging and assessment of red and green signal intensities in the membrane after photoconversion we quantified directly and simultaneously the rate of PIN2 delivery of the newly synthesized protein into the plasma membrane as well as the disappearance of the protein from the plasma membrane due to degradation. Additionally we have verified several factors which are expected to affect PIN2 protein turnover and therefore potentially regulate root growth.

  5. Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis.

    Science.gov (United States)

    Basu, Debarati; Tian, Lu; Debrosse, Tayler; Poirier, Emily; Emch, Kirk; Herock, Hayley; Travers, Andrew; Showalter, Allan M

    2016-01-01

    Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.

  6. The BIG gene is required for auxin-mediated organ growth in Arabidopsis.

    Science.gov (United States)

    Guo, Xiaola; Lu, Wenwen; Ma, Yurong; Qin, Qianqian; Hou, Suiwen

    2013-04-01

    Control of organ size by cell expansion and cell proliferation is a fundamental process during development, but the importance of BIG in this process is still poorly understood. Here, we report the isolation and characterization of a new allele mutant of BIG in Arabidopsis: big-j588. The mutant displayed small aerial organs that were characterized by reduced cell size in the epidermis and short roots with decreased cell numbers. The big-j588 axr1 double and big-j588 arf7 arf19 triple mutants displayed more severe defects in leaf expansion and root elongation than their parents, implying BIG is involved in auxin-dependent organ growth. Genetic analysis suggests that BIG may act synergistically with PIN1 to affect leaf growth. The PIN1 protein level decreased in both the root cells and the tips of leaf pavement cell lobes of big-j588. Further analysis showed that the auxin maxima in the roots and the leaves of big-j588 decreased. Therefore, we concluded that the small leaves and the short roots of big-j588 were associated with reduction of auxin maxima. Overall, our study suggested that BIG is required for Arabidopsis organ growth via auxin action.

  7. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    Root growth is an essential parameter regarding nitrogen (N) uptake efficiency, as more and deeper roots may improve the uptake from deeper soil layers and reduce nitrate leaching losses. During this PhD project, it was studied how different agronomic practices influence root growth and N relations...... in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...... fertilization was conducted in Canberra, Australia. Here the root studies were done by means of the core-break method and root washing....

  8. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    Science.gov (United States)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  9. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Jie-Li Mao; Ying-Jun Zhao; Chuan-You Li; Cheng-Bin Xiang

    2015-01-01

    L‐Cysteine plays a prominent role in sulfur metabo-lism of plants. However, its role in root development is largely unknown. Here, we report that L‐cysteine reduces primary root growth in a dosage‐dependent manner. Elevating cel ular L‐cysteine level by exposing Arabidopsis thaliana seedlings to high L‐cysteine, buthionine sulphoximine, or O‐acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cel marker as wel as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L‐cysteine significantly reduces the protein level of two sets of stem cel specific transcription factors PLETHORA1/2 and SCR/SHR. However, L‐cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post‐transcriptional mech-anism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L‐cysteine level acts to maintain root stem cel niche by regulating basal‐and auxin‐induced expression of PLT1/2 and SCR/SHR. L‐Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  10. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  11. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Wen-Hui Lin; Xu Chen; Hong-Wei Xue

    2009-01-01

    Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositoi metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTasel3 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PINI and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin trans-port by regulating vesicle trafficking and thereby play a role in root gravitropism.

  12. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  13. Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system

    Science.gov (United States)

    Mullen, J. L.; Wolverton, C.; Ishikawa, H.; Evans, M. L.

    2000-01-01

    The study of gravitropism is hindered by the fact that as a root responds, the gravitational stimulus changes. Using a feedback system to connect a rotating stage platform to a video digitizer system, we were able to maintain a constant angle of gravistimulation to Arabidopsis roots for long time periods. The rate of curvature approximated the sine rule for angles of stimulation between 20 degrees and 120 degrees. For a given angle of stimulation, the rate of curvature also remained constant, with no observed diminishment of the response. Although previous reports of Arabidopsis root gravitropism suggest latent periods of approximately 30 min, using a smooth mechanical stage to reorient the root, we observed a mean time lag of approximately 10 min. This more rapid onset of curvature can, in part, be explained by reduced mechanical perturbation during the process of gravistimulation. This suggests that mechanical stimulation associated with rapid root re-orientation may confound investigations of early gravitropic events.

  14. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  15. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Science.gov (United States)

    Benz, Martin

    2017-01-01

    Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi) differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi. PMID:28149680

  16. Automatic Quantification of the Number of Intracellular Compartments in Arabidopsis thaliana Root Cells

    Science.gov (United States)

    Bayle, Vincent; Platre, Matthieu Pierre; Jaillais, Yvon

    2017-01-01

    In the era of quantitative biology, it is increasingly required to quantify confocal microscopy images. If possible, quantification should be performed in an automatic way, in order to avoid bias from the experimenter, to allow the quantification of a large number of samples, and to increase reproducibility between laboratories. In this protocol, we describe procedures for automatic counting of the number of intracellular compartments in Arabidopsis root cells, which can be used for example to study endocytosis or secretory trafficking pathways and to compare membrane organization between different genotypes or treatments. While developed for Arabidopsis roots, this method can be used on other tissues, cell types and plant species. PMID:28255574

  17. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica.

    Science.gov (United States)

    Nongbri, Pyniarlang L; Johnson, Joy Michal; Sherameti, Irena; Glawischnig, Erich; Halkier, Barbara Ann; Oelmüller, Ralf

    2012-09-01

    The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.

  18. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    Science.gov (United States)

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  19. UV-B induced generation of reactive oxygen species promotes formation of BFA-induced compartments in cells of Arabidopsis root apices

    Directory of Open Access Journals (Sweden)

    Ken eYokawa

    2016-01-01

    Full Text Available UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiationon the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  20. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions.

    Science.gov (United States)

    Xu, Wenzhong; Dai, Wentao; Yan, Huili; Li, Sheng; Shen, Hongling; Chen, Yanshan; Xu, Hua; Sun, Yangyang; He, Zhenyan; Ma, Mi

    2015-05-01

    In Arabidopsis, the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members, five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously identified to be permeable to arsenite. However, the roles of NIPs in the root-to-shoot translocation of arsenite in plants remain poorly understood. In this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an important role in both the arsenic uptake and root-to-shoot distribution under arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite tolerance for aboveground growth and accumulated less arsenic in shoots than those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance and improved growth of both roots and shoots under arsenite stress conditions. A promoter-β-glucuronidase analysis revealed that NIP3;1 was expressed almost exclusively in roots (with the exception of the root tips), and heterologous expression in the yeast Saccharomyces cerevisiae demonstrated that NIP3;1 was able to mediate arsenite transport. Taken together, our results suggest that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive and bidirectional arsenite transporter.

  1. Modulation of leaf conductance by root to shoot signaling under water stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fan Yi-juan; Liu Qing; Wei Kai-fa; Li Bing-bing; Ren Hui-bo; Gao Zhi-hui; Jia Wen-suo

    2006-01-01

    Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the establishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomatal movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD)experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance,which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf temperatures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further investigation into the molecular mechanisms of the root to shoot signaling under water stress.

  2. Root cap specific expression of an endo-beta-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis.

    Science.gov (United States)

    del Campillo, Elena; Abdel-Aziz, Amal; Crawford, Damian; Patterson, Sara E

    2004-09-01

    The sloughing of root cap cells from the root tip is important because it assists the growing root in penetrating the soil. Using a promoter-reporter (GUS) and RT-PCR analysis, we identified an endo-beta-1,4-glucanase (AtCel5) of Arabidopsis thaliana that is expressed exclusively in root cap cells of both primary and secondary roots. Expression is inhibited by high concentrations of IAA, both exogenous and internal, as well as by ABA. AtCel5 expression begins once the mature tissue pattern is established and continues for 3 weeks. GUS staining is observed in both root cap cells that are still attached and cells that have already been shed. Using AtCel5-GUS as a marker, we observed that the root cap cells begin to separate at the sides of the tip while the cells of the central region of the tip separate last. Separation involves sequential tiers of intact cells that separate from the periphery of the root tip. A homozygous T-DNA insertion mutant that does not express AtCel5 forms the root cap and sheds root cap cells but sloughing is less efficient compared to wild type. The reduction in sloughing in the mutant does not affect the overall growth performance of the plant in loose media. The modest effect of abolishing AtCel5 expression suggests that there are multiple redundant genes regulating the process of sloughing of the root cap, including AtCel3/At1g71380, the paralog of the AtCel5 gene that is also expressed in the root cap cells. Thus, these two endo-1,4-beta-D-glucanases may have a role in the sloughing of border cells from the root tip. We propose that AtCel5, provides a new molecular marker to further analyze the process of root cap cell separation and a root cap specific promoter for targeting to the environment genes with beneficial properties for plant growth.

  3. Stochastic roots of growth phenomena

    Science.gov (United States)

    De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.

    2014-05-01

    We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.

  4. Oryzalin-modified disruption of microtubular cytoskeleton in Arabidopsis thaliana root cells under clinorotation

    Science.gov (United States)

    Kalinina, Ia.; Shevchenko, G.; Kordyum, E.

    There are data on gravisensitivity of cells not specialized to perceive a gravity vector but the molecular processes by which gravity affects not graviperceptive cells are still unclear Spaceflight experiments show that the microtubule self-organization in vitro is gravity-dependent Confocal microscopic analysis of the microtubule spatial organization under altered gravity with combination of approach drugs that disrupt normal microtubule behavior should give us a better understanding of the possible role of microtubule cytoskeleton in gravisensing on cellular level With this aim we examined influence of horizontal clinorotation 2 rpm on the spatial organization of microtubules in the root cortical and epidermal cells by means of LSM 5 PASCAL Zeiss Germany Microtubules were visualized by using stably transformed line of transgenic Arabidopsis thaliana expressing a green fluorescent protein-MAP4 fusion protein We inhibited microtubule function applying 5 956 M L oryzalin microtubule inhibitor in control and clinorotated seedlings Preliminary investigations show that cortical microtubule arrays were dense and predominantly transverse to the root long axis in the meristem and distal elongation zone in control and they got oblique direction when rapid cell elongation is finishing In the differentiation zone microtubules reorient with respect to the longitudinal growth axis of cell Under clinorotation cortical microtubules have the same configuration in the meristem central elongation zone and differentiation zone but it is observed appearances of several

  5. Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV or Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2013-03-01

    Full Text Available Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  6. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.

    Science.gov (United States)

    Song, Sang-Kee; Ryu, Kook Hui; Kang, Yeon Hee; Song, Jae Hyo; Cho, Young-Hee; Yoo, Sang-Dong; Schiefelbein, John; Lee, Myeong Min

    2011-11-01

    The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcriptional regulators have not been fully defined experimentally. Here, we examine these issues by misexpressing the WER gene using the GAL4-upstream activation sequence transactivation system. We find that WER overexpression in the Arabidopsis root tip is sufficient to cause epidermal cells to adopt the nonhair cell fate through direct induction of GLABRA2 (GL2) gene expression. We also show that GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), two closely related bHLH proteins, are required for the action of the overexpressed WER and that WER interacts with these bHLHs in plant cells. Furthermore, we find that CPC suppresses the WER overexpression phenotype quantitatively. These results show that WER acts together with GL3/EGL3 to induce GL2 expression and that WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis.

  7. Effect of lead on root growth.

    Science.gov (United States)

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development.

  8. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  9. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    Science.gov (United States)

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions.

  10. Variability and Constancy in Cellular Growth of Arabidopsis Sepals.

    Science.gov (United States)

    Tauriello, Gerardo; Meyer, Heather M; Smith, Richard S; Koumoutsakos, Petros; Roeder, Adrienne H K

    2015-12-01

    Growth of tissues is highly reproducible; yet, growth of individual cells in a tissue is highly variable, and neighboring cells can grow at different rates. We analyzed the growth of epidermal cell lineages in the Arabidopsis (Arabidopsis thaliana) sepal to determine how the growth curves of individual cell lineages relate to one another in a developing tissue. To identify underlying growth trends, we developed a continuous displacement field to predict spatially averaged growth rates. We showed that this displacement field accurately describes the growth of sepal cell lineages and reveals underlying trends within the variability of in vivo cellular growth. We found that the tissue, individual cell lineages, and cell walls all exhibit growth rates that are initially low, accelerate to a maximum, and decrease again. Accordingly, these growth curves can be represented by sigmoid functions. We examined the relationships among the cell lineage growth curves and surprisingly found that all lineages reach the same maximum growth rate relative to their size. However, the cell lineages are not synchronized; each cell lineage reaches this same maximum relative growth rate but at different times. The heterogeneity in observed growth results from shifting the same underlying sigmoid curve in time and scaling by size. Thus, despite the variability in growth observed in our study and others, individual cell lineages in the developing sepal follow similarly shaped growth curves.

  11. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.).

    Science.gov (United States)

    Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young

    2015-08-01

    The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops.

  12. In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    Khonsari Roman H

    2009-11-01

    Full Text Available Abstract Background Tonoplast intrinsic proteins (TIPs are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known. Results We generated fluorescent protein fusions to the genomic sequences of all members of the Arabidopsis TIP family whose expression is predicted to occur in root tissues (TIP1;1 and 1;2; TIP2;1, 2;2 and 2;3; TIP4;1 and expressed these fusions, both individually and in selected pairwise combinations, in transgenic Arabidopsis. Analysis by confocal microscopy revealed that TIP distribution varied between different cell layers within the root axis, with extensive co-expression of some TIPs and more restricted expression patterns for other isoforms. TIP isoforms whose expression overlapped appeared to localise to the tonoplast of the central vacuole, vacuolar bulbs and smaller, uncharacterised structures. Conclusion We have produced a comprehensive atlas of TIP expression in Arabidopsis roots, which reveals novel expression patterns for not previously studied TIPs.

  13. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    Directory of Open Access Journals (Sweden)

    Michael H Wilson

    2015-02-01

    Full Text Available Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS, through the rapid and late elongation zones (REZ, LEZ to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (subcellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species needed for cell expansion, and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18 and XTH19. The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root

  14. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Kun-Xiao; Wang, Wen-Shu; Gong, Wen; Liu, Wen-Cheng; Chen, Hong-Guo; Xu, Heng-Hao; Lu, Ying-Tang

    2015-04-01

    Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

  15. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching

    Science.gov (United States)

    Moreno-Risueno, Miguel A.; Van Norman, Jaimie M.; Moreno, Antonio; Zhang, Jingyuan; Ahnert, Sebastian E.; Benfey, Philip N.

    2010-01-01

    Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock–driven activities in animal species. PMID:20829477

  16. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    Directory of Open Access Journals (Sweden)

    Stefanie De Smet

    2015-08-01

    Full Text Available Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.

  17. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress.

    Science.gov (United States)

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.

  18. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity

    NARCIS (Netherlands)

    Julkowska, M.M.; Hoefsloot, H.C.J.; Mol, S.; Feron, R.; de Boer, G.J.; Haring, M.A.; Testerink, C.

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles i

  19. Quest for Continual Growth Takes Root

    Science.gov (United States)

    Surdey, Mary M.; Hashey, Jane M.

    2006-01-01

    In this article, the authors describe how the quest for continual growth has taken its root at Vestal Central School district. Located at the heart of upstate New York, educators at Vestal Central School district have created a spirit of "kaizen," a Japanese word meaning the relentless quest for continual improvement and higher-quality…

  20. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  1. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    Science.gov (United States)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle

  2. Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter

    Indian Academy of Sciences (India)

    Virupapuram Vijaybhaskar; Veeraputhiran Subbiah; Jagreet Kaur; Pagadala Vijayakumari; Imran Siddiqi

    2008-06-01

    A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding -glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes.

  3. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ying Dou; Ke-Zhen Yang; Zhao-Xia Ma; Li-Qun Chen; Xue-Qin Zhang; Jin-Rong Bai; De Ye

    2016-01-01

    In flowering plants, pol en tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pol en tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pol en tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal cal ose deposition in the pol en grains and had a significant impact on pol en germination and pol en tube growth. AtTMEM18 is expressed in pol en grains, pol en tubes, root tips and other vegetative tissues. The pol en-rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18-GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cel s of pol en grains was essential for the male fertility. Furthermore, expression of the rice TMEM18-homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis.

  4. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  5. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    Science.gov (United States)

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  6. Measuring whole plant CO2 exchange with the environment reveals opposing effects of the gin2-1 mutation in shoots and roots of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Stutz, Simon; Paul, Martin; Heyer, Arnd G

    2015-01-01

    Using a cuvette for simultaneous measurement of net photosynthesis in above ground plant organs and root respiration we investigated the effect of reduced leaf glucokinase activity on plant carbon balance. The gin2-1 mutant of Arabidopsis thaliana is characterized by a 50% reduction of glucokinase activity in the shoot, while activity in roots is about fivefold higher and similar to wild type plants. High levels of sucrose accumulating in leaves during the light period correlated with elevated root respiration in gin2-1. Despite substantial respiratory losses in roots, growth retardation was moderate, probably because photosynthetic carbon fixation was simultaneously elevated in gin2-1. Our data indicate that futile cycling of sucrose in shoots exerts a reduction on net CO2 gain, but this is over-compensated by the prevention of exaggerated root respiration resulting from high sucrose concentration in leaf tissue.

  7. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis.

    Science.gov (United States)

    Chen, Alice; Komives, Elizabeth A; Schroeder, Julian I

    2006-05-01

    Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.

  8. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben;

    2015-01-01

    Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals...... the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans...... and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other...

  9. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.

    Science.gov (United States)

    Zhang, Min; Wang, Cuiping; Lin, Qingfang; Liu, Aihua; Wang, Ting; Feng, Xuanjun; Liu, Jie; Han, Huiling; Ma, Yan; Bonea, Diana; Zhao, Rongmin; Hua, Xuejun

    2015-08-01

    Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.

  10. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  11. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria.

    Science.gov (United States)

    Vicré, Maïté; Santaella, Catherine; Blanchet, Sandrine; Gateau, Aurélien; Driouich, Azeddine

    2005-06-01

    Plant roots of many species produce thousands of cells that are released daily into the rhizosphere. These cells are commonly termed border cells because of their major role in constituting a biotic boundary layer between the root surface and the soil. In this study, we investigated the occurrence and ultrastructure of such cells in Arabidopsis (Arabidopsis thaliana) using light and electron microscopy coupled to high-pressure freezing. The secretion of cell wall molecules including pectic polysaccharides and arabinogalactan-proteins (AGPs) was examined also using immunofluorescence microscopy and a set of anticarbohydrate antibodies. We show that root tips of Arabidopsis seedlings released cell layers in an organized pattern that differs from the rather randomly dispersed release observed in other plant species studied to date. Therefore, we termed such cells border-like cells (BLC). Electron microscopical results revealed that BLC are rich in mitochondria, Golgi stacks, and Golgi-derived vesicles, suggesting that these cells are actively engaged in secretion of materials to their cell walls. Immunocytochemical data demonstrated that pectins as well as AGPs are among secreted material as revealed by the high level of expression of AGP-epitopes. In particular, the JIM13-AGP epitope was found exclusively associated with BLC and peripheral cells in the root cap region. In addition, we investigated the function of BLC and root cap cell AGPs in the interaction with rhizobacteria using AGP-disrupting agents and a strain of Rhizobium sp. expressing a green fluorescent protein. Our findings demonstrate that alteration of AGPs significantly inhibits the attachment of the bacteria to the surface of BLC and root tip.

  12. Transcription factor movement and tissue patterning in Arabidopsis root meristem

    NARCIS (Netherlands)

    Long, Y.

    2015-01-01

    Cell-cell communication is key to coordinated cellular functions in multicellular organisms. In addition to the signaling molecules found in animals, plants also frequently recruit mobile transcription factors to deliver positional information. The best studied example is SHORT-ROOT (SHR), a transcr

  13. A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap.

    Science.gov (United States)

    Hong, Jing Han; Chu, Huangwei; Zhang, Chen; Ghosh, Dipanjana; Gong, Ximing; Xu, Jian

    2015-01-01

    The Lugol's staining method has been widely used to detect changes in the maintenance of stem cell fate in the columella root cap of Arabidopsis roots since the late 1990s. However, various limitations of this method demand for additional or complementary new approaches. For instance, it is unable to reveal the division rate of columella root cap stem cells. Here we report that, by labeling dividing stem cells with 5-ethynyl-2'-deoxyuridine (EdU), the number and distribution of their labeled progeny can be studied so that the division rate of stem cells can be measured quantitatively and in addition, that the progression of stem cell progeny differentiation can be assessed in combination with Lugol's staining. EdU staining takes few hours and visualization of the stain characteristics of columella root cap can be performed easily under confocal microscopes. This simple technology, when used together with Lugol's staining, provides a novel quantitative method to study the dynamics of stem cell behavior that govern homeostasis in the Arabidopsis columella root cap.

  14. Functional implications of K63-linked ubiqitination in the iron deficiency response of Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    I-Chun ePan

    2014-01-01

    Full Text Available Iron is an essential micronutrient that plays important roles as a redox cofactor in a variety of processes, many of which are related to DNA metabolism. The E2 ubiquitin conjugase UBC13, the only E2 protein that is capable of catalyzing the formation of noncanonical K63-linked ubiquitin chains, has been associated with the DNA damage tolerance pathway in eukaryotes, critical for maintenance of genome stability and integrity. We previously showed that UBC13 and an interacting E3 ubiquitin ligase, RGLG, affect the differentiation of root epidermal cells in Arabidopsis. When grown on iron-free media, Arabidopsis plants develops root hairs that are branched at their base, a response that has been interpreted as an adaption to reduced iron availability. Mutations in UBC13A abolished the branched root hair phenotype. Unexpectedly, mutations in RGLG genes caused constitutive root hair branching. Based on recent results that link endocytotic turnover of plasma membrane-bound PIN transporters to K63-linked ubiquitination, we reinterpreted our results in a context that classifies the root hair phenotype of iron-deficient plants as a consequence of altered auxin distribution. We show here that UBC13A/B and RGLG1/2 are involved in DNA damage repair and hypothesize that UBC13 protein becomes limited under iron-deficient conditions to prioritize DNA metabolism. The data suggest that genes involved in combating detrimental effects on genome stability may represent essential components in the plant’s stress response.

  15. A Quantitative Analysis of Stem Cell Homeostasis in the Arabidopsis Columella Root Cap

    Directory of Open Access Journals (Sweden)

    Jing Han eHong

    2015-03-01

    Full Text Available The Lugol’s staining method has been widely used to detect changes in the maintenance of stem cell fate in the columella root cap of Arabidopsis roots since the late ‘90s. However, various limitations of this method demand for additional or complementary new approaches. For instance, it is unable to reveal the division rate of columella root cap stem cells. Here we report that, by labelling dividing stem cells with 5-ethynyl-2´-deoxyuridine (EdU, the number and distribution of their labeled progeny can be studied so that the division rate of stem cells can be measured quantitatively and in addition, that the progression of stem cell progeny differentiation can be assessed in combination with Lugol’s staining. EdU staining takes few hours and visualization of the stain characteristics of columella root cap can be performed easily under confocal microscopes. This simple technology, when used together with Lugol’s staining, provides a novel quantitative method to study the dynamics of stem cell behaviour that govern homeostasis in the Arabidopsis columella root cap.

  16. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis.

    Science.gov (United States)

    Liu, Wen-Ju; Wood, B Alan; Raab, Andrea; McGrath, Steve P; Zhao, Fang-Jie; Feldmann, Jörg

    2010-04-01

    Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compounds in Arabidopsis (Arabidopsis thaliana) exposed to arsenate [As(V)]. As(V) was efficiently reduced to As(III) in roots. In wild-type roots, 69% of As was complexed as As(III)-PC4, As(III)-PC3, and As(III)-(PC2)2. Both the glutathione (GSH)-deficient mutant cad2-1 and the PC-deficient mutant cad1-3 were approximately 20 times more sensitive to As(V) than the wild type. In cad1-3 roots, only 8% of As was complexed with GSH as As(III)-(GS)3 and no As(III)-PCs were detected, while in cad2-1 roots, As(III)-PCs accounted for only 25% of the total As. The two mutants had a greater As mobility, with a significantly higher accumulation of As(III) in shoots and 4.5 to 12 times higher shoot-to-root As concentration ratio than the wild type. Roots also effluxed a substantial proportion of the As(V) taken up as As(III) to the external medium, and this efflux was larger in the two mutants. Furthermore, when wild-type plants were exposed to l-buthionine sulfoximine or deprived of sulfur, both As(III) efflux and root-to-shoot translocation were enhanced. The results indicate that complexation of As(III) with PCs in Arabidopsis roots decreases its mobility for both efflux to the external medium and for root-to-shoot translocation. Enhancing PC synthesis in roots may be an effective strategy to reduce As translocation to the edible organs of food crops.

  17. Chiral and non-chiral nutations in Arabidopsis roots grown on the random positioning machine.

    Science.gov (United States)

    Piconese, S; Tronelli, G; Pippia, P; Migliaccio, F

    2003-08-01

    Arabidopsis thaliana roots grown on a vertically set plate do not elongate straight down the gravitational vector, but by making waves and coils, and by conspicuously slanting towards the right-hand. This behaviour, in a previous paper, was ascribed to the simultaneous effect of three processes: circumnutation, positive gravitropism and negative thigmotropism. However, when the plants are grown on the Random Positioning Machine (RPM), in conditions that are believed to simulate space microgravitational conditions closely, the roots do not show the usual pattern. In the wild type, the roots make large loops to the right-hand side, whereas in the gravitropic and auxinic mutants aux1, eir1, rha1, they just move randomly around the initial direction. Therefore, if the movements made on the RPM are those produced by the exclusion of gravitropism and negative thigmotropism, as is apparent, the conclusion is that Arabidopsis roots are animated by a form of chiral circumnutation, that is lacking in the auxinic and gravitropic mutants aux1, eir1 and rha1. In addition, the 1 g condition appears to reduce the scatter among the circumnutating tracks produced by the roots of the wild types, but not among those of the mutants. Because there is a scarcity of literature regarding circumnutation in roots, it is not known how widely root chiral circumnutation is spread, but it is known that, in some previously studied species, just random nutations are observed. Two kinds of nutating movements seem to exist in plant roots and, whereas the random process does not seem to be connected with auxin physiology and transport, the chiral process appears to be connected in the same way as gravitropism is.

  18. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density.

    Science.gov (United States)

    Yu, Hong; Chen, Xi; Hong, Yuan-Yuan; Wang, Yao; Xu, Ping; Ke, Sheng-Dong; Liu, Hai-Yan; Zhu, Jian-Kang; Oliver, David J; Xiang, Cheng-Bin

    2008-04-01

    Drought is one of the most important environmental constraints limiting plant growth and agricultural productivity. To understand the underlying mechanism of drought tolerance and to identify genes for improving this important trait, we conducted a gain-of-function genetic screen for improved drought tolerance in Arabidopsis thaliana. One mutant with improved drought tolerance was isolated and designated as enhanced drought tolerance1. The mutant has a more extensive root system than the wild type, with deeper roots and more lateral roots, and shows a reduced leaf stomatal density. The mutant had higher levels of abscisic acid and Pro than the wild type and demonstrated an increased resistance to oxidative stress and high levels of superoxide dismutase. Molecular genetic analysis and recapitulation experiments showed that the enhanced drought tolerance is caused by the activated expression of a T-DNA tagged gene that encodes a putative homeodomain-START transcription factor. Moreover, overexpressing the cDNA of the transcription factor in transgenic tobacco also conferred drought tolerance associated with improved root architecture and reduced leaf stomatal density. Therefore, we have revealed functions of the homeodomain-START factor that were gained upon altering its expression pattern by activation tagging and provide a key regulator that may be used to improve drought tolerance in plants.

  19. Regulation of length and density of Arabidopsis root hairs by ammonium and nitrate.

    Science.gov (United States)

    Vatter, Thomas; Neuhäuser, Benjamin; Stetter, Markus; Ludewig, Uwe

    2015-09-01

    Root hairs expand the effective root surface to increase the uptake of nutrients and water from the soil. Here the local effects of the two major nitrogen sources, ammonium and nitrate, on root hairs were investigated using split plates. In three contrasting accessions of A. thaliana, namely Col-0, Tsu-0 and Sha, root hairs were differentially affected by the nitrogen forms and their concentration. Root hairs in Sha were short in the absence of nitrate. In Col-0, hair length was moderately decreased with increasing nitrate or ammonium. In all accessions, the root hair density was insensitive to 1,000-fold changes in the ammonium concentrations, when supplied locally as the exclusive nitrogen form. In contrast, the root hair density generally increased with nitrate as the exclusive local nitrogen source. The nitrate sensitivity was reduced at mM concentrations in a loss-of-function mutant of the nitrate transporter and sensor gene NRT1;1 (NPF6.3). Little differences with respect to ammonium were found in a mutant lacking four high affinity AMT-type ammonium transporters, but interestingly, the response to high nitrate was reduced and may indicate a general defect in nitrogen signaling in that mutant. Genetic diversity and the presence of the nitrogen transceptor NRT1;1 explain heterogeneity in the responses of root hairs to different nitrogen forms in Arabidopsis accessions.

  20. EFFECT OF SEED XYLOGLUCANS AND DERIVATES ON THE GROWTH OF Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Adriana Tourinho Salamoni

    2009-10-01

    Full Text Available Studies on xyloglucan (XG extracted from Hymenaea courbaril L. (jatoba seeds showed that this biopolymer has biological activity that enhanced wheat coleoptiles growth. In apple tree micropropagation, the culture medium containing XG combined with agar induced a higher multiplication rate, rooting rate and root length than medium solidified with agar only. The purpose of this study was to determine the effect of XG from jatobá seeds extracted from jatoba seeds collected in Sinope/MT (XGS and Cuiabá/MT (XGC, and from XGC hydrolysed with a cellulase (XGCH, as well from Tamarindus indica seeds (XGT collected in Bahia/BA, on the growth of in vitro cultured Arabidopsis thaliana plantlets. In the first experiment, XGCH (0.25, 25 and 250 nM or XGC (0.5, 50 and 500 nM were added to a liquid half-strength MS medium. In the second experiment, XGs from several origins were compared: XGC (500 nM, XGS (1200 nM and XGT (800 nM, using culture medium solidified with 6 g.L-1agar. Arabidopsis thaliana L. seeds germinated in Petri plates for 4 to 5 days were transferred to culture media containing the different concentrations of XGs and cultured in a growing room. When the plantlets were cultured in a liquid medium, their growth was very slow in the presence of XGC and XGCH at the highest concentration tested, and it was faster at the lowest concentration. In the semi-solid culture medium, XGs also reduced growth. It was concluded that XGs can play a biological role in Arabidopsis thaliana (L. Heynh. plantlets, stimulating or inhibiting the root system growth and the lateral root formation. These opposite effects varied according to the plant specie that furnished the seeds containing XG, as well as the place where the seeds were collected, to the XG form used (hydrolyzed or not and to its concentration in the culture media. 

  1. High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops.

    Science.gov (United States)

    Rodriguez-Furlán, Cecilia; Miranda, Giovanna; Reggiardo, Martín; Hicks, Glenn R; Norambuena, Lorena

    2016-04-01

    Plant growth regulators (PGRs) have become an integral part of agricultural and horticultural practices. Accordingly, there is an increased demand for new and cost-effective products. Nevertheless, the market is limited by insufficient innovation. In this context chemical genomics has gained increasing attention as a powerful approach addressing specific traits. Here is described the successful implementation of a highly specific, sensitive and efficient high throughput screening approach using Arabidopsis as a model. Using a combination of techniques, 10,000 diverse compounds were screened and evaluated for several important plant growth traits including root and leaf growth. The phenotype-based selection allowed the compilation of a collection of putative Arabidopsis growth regulators with a broad range of activities and specificities. A subset was selected for evaluating their bioactivity in agronomically valuable plants. Their validation as growth regulators in commercial species such as tomato, lettuce, carrot, maize and turfgrasses reinforced the success of the screening in Arabidopsis and indicated that small molecules activity can be efficiently translated to commercial species. Therefore, the chemical genomics approach in Arabidopsis is a promising field that can be incorporated in PGR discovery programs and has a great potential to develop new products that can be efficiently used in crops.

  2. Hormone symphony during root growth and development.

    Science.gov (United States)

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem.

  3. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis.

    Science.gov (United States)

    Gutkowska, Malgorzata; Wnuk, Marta; Nowakowska, Julita; Lichocka, Malgorzata; Stronkowski, Michal M; Swiezewska, Ewa

    2015-01-01

    Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.

  4. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    Directory of Open Access Journals (Sweden)

    Christoph eSchmid

    2013-08-01

    Full Text Available Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues.A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella.Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation, while solitary plants placed more roots towards the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category ‘biotic stress’ using MapMan tools found the sub-category ‘pathogenesis-related proteins’ highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots.We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions.

  5. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Science.gov (United States)

    Tocquin, Pierre; Corbesier, Laurent; Havelange, Andrée; Pieltain, Alexandra; Kurtem, Emile; Bernier, Georges; Périlleux, Claire

    2003-01-01

    Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes. PMID:12556248

  6. AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Amanda Mangeon

    Full Text Available AtGRP3 is a glycine-rich protein (GRP from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.

  7. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots

    KAUST Repository

    Ordoñez, Natalia Maria

    2014-02-13

    Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K+-efflux and Ca2+-influx in Arabidopsis roots. Pre-treatment with either 10 μM cAMP or cGMP for 1 or 24 h does significantly reduce net K+-leakage and Ca2+-influx, and in the case of the K+-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10 μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  9. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors.

    Science.gov (United States)

    Plancot, Barbara; Santaella, Catherine; Jaber, Rim; Kiefer-Meyer, Marie Christine; Follet-Gueye, Marie-Laure; Leprince, Jérôme; Gattin, Isabelle; Souc, Céline; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2013-12-01

    Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.

  10. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique featu

  11. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    NARCIS (Netherlands)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; Almeida Engler, De Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins dur

  12. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light.

    Science.gov (United States)

    Buer, Charles S; Muday, Gloria K

    2004-05-01

    We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravitropism that was chemically complemented with a flavonoid intermediate. Flavonoid accumulation was found in wild-type columella cells, the site of gravity perception, and in epidermal and cortical cells, the site of differential growth, but flavonoid accumulation was absent in tt4(2YY6) roots. Flavonoid accumulation was higher in gravity-stimulated root tips as compared with vertical controls, with maximum differences coinciding with the timing of gravitropic bending, and was located in epidermal cells. Exogenous indole-3-acetic acid (IAA) also elevated flavonoid accumulation, suggesting that flavonoid changes in response to gravity might be partly as a result of changing IAA distribution. Acropetal IAA transport was also elevated in roots of tt4(2YY6). Flavonoid synthesis was repressed in the dark, as were differences in root acropetal transport in tt4(2YY6). These results are consistent with light- and gravity-induced flavonoid stimulation that alters auxin transport in roots and dependent physiological processes, including gravitropic bending and root development.

  13. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Xiang; Wang, Jin; Yuan, Jing; Wang, Xi-Li; Zhao, Qing-Ping; Kong, Pei-Tao; Zhang, Xiao

    2015-07-01

    Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.

  14. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis.

    Science.gov (United States)

    Gong, Ji-Ming; Lee, David A; Schroeder, Julian I

    2003-08-19

    Phytochelatin synthases (PCS) mediate cellular heavy-metal resistance in plants, fungi, and worms. However, phytochelatins (PCs) are generally considered to function as intracellular heavy-metal detoxification mechanisms, and whether long-distance transport of PCs occurs during heavy-metal detoxification remains unknown. Here, wheat TaPCS1 cDNA expression was either targeted to Arabidopsis roots with the Arabidopsis alcohol dehydrogenase (Adh) promoter (Adh::TaPCS1/cad1-3) or ectopically expressed with the cauliflower mosaic virus 35S promoter (35S::TaPCS1/cad1-3) in the PC-deficient mutant cad1-3. Adh::TaPCS1/cad1-3 and 35S::TaPCS1/cad1-3 complemented the cadmium, mercury, and arsenic sensitivities of the cad1-3 mutant. Northern blot, RT-PCR, and Western blot analyses showed Adh promoter-driven TaPCS1 expression only in roots and thus demonstrated lack of long-distance TaPCS1 mRNA and protein transport in plants. Fluorescence HPLC analyses showed that under Cd2+ stress, no PCs were detectable in cad1-3. However, in Adh::TaPCS1/cad1-3 plants, PCs were detected in roots and in rosette leaves and stems. Inductively coupled plasma atomic emission spectrometer analyses showed that either root-specific or ectopic expression of TaPCS1 significantly enhanced long-distance Cd2+ transport into stems and rosette leaves. Unexpectedly, transgenic expression of TaPCS1 reduced Cd2+ accumulation in roots compared with cad1-3. The reduced Cd2+ accumulation in roots and enhanced root-to-shoot Cd2+ transport in transgenic plants were abrogated by l-buthionine sulfoximine. The presented findings show that (i) transgenic expression of TaPCS1 suppresses the heavy-metal sensitivity of cad1-3, (ii) PCs can be transported from roots to shoots, and (iii) transgenic expression of the TaPCS1 gene increases long-distance root-to-shoot Cd2+ transport and reduces Cd2+ accumulation in roots.

  15. Aluminium toxicity targets PIN2 in Arabidopsis root apices: Effects on PIN2 endocytosis, vesicular recycling,and polar auxin transport

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; HOU NingYan; Markus SCHLICHT; WAN YingLang; Stefano MANCUSO; Frantisek BALUSKA

    2008-01-01

    The most obvious symptom of AI toxicity is the inhibition of root growth.However,the mechanism of AI-inhibiting root growth remains to be elucidated.In this study,auxin transport and vesicle movement of an auxin-efflux carrier (PIN2) were investigated in Arabidopsis roots in response to AI stress.Results indicated that AI inhibited the apical transport of auxin in root tips of Arabidopsis significantly.The severe inhibition was localized in the cells of transition zone,where the concentration of auxin was only 34% that of the control.Brefeldin A (BFA),an inhibitor of vesicle transport,induced the dot-like structure of PIN2 vesicle significantly.Al decreased the size of dot-like structure of PIN2 vesicles.Re-sults of real-time RT-PCR and Western-blotting analysis showed that Al increased the transcript level of PIN2 and the accumulation of PIN2 protein in horizontal direction of plasma membrane,but decreased its distribution in endosomes,suggesting that AI inhibited the transport of PIN2 vesicles from plasma membrane to endosomes.Results of cytoskeleton-depolymering drugs indicated that it was via the pathway of disruption of actin microfilaments that AI inhibited the transport of PIN2 vesicles.Exposed to AI stress,the cells of elongation zone had less AI uptake and less transport frequency of vesicles than cells of transition zone.Taken together,our results suggested that AI inhibited root growth mainly by modulating the transport of PIN2 vesicles between plasma membrane and endosomes,thus block-ing auxin transport and root growth.

  16. Growth and development in Arabidopsis thaliana through an entire life cycle under simulated microgravity conditions on a clinostat.

    Science.gov (United States)

    Miyamoto, K; Yamamoto, R; Fujii, S; Soga, K; Hoson, T; Shimazu, T; Masuda, Y; Kamisaka, S; Ueda, J

    1999-12-01

    The effects of simulated microgravity conditions produced by a horizontal clinostat on the entire life cycle of Arabidopsis thaliana ecotype Columbia and Landsberg erecta were studied. Horizontal clinorotation affected little germination of seeds, growth and development of rosette leaves and roots during early vegetative growth stage, and the onset of the bolting of inflorescence axis and flower formation in reproductive growth stage, although it suppressed elongation of inflorescence axes. The clinorotation substantially reduced the numbers of siliques and seeds in Landsberg erecta, and completely inhibited seed production in Columbia. Seeds produced in Landsberg erecta on the clinostat were capable of germinating and developing rosette leaves normally on the ground. On the other hand, growth of pin formed mutant (pin/pin) of Arabidopsis ecotype Enkheim, which has a unique structure of inflorescence axis with no flower and extremely low levels of auxin polar transport activity, was inhibited and the seedlings frequently died during vegetative stage on the clinostat. Seed formation and inflorescence growth of the seedlings with normal shape (pin/+ or +/+) were also suppressed on the clinostat. These results suggest that the growth and development of Arabidopsis, especially in reproductive growth stage, is suppressed under simulated microgravity conditions on a clinostat. To complete the life cycle probably seems to be quite difficult, although it is possible in some ecotypes.

  17. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?

    Science.gov (United States)

    Vile, Denis; Pervent, Marjorie; Belluau, Michaël; Vasseur, François; Bresson, Justine; Muller, Bertrand; Granier, Christine; Simonneau, Thierry

    2012-04-01

    High temperature (HT) and water deficit (WD) are frequent environmental constraints restricting plant growth and productivity. These stresses often occur simultaneously in the field, but little is known about their combined impacts on plant growth, development and physiology. We evaluated the responses of 10 Arabidopsis thaliana natural accessions to prolonged elevated air temperature (30 °C) and soil WD applied separately or in combination. Plant growth was significantly reduced under both stresses and their combination was even more detrimental to plant performance. The effects of the two stresses were globally additive, but some traits responded specifically to one but not the other stress. Root allocation increased in response to WD, while reproductive allocation, hyponasty and specific leaf area increased under HT. All the traits that varied in response to combined stresses also responded to at least one of them. Tolerance to WD was higher in small-sized accessions under control temperature and HT and in accessions with high biomass allocation to root under control conditions. Accessions that originate from sites with higher temperature have less stomatal density and allocate less biomass to the roots when cultivated under HT. Independence and interaction between stresses as well as the relationships between traits and stress responses are discussed.

  18. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2007-02-01

    Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.

  19. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities

    Directory of Open Access Journals (Sweden)

    Lilia C Carvalhais

    2013-07-01

    Full Text Available Plants in natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of roots and the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we examined Arabidopsis thaliana roots and shoots in the presence or absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect on Arabidopsis shoots in the presence of soil microbes compared to plants grown in microbe-free soil under otherwise identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also led to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in nitrogen uptake, oxidative stress/redox signaling, cell wall modification and salicylic acid (SA-mediated plant defense while upregulating jasmonate (JA signaling and photosynthesis. Multi-species analyses such as simultaneous transcriptiptional profiling of plants and their interacting microorganisms (metatransciptomics coupled to metagenomics may further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.

  20. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  1. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  2. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

    Science.gov (United States)

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-03-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

  3. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  4. APC/C-CCS52A complexes control meristem maintenance in the Arabidopsis root.

    Science.gov (United States)

    Vanstraelen, Marleen; Baloban, Mikhail; Da Ines, Olivier; Cultrone, Antonietta; Lammens, Tim; Boudolf, Véronique; Brown, Spencer C; De Veylder, Lieven; Mergaert, Peter; Kondorosi, Eva

    2009-07-14

    Plant organs originate from meristems where stem cells are maintained to produce continuously daughter cells that are the source of different cell types. The cell cycle switch gene CCS52A, a substrate specific activator of the anaphase promoting complex/cyclosome (APC/C), controls the mitotic arrest and the transition of mitotic cycles to endoreduplication (ER) cycles as part of cell differentiation. Arabidopsis, unlike other organisms, contains 2 CCS52A isoforms. Here, we show that both of them are active and regulate meristem maintenance in the root tip, although through different mechanisms. The CCS52A1 activity in the elongation zone of the root stimulates ER and mitotic exit, and contributes to the border delineation between dividing and expanding cells. In contrast, CCS52A2 acts directly in the distal region of the root meristem to control identity of the quiescent center (QC) cells and stem cell maintenance. Cell proliferation assays in roots suggest that this control involves CCS52A2 mediated repression of mitotic activity in the QC cells. The data indicate that the CCS52A genes favor a low mitotic state in different cell types of the root tip that is required for meristem maintenance, and reveal a previously undescribed mechanism for APC/C mediated control in plant development.

  5. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots.

    Science.gov (United States)

    Besnard, Julien; Pratelli, Réjane; Zhao, Chengsong; Sonawala, Unnati; Collakova, Eva; Pilot, Guillaume; Okumoto, Sakiko

    2016-12-01

    Amino acids are the main form of nitrogen transported between the plant organs. Transport of amino acids across membranes is mediated by specialized proteins: importers, exporters, and facilitators. Unlike amino acid importers, amino acid exporters have not been thoroughly studied, partly due to a lack of high-throughput techniques enabling their isolation. Usually Multiple Acids Move In and out Transporters 14 (UMAMIT14) from Arabidopsis shares sequence similarity to the amino acid facilitator Silique Are Red1 (UMAMIT18), and has been shown to be involved in amino acid transfer to the seeds. We show here that UMAMIT14 is also expressed in root pericycle and phloem cells and mediates export of a broad range of amino acids in yeast. Loss-of-function of UMAMIT14 leads to a reduced shoot-to-root and root-to-medium transfer of amino acids originating from the leaves. These fluxes were further reduced in an umamti14 umamit18 double loss-of-function mutant. This study suggests that UMAMIT14 is involved in phloem unloading of amino acids in roots, and that UMAMIT14 and UMAMIT18 are involved in the radial transport of amino acids in roots, which is essential for maintaining amino acid secretion to the soil.

  6. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2014-01-01

    The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.

  7. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  8. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  9. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    Science.gov (United States)

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.

  10. Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.

    Science.gov (United States)

    Lin, Y; Schiefelbein, J

    2001-10-01

    A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.

  11. PIV as a method for quantifying root cell growth and particle displacement in confocal images.

    Science.gov (United States)

    Bengough, A Glyn; Hans, Joachim; Bransby, M Fraser; Valentine, Tracy A

    2010-01-01

    Particle image velocimetry (PIV) quantifies displacement of patches of pixels between successive images. We evaluated PIV as a tool for microscopists by measuring displacements of cells and of a surrounding granular medium in confocal laser scanning microscopy images of Arabidopsis thaliana roots labeled with cell-membrane targeted green fluorescent protein. Excellent accuracy (e.g., displacement standard deviation PIV-predicted and actual displacements (r(2) > 0.83). Root mean squared error for these distorted images was 0.4-1.1 pixels, increasing at higher magnification factors. Cell growth and rhizosphere deformation were tracked with good temporal (e.g., 1-min interval) and spatial resolution, with PIV patches located on recognizable cell features being tracked more successfully. Appropriate choice of GFP-label was important to decrease small-scale biological noise due to intracellular motion. PIV of roots grown in stiff 2% versus 0.7% agar showed patterns of cell expansion consistent with physically impeded roots of other species. Roots in glass ballotini underwent rapid changes in growth direction on a timescale of minutes, associated with localized arching of ballotini. By tracking cell vertices, we monitored automatically cell length, width, and area every minute for 0.5 h for cells in different stages of development. In conclusion, PIV measured displacements successfully in images of living root cells and the external granular medium, revealing much potential for use by microscopists.

  12. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  13. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.

    Science.gov (United States)

    Miyashima, Shunsuke; Hashimoto, Takashi; Nakajima, Keiji

    2009-03-01

    The formation of radially symmetric tissue patterns is one of the most basic processes in the development of vascular plants. In Arabidopsis thaliana, plant-specific GRAS-type transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for asymmetric cell divisions that separate two ground tissue cell layers, the endodermis and cortex, as well as for endodermal cell fate specification. While loss of SHR or SCR results in a single-layered ground tissue, radially symmetric cellular patterns are still maintained, suggesting that unknown regulatory mechanisms act independently of the SHR/SCR-dependent pathway. In this study, we identified a novel root radial pattern mutant and found that it is a new argonaute1 (ago1) allele. Multiple ago1 mutant alleles contained supernumerary ground tissue cell layers lacking a concentric organization, while expression patterns of SHR and SCR were not affected, revealing a previously unreported role for AGO1 in root ground tissue patterning. Analyses of ago1 scr double mutants demonstrated that the simultaneous loss of the two pathways caused a dramatic reduction in cellular organization and ground tissue identity as compared with the single mutants. Based on these results, we propose that highly symmetric root ground tissue patterns are maintained by the actions of two independent pathways, one using post-transcriptional regulation mediated by AGO1 and the other using the SHR/SCR transcriptional regulator.

  14. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  15. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    Science.gov (United States)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  16. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    Science.gov (United States)

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  17. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  18. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    OpenAIRE

    Muraro, Daniele; Mellor, Nathan; Pound, Michael P.; Help, Hanna; Lucas, Mikael; Chopard, Jerome; Byrne, Helen M.; GODIN, CHRISTOPHE; Hodgman, T. Charlie; King, John R.; Pridmore, Tony P.; Helariutta, Ykä; Bennett, Malcolm J; Bishopp, Anthony

    2014-01-01

    International audience; As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile micr...

  19. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salic

  20. Growth and cell wall changes in rice roots during spaceflight.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Tanimoto, Eiichi

    2003-08-01

    We analyzed the changes in growth and cell wall properties of roots of rice (Oryza sativa L. cv. Koshihikari) grown for 68.5, 91.5, and 136 h during the Space Shuttle STS-95 mission. In space, most of rice roots elongated in a direction forming a constant mean angle of about 55 degrees with the perpendicular base line away from the caryopsis in the early phase of growth, but later the roots grew in various directions, including away from the agar medium. In space, elongation growth of roots was stimulated. On the other hand, some of elasticity moduli and viscosity coefficients were higher in roots grown in space than on the ground, suggesting that the cell wall of space-grown roots has a lower capacity to expand than the controls. The levels of both cellulose and the matrix polysaccharides per unit length of roots decreased greatly, whereas the ratio of the high molecular mass polysaccharides in the hemicellulose fraction increased in space-grown roots. The prominent thinning of the cell wall could overwhelm the disadvantageous changes in the cell wall mechanical properties, leading to the stimulation of elongation growth in rice roots in space. Thus, growth and the cell wall properties of rice roots were strongly modified under microgravity conditions during spaceflight.

  1. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  2. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    Science.gov (United States)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  3. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markakis Marios

    2012-11-01

    Full Text Available Abstract Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone. Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream

  4. The Root Cap Determines Ethylene-Dependent Growth and Development in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Achim Hahn; Roman Zimmermann; Dierk Wanke; Klaus Harter; Hans G.Edelmann

    2008-01-01

    Besides providing protection against mechanical damage to the root tip,the root cap is involved in the perception and processing of diverse external and internal stimuli resulting in altered growth and development.The transduction of these stimuli includes hormonal signaling pathways such as those of auxin,ethylene and cytokinin.Here,we show that the root cap is essential for the ethylene-induced regulation of elongation growth and root hair formation in maize.Exogenously applied ethylene is no longer able to inhibit elongation growth when the root cap has been surgically removed prior to hormone treatment.Reconstitution of the cap positively correlates with the developing capacity of the roots to respond to ethylene again.In contrast,the removal of the root cap does not per se affect growth inhibition controlled by auxin and cytokinin.Furthermore,our semi-quantitative RT-PCR results support earlier findings that the maize root cap is a site of high gene expression activity with respect to sensing and responding to hormones such as ethylene.From these data,we propose a novel function of the root cap which is the establishment of competence to respond to ethylene in the distal zones of the root.

  5. Steroids are required for epidermal cell fate establishment in Arabidopsis roots.

    Science.gov (United States)

    Kuppusamy, Kavitha T; Chen, Andrew Y; Nemhauser, Jennifer L

    2009-05-12

    The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate.

  6. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition.

    Directory of Open Access Journals (Sweden)

    Holger Schmidt

    Full Text Available Fe deficiency compromises both human health and plant productivity. Thus, it is important to understand plant Fe acquisition strategies for the development of crop plants which are more Fe-efficient under Fe-limited conditions, such as alkaline soils, and have higher Fe density in their edible tissues. Root secretion of phenolic compounds has long been hypothesized to be a component of the reduction strategy of Fe acquisition in non-graminaceous plants. We therefore subjected roots of Arabidopsis thaliana plants grown under Fe-replete and Fe-deplete conditions to comprehensive metabolome analysis by gas chromatography-mass spectrometry and ultra-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Scopoletin and other coumarins were found among the metabolites showing the strongest response to two different Fe-limited conditions, the cultivation in Fe-free medium and in medium with an alkaline pH. A coumarin biosynthesis mutant defective in ortho-hydroxylation of cinnamic acids was unable to grow on alkaline soil in the absence of Fe fertilization. Co-cultivation with wild-type plants partially rescued the Fe deficiency phenotype indicating a contribution of extracellular coumarins to Fe solubilization. Indeed, coumarins were detected in root exudates of wild-type plants. Direct infusion mass spectrometry as well as UV/vis spectroscopy indicated that coumarins are acting both as reductants of Fe(III and as ligands of Fe(II.

  7. Plant development in space: Observations on root formation and growth

    Science.gov (United States)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  8. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Doustaly, Fany; Combes, Florence; Fiévet, Julie B; Berthet, Serge; Hugouvieux, Véronique; Bastien, Olivier; Aranjuelo, Iker; Leonhardt, Nathalie; Rivasseau, Corinne; Carrière, Marie; Vavasseur, Alain; Renou, Jean-Pierre; Vandenbrouck, Yves; Bourguignon, Jacques

    2014-04-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.

  9. Control of patterns of symmetric cell division in the epidermal and cortical tissues of the Arabidopsis root.

    Science.gov (United States)

    Zhang, Yanwen; Iakovidis, Michail; Costa, Silvia

    2016-03-15

    Controlled cell division is central to the growth and development of all multicellular organisms. Within the proliferating zone of the Arabidopsis root, regular symmetric divisions give rise to patterns of parallel files of cells, the genetic basis of which remains unclear. We found that genotypes impaired in the TONNEAU1a (TON1a) gene display misoriented symmetric divisions in the epidermis and have no division defects in the underlying cortical tissue. The TON1a gene encodes a microtubule-associated protein. We show that in the ton1a mutant, epidermal and cortical cells do not form narrow, ring-like preprophase bands (PPBs), which are plant-specific, cytoskeletal structures that predict the position of the division plane before mitosis. The results indicate that in the cortex but not in the epidermis, division plane positioning and patterning can proceed correctly in the absence of both a functional TON1a and PPB formation. Differences between tissues in how they respond to the signals that guide symmetric division orientation during patterning might provide the basis for organised organ growth in the absence of cell movements.

  10. Cytokinin and growth of excised roots of Bryophyllum calycinum.

    Science.gov (United States)

    Robbins, W J; Hervey, A

    1971-02-01

    Excised roots of Bryophyllum calycinum require for growth both auxin and cytokinin. This is demonstrated by the poor growth of 2-mm root tips in a basal medium of mineral salts, sucrose, and vitamins supplemented with either an auxin or a cytokinin, and much better growth when the basal medium is supplemented with both auxin and cytokinin. However, both substances are synthesized by the root, as is demonstrated by the growth of large inocula (dry wt 6-7 mg) through many successive passages in a medium limited to mineral salts, sugar, and vitamins.

  11. The circular F-actin bundles provide a track for turnaround and bidirectional movement of mitochondria in Arabidopsis root hair.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available The movement of organelles in root hairs primarily occurs along the actin cytoskeleton. Circulation and "reverse fountain" cytoplasmic streaming constitute the typical forms by which most organelles (such as mitochondria and the Golgi apparatus in plant root hair cells engage in bidirectional movement. However, there remains a lack of in-depth research regarding the relationship between the distribution of the actin cytoskeleton and turnaround organelle movement in plant root hair cells.In this paper, Arabidopsis seedlings that had been stably transformed with a GFP-ABD2-GFP (green fluorescent protein-actin-binding domain 2-green fluorescent protein construct were utilized to study the distribution of bundles of filamentous (F-actin and the directed motion of mitochondria along these bundles in root hairs. Observations with a confocal laser scanning microscope revealed that there were widespread circular F-actin bundles in the epidermal cells and root hairs of Arabidopsis roots. In root hairs, these circular bundles primarily start at the sub-apical region, which is the location where the turnaround movement of organelles occurs. MitoTracker probes were used to label mitochondria, and the dynamic observation of root hair cells with a confocal laser scanning microscope indicated that turnaround mitochondrial movement occurred along circular F-actin bundles.Relevant experimental results demonstrated that the circular F-actin bundles provide a track for the turnaround and bidirectional movement of mitochondria.

  12. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.

    Science.gov (United States)

    Lee, Myeong Min; Schiefelbein, John

    2002-03-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.

  13. Cell identity regulators link development and stress responses in the Arabidopsis root.

    Science.gov (United States)

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.

  14. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    Science.gov (United States)

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots.

  15. Root Growth and Water distribution in living walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars

    walls; the vertical orientation of the growing medium, plants are growing vertically above or below each other in a limited rooting volume; there is an increased exposure to weather and the plants can react differently to water conditions and competition from other plants. Plant growth is the core......Living walls is a way of bringing plants and green areas into cities, and offer both positive environmental and aesthetical effects. A prerequisite for optimal performance of a living wall is that the plant cover is properly established why the individual plant should have optimal conditions...... for root growth. This thesis investigates the correlations between the growing media and root and shoots growth, and studies root growth patterns of different plant species and effects of planting position and root interactions of plants growing in living walls. There are a number of challenges with living...

  16. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Directory of Open Access Journals (Sweden)

    Tan Chao

    2011-11-01

    Full Text Available Abstract Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT roots subjected to different gravitational conditions. These conditions included horizontal (H and vertical (V clinorotation, hypergravity (G and the stationary control (S. Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G compared to control roots (V and S. Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant

  17. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects

    NARCIS (Netherlands)

    Swain, S.; Roy, S.; Shah, J.; Wees, S.C.M. van; Pieterse, C.M.J.; Nandi, A.K.

    2011-01-01

    Arabidopsis genotypes with a hyperactive salicylic acidmediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article,

  18. Root-associated bacteria promote grapevine growth: from the laboratory to the field

    KAUST Repository

    Rolli, Eleonora

    2016-08-18

    Background and Aims: Laboratory and greenhouse experiments have shown that root-associated bacteria have beneficial effects on grapevine growth; however, these effects have not been tested in the field. Here, we aimed to demonstrate whether bacteria of different geographical origins derived from different crop plants can colonize grapevine to gain a beneficial outcome for the plant leading to promote growth at the field scale. Methods: To link the ecological functions of bacteria to the promotion of plant growth, we sorted fifteen bacterial strains from a larger isolate collection to study in vitro Plant Growth Promoting (PGP) traits. We analysed the ability of these strains to colonise the root tissues of grapevine and Arabidopsis using green-fluorescent-protein-labelled strain derivatives and a cultivation independent approach. We assessed the ability of two subsets randomly chosen from the 15 selected strains to promote grapevine growth in two field-scale experiments in north and central Italy over two years. Parameters of plant vigour were measured during the vegetative season in de novo grafted vine cuttings and adult productive plants inoculated with the bacterial strains. Results: Beneficial bacteria rapidly and intimately colonized the rhizoplane and the root system of grapevine. In the field, plants inoculated with bacteria isolated from grapevine roots out-performed untreated plants. In both the tested vineyards, bacteria-promotion effects largely rely in the formation of an extended epigeal system endowed of longer shoots with larger diameters and more nodes than non-inoculated plants. Conclusions: PGP bacteria isolated in the laboratory can be successfully used to promote growth of grapevines in the field. The resulting larger canopy potentially increased the photosynthetic surface of the grapevine, promoting growth.

  19. Growth, Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction

    Institute of Scientific and Technical Information of China (English)

    Liang-zheng Xu; Jun-fang Niu; Chun-jian Li; Fu-suo Zhang

    2009-01-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  20. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity.

    Science.gov (United States)

    Stanislas, Thomas; Hüser, Anke; Barbosa, Inês C R; Kiefer, Christian S; Brackmann, Klaus; Pietra, Stefano; Gustavsson, Anna; Zourelidou, Melina; Schwechheimer, Claus; Grebe, Markus

    2015-11-02

    Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-to-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.

  1. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  2. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  3. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  4. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses.

    Science.gov (United States)

    Rivero, Luz; Scholl, Randy; Holomuzki, Nicholas; Crist, Deborah; Grotewold, Erich; Brkljacic, Jelena

    2014-01-01

    Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4-5 weeks and set seeds after 7-8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

  5. Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Xiaodong; Cheng, Jingfei; Chen, Lyuqin; Zhang, Guifang; Huang, Hai; Zhang, Yijing; Xu, Lin

    2016-04-01

    Plants have powerful regenerative abilities that allow them to recover from damage and survive in nature. De novo organogenesis is one type of plant regeneration in which adventitious roots and shoots are produced from wounded and detached organs. By studying de novo root organogenesis using leaf explants of Arabidopsis (Arabidopsis thaliana), we previously suggested that wounding is the first event that provides signals to trigger the whole regenerative process. However, our knowledge of the role of wounding in regeneration remains limited. In this study, we show that wounding not only triggers the auxin-mediated fate transition of regeneration-competent cells, but also induces the NAC pathway for root tip emergence. The NAC1 transcription factor gene was specifically expressed in response to wounding in the leaf explant, but not in the wounded leaf residue of the source plant. Inhibition of the NAC1 pathway severely affected the emergence of adventitious root tips. However, the NAC1 pathway functioned independently of auxin-mediated cell fate transition and regulates expression of CEP genes, which encode proteins that might have a role in degradation of extensin proteins in the cell wall. Overall, our results suggest that wounding has multiple roles in de novo root organogenesis and that NAC1 acts as one downstream branch in regulating the cellular environment for organ emergence.

  6. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  7. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana.

    Science.gov (United States)

    Kwon, Young Sang; Lee, Dong Yeol; Rakwal, Randeep; Baek, Seong-Bum; Lee, Jeom Ho; Kwak, Youn-Sig; Seo, Jong-Su; Chung, Woo Sik; Bae, Dong-Won; Kim, Sang Gon

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) facilitate the plant growth and enhance their induced systemic resistance (ISR) against a variety of environmental stresses. In this study, we carried out integrative analyses on the proteome, transcriptome, and metabolome to investigate Arabidopsis root and shoot responses to the well-known PGPR strain Paenibacillus polymyxa (P. polymyxa) E681. Shoot fresh and root dry weights were increased, whereas root length was decreased by treatment with P. polymyxa E681. 2DE approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 41 (17 spots in root, 24 spots in shoot) that were differentially expressed in response to P. polymyxa E681. Biological process- and molecular function-based bioinformatics analysis resulted in their classification into seven different protein groups. Of these, 36 proteins including amino acid metabolism, antioxidant, defense and stress response, photosynthesis, and plant hormone-related proteins were up-regulated, whereas five proteins including three carbohydrate metabolism- and one amino acid metabolism-related, and one unknown protein were down-regulated, respectively. A good correlation was observed between protein and transcript abundances for the 12 differentially expressed proteins during interactions as determined by qPCR analysis. Metabolite analysis using LC-MS/MS revealed highly increased levels of tryptophan, indole-3-acetonitrile (IAN), indole-3-acetic acid (IAA), and camalexin in the treated plants. Arabidopsis plant inoculated P. polymyxa E681 also showed resistance to Botrytis cinerea infection. Taken together these results suggest that P. polymyxa E681 may promote plant growth by induced metabolism and activation of defense-related proteins against fungal pathogen.

  8. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    Science.gov (United States)

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.

  9. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  10. SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis.

    Science.gov (United States)

    Bennett, Tom; van den Toorn, Albert; Sanchez-Perez, Gabino F; Campilho, Ana; Willemsen, Viola; Snel, Berend; Scheres, Ben

    2010-03-01

    The root cap has a central role in root growth, determining the growth trajectory and facilitating penetration into the soil. Root cap cells have specialized functions and morphologies, and border cells are released into the rhizosphere by specific cell wall modifications. Here, we demonstrate that the cellular maturation of root cap is redundantly regulated by three genes, SOMBRERO (SMB), BEARSKIN1 (BRN1), and BRN2, which are members of the Class IIB NAC transcription factor family, together with the VASCULAR NAC DOMAIN (VND) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR (NST) genes that regulate secondary cell wall synthesis in specialized cell types. Lateral cap cells in smb-3 mutants continue to divide and fail to detach from the root, phenotypes that are independent of FEZ upregulation in smb-3. In brn1-1 brn2-1 double mutants, columella cells fail to detach, while in triple mutants, cells fail to mature in all parts of the cap. This complex genetic redundancy involves differences in expression, protein activity, and target specificity. All three genes have very similar overexpression phenotypes to the VND/NST genes, indicating that members of this family are largely functionally equivalent. Our results suggest that Class IIB NAC proteins regulate cell maturation in cells that undergo terminal differentiation with strong cell wall modifications.

  11. AtGRIP protein locates to the secretory vesicles of trans Golgi-network in Arabidopsis root cap cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; ZHANG Wei; ZHAO Lei; LI Yan

    2008-01-01

    GRIP domain proteins, locating to the trans-Golgi network, are thought to play an essential role in Golgi apparatus trafficking in yeast and animal cells. In the present study, AtGRIP cDNA was amplified by reverse transcriptase PCR from RNA isolated from Arabidopsis seedling. The GST fusion protein of AtGRIP was affinity-purified and its rabbit polyclonal antibody was obtained. Immuno-blotting with the purified anti-AtGRIP polyclonal antibody demonstrated that the molecular mass of AtGRIP protein is about 92 kD, and its expression is not tissue-specific in Arabidopsis. Immunoflourescent labeling and confocal microscopy revealed that the AtGRIP protein was co-localized with Golgi stacks in Arabidop-sis root cells. Immuno-gold labeling and electron microscopy observation showed that AtGRIP protein was mainly located to the membrane of the secretory vesicles of trans-Golgi network in Arabidopsis root cap cells. Taken together, these results indicate that the localization of GRIP domain proteins be-tween plants and animal cells are conserved. These results also suggest that the AtGRIP may be in-volved in regulating the formation or sorting of Golgi-associated vesicles in plant cells.

  12. Auxin polar transport in arabidopsis under simulated microgravity conditions - relevance to growth and development

    Science.gov (United States)

    Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.

    1999-01-01

    Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.

  13. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2014-10-01

    Full Text Available In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR to signal the exit of proliferation and start of elongation. This model exploration underlines the

  14. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  15. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  16. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (Ptomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  17. Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress.

    Science.gov (United States)

    Li, Guangjie; Song, Haiyan; Li, Baohai; Kronzucker, Herbert J; Shi, Weiming

    2015-12-01

    A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.

  18. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    Science.gov (United States)

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  19. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Directory of Open Access Journals (Sweden)

    Yuelin Liu

    Full Text Available DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3, which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C, both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  20. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Science.gov (United States)

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  1. Anchorage of mature conifers: resistive turning moment, root-soil plate geometry and root growth orientation.

    Science.gov (United States)

    Lundström, Tor; Jonas, Tobias; Stöckli, Veronika; Ammann, Walter

    2007-09-01

    Eighty-four mature Norway spruce (Picea abies L. Karst), silver fir (Abies alba Mill) and Scots pine (Pinus sylvestris L.) trees were winched over to determine the maximum resistive turning moment (M(a)) of the root-soil system, the root-soil plate geometry, the azimuthal orientation of root growth, and the occurrence of root rot. The calculation of M(a), based on digital image tracking of stem deflection, accounted not only for the force application and its changing geometry, but also for the weight of the overhanging tree, representing up to 42% of M(a). Root rot reduced M(a) significantly and was detected in 25% of the Norway spruce and 5% of the silver fir trees. Excluding trees with root rot, differences in M(a) between species were small and insignificant. About 75% of the variance in M(a) could be explained by one of the four variables--tree mass, stem mass, stem diameter at breast height squared times tree height, and stem diameter at breast height squared. Among the seven allometric variables assessed above ground, stem diameter at breast height best described the root-soil plate dimensions, but the correlations were weak and the differences between species were insignificant. The shape of the root-soil plate was well described by a depth-dependent taper model with an elliptical cross section. Roots displayed a preferred azimuthal orientation of growth in the axis of prevailing winds, and the direction of frequent weak winds matched the orientation of growth better than that of rare strong winds. The lack of difference in anchorage parameters among species probably reflects the similar belowground growth conditions of the mature trees.

  2. Root Growth Optimizer with Self-Similar Propagation

    Directory of Open Access Journals (Sweden)

    Xiaoxian He

    2015-01-01

    Full Text Available Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though they have evolved for a longer period of time. This paper presents a new plant-inspired algorithm which is called root growth optimizer (RGO. RGO simulates the iterative growth behaviors of plant roots to optimize continuous space search. In growing process, main roots and lateral roots, classified by fitness values, implement different strategies. Main roots carry out exploitation tasks by self-similar propagation in relatively nutrient-rich areas, while lateral roots explore other places to seek for better chance. Inhibition mechanism of plant hormones is applied to main roots in case of explosive propagation in some local optimal areas. Once resources in a location are exhausted, roots would shrink away from infertile conditions to preserve their activity. In order to validate optimization effect of the algorithm, twelve benchmark functions, including eight classic functions and four CEC2005 test functions, are tested in the experiments. We compared RGO with other existing evolutionary algorithms including artificial bee colony, particle swarm optimizer, and differential evolution algorithm. The experimental results show that RGO outperforms other algorithms on most benchmark functions.

  3. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yan Wang; Ju Yang; Chunli Ma; Ying Zhang; Ting Ge; Zhi Qi; Yan Kang

    2015-01-01

    Anthocyanin accumulation is a common phenom-enon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starva-tion-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpress-ing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initial y identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. Correction added on 6 August 2015, after first online publica-tion:“RND3”corrected to“RHD3”.

  4. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis.

    Science.gov (United States)

    Baskin, Tobias I; Beemster, Gerrit T S; Judy-March, Jan E; Marga, Françoise

    2004-08-01

    To test the role of cortical microtubules in aligning cellulose microfibrils and controlling anisotropic expansion, we exposed Arabidopsis thaliana roots to moderate levels of the microtubule inhibitor, oryzalin. After 2 d of treatment, roots grow at approximately steady state. At that time, the spatial profiles of relative expansion rate in length and diameter were quantified, and roots were cryofixed, freeze-substituted, embedded in plastic, and sectioned. The angular distribution of microtubules as a function of distance from the tip was quantified from antitubulin immunofluorescence images. In alternate sections, the overall amount of alignment among microfibrils and their mean orientation as a function of position was quantified with polarized-light microscopy. The spatial profiles of relative expansion show that the drug affects relative elongation and tangential expansion rates independently. The microtubule distributions averaged to transverse in the growth zone for all treatments, but on oryzalin the distributions became broad, indicating poorly organized arrays. At a subcellular scale, cellulose microfibrils in oryzalin-treated roots were as well aligned as in controls; however, the mean alignment direction, while consistently transverse in the controls, was increasingly variable with oryzalin concentration, meaning that microfibril orientation in one location tended to differ from that of a neighboring location. This conclusion was confirmed by direct observations of microfibrils with field-emission scanning electron microscopy. Taken together, these results suggest that cortical microtubules ensure microfibrils are aligned consistently across the organ, thereby endowing the organ with a uniform mechanical structure.

  5. Disorganization of Cortical Microtubules Stimulates Tangential Expansion and Reduces the Uniformity of Cellulose Microfibril Alignment among Cells in the Root of Arabidopsis1

    Science.gov (United States)

    Baskin, Tobias I.; Beemster, Gerrit T.S.; Judy-March, Jan E.; Marga, Françoise

    2004-01-01

    To test the role of cortical microtubules in aligning cellulose microfibrils and controlling anisotropic expansion, we exposed Arabidopsis thaliana roots to moderate levels of the microtubule inhibitor, oryzalin. After 2 d of treatment, roots grow at approximately steady state. At that time, the spatial profiles of relative expansion rate in length and diameter were quantified, and roots were cryofixed, freeze-substituted, embedded in plastic, and sectioned. The angular distribution of microtubules as a function of distance from the tip was quantified from antitubulin immunofluorescence images. In alternate sections, the overall amount of alignment among microfibrils and their mean orientation as a function of position was quantified with polarized-light microscopy. The spatial profiles of relative expansion show that the drug affects relative elongation and tangential expansion rates independently. The microtubule distributions averaged to transverse in the growth zone for all treatments, but on oryzalin the distributions became broad, indicating poorly organized arrays. At a subcellular scale, cellulose microfibrils in oryzalin-treated roots were as well aligned as in controls; however, the mean alignment direction, while consistently transverse in the controls, was increasingly variable with oryzalin concentration, meaning that microfibril orientation in one location tended to differ from that of a neighboring location. This conclusion was confirmed by direct observations of microfibrils with field-emission scanning electron microscopy. Taken together, these results suggest that cortical microtubules ensure microfibrils are aligned consistently across the organ, thereby endowing the organ with a uniform mechanical structure. PMID:15299138

  6. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    Science.gov (United States)

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  7. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    Science.gov (United States)

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  8. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-06-11

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

  9. Plant growth-promoting rhizobacteria and root system functioning

    Directory of Open Access Journals (Sweden)

    Jordan eVacheron

    2013-09-01

    Full Text Available The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, Plant Growth-Promoting Rhizobacteria (PGPR colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  10. Involvement of ethylene and gibberellin signalings in chromosaponin I-induced cell division and cell elongation in the roots of Arabidopsis seedlings.

    Science.gov (United States)

    Rahman, A; Tsurumi, S; Amakawa, T; Soga, K; Hoson, T; Goto, N; Kamisaka, S

    2000-01-01

    Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d(-1), respectively, and they were accelerated to 3.46 (Col) and 2.20 (Ler) mm d(-1) by treating with 300 microM CSI. The length of mature epidermal cells was increased by 1.8-fold (Col) and 2.81-fold (Ler) compared with control and the number of epidermal cells was increased by a factor of 1.65 (Col) and 2.12 (Ler). Treatment with 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, also increased cell length but not cell number. The effects of CSI on root growth were not detected in the ethylene-insensitive mutant ein2-1. CSI did not inhibit ethylene production but stimulated the growth of roots in ctr1-1, the constitutive triple response mutant for ethylene, indicating that CSI inhibits ethylene signaling, especially downstream of CTR1. In the GA-insensitive mutant gai and the mutant spy-3, in which the basal level of GA signaling is activated, CSI did not increase cell number, although both CSI and AVG stimulated cell elongation in these mutants. These results suggest that the inhibition of ethylene signaling is the cause of CSI-induced cell elongation. A possible involvement of both GA and ethylene signalings is discussed for the CSI-induced cell division.

  11. A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    Science.gov (United States)

    Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2011-01-01

    Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi

  12. A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'->3' exoribonuclease (XRN activities in Arabidopsis thaliana roots.

    Directory of Open Access Journals (Sweden)

    Judith Hirsch

    Full Text Available BACKGROUND: Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2',5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS: A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4. Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the 3',(2',5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of

  13. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes

    Science.gov (United States)

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-01-01

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. PMID:28223530

  14. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen.

    Science.gov (United States)

    Takatani, Nobuyuki; Ito, Takuro; Kiba, Takatoshi; Mori, Marie; Miyamoto, Tetsuro; Maeda, Shin-Ichi; Omata, Tatsuo

    2014-02-01

    Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.

  15. Correlations between polyamine ratios and growth patterns in seedling roots

    Science.gov (United States)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  16. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    Science.gov (United States)

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  17. Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis.

    Science.gov (United States)

    Luo, Sha; Li, Qianqian; Liu, Shanda; Pinas, Nicholaas M; Tian, Hainan; Wang, Shucai

    2015-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic

  18. Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sha eLuo

    2015-12-01

    Full Text Available Auxin/Indole-3-Acetic Acid (Aux/IAA genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs. Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates

  19. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations.

    Science.gov (United States)

    Hernández, Ismaél Gatica; Gomez, Federico José Vicente; Cerutti, Soledad; Arana, María Verónica; Silva, María Fernanda

    2015-09-01

    Since the discovery of melatonin in plants, several roles have been described for different species, organs, and developmental stages. Arabidopsis thaliana, being a model plant species, is adequate to contribute to the elucidation of the role of melatonin in plants. In this work, melatonin was monitored daily by UHPLC-MS/MS in leaves, in order to study its diurnal accumulation as well as the effects of natural and artificial light treatments on its concentration. Furthermore, the effects of exogenous application of melatonin to assess its role in seed viability after heat stress and as a regulator of growth and development of vegetative tissues were evaluated. Our results indicate that melatonin contents in Arabidopsis were higher in plants growing under natural radiation when compared to those growing under artificial conditions, and its levels were not diurnally-regulated. Exogenous melatonin applications prolonged seed viability after heat stress conditions. In addition, melatonin applications retarded leaf senescence. Its effects as growth promoter were dose and tissue-dependent; stimulating root growth at low concentrations and decreasing leaf area at high doses.

  20. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John

    2009-04-01

    The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.

  1. AUXIN AND GROWTH OF EXCISED ROOTS OF Bryophyllum calycinum.

    Science.gov (United States)

    Robbins, W J; Hervey, A

    1969-10-01

    Exogenous auxin (alpha-naphthalene acetic acid, indole acetic acid, or 2,4-dichlorophenoxyacetic acid) was essential for the growth of single excised root tips of Bryophyllum calycinum in 50 ml of a mineral salt-sucrose medium supplemented with vitamins. Large inocula with a dry weight of 2.0 mg or more grew with no auxin added to the medium. Evidence for the synthesis of auxin by the excised roots grown from the larger inocula is presented. Leaching of auxin from single root tips cultivated in 15 or 50 ml of basal medium is considered to account for their failure to grow.

  2. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    1995-01-01

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  3. Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems.

    Science.gov (United States)

    Kang, Yeon Hee; Breda, Alice; Hardtke, Christian S

    2017-01-15

    Brassinosteroids (BRs) trigger an intracellular signaling cascade through its receptors BR INSENSITIVE 1 (BRI1), BRI1-LIKE 1 (BRL1) and BRL3. Recent studies suggest that BR-independent inputs related to vascular differentiation, for instance root protophloem development, modulate downstream BR signaling components. Here, we report that protophloem sieve element differentiation is indeed impaired in bri1 brl1 brl3 mutants, although this effect might not be mediated by canonical downstream BR signaling components. We also found that their small meristem size is entirely explained by reduced cell elongation, which is, however, accompanied by supernumerary formative cell divisions in the radial dimension. Thus, reduced cell expansion in conjunction with growth retardation, because of the need to accommodate supernumerary formative divisions, can account for the overall short root phenotype of BR signaling mutants. Tissue-specific re-addition of BRI1 activity partially rescued subsets of these defects through partly cell-autonomous, partly non-cell-autonomous effects. However, protophloem-specific BRI1 expression essentially rescued all major bri1 brl1 brl3 root meristem phenotypes. Our data suggest that BR perception in the protophloem is sufficient to systemically convey BR action in the root meristem context.

  4. Impact of elevated CO2 on growth and development of Arabidopsis thaliana L

    NARCIS (Netherlands)

    van der Kooij, T.A W; De Kok, L.J.

    1996-01-01

    After germination, Arabidopsis thaliana L (cv. Landsberg) was grown at 350 mu l l(-1) (control) or 700 mu l l(-1) (elevated) CO2. Total shoot biomass at the end of the vegetative growth period was increased by 56% due to a short transient stimulation of the relative growth rate by elevated CO2 at th

  5. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  6. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    Science.gov (United States)

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  7. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qian eZhao

    2015-01-01

    Full Text Available Many bacteria use signal molecules of low molecular weight to monitor their local population density and to coordinate their collective behavior in a process called quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the primary QS signals among Gram-negative bacteria. AHL-mediated QS plays an essential role in diverse bacterial physiological processes. Recent evidence shows that plants are able to sense bacterial AHLs and respond to them appropriately. However, little is known about the mechanism by which plants perceive and transduce the bacterial AHLs within cells. In this study, we found that the stimulatory effect of N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL on primary root elongation of Arabidopsis was abolished by the calmodulin (CaM antagonists N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 and trifluoperazine (TFP. Western-blot and ELISA analysis revealed that the concentration of CaM protein in Arabidopsis roots increased after treatment with 1 μM 3OC6-HSL. Results from quantitative RT-PCR demonstrated that the transcription of all nine CaM genes in Arabidopsis genome was up-regulated in the plants treated with 3OC6-HSL. The loss-of-function mutants of each AtCaM gene (AtCaM1-9 were insensitive to 3OC6-HSL-stimulation of primary root elongation. On the other hand, the genetic evidence showed that CaM may not participates the inhibition of primary root length caused by application of long-chained AHLs such as C10-HSL and C12-HSL. Nevertheless, our results suggest that CaM is involved in the bacterial 3OC6-HSL signaling in plant cells. These data offer new insight into the mechanism of plant response to bacterial QS signals.

  8. Root growth studies of willow cuttings using Rhizoboxes

    Science.gov (United States)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  9. Microtubules guide root hair tip growth

    NARCIS (Netherlands)

    Sieberer, B.; Ketelaar, M.J.; Esseling, J.J.; Emons, A.M.C.

    2005-01-01

    The ability to establish cell polarity is crucial to form and function of an individual cell. Polarity underlies critical processes during cell development, such as cell growth, cell division, cell differentiation and cell signalling. Interphase cytoplasmic microtubules in tip-growing fission yeast

  10. SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.

    Science.gov (United States)

    Waszczak, Cezary; Kerchev, Pavel I; Mühlenbock, Per; Hoeberichts, Frank A; Van Der Kelen, Katrien; Mhamdi, Amna; Willems, Patrick; Denecker, Jordi; Kumpf, Robert P; Noctor, Graham; Messens, Joris; Van Breusegem, Frank

    2016-08-01

    Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.

  11. The COW1 locus of arabidopsis acts after RHD2, and in parallel with RHD3 and TIP1, to determine the shape, rate of elongation, and number of root hairs produced from each site of hair formation.

    Science.gov (United States)

    Grierson, C S; Roberts, K; Feldmann, K A; Dolan, L

    1997-11-01

    Two recessive mutant alleles at CAN OF WORMS1 (COW1), a new locus involved in root hair morphogenesis, have been identified in Arabidopsis thaliana L. Heynh. Root hairs on Cow1- mutants are short and wide and occasionally formed as pairs at a single site of hair formation. The COW1 locus maps to chromosome 4. Root hairs on Cow1- plants form in the usual positions, suggesting that the phenotype is not the result of abnormal positional signals. Root hairs on Cow1- roots begin hair formation normally, forming a small bulge, or root hair initiation site, of normal size and shape and in the usual position on the hair-forming cell. However, when Cow1- root hairs start to elongate by tip growth, abnormalities in the shape and elongation rate of the hairs become apparent. Genetic evidence from double-mutant analysis of cow1-1 and other loci involved in root hair development supports our conclusion that COW1 is required during root hair elongation.

  12. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization.

    Science.gov (United States)

    Mandyam, Keerthi G; Roe, Judith; Jumpponen, Ari

    2013-04-01

    We surveyed the non-mycorrhizal model plant Arabidopsis thaliana microscopically for its ability to form dark septate endophyte (DSE) symbioses in field, greenhouse, and laboratory studies. The laboratory studies were also used to estimate host growth responses to 34 Periconia macrospinosa and four Microdochium sp. isolates. Consistent with broad host range observed in previous experiments, field-, greenhouse-, and laboratory-grown A. thaliana were colonized by melanized inter- and intracellular hyphae and microsclerotia or chlamydospores indicative of DSE symbiosis. Host responses to colonization were variable and depended on the host ecotype. On average, two A. thaliana accessions (Col-0 and Cvi-0) responded negatively, whereas one (Kin-1) was unresponsive, a conclusion consistent with our previous analyses with forbs native to the field site where the fungi originate. Despite the average negative responses, examples of positive responses were also observed, a conclusion also congruent with earlier studies. Our results suggest that A. thaliana has potential as a model for more detailed dissection of the DSE symbiosis. Furthermore, our data suggest that host responses are controlled by variability in the host and endophyte genotypes.

  13. Putrescine Alleviates Iron Deficiency via NO-Dependent Reutilization of Root Cell-Wall Fe in Arabidopsis.

    Science.gov (United States)

    Zhu, Xiao Fang; Wang, Bin; Song, Wen Feng; Zheng, Shao Jian; Shen, Ren Fang

    2016-01-01

    Plants challenged with abiotic stress show enhanced polyamines levels. Here, we show that the polyamine putrescine (Put) plays an important role to alleviate Fe deficiency. The adc2-1 mutant, which is defective in Put biosynthesis, was hypersensitive to Fe deficiency compared with wild type (Col-1 of Arabidopsis [Arabidopsis thaliana]). Exogenous Put decreased the Fe bound to root cell wall, especially to hemicellulose, and increased root and shoot soluble Fe content, thus alleviating the Fe deficiency-induced chlorosis. Intriguingly, exogenous Put induced the accumulation of nitric oxide (NO) under both Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions, although the ferric-chelate reductase (FCR) activity and the expression of genes related to Fe uptake were induced only under -Fe treatment. The alleviation of Fe deficiency by Put was diminished in the hemicellulose-level decreased mutant-xth31 and in the noa1 and nia1nia2 mutants, in which the endogenous NO levels are reduced, indicating that both NO and hemicellulose are involved in Put-mediated alleviation of Fe deficiency. However, the FCR activity and the expression of genes related to Fe uptake were still up-regulated under -Fe+Put treatment compared with -Fe treatment in xth31, and Put-induced cell wall Fe remobilization was abolished in noa1 and nia1nia2, indicating that Put-regulated cell wall Fe reutilization is dependent on NO. From our results, we conclude that Put is involved in the remobilization of Fe from root cell wall hemicellulose in a process dependent on NO accumulation under Fe-deficient condition in Arabidopsis.

  14. Seminal, adventitious and lateral root growth and physiological responses in rice to upland conditions

    Institute of Scientific and Technical Information of China (English)

    杨玲; 郑炳松; 毛传澡; 易可可; 吴运荣; 吴平; 陶勤南

    2003-01-01

    Understanding the growth and physiological responses of rice to upland conditions would be helpful for designing treatments to improve the tolerance of rice under a rainfed system. The objective of this study was to investigate the initiation,elongation and membrane stability of seminal, lateral and adventitious roots of upland rice after 9-d upland condition treatment. Compared with control roots under waterlogged conditions, upland water deficiency conditions favor seminal and lateral root growth over adventitious root growth by accelerating seminal root elongation, promoting lateral root initiation and elongation, and reducing the elongation and number of adventitious roots. Enhanced total root number and length resulted in increase of total root dry weight and thereby increasing the root-to-shoot ratio. Organic compound leakage from seminal root tips and adventitious roots increased progressively to some extent with upland culture duration, while significant increases in seminal root tips were the consequence of loss of membrane integrity caused by the upland-condition enhanced growth.

  15. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    1993-01-01

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  16. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    Science.gov (United States)

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  17. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    Science.gov (United States)

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin.

  18. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis

    Science.gov (United States)

    Xu, Chunxiao; Yin, Xiao; Lv, Yan; Wu, Changzhe; Zhang, Yuxia; Song, Tao

    2012-03-01

    The blue light receptor, cryptochrome, has been suggested to act as a magnetoreceptor based on the proposition that photochemical reactions are involved in sensing the geomagnetic field. But the effects of the geomagnetic field on cryptochrome remain unclear. Although the functions of cryptochrome have been well demonstrated for Arabidopsis, the effect of the geomagnetic field on the growth of Arabidopsis and its mechanism of action are poorly understood. We eliminated the local geomagnetic field to grow Arabidopsis in a near-null magnetic field and found that the inhibition of Arabidopsis hypocotyl growth by white light was weakened, and flowering time was delayed. The expressions of three cryptochrome-signaling-related genes, PHYB, CO and FT also changed; the transcript level of PHYB was elevated ca. 40%, and that of CO and FT was reduced ca. 40% and 50%, respectively. These data suggest that the effects of a near-null magnetic field on Arabidopsis are cryptochrome-related, which may be revealed by a modification of the active state of cryptochrome and the subsequent signaling cascade.

  19. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth;

    2006-01-01

    lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...... suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants...

  20. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  1. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    Science.gov (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  2. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Science.gov (United States)

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M

    2008-09-23

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  3. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Directory of Open Access Journals (Sweden)

    Natasha Saint Savage

    2008-09-01

    Full Text Available The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  4. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  5. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  6. Flooding, root temperature, physiology and growth of two Annona species.

    Science.gov (United States)

    Ojeda, Maritza; Schaffer, Bruce; Davies, Frederick S

    2004-09-01

    The effects of root zone temperature (RZT) and flooding on physiology and growth of Annona glabra L. (pond apple) and A. muricata L. (soursop) were investigated. Trees planted in containers were exposed to RZTs of 5, 10, 20, 25 or 35 degrees C in controlled root temperature chambers. Trees at each RZT were either non-flooded (control) or continuously flooded. There were four replications over time for each treatment combination. Pond apple was more flood-tolerant than soursop. A combination of flooding and RZTs of 5 and 10 degrees C resulted in tree mortality of both species by Week 4. Only trees that appeared to develop morphological adaptations survived continuous flooding. In both species, net CO2 assimilation (A) decreased to nearly zero within 1 week following exposure to RZTs of 5 or 10 degrees C and became consistently negative over the remaining experimental period. Flooding reduced leaf chlorophyll index (measured with a SPAD meter), A and plant growth, and increased root electrolyte leakage from soursop. Optimum growth occurred at RZTs of 25 to 35 degrees C for non-flooded pond apple trees and at 20 to 25 degrees C for flooded trees. Soursop exhibited maximum growth at RZTs of 35 degrees C under non-flooded conditions and at 25 degrees C under flooded conditions.

  7. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    Directory of Open Access Journals (Sweden)

    Sultana eRasheed

    2016-02-01

    Full Text Available Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots versus shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance.

  8. A Simple Technique for Recording Root and Shoot Growth in Plants.

    Science.gov (United States)

    Murray, Philip J.; Bristow, Andrew W.

    1997-01-01

    Presents a simple method of recording root growth which can be used in schools. A slant board system was designed to facilitate access to roots to enable measurements to be made, essentially forcing the roots to grow in a two-dimensional form which allows each student to observe and record root growth over several weeks. (AIM)

  9. Overexpression of a glycosyltransferase gene SrUGT74G1 from Stevia improved growth and yield of transgenic Arabidopsis by catechin accumulation.

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2014-03-01

    Steviol glycoside and gibberellin biosynthetic routes are known as divergent branches of a common origin in Stevia. A UDP-glycosyltransferase encoded by SrUGT74G1 catalyses the conversion of steviolbioside into stevioside in Stevia rebaudiana leaves. In the present study, transgenic Arabidopsis thaliana overexpressing SrUGT74G1 cDNA from Stevia were developed to check the probability of stevioside biosynthesis in them. However, stevioside accumulation was not evident in transgenics. Also, the transgenic Arabidopsis showed no change in GA3 content on SrUGT74G1 overexpression. Surprisingly, significant accumulation of catechin was noticed in transgenics. The transgenics showed a considerable increase in shoot length, root length and rosette area. An increase in free radical scavenging activity of transgenics was noticed. Moreover, the seed yield of transgenics was also increased by 6-15% than control. Additionally, variation in trichome branching pattern on leaf surface of transgenics was observed. The trichome branching pattern was also validated by exogenous catechin exposure (10, 50, 100 ng ml(-1)) to control plants. Hence, present study reports the probable role of SrUGT74G1 from Stevia in catechin accumulation of transgenic Arabidopsis thaliana. Thus, detailed study in present perspective has revealed the role of Stevia SrUGT74G1 gene in trichome branching pattern, improved vegetative growth, scavenging potential and seed yield by catechin accumulation in transgenic Arabidopsis.

  10. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    Science.gov (United States)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  11. Arabidopsis COPPER MODIFIED RESISTANCE1/PATRONUS1 is essential for growth adaptation to stress and required for mitotic onset control.

    Science.gov (United States)

    Juraniec, Michal; Heyman, Jefri; Schubert, Veit; Salis, Pietrino; De Veylder, Lieven; Verbruggen, Nathalie

    2016-01-01

    The mitotic checkpoint (MC) guards faithful sister chromatid segregation by monitoring the attachment of spindle microtubules to the kinetochores. When chromosome attachment errors are detected, MC delays the metaphase-to-anaphase transition through the inhibition of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. In contrast to yeast and mammals, our knowledge on the proteins involved in MC in plants is scarce. Transient synchronization of root tips as well as promoter-reporter gene fusions were performed to analyze temporal and spatial expression of COPPER MODIFIED RESISTANCE1/PATRONUS1 (CMR1/PANS1) in developing Arabidopsis thaliana seedlings. Functional analysis of the gene was carried out, including CYCB1;2 stability in CMR1/PANS1 knockout and overexpressor background as well as metaphase-anaphase chromosome status. CMR1/PANS1 is transcriptionally active during M phase. Its deficiency provokes premature cell cycle exit and in consequence a rapid consumption of the number of meristematic cells in particular under stress conditions that are known to affect spindle microtubules. Root growth impairment is correlated with a failure to delay the onset of anaphase, resulting in anaphase bridges and chromosome missegregation. CMR1/PANS1 overexpression stabilizes the mitotic CYCB1;2 protein. Likely, CMR1/PANS1 coordinates mitotic cell cycle progression by acting as an APC/C inhibitor and plays a key role in growth adaptation to stress.

  12. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  13. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.; Verhagen, B.W.M.; Keurentjes, J.J.B.; Pelt, J.A. van; Rep, M.; Loon, L.C. van; Pieterse, C.M.J.

    2005-01-01

    Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of sa

  14. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots

    NARCIS (Netherlands)

    Zamioudis, Christos; Hanson, Johannes; Pieterse, Corné M J

    2014-01-01

    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditi

  15. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 in Arabidopsis roots during onset of induced systemic resistance and iron deficiency responses

    NARCIS (Netherlands)

    Zamioudis, C.; Korteland, J.; Van Pelt, J.A.; Van Hamersveld, M.; Dombrowski, N.; Bai, Y.; Hanson, J.; Van Verk, M.C.; Ling, H.-Q.; Schulze-Lefert, P.; Pieterse, C.M.J.

    2015-01-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synth

  16. Transgenic modification of gai or rg/1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Busov, V. [Michigan Technological University; Meilan, R [Purdue University; Pearce, D [University of Lethbridge; Rood, s [University of Lethbridge; Ma, C [Oregon State University; Strauss, S [Oregon State University

    2006-01-01

    In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA{sub 3} inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA{sub 1} and GA{sub 4} in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C{sub 19} precursors of GA{sub 1} (GA{sub 53}, GA{sub 44} and GA{sub 19}) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.

  17. Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root.

    Science.gov (United States)

    Li, Jisheng; Jia, Honglei; Wang, Jue; Cao, Qianhua; Wen, Zichao

    2014-07-01

    Hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) function as the signaling molecules in plants responding to salt stresses. The present study presents a signaling network involving H2S and H2O2 in salt resistance pathway of the Arabidopsis root. Arabidopsis roots were sensitive to 100 mM NaCl treatment, which displayed a great increase in electrolyte leakage (EL) and Na(+)/K(+) ratio under salt stress. The treatment of H2S donors sodium hydrosulfide (NaHS) enhanced the salt tolerance by maintaining a lower Na(+)/K(+) ratio. In addition, the inhibition of root growth under salt stress was removed by H2S. Further studies indicated that H2O2 was involved in H2S-induced salt tolerance pathway. H2S induced the production of the endogenous H2O2 via regulating the activities of glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) NADPH oxidase, with the treatment with dimethylthiourea (DMTU, an ROS scavenger), diphenylene iodonium (DPI, a PM NADPH oxidase inhibitor), or glycerol (G6PDH inhibitor) removing the effect of H2S. Treatment with amiloride (an inhibitor of PM Na(+)/H(+) antiporter) and vanadate (an inhibitor of PM H(+)-ATPase) also inhibited the activity of H2S on Na(+)/K(+) ratio. Through an analysis of quantitative real-time polymerase chain reaction and Western blot, we found that H2S promoted the genes expression and the phosphorylation level of PM H(+)-ATPase and Na(+)/H(+) antiporter protein level. However, when the endogenous H2O2 level was inhibited by DPI or DMTU, the effect of H2S on the PM Na(+)/H(+) antiporter system was removed. Taken together, H2S maintains ion homeostasis in the H2O2-dependent manner in salt-stress Arabidopsis root.

  18. Tracking transcription factor mobility and interaction in arabidopsis roots with fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Clark, Natalie M.; Hinde, Elizabeth; Hinde, Elizabeth; Fisher, Adam P.; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N.; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction

  19. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters.

    Science.gov (United States)

    Sherameti, Irena; Shahollari, Bationa; Venus, Yvonne; Altschmied, Lothar; Varma, Ajit; Oelmüller, Ralf

    2005-07-15

    Piriformospora indica, an endophytic fungus of the Sebacinaceae family, promotes growth of Arabidopsis and tobacco seedlings and stimulates nitrogen accumulation and the expression of the genes for nitrate reductase and the starch-degrading enzyme glucan-water dikinase (SEX1) in roots. Neither growth promotion nor stimulation of the two enzymes requires heterotrimeric G proteins. P. indica also stimulates the expression of the uidA gene under the control of the Arabidopsis nitrate reductase (Nia2) promoter in transgenic tobacco seedlings. At least two regions (-470/-439 and -103/-89) are important for Nia2 promoter activity in tobacco roots. One of the regions contains an element, ATGATAGATAAT, that binds to a homeodomain transcription factor in vitro. The message for this transcription factor is up-regulated by P. indica. The transcription factor also binds to a CTGATAGATCT segment in the SEX1 promoter in vitro. We propose that the growth-promoting effect initiated by P. indica is accompanied by a co-regulated stimulation of enzymes involved in nitrate and starch metabolisms.

  20. Plant hormone cross-talk: the pivot of root growth.

    Science.gov (United States)

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.

  1. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    Science.gov (United States)

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles.

  2. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells.

    Directory of Open Access Journals (Sweden)

    Shaowu Xue

    Full Text Available The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na⁺ transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na⁺ and K⁺ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K⁺ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na⁺ over K⁺ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na⁺ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na⁺ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na⁺ channel transport properties.

  3. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  4. Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana.

    Science.gov (United States)

    Guénin, Stéphanie; Mareck, Alain; Rayon, Catherine; Lamour, Romain; Assoumou Ndong, Yves; Domon, Jean-Marc; Sénéchal, Fabien; Fournet, Françoise; Jamet, Elisabeth; Canut, Hervé; Percoco, Giuseppe; Mouille, Grégory; Rolland, Aurélia; Rustérucci, Christine; Guerineau, François; Van Wuytswinkel, Olivier; Gillet, Françoise; Driouich, Azeddine; Lerouge, Patrice; Gutierrez, Laurent; Pelloux, Jérôme

    2011-10-01

    • Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.

  5. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  6. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane.

    Science.gov (United States)

    Chopin, Franck; Wirth, Judith; Dorbe, Marie-France; Lejay, Laurence; Krapp, Anne; Gojon, Alain; Daniel-Vedele, Françoise

    2007-08-01

    Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.

  7. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan.

    Science.gov (United States)

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-07-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.

  8. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers

    Science.gov (United States)

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-01-01

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies. PMID:28257117

  9. Phosphate-dependent root system architecture responses to salt stress

    NARCIS (Netherlands)

    Kawa, D.; Julkowska, M.M.; Montero Sommerfeld, H.; ter Horst, A.; Haring, M.A.; Testerink, C.

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced ma

  10. Spatio-temporal sequence of cross-regulatory events in root meristem growth

    Science.gov (United States)

    Scacchi, Emanuele; Salinas, Paula; Gujas, Bojan; Santuari, Luca; Krogan, Naden; Ragni, Laura; Berleth, Thomas; Hardtke, Christian S.

    2010-01-01

    A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein–protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin–auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts. PMID:21149702

  11. The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Fukaki, H; Fujisawa, H; Tasaka, M

    1997-07-01

    In higher plants, shoots show negative gravitropism and roots show positive gravitropism. To elucidate the molecular mechanisms of root and hypocotyl gravitropism, we segregated the second mutation from the original phyB-1 mutant line which impaired both root and hypocotyl gravitropism and characterized this novel mutation named rhg (for root and hypocotyl gravitropism). The rhg is a single recessive nuclear mutation and it is mapped on the lower part of the chromosome 1. Analyses on the gravitropic responses of the rhg mutant indicate that root and hypocotyl gravitropism are severely impaired but inflorescence stem gravitropism is not affected by the rhg mutation. In the rhg mutant seedlings, amyloplasts (statoliths for gravity-perception) were present in the presumptive statocytes of roots and hypocotyls. Phototropism by roots and hypocotyls was not impaired in the rhg mutant. These results suggest that the RHG gene product probably acts on the gravity-perception and/or the gravity-signal transduction in root and hypocotyl gravitropism. This is the first report about the genetic locus specifically involved in both root and hypocotyl gravitropism but not inflorescence stem gravitropism, supporting our hypothesis that the mechanisms of gravitropism are genetically different between hypocotyls and inflorescence stems.

  12. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  13. Stimulation of Armillaria rhizomorph growth by oak root fungi

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available Thirty one different genera of fungi were isolated from the wood of roots of 5O·year·old oak (Quercus robur. The most frequently isolated fungi were: Mycelium radicis atrovirens alpha (MRAA, Clonostachys sp. and Penicillium daleae, Beauveria bassiana, Clonostachys sp., Cryplosporiopsis rodicicolo, Geotrichum candidum, Mortierella vinacea, MRAA, P. daleae, P. janczewskii P. spinulosum, Sporothrix schenckii and Tolypocladium niveum significantly enhanced Armillaria mellea rhizomorph initiation and growth from oak branch segments in vitro. The biggest stimulation effect was noticed when the dematiaceous hyphomycetes, e.g. MRAA, P. dimorphospora and S. schenckii were studied.

  14. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde; Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco; Cuypers, Ann [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium)

    2011-06-15

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 {mu}M for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 {mu}M. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H{sub 2}O{sub 2}, an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. - Highlights: > Unravel response mechanisms to uranium stress

  15. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    NARCIS (Netherlands)

    Rodriguez-Villalon, A.; Gujas, B.; van Wijk, R.; Munnik, T.; Hardtke, C.S.

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second s

  16. Effect of indole-3-acetic acid on pea root growth, peroxidase profiles and hydroxyl radical formation

    Directory of Open Access Journals (Sweden)

    Kukavica Biljana

    2007-01-01

    Full Text Available Changes in growth, peroxidase profiles, and hydroxyl radical formation were examined in IAA (0.5-10 mg/l treated pea plants grown hydroponically and in isolated roots in liquid in vitro culture. IAA inhibited root elongation, both in hydroponically grown pea plants and in isolated roots in vitro. A remarkable increase in the number of POD iso­forms was noticed in isolated roots grown in vitro, compared to the roots from plants grown hydroponically. IAA induced both disappearance of several root POD isoforms and hydroxyl radical formation in the root and the root cell wall.

  17. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  18. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

    Science.gov (United States)

    Xie, Q; Frugis, G; Colgan, D; Chua, N H

    2000-12-01

    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  19. Induction of Root Hair Growth in a Phosphorus-Buffered Culture Solution

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-dong; James Dunlop; Thai Phung

    2006-01-01

    A system to control the release of phosphate in water was successfully established, based on solubility product of [Ca2+] and [PO43-] using tricalcium phosphate as P source in the hydroponic solution, and adding CaC12 for supplementing extra Ca2+. The system, similar to soil solutions, was a P nutrient buffer solution with very low bioavailable P. The buffer solution induced the roots of both monocotyledon and dicotyledon species to grow abundant root hairs, 3 mm in maximum length. The monocotyledons were corn (Zea mays L.) (var. Yellow Rose), wheat (Triticum aestivum L.) (var.Yanzhong 144), Triticale secale L. (var. Jingsong 5), and ryegrass (Lolium rigidum L.) (var. Ruanni), and the dicotyledons were Arabidopsis thaliana L. (var. Columbia), white clover (Trifolium repens) (var. Kopu), Lotus (Lotus peduncucatus Cav. Luliginosus Schkuhr) (var. Grasslands Maku). For these species we proved that the root environment controls the induction of root hair formation. However, the hydroponic buffer solution failed to induce root hairs on the roots of onion (Allium cepa L.). Other investigators have concluded that corn does not form root hairs in hydroponics, but abundant long root hairs on corn were induced by this buffer system. The roots with abundant long root hairs are called "hedgehog roots" because they have hairs everywhere just like a hedgehog.

  20. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  1. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natasha Savage

    Full Text Available Phosphate (Pi deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana, we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC, ENHANCER OF TRY AND CPC 1 (ETC1, WEREWOLF (WER and SCRAMBLED (SCM. From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias' in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts. Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  2. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    Science.gov (United States)

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-05-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  3. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management.

    Science.gov (United States)

    Palmqvist, N G M; Bejai, S; Meijer, J; Seisenbaeva, G A; Kessler, V G

    2015-01-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  4. Perception mechanism of gravity stimuli in hypergravity-induced growth inhibition of azuki bean roots.

    Science.gov (United States)

    Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2003-10-01

    We reported that elongation growth of plant shoots and roots is suppressed by hypergravity, with the rate decreasing in proportion to logarithm of the magnitude of gravity. In hypergravity-induced growth inhibition of shoots, graviperception is supposed to be independent of that in gravitropism and to involve mechanoreceptors. However, the graviperception mechanism in the hypergravity-induced growth inhibition of roots is not known. In the present study, we compared the mechanism in the hypergravity-induced growth inhibition of roots with that in gravitropism. The removal of root cap did not influence hypergravity-induced growth inhibition of roots, although the gravitropic curvature was completely inhibited. Hypergravity had no effects on growth of azuki bean roots in the presence of lanthanum or gadolinium, which are blockers of mechanoreceptors. On the contrary, lanthanum or gadolinium at the same concentration did not influence gravitropism of roots. These results suggest that the graviperception mechanism in the hypergravity-induced growth inhibition of roots is independent of that in gravitropism. Hypergravity-induced growth inhibition of azuki bean roots was observed irrespective of the direction of stimuli, which disappeared in the presence of lanthanum or gadolinium. Thus, in the hypergravity-induced growth inhibition, roots may perceive the gravity signal by mechanoreceptors on the plasma membrane independently of the direction of stimuli, and may utilize it to regulate their growth rate.

  5. Effect of plant growth regulators on leaf anatomy of the has mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Janosević, D; Uzelac, B; Budimir, S

    2008-12-01

    In this study, the effect of plant growth regulators on leaf morphogenesis of the recessive T-DNA insertion mutant of Arabidopsis thaliana was analyzed. The morpho-anatomical analysis revealed that leaves of the has mutant are small and narrow, with lobed blades and disrupted tissue organization. When has plants were grown on the medium supplied with plant growth regulators: benzylaminopurine (BAP) or ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), the leaf anatomy was partially restored to the wild type, although plants still exhibited morphological abnormalities.

  6. Multi-element bioimaging of Arabidopsis thaliana roots

    DEFF Research Database (Denmark)

    Persson, Daniel Olof; Chen, Anle; Aarts, Mark G.M.

    2016-01-01

    . Samples are finally analyzed by laser ablation-inductively coupled plasma-mass spectrometry, utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA, and DNA, making it attractive in combination with other...... omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images...

  7. OPDA has key role in regulating plant susceptibility to the root-knot nematode Meloidogyne hapla in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    2016-10-01

    Full Text Available Jasmonic acid (JA is a plant hormone that plays important roles in regulating plant defenses against necrotrophic pathogens and herbivorous insects, but the role of JA in mediating the plant responses to root-knot nematodes has been unclear. Here we show that an application of either methyl jasmonate (MeJA or the JA-mimic coronatine (COR on Arabidopsis significantly reduced the number of galls caused by the root-knot nematode Meloidogyne hapla. Interestingly, the MeJA-induced resistance was independent of the JA-receptor COI1 (CORONATINE INSENSITIVE 1. The MeJA-treated plants accumulated the JA precursor cis-(+-12-oxo-phytodienoic acid (OPDA in addition to JA/JA-Isoleucine, indicating a positive feedback loop in JA biosynthesis. Using mutants in the JA-biosynthetic pathway, we found that plants deficient in the biosynthesis of JA and OPDA were hyper-susceptible to M. hapla. However, the opr3 mutant, which cannot convert OPDA to JA, exhibited wild-type levels of nematode galling. In addition, mutants in the JA-biosynthesis and perception which lie downstream of opr3 also displayed wild-type levels of galling. The data puts OPR3 (OPDA reductase 3 as the branch point between hyper-susceptibility and wild-type like levels of disease. Overall, the data suggests that the JA precursor, OPDA, plays a role in regulating plant defense against nematodes.

  8. Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana Accessions Is Substance-Class-Dependent

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Trutschel, Diana; Westphal, Lore; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Natural variation of secondary metabolism between different accessions of Arabidopsis thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation approach by including biological variability (plant-to-plant variability) and analysed root metabolic patterns as well as their variability between plants and naturally occurring accessions. To screen 19 accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts was performed using ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant variability than natural variation between accessions and variance of experimental batches. Ratios of plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the investigated accessions displayed a specifically high or low biological variability for these substance classes. This study provides recommendations for future natural variation analyses of glucosinolates, flavonoids, and phenylpropanoids and also reference data for additional substance classes. PMID:27649165

  9. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  10. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication.

    Science.gov (United States)

    Hur, Yoon-Sun; Um, Ji-Hyun; Kim, Sunghan; Kim, Kyunga; Park, Hee-Jung; Lim, Jong-Seok; Kim, Woo-Young; Jun, Sang Eun; Yoon, Eun Kyung; Lim, Jun; Ohme-Takagi, Masaru; Kim, Donggiun; Park, Jongbum; Kim, Gyung-Tae; Cheon, Choong-Ill

    2015-01-01

    Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated. Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4). Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.

  11. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Science.gov (United States)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  12. [Impacts of root-zone hypoxia stress on muskmelon growth, its root respiratory metabolism, and antioxidative enzyme activities].

    Science.gov (United States)

    Liu, Yi-Ling; Li, Tian-Lai; Sun, Zhou-Ping; Chen, Ya-Dong

    2010-06-01

    By using aeroponics culture system, this paper studied the impacts of root-zone hypoxia (10% O2 and 5% O2) stress on the plant growth, root respiratory metabolism, and antioxidative enzyme activities of muskmelon at its fruit development stage. Root-zone hypoxia stress inhibited the plant growth of muskmelon, resulting in the decrease of plant height, root length, and fresh and dry biomass. Comparing with the control (21% O2), hypoxia stress reduced the root respiration rate and malate dehydrogenase (MDH) activity significantly, and the impact of 5% O2 stress was more serious than that of 10% O2 stress. Under hypoxic conditions, the lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and the malondialdehyde (MDA) content were significantly higher than the control. The increment of antioxidative enzyme activities under 10% O2 stress was significantly higher than that under 5% O2 stress, while the MDA content was higher under 5% O2 stress than under 10% O2 stress, suggesting that when the root-zone oxygen concentration was below 10%, the aerobic respiration of muskmelon at its fruit development stage was obviously inhibited while the anaerobic respiration was accelerated, and the root antioxidative enzymes induced defense reaction. With the increasing duration of hypoxic stress, the lipid peroxidation would be aggravated, resulting in the damages on muskmelon roots, inhibition of plant growth, and decrease of fruit yield and quality.

  13. Pseudomonas fluorescens and Pseudomonas putida for Promoting Growth of Jatropha curcas Seedling Root

    Directory of Open Access Journals (Sweden)

    Sri Sumarsih

    2012-05-01

    Full Text Available Pseudomonas fluorescens and P. putida are Plant Growth Promoting Rhizobacteria (PGPR that can produce growth hormone. The objective of this study is to know the effects of those two combined species of PGPR on seedling root growth of Jatropha curcas. The condition of the seedling root determines the success of dry land cultivation. The root which has wider coverage, is larger in number, and is bigger in diameter makes seedling more resistant to stress in dry land environment. In the experiment, two kinds of plant materials are used for seedling, the Jatropha seed and stem material, which are treated in a mixed culture of PGPR. For the Jatropha seed, this mixed culture of PGPR is given at the same time of cultivating the sprout on the seedling medium. For the stem cutting, the PGPR is poured in together during the first watering of the seedling cultivation medium. In the fourthweek, the observed growth parameters are root length, root diameter, primary and secondary lateral root numbers, Root Length Density (RLD, Frequency of Lateral Root (FLR, and Specific Root Length (SRL. These data are analyzed using analysis of variant with DMRT test at 0.05 level of significance. The result of this study shows that PGPR tend to reduce FLR values on the seedling root made from seeds. On the seedling root made from stem cutting, PGPR increase the root length, primary and secondary lateral root numbers, root diameter, FLR and SRL values as well.

  14. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  15. Nonfumigant Nematicides for Control of Root-knot Nematode to Protect Carrot Root Growth in Organic Soils.

    Science.gov (United States)

    Vrain, T C; Belair, G; Martel, P

    1979-10-01

    Greenhouse tests were conducted to determine the effects of two kinds of Meloidogyne hapla inoculum on the growth and quality of carrot roots, and the protection afforded in each case by nonfumigant nematicides in organic soils. For all treatments the percentage of carrots damaged was greater with larvae alone as inoculum than with larvae and eggs, indicating that most of the damage occurs early during formation of the taproot. Fosthietan, aldicarb, and oxamyl at 4 and 6 kg ai/ha protected the roots during formation and gave a lasting control of root-knot nematode. There was some nematode damage to the roots with phenamiphos and carbofuran at 4 and 6 kg ai/ha. Isazophos, diflubenzuron, and fenvalerate gave little protection to carrot roots and did not control root-knot nematode effectively.

  16. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.

    Science.gov (United States)

    Matsuo, Mitsuhiro; Johnson, Joy Michal; Hieno, Ayaka; Tokizawa, Mutsutomo; Nomoto, Mika; Tada, Yasuomi; Godfrey, Rinesh; Obokata, Junichi; Sherameti, Irena; Yamamoto, Yoshiharu Y; Böhmer, Frank-D; Oelmüller, Ralf

    2015-08-01

    Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.

  17. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Science.gov (United States)

    Maldonado-González, M. Mercedes; Bakker, Peter A. H. M.; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  18. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    Science.gov (United States)

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.

  19. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis.

    Science.gov (United States)

    Park, Jung-Eun; Park, Ju-Young; Kim, Youn-Sung; Staswick, Paul E; Jeon, Jin; Yun, Ju; Kim, Sun-Young; Kim, Jungmook; Lee, Yong-Hwan; Park, Chung-Mo

    2007-03-30

    Plants constantly monitor environmental fluctuations to optimize their growth and metabolism. One example is adaptive growth occurring in response to biotic and abiotic stresses. Here, we demonstrate that GH3-mediated auxin homeostasis is an essential constituent of the complex network of auxin actions that regulates stress adaptation responses in Arabidopsis. Endogenous auxin pool is regulated, at least in part, through negative feedback by a group of auxin-inducible GH3 genes encoding auxin-conjugating enzymes. An Arabidopsis mutant, wes1-D, in which a GH3 gene WES1 is activated by nearby insertion of the (35)S enhancer, exhibited auxin-deficient traits, including reduced growth and altered leaf shape. Interestingly, WES1 is also induced by various stress conditions as well as by salicylic acid and abscisic acid. Accordingly, wes1-D was resistant to both biotic and abiotic stresses, and stress-responsive genes, such as pathogenesis-related genes and CBF genes, were upregulated in this mutant. In contrast, a T-DNA insertional mutant showed reduced stress resistance. We therefore propose that GH3-mediated growth suppression directs reallocation of metabolic resources to resistance establishment and represents the fitness costs of induced resistance.

  20. Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space.

    Science.gov (United States)

    Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2002-10-01

    Seedlings of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia and an ethylene-resistant mutant etr1-1) were cultivated for 68.5, 91.5 and 136 h on board during the Space Shuttle STS-95 mission, and changes in the elongation growth and the cell wall properties of hypocotyls were analyzed. Elongation growth of dark-grown hypocotyls of both Columbia and etr1-1 was stimulated under microgravity conditions in space. There were no clear differences in the degree of growth stimulation between Columbia and etr1-1, indicating that the ethylene level was not abnormally high in the cultural environment of this space experiment. Microgravity also increased the mechanical extensibility of cell walls in both cultivars, and such an increase was attributed to the increase in the apparent irreversible extensibility. The levels of cell wall polysaccharides per unit length of hypocotyls decreased in space. Microgravity also reduced the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction. Also, the activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls increased under microgravity conditions. These results suggest that microgravity reduces the molecular mass of xyloglucans by increasing xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell wall polysaccharides seem to be involved in an increase in the cell wall extensibility, leading to growth stimulation of Arabidopsis hypocotyls in space.

  1. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  2. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.

    Science.gov (United States)

    Gong, Xue; Flores-Vergara, Miguel A; Hong, Jing Han; Chu, Huangwei; Lim, Jun; Franks, Robert G; Liu, Zhongchi; Xu, Jian

    2016-03-01

    A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.

  3. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    Science.gov (United States)

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway.

  4. The Equilibrium and Growth Stability of Winter Wheat Root and Shoot Under Different Soil Water Conditions

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi-hong; CHEN Xiao-yuan; LUO Yuan-pei

    2007-01-01

    The equilibrium between root, shoot and growth stability under different soil water conditions were investigated in a tube experiment of winter wheat. The water supplying treatments included: sufficient irrigation at whole growth phase, moderate deficiency irrigation at whole growth phase, serious deficiency irrigation at whole growth phase, sufficient irrigation at jointing stage, tillering stage, flowering stage, and fillering respectively, after moderate and serious water deficit during their previous growth stage. Root and shoot biomass were measured. On the basis of the cooperative root-shoot interactions model, the equilibrium and growth stability were studied on the strength of the kinetics system theory. There was only one varying equilibrium point between the root and shoot over the life time of the winter wheat plant. Water stress prolonged the duration of stable growth, the more serious the water deficit, the longer the period of stable growth.The duration of stable growth was shortened and that of unstable growth was prolonged after water recovery. The growth behavior of the plants exposed to moderate water deficit shifted from stable to unstable until the end of the growth,after rewatering at flowering. In the life-time of the crop, the root and shoot had been adjusting themselves in structure and function so as to maintain an equilibrium, but could not achieve the equilibrium state for long. They were always in an unbalanced state from the beginning to the end of growth. This was the essence of root-shoot equilibrium. Water stress inhibited the function of root and shoot, reduced root shoot interactions, and as a result, the plant growth gradually tended to stabilize. Rewatering enhanced root shoot interactions, prolonged duration of instable growth. Rewatering at flowering could upset the inherent relativity during the long time of stable growth from flowering to filling stage, thus leading to unstable growth and enhanced dry matter accumulating rate

  5. Colonization of Greek olive cultivars' root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants

    Directory of Open Access Journals (Sweden)

    Theocharis Chatzistathis

    2013-06-01

    Full Text Available Rooted leafy cuttings of three Greek olive (Olea europaea L. cultivars (Koroneiki, Kothreiki and Chondrolia Chalkidikis were grown for six months in three soil types, in an experimental greenhouse, in order to investigate: i if their root system was colonized by arbuscular mycorrhiza fungus (AMF genus and, ii if genotypic differences concerning growth and mineral nutrition of olive plants existed. Gigaspora sp. colonized the root system of the three cultivars studied, while Glomus sp. colonized only the root system of 'Koroneiki'. Furthermore, in most cases root colonization by AMF differed among cultivars and soil types. The maximum root colonization, in all soils, was found in 'Chondrolia Chalkidikis'. In the three soils studied, the ratio shoot dry weight (SDW/ root dry weight (RDW was higher in 'Chondrolia Chalkidikis' than in the other two cultivars. Furthermore, root system morphology of the three olive cultivars was completely different, irrespectively of soil type. Leaf Mn, Fe, Zn, Ca, Mg, K and P concentrations, as well as total per plant nutrient content and nutrient use efficiency, differed among cultivars under the same soil conditions. These differences concerning root morphology, SDW/RDW, as well as nutrient uptake and use efficiency, could be possibly ascribed to the differential AMF colonization by Glomus sp. and Gigaspora sp.

  6. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

    Science.gov (United States)

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey

    2010-11-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  7. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    Science.gov (United States)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  8. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis

    Indian Academy of Sciences (India)

    Xiaojie Li; Liping Han; Yanying Zhao; Zhenzhen You; Chunling Zhang; Zhenzhen You; Hansong Dong; Chunling Zhang

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  9. Photorespiratory bypasses lead to increased growth in Arabidopsis thaliana: Are predictions consistent with experimental evidence?

    Directory of Open Access Journals (Sweden)

    Georg eBasler

    2016-04-01

    Full Text Available Arguably the biggest challenge of modern plant systems biology lies in predicting the performance of plant species, and crops in particular, upon different intracellular and external perturbations. Recently, an increased growth of Arabidopsis thaliana plants was achieved by introducing two different photorespiratory bypasses via metabolic engineering. Here we investigate the extent to which these findings match the predictions from constraint-based modeling. To determine the effect of the employed metabolic network model on the predictions, we perform a comparative analysis involving three state-of-the-art metabolic reconstructions of Arabidopsis thaliana. In addition, we investigate three scenarios with respect to experimental findings on the ratios of the carboxylation and oxygenation reactions of RuBisCO. We demonstrate that the condition-dependent growth phenotypes of one of the engineered bypasses can be qualitatively reproduced by each reconstruction, particularly upon considering the additional constraints with respect to the ratio of fluxes for the RuBisCO reactions. Moreover, our results lend support for the hypothesis of a reduced photorespiration in the engineered plants, and indicate that specific changes in CO2 exchange as well as in the proxies for cofactor turnover are associated with the predicted growth increase in the engineered plants. We discuss our findings with respect to the structure of the used models, the modeling approaches taken, and the available experimental evidence. Our study sets the ground for investigating other strategies for increase of plant biomass by insertion of synthetic reactions.

  10. Modification of tomato growth by expression of truncated ERECTA protein from Arabidopsis thaliana.

    Science.gov (United States)

    Villagarcia, Hector; Morin, Anne-Claire; Shpak, Elena D; Khodakovskaya, Mariya V

    2012-11-01

    ERECTA family genes encode leucine-rich repeat receptor-like kinases that control multiple aspects of plant development such as elongation of aboveground organs, leaf initiation, development of flowers, and epidermis differentiation. These receptors have also been implicated in responses to biotic and abiotic stress, probably as a consequence of their involvement in regulation of plant architecture. Here, ERECTA signalling in tomatoes (Solanum lycopersicum) was manipulated by expressing truncated ERECTA protein (AtΔKinase) from Arabidopsis using two different promoters. In Arabidopsis, this protein functions in a dominant-negative manner, disrupting signalling of the whole ERECTA gene family. Expression of AtΔKinase under a constitutive 35S promoter dramatically reduced vegetative growth and led to the formation of fruits with a reduced seed set. Similarly, expression of AtΔKinase under its own promoter resulted in transgenic tomato plants with diminished growth, a reduced number of leaves, changed flowering time, and slightly increased stomata density. The transgenic plants also exhibited increased tolerance to water deficit stress, at least partially due to their diminished surface area. These phenotypes of the transgenic plants were the result of ERECTA signalling disruption at the protein level, as the expression of two endogenous tomato ERECTA family genes was not suppressed. These results demonstrate the significance of ERECTA family genes for development and stress responses in tomato and suggest that truncated ERECTA can be used to manipulate the growth of crop species.

  11. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.

    Science.gov (United States)

    MacAlister, Cora A; Ortiz-Ramírez, Carlos; Becker, Jörg D; Feijó, José A; Lippman, Zachary B

    2016-01-01

    Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.

  12. Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana.

    Science.gov (United States)

    Rigas, Stamatis; Daras, Gerasimos; Laxa, Miriam; Marathias, Nikolas; Fasseas, Constantinos; Sweetlove, Lee J; Hatzopoulos, Polydefkis

    2009-01-01

    Maintenance of protein quality control and turnover is essential for cellular homeostasis. In plant organelles this biological process is predominantly performed by ATP-dependent proteases. Here, a genetic screen was performed that led to the identification of Arabidopsis thaliana Lon1 protease mutants that exhibit a post-embryonic growth retardation phenotype. Translational fusion to yellow fluorescent protein revealed AtLon1 subcellular localization in plant mitochondria, and the AtLon1 gene could complement the respiratory-deficient phenotype of the yeast PIM1 gene homolog. AtLon1 is highly expressed in rapidly growing plant organs of embryonic origin, including cotyledons and primary roots, and in inflorescences, which have increased mitochondria numbers per cell to fulfill their high energy requirements. In lon1 mutants, the expression of both mitochondrial and nuclear genes encoding respiratory proteins was normal. However, mitochondria isolated from lon1 mutants had a lower capacity for respiration of succinate and cytochrome c via complexes II and IV, respectively. Furthermore, the activity of key enzymes of the tricarboxylic acid (TCA) cycle was significantly reduced. Additionally, mitochondria in lon1 mutants had an aberrant morphology. These results shed light on the developmental mechanisms of selective proteolysis in plant mitochondria and suggest a critical role for AtLon1 protease in organelle biogenesis and seedling establishment.

  13. Arabidopsis thaliana AtUTr7 Encodes a Golgi-Localized UDP-Glucose/UDP-Galactose Transporter that Affects Lateral Root Emergence

    Institute of Scientific and Technical Information of China (English)

    Michael Handford; Cecilia Rodríguez-Furlán; Lorena Marchant; Marcelo Segura; Daniela Gómez; Elena Alvarez-Buyll; Guang-Yan Xiong; Markus Pauly; Ariel Orellana

    2012-01-01

    Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants.However,due to the limited number of related mutants that have observable phenotypes,the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive.Here,we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.),which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster,humans,and Caenorhabditis elegans.We show that AtUTr7 possesses the common structural characteristics conserved among NSTs.Using a green fluorescent protein (GFP) tagged version,we demonstrate that AtUTr7 is localized in the Golgi apparatus.We also show that AtUTr7 is widely expressed,especially in the roots and in specific floral organs.Additionally,the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-GIc,but not a range of other UDP-and GDP-sugars,into the Golgi lumen.Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations.Furthermore,the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants,although additional analytical procedures revealed no further differences in the composition of the root cell walls.This evidence suggests that the transport of UDP-Gal and UDP-GIc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.

  14. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    Science.gov (United States)

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  15. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Directory of Open Access Journals (Sweden)

    M. Mercedes eMaldonado-González

    2015-04-01

    Full Text Available The effective management of Verticillium wilts, diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control Verticillium wilt of olive caused by the highly-virulent, defoliating (D pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V.dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i olive D and non-defoliating (ND V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii strain PICF7 controls Verticillium wilt (VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. Arabidopsis thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.

  16. Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil.

    Science.gov (United States)

    Lima, Tâmara Thaiz Santana; Miranda, Izildinha Souza; Vasconcelos, Steel Silva

    2010-08-01

    *Fine root dynamics is widely recognized as an important biogeochemical process, but there are few data on fine root growth and its response to soil resource availability, especially for tropical forests. *We evaluated the response of fine root dynamics to altered availability of soil water and nutrients in a 20-yr-old forest regrowth in eastern Amazonia. In one experiment the dry season reduction in soil moisture was alleviated by irrigation. In the other experiment, nutrient supply was reduced by litter removal. We used the ingrowth core technique to measure fine root mass growth, length growth, mortality and specific root length. *Dry-season irrigation had no significant effect on mass and length of live and dead roots, whereas litter removal reduced mass and length of live roots. For both irrigation and litter removal experiments, root growth was significantly greater in the dry season than in the wet season. *Increased root growth was associated with decreased soil water availability. However, root growth did not increase in response to nutrient reduction in litter removal plots. Overall, our results suggest that belowground allocation may differ according to the type of soil resource limitation.

  17. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or {sup 238}U (25 μM) or an equi-toxic mixture of Cd and {sup 238}U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However

  18. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    Science.gov (United States)

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-07-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant.

  19. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  20. Adaptive growth of tree root systems in response to wind action and site conditions.

    Science.gov (United States)

    Nicoll, Bruce C.; Ray, Duncan

    1996-01-01

    Soil-root plate dimensions and structural root architecture were examined on 46-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.) trees that had been mechanically uprooted. Rooting depth was restricted by a water table, and root system morphology had adapted to resist the wind movement associated with shallow rooting. The spread of the root system and the ratio of root mass to shoot mass (root/shoot ratio) were both negatively related to soil-root plate depth. Root systems had more structural root mass on the leeward side than the windward side of the tree relative to the prevailing wind direction. Cross sections of structural roots were obtained at distances of 0.5, 0.75, 1.0, and 1.25 m from the tree center. Buttressed parts of roots had greater lateral and vertical secondary thickening above rather than below the biological center. This uneven growth, which produced a shape similar in cross section to a T-beam, was greater on the leeward side of the tree, and was greatest at 0.5 m from the tree center of shallow rooted trees. Further from the tree, particularly on the windward side, many roots developed eccentric cross-sectional shapes comparable to I-beams, which would efficiently resist vertical flexing. Roots became more ovoid in shape with increasing distance from the tree, especially on deep rooted trees where lateral roots tapered rapidly to a small diameter. We conclude that these forms of adaptive growth in response to wind movement improve the rigidity of the soil-root plate and counteract the increasing vulnerability to windthrow as the tree grows.

  1. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways.

    Science.gov (United States)

    Vandenhove, Hildegarde; Vanhoudt, Nathalie; Cuypers, Ann; van Hees, May; Wannijn, Jean; Horemans, Nele

    2010-09-01

    Arabidopsis thaliana was exposed to low-dose chronic gamma irradiation during a full life cycle (seed to seed) and several biological responses were investigated. Applied dose rates were 2336, 367 and 81 microGy h(-1). Following 24 days (inflorescence emergence), 34 days (approximately 50% of flowers open) and 54 days (silice ripening) exposure, plants were harvested and monitored for biometric parameters, capacities of enzymes involved in the antioxidative defence mechanisms (SOD, APOD, GLUR, GPOD, SPOD, CAT, ME), glutathione and ascorbate pool, lipid peroxidation products, altered gene expression of selected genes encoding for antioxidative enzymes or reactive oxygen species production, and DNA integrity. Root fresh weight was significantly reduced after gamma exposure compared to the control at all stages monitored but no significant differences in root weight for the different dose rates applied was observed. Leaf and stem fresh weight were significantly reduced at the highest irradiation level after 54 days exposure only. Also total plant fresh was significantly lower at silice riping and this for the highest and medium dose rate applied. The dose rate estimated to result in a 10% reduction in growth (EDR-10) ranged between 60 and 80 microGy h(-1). Germination of seeds from the gamma irradiated plants was not hampered. For several of the antioxidative defence enzymes studied, the enzyme capacity was generally stimulated towards flowering but generally no significant effect of dose rate on enzyme capacity was observed. Gene analysis revealed a significant transient and dose dependent change in expression of RBOHC indicating active reactive oxygen production induced by gamma irradiation. No effect of irradiation was observed on concentration or reduction state of the non-enzymatic antioxidants, ascorbate and glutathione. The level of lipid peroxidation products remained constant throughout the observation period and was not affected by dose rate. The comet assay

  2. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    Science.gov (United States)

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.

  3. Gravitational force regulates elongation growth of arabidopsis hypocotyls by modifying xyloglucan metabolism

    Science.gov (United States)

    Soga, K.; Wakabayashi, K.; Hoson, T.; Kamisaka, S.

    Growth of dark-grown Arabidopsis hypocotyls was suppressed under hypergravity conditions (300 g), or was stimulated under microgravity conditions in space (Space Shuttle STS-95). The mechanical extensibility of cell walls decreased and increased under hypergravity and microgravity conditions, respectively. The amounts of cell wall polysaccharides (pectin, hemicellulose-I, hemicellulose-II and cellulose) per unit length of hypocotyls increased under hypergravity conditions, and decreased under microgravity conditions. The amount and the molecular mass of xyloglucans also increased under the hypergravity conditions, while those decreased under microgravity conditions. The activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls decreased and increased under hypergravity and microgravity conditions, respectively. These results indicate that the amount and the molecular mass of xyloglucans are affected by the magnitude of gravity and that such changes are caused by changes in xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell walls by gravity stimulus may be the primary event determining the cell wall extensibility, thereby regulating the growth rate of Arabidopsis hypocotyls.

  4. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis.

    Science.gov (United States)

    Cerný, Martin; Jedelský, Petr L; Novák, Jan; Schlosser, Andreas; Brzobohatý, Břetislav

    2014-07-01

    As sessile organisms, plants must sense environmental conditions and adjust their growth and development processes accordingly, through adaptive responses regulated by various internal factors, including hormones. A key environmental factor is temperature, but temperature-sensing mechanisms are not fully understood despite intense research. We investigated proteomic responses to temperature shocks (15 min cold or heat treatments) with and without exogenous applications of cytokinin in Arabidopsis. Image and mass spectrometric analysis of the two-dimensionally separated proteins detected 139 differentially regulated spots, in which 148 proteins were identified, most of which have not been previously linked to temperature perception. More than 70% of the temperature-shock response proteins were modulated by cytokinin, mostly in a similar manner as heat shock. Data mining of previous transcriptomic datasets supported extensive interactions between temperature and cytokinin signalling. The biological significance of this finding was tested by assaying an independent growth response of Arabidopsis seedlings to heat stress: hypocotyl elongation. This response was strongly inhibited in mutants with deficiencies in cytokinin signalling or endogenous cytokinin levels. Thus, cytokinins may directly participate in heat signalling in plants. Finally, large proportions of both temperature-shock and cytokinin responsive proteomes co-localize to the chloroplast, which might therefore host a substantial proportion of the temperature response machinery.

  5. Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism.

    Science.gov (United States)

    Soga, K; Wakabayashi, K; Hoson, T; Kamisaka, S

    2001-01-01

    Growth of dark-grown Arabidopsis hypocotyls was suppressed under hypergravity conditions (300 g), or was stimulated under microgravity conditions in space (Space Shuttle STS-95). The mechanical extensibility of cell walls decreased and increased under hypergravity and microgravity conditions, respectively. The amounts of cell wall polysaccharides (pectin, hemicellulose-I, hemicellulose-II and cellulose) per unit length of hypocotyls increased under hypergravity conditions, and decreased under microgravity conditions. The amount and the molecular mass of xyloglucans also increased under the hypergravity conditions, while those decreased under microgravity conditions. The activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls decreased and increased under hypergravity and microgravity conditions, respectively. These results indicate that the amount and the molecular mass of xyloglucans are affected by the magnitude of gravity and that such changes are caused by changes in xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell walls by gravity stimulus may be the primary event determining the cell wall extensibility, thereby regulating the growth rate of Arabidopsis hypocotyls.

  6. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Science.gov (United States)

    Ali, Muhammad Amjad; Wieczorek, Krzysztof; Kreil, David P; Bohlmann, Holger

    2014-01-01

    Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  7. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  8. Reference: 756 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available elle et al. 2008 Jun. Plant Physiol. 147(2):595-610. Treatment of Arabidopsis (Arabidopsis thaliana) alterna...tive oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compare...d with ecotype Columbia (Col-0), as evidenced by a 10-fold incre...ase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and re...duced root growth at the early stages of seedling growth. Analysis of metabolite profiles re

  9. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots

    OpenAIRE

    Enrico Baldan; Sebastiano Nigris; Chiara Romualdi; Stefano D'Alessandro; Anna Clocchiatti; Michela Zottini; Piergiorgio Stevanato; Andrea Squartini; Barbara Baldan

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammoniu...

  10. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots.

    Science.gov (United States)

    Siddique, Shahid; Endres, Stefanie; Sobczak, Miroslaw; Radakovic, Zoran S; Fragner, Lena; Grundler, Florian M W; Weckwerth, Wolfram; Tenhaken, Raimund; Bohlmann, Holger

    2014-01-01

    The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes.

  11. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  12. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  13. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-01-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  14. Arabidopsis TCP20 links regulation of growth and cell division control pathways

    OpenAIRE

    2005-01-01

    During postembryonic plant development, cell division is coupled to cell growth. There is a stringent requirement to couple these processes in shoot and root meristems. As cells pass through meristems, they transit through zones with high rates of cell growth and proliferation during organogenesis. This transition implies a need for coordinate regulation of genes underpinning these two fundamental cell functions. Here, we report a mechanism for coregulation of cell division control genes and ...

  15. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space.

    Science.gov (United States)

    Hoson, T; Soga, K; Wakabayashi, K; Hashimoto, T; Karahara, I; Yano, S; Tanigaki, F; Shimazu, T; Kasahara, H; Masuda, D; Kamisaka, S

    2014-01-01

    Cortical microtubules are involved in plant resistance to hypergravity, but their roles in resistance to 1 g gravity are still uncertain. To clarify this point, we cultivated an Arabidopsis α-tubulin 6 mutant (tua6) in the Cell Biology Experiment Facility on the Kibo Module of the International Space Station, and analyzed growth and cell wall mechanical properties of inflorescences. Growth of inflorescence stems was stimulated under microgravity conditions, as compared with ground and on-orbit 1 g conditions. The stems were 10-45% longer and their growth rate 15-55% higher under microgravity conditions than those under both 1 g conditions. The degree of growth stimulation tended to be higher in the tua6 mutant than the wild-type Columbia. Under microgravity conditions, the cell wall extensibility in elongating regions of inflorescences was significantly higher than the controls, suggesting that growth stimulation was caused by cell wall modifications. No clear differences were detected in any growth or cell wall property between ground and on-orbit 1 g controls. These results support the hypothesis that cortical microtubules generally play an important role in plant resistance to the gravitational force.

  16. Grazing and nitrogen on the growth of roots in the mixture of oat and ryegrass

    Directory of Open Access Journals (Sweden)

    Hugo von Linsingen Piazzetta

    2014-09-01

    Full Text Available This study evaluated the effect of grazing and its absence, and the nitrogen on the morphology of roots of black oat (Avena strigosa Schreb. mixed with Italian ryegrass (Lolium multiflorum Lam.. The experimental design was a randomized block design in split-split, the main portion was study the effects of grazing and its absence, in the subplots the nitrogen doses of 75 and 150 kg ha-1 and in the sub-subplots were at sampling period. There was used the cylinder method to collect the root, being measured the length, surface area, mean diameter and volume by image analysis system Win / MacRizho (4.1c. Determined the dry mass of roots and shoot, and estimated the density of the root tissue and shoot:root ratio. From these results we determined the rate of root growth relative (RGR, relative root expansion rate (RRER and rate of accumulation of dry matter daily (RADM. In the first period, was higher RGR, RRER, the second period there was a reduction of the same, probably due to the period of drought and plant senescence. There was also reduced due to grazing RADM. With grazing, the length, surface area, mean diameter and root volume were higher, indicating that there was greater root growth of plants grazed compared to ungrazed. The systems studied had no effect on the dry weight of roots. There were found greater specific mass and shot:root ratio in the system without grazing. There was no significant difference between the nitrogen studied. At mixed of black oat and ryegrass, the grazing and nitrogen dose until 150 kg ha-1 little affect root growth. The nitrogen dose changed a little the growth rates and expansion of the roots. On the other hand, the grazing favored the length, area, volume and root diameter.

  17. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-06-13

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.

  18. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level.

    Science.gov (United States)

    Kuo, Hui-Fen; Chang, Tzu-Yun; Chiang, Su-Fen; Wang, Wei-Di; Charng, Yee-Yung; Chiou, Tzyy-Jen

    2014-11-01

    Inositol hexakisphosphate (IP6 ) provides a phosphorous reservoir in plant seeds; in addition, along with its biosynthesis intermediates and derivatives, IP6 also plays important roles in diverse developmental and physiological processes. Disruption of the Arabidopsis inositol pentakisphosphate 2-kinase coding gene AtIPK1 was previously shown to reduce IP6 content in vegetative tissues and affect phosphate (Pi) sensing. Here we show that AtIPK1 is required for sustaining plant growth, as null mutants are non-viable. An incomplete loss-of-function mutant, atipk1-1, exhibited disturbed Pi homeostasis and overaccumulated Pi as a consequence of increased Pi uptake activity and root-to-shoot Pi translocation. The atipk1-1 mutants also showed a Pi deficiency-like root system architecture with reduced primary root and enhanced lateral root growth. Transcriptome analysis indicated that a subset of Pi starvation-responsive genes was transcriptionally perturbed in the atipk1-1 mutants and the expression of multiple genes involved in Pi uptake, allocation, and remobilization was increased. Genetic and transcriptional analyses suggest that disturbance of Pi homeostasis caused by atipk1 mutation involved components in addition to PHR1(-like) transcription factors. Notably, the transcriptional increase of a number of Pi starvation-responsive genes in the atipk1-1 mutants is correlated with the reduction of histone variant H2A.Z occupation in chromatin. The myo-inositol-1-phosphate synthase mutants, atmips1 and atmips2 with comparable reduction in vegetative IP6 to that in the atipk1-1 mutants did not overaccumulate Pi, suggesting that Pi homeostasis modulated by AtIPK1 is not solely attributable to IP6 level. This study reveals that AtIPK1 has important roles in growth and Pi homeostasis.

  19. The influence of calcium and pH on growth in primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  20. Nitrogen source interacts with ROP signalling in root hair tip-growth.

    Science.gov (United States)

    Bloch, Daria; Monshausen, Gabriele; Singer, Meromit; Gilroy, Simon; Yalovsky, Shaul

    2011-01-01

    Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11(CA)-induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11(CA) plants, induced the development of longer root hairs in wild-type plants and suppressed the effect of Atrop11(CA) expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11(CA)-induced swelling. Fluorescence ratio imaging experiments revealed that in wild-type root hairs, the addition of NH₄NO₃ to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen-dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.

  1. Kinetics of Growth and Nutrient Consumption in the Culture of Trichosanthes kirilowii Hairy Root

    Institute of Scientific and Technical Information of China (English)

    郭志刚; 郑明智; 刘瑞芝

    2003-01-01

    Ribosome-inactivating proteins in Trichosanthes kirilowii having high anti-HIV activity can be efficiently obtained by culturing Trichosanthes kirilowii hairy root. A hairy root line from Trichosanthes kirilowii was cultivated in flasks and in a 5-L bioreactor. The results show that a logistic equation can be used to describe the relationship between the hairy root biomass and the culture time. The medium conductivity decrease is linearly related to the biomass amount. In the suspension culture, the hairy root growth is closely related to the nutrient consumption. The biomass to nitrate yield is 0.352 g/mmol. The growth rate of the hairy root in the bioreactor is higher than that in the flasks, and after a 12-day culture its growth rate enters a high-speed period when the growth rate is 0.738 g/(L * d).

  2. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana.

    Science.gov (United States)

    Cui, Hongchang; Kong, Danyu; Liu, Xiuwen; Hao, Yueling

    2014-04-01

    Bundle sheath (BS) cells form a single cell layer surrounding the vascular tissue in leaves. In C3 plants, photosynthesis occurs in both the BS and mesophyll cells, but the BS cells are the major sites of photosynthesis in C4 plants, whereas the mesophyll cells are only involved in CO2 fixation. Because C4 plants are more efficient photosynthetically, introduction of the C4 mechanism into C3 plants is considered a key strategy to improve crop yield. One prerequisite for such C3-to-C4 engineering is the ability to manipulate the number and physiology of the BS cells, but the molecular basis of BS cell-fate specification remains unclear. Here we report that mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana. SCR and SCL23 are expressed specifically in the BS cells and act redundantly in BS cell-fate specification, but their expression pattern and function diverge at later stages of leaf development. Using ChIP-chip experiments and sugar assays, we show that SCR is primarily involved in sugar transport whereas SCL23 functions in mineral transport. SHR is also essential for BS cell-fate specification, but it is expressed in the central vascular tissue. However, the SHR protein moves into the BS cells, where it directly regulates SCR and SCL23 expression. SHR, SCR and SCL23 homologs are present in many plant species, suggesting that this developmental pathway for BS cell-fate specification is likely to be evolutionarily conserved.

  3. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    Science.gov (United States)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  4. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    Science.gov (United States)

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth.

  5. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis.

    Science.gov (United States)

    Ribeiro, Dimas M; Araújo, Wagner L; Fernie, Alisdair R; Schippers, Jos H M; Mueller-Roeber, Bernd

    2012-04-01

    Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA(3)) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA(3). However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA(3) alone, or PAC plus GA(3). Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism.

  6. Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings

    Indian Academy of Sciences (India)

    M N Alvim; F T Ramos; D C Oliveira; R M S Isaias; M G C França

    2012-12-01

    We correlated root growth inhibition with aluminium (Al3+) localization and toxicity symptoms in rice roots using seedlings of two genotypes (tolerant and sensitive) that were exposed to different AlCl3 concentrations. Al3+ localization was evaluated by hematoxylin in primary roots and by morin in cross-sections of the root tips. Neutral invertase enzyme activity and callose (1$\\to$3, -D-glucan) accumulation were observed and compared with Al3+ accumulation sites. Root growth was inhibited by Al3+ in a concentration-specific manner and proportional to the increase of hematoxylin staining, being more pronounced in the sensitive genotype. Morin staining showed the presence of Al3+ deep within the roots of the sensitive genotype, indicating that the metal was able to penetrate beyond the first few cell layers. In the tolerant genotype, Al3+ penetration was restricted to the first two cell layers. Ruptures in exodermis and epidermis layers by lateral root protrusions in both genotypes allowed Al3+ to enter into the roots. More intense activity of invertase in roots of the tolerant genotype was also observed, which could be related to greater root growth of this cultivar when submitted to Al3+ stress. Moreover, Al3+-induced callose accumulation was a late response occurring in the same areas where Al3+ was present.

  7. [Effects of cinnamic acid and vanillin on grafted eggplant root growth and physiological characteristics].

    Science.gov (United States)

    Chen, Shao-Li; Zhou, Bao-Li; Lin, Shan-Shan; Li, Xia; Ye, Xue-Ling

    2010-06-01

    Choosing Solanum torvum as rootstock and cultivated Xi'anlü eggplant as scion, a pot culture experiment was conducted to study the effects of autotoxic substances (cinnamic acid and vanillin) on the root growth, antioxidase activity, and osmoregulation substances content of grafted eggplant, own-rooted eggplant, and rootstock eggplant. Cinnamic acid and vanillin had allelopathic effects on the root system of test eggplants, with low concentration promoting and higher concentration inhibiting the root growth and physiological metabolism. For own-rooted eggplant, the critical concentration of cinnamic acid and vanillin for promotion or inhibition was 0.1 mmol x kg(-1) and 0.5 mmol x kg(-1), respectively; whereas for grafted and rootstock eggplants, it was 0.5 mmol x kg(-1) and 1 mmol x kg(-1), respectively. The root resistance to autotoxic substances was in the order of root-stock eggplant > grafted eggplant > own-rooted eggplant. Higher concentration cinamic acid (0.5-4 mmol x kg(-1)) and vanillin (1-4 mmol x kg(-1)) enhanced the SOD enzyme activity and the proline and soluble sugar contents of grafted eggplant root by 8.50%-24.50%; 9.39%-27.64%, and 12.77%-81.81%, respectively, compared with own-rooted eggplant. The soluble protein content, fresh mass, dry mass, and root activity of grafted eggplant roots were significantly higher than those of own-rooted eggplant, suggesting that grafted eggplant had a strong resistance of rootstocks to autotoxic substances, which alleviated the negative effect of autotoxic substances on root growth.

  8. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    Directory of Open Access Journals (Sweden)

    Pham Anh Tuan

    2014-08-01

    Full Text Available To improve the production of chlorogenic acid (CGA in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1 using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  9. Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1.

    Science.gov (United States)

    Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un

    2014-08-22

    To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  10. Effect of N Fertilizers on Root Growth and Endogenous Hormones in Strawberry

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; LAI Tao; HUANG Qi-Wei; YANG Xing-Ming; SHEN Qi-Rong

    2009-01-01

    Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.

  11. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    Science.gov (United States)

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity.

  12. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses.

    Science.gov (United States)

    Zamioudis, Christos; Korteland, Jolanda; Van Pelt, Johan A; van Hamersveld, Muriël; Dombrowski, Nina; Bai, Yang; Hanson, Johannes; Van Verk, Marcel C; Ling, Hong-Qing; Schulze-Lefert, Paul; Pieterse, Corné M J

    2015-10-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VOCs) from ISR-inducing Pseudomonas bacteria are important elicitors of MYB72. In response to VOC treatment, MYB72 is co-expressed with the iron uptake-related genes FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) in a manner that is dependent on FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR (FIT), indicating that MYB72 is an intrinsic part of the plant's iron-acquisition response that is typically activated upon iron starvation. However, VOC-induced MYB72 expression is activated independently of iron availability in the root vicinity. Moreover, rhizobacterial VOC-mediated induction of MYB72 requires photosynthesis-related signals, while iron deficiency in the rhizosphere activates MYB72 in the absence of shoot-derived signals. Together, these results show that the ISR- and iron acquisition-related transcription factor MYB72 in Arabidopsis roots is activated by rhizobacterial volatiles and photosynthesis-related signals, and enhances the iron-acquisition capacity of roots independently of the iron availability in the rhizosphere. This work highlights the role of MYB72 in plant processes by which root microbiota simultaneously stimulate systemic immunity and activate the iron-uptake machinery in their host plants.

  13. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  14. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  15. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth.

    Science.gov (United States)

    Lim, Benson; Smirnoff, Nicholas; Cobbett, Christopher S; Golz, John F

    2016-01-01

    In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis - VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20-30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70-80% decrease in ascorbate levels that has been assumed in past studies.

  16. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis.

    Science.gov (United States)

    Collins, Carl; Maruthi, N M; Jahn, Courtney E

    2015-08-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants.

  17. Root responses to soil physical conditions; growth dynamics from field to cell.

    Science.gov (United States)

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  18. Genetic Improvement of Root Growth Contributes to Efficient Phosphorus Acquisition in maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-kai; CHEN Fan-jun; CHEN Xiao-chao; LONG Li-zhi; GAO Kun; YUAN Li-xing; ZHANG Fu-suo; MI Guo-hua

    2013-01-01

    Maize plants adapt to low phosphorus (P) stress by increasing root growth. It is of importance to know the extent to which genetic improvement of root growth can enhance P acquisiton. In the present study, the contribution of root growth improvement to efficient P acquisition was evaluated in two soils using T149 and T222, a pair of near isogenic maize testcrosses which were derived from a backcross BC4F3 population. T149 and T222 showed no difference in shoot biomass and leaf area under normal growth conditions, but differed greatly in root growth. T149 had longer lateral roots and a larger root surface area compared to T222. In calcareous soil, when P was insufficient, i.e., when P was either supplied as KH2PO4 at a concentration of 50 mg P kg-1 soil, or in the form of Phy-P, Ca3-P or Ca10-P, a 43%increase in root length in T149 compared to T222 resulted in an increase in P uptake by 53%, and shoot biomass by 48%. In acid soil, however, when P supply was insufficient, i.e., when P was supplied as KH2PO4 at a concentration of 100 mg P kg-1 soil, or in the form of Phy-P, Fe-P or Al-P, a 32%increase in root length in T149 compared to T222 resulted in an increase in P uptake by only 12%, and shoot biomass by 7%. No significant differences in the exudation of organic acids and APase activity were found between the two genotypes. It is concluded that genetic improvement of root growth can efficiently increase P acquisition in calcareous soils. In acid soils, however, improvements in the physiological traits of roots, in addition to their size, seem to be required for efficient P acquisition.

  19. Soil acidification effects on fine root growth of Douglas-fir on sandy soils.

    NARCIS (Netherlands)

    Olsthoorn, A.F.M.

    1998-01-01

    The ammonium sulphate deposited in forest ecosystems in the Netherlands as a result of air pollution currently exceeds 80 kg N ha -1yr -1locally. To study the influence of this air pollution on fine root density and its dynamics, fine root growth was monitored for three years i

  20. Linking root traits to potential growth rate in six temperate tree species

    NARCIS (Netherlands)

    Comas, L.H.; Bouma, T.J.; Eissenstat, D.M.

    2002-01-01

    There is an extremely limited understanding of how plants of different potential growth rate vary in root traits, especially in woody species. We contrasted fine root morphology, physiology, and elemental construction between a fast- and a slow-growing species in each of three families: Aceraceae (m

  1. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.

    Science.gov (United States)

    Long, Terri A; Tsukagoshi, Hironaka; Busch, Wolfgang; Lahner, Brett; Salt, David E; Benfey, Philip N

    2010-07-01

    Global population increases and climate change underscore the need for better comprehension of how plants acquire and process nutrients such as iron. Using cell type-specific transcriptional profiling, we identified a pericycle-specific iron deficiency response and a bHLH transcription factor, POPEYE (PYE), that may play an important role in this response. Functional analysis of PYE suggests that it positively regulates growth and development under iron-deficient conditions. Chromatin immunoprecipitation-on-chip analysis and transcriptional profiling reveal that PYE helps maintain iron homeostasis by regulating the expression of known iron homeostasis genes and other genes involved in transcription, development, and stress response. PYE interacts with PYE homologs, including IAA-Leu Resistant3 (ILR3), another bHLH transcription factor that is involved in metal ion homeostasis. Moreover, ILR3 interacts with a third protein, BRUTUS (BTS), a putative E3 ligase protein, with metal ion binding and DNA binding domains, which negatively regulates the response to iron deficiency. PYE and BTS expression is also tightly coregulated. We propose that interactions among PYE, PYE homologs, and BTS are important for maintaining iron homeostasis under low iron conditions.

  2. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    Science.gov (United States)

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses.

  3. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.

  4. Growth and microtubule orientation of Zea mays roots subjected to osmotic stress

    Science.gov (United States)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.

  5. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  6. Auxin, ethylene and the regulation of root growth under mechanical impedance

    Science.gov (United States)

    Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju

    2012-07-01

    Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.

  7. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  8. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    Science.gov (United States)

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  9. Intracerebroventricular Administration of Nerve Growth Factor Induces Gliogenesis in Sensory Ganglia, Dorsal Root, and within the Dorsal Root Entry Zone

    Directory of Open Access Journals (Sweden)

    Johannes C. M. Schlachetzki

    2014-01-01

    Full Text Available Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  10. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1 (E.C.: 4.4.1.5 and 2 (E.C.3.1.2.6, has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.

  11. TOC1–PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis

    Science.gov (United States)

    Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Tina; Wang, Zhi-Yong

    2016-01-01

    Arabidopsis adapts to elevated temperature by promoting stem elongation and hyponastic growth through a temperature-responsive transcription factor PIF4. Here we show that the evening-expressed clock component TOC1 interacts with and inactivates PIF4, thereby suppressing thermoresponsive growth in the evening. We find that the expression of PIF4 target genes show circadian rhythms of thermosensitivity, with minimum responsiveness in the evening when TOC1 level is high. Loss of function of TOC1 and its close homologue PRR5 restores thermosensitivity in the evening, whereas TOC1 overexpression causes thermo insensitivity, demonstrating that TOC1 mediates the evening-specific inhibition of thermoresponses. We further show that PIF4 is required for thermoadaptation mediated by moderately elevated temperature. Our results demonstrate that the interaction between TOC1 and PIF4 mediates the circadian gating of thermoresponsive growth, which may serve to increase fitness by matching thermoresponsiveness with the day–night cycles of fluctuating temperature and light conditions. PMID:27966533

  12. The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules.

    Science.gov (United States)

    Gaiser, J. C.; Robinson-Beers, K.; Gasser, C. S.

    1995-03-01

    Arabidopsis superman (sup, also referred to as floral mutant10) mutants have previously been shown to have flowers with supernumerary stamens and reduced carpels as a result of ectopic expression of the floral homeotic gene APETALA3 (AP3). Here, we report that sup mutations also cause specific alterations in ovule development. Growth of the outer integument of wild-type ovules occurs almost exclusively on the abaxial side of the ovule, resulting in a bilaterally symmetrical hoodlike structure. In contrast, the outer integument of sup mutant ovules grows equally on all sides of the ovule, resulting in a nearly radially symmetrical tubular shape. Thus, one role of SUP is to suppress growth of the outer integument on the adaxial side of the ovule. Genetic analyses showed that the effects of sup mutations on ovule development are independent of the presence or absence of AP3 activity. Thus, SUP acts through different mechanisms in its early role in ensuring proper determination of carpel identity and in its later role in asymmetric suppression of outer integument growth.

  13. Acclimation of Arabidopsis thaliana to long-term CO{sub 2} enrichment and nitrogen supply is basically a matter of growth rate adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Tocquin, P.; Ormenese, S.; Pieltain, A.; Detry, N.; Bernier, G.; Perilleux, C. [Univ. of Liege, Dept. of Life Sciences, Lab. of Plant Physiology, Liege (Belgium)

    2006-12-15

    The long-term response of Arabidopsis thaliana to increasing CO{sub 2} was evaluated in plants grown in 800 {mu}l l{sup -1} CO{sub 2} from sowing and maintained, in hydroponics, on three nitrogen supplies: 'low', 'medium' and 'high'. The global response to high CO{sub 2} and N-supply was evaluated by measuring growth parameters in parallel with photosynthetic activity, leaf carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) messenger RNA and protein, stomatal conductance (g-s) and density. CO{sub 2} enrichment was found to stimulate biomass production, whatever the N-supply. This stimulation was transient on low N-supply and persisted throughout the whole vegetative growth only in high N-supply. Acclimation on low N-high C0{sub 2} was not associated with carbohydrate accumulation or with a strong reduction in Rubisco amount or activity. At high N-supply, growth stimulation by high CO{sub 2} was mainly because of the acceleration of leaf production and expansion while other parameters such as specific leaf area, root/shoot ratio and g{sub s} appeared to be correlated with total leaf area. Our results thus suggest that, in strictly controlled and stable growing conditions, acclimation of A. thaliana to long-term CO{sub 2} enrichment is mostly controlled by growth rate adjustment. (au)

  14. The microtubule plus-end tracking proteins SPR1 and EB1b interact to maintain polar cell elongation and directional organ growth in Arabidopsis.

    Science.gov (United States)

    Galva, Charitha; Kirik, Viktor; Lindeboom, Jelmer J; Kaloriti, Despoina; Rancour, David M; Hussey, Patrick J; Bednarek, Sebastian Y; Ehrhardt, David W; Sedbrook, John C

    2014-11-01

    The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in Arabidopsis thaliana. We found that eb1b-2 spr1-6 double mutant roots exhibit substantially more severe polar expansion defects than either single mutant, undergoing right-looping growth and severe axial twisting instead of waving on tilted hard-agar surfaces. Protein interaction assays revealed that EB1b and SPR1 bind each other and tubulin heterodimers, which is suggestive of a microtubule loading mechanism. EB1b and SPR1 show antagonistic association with microtubules in vitro. Surprisingly, our combined analyses revealed that SPR1 can load onto microtubules and function independently of EB1 proteins, setting SPR1 apart from most studied +TIPs in animals and fungi. Moreover, we found that the severity of defects in microtubule dynamics in spr1 eb1b mutant hypocotyl cells correlated well with the severity of growth defects. These data indicate that SPR1 and EB1b have complex interactions as they load onto microtubule plus ends and direct polar cell expansion and organ growth in response to directional cues.

  15. The Microtubule Plus-End Tracking Proteins SPR1 and EB1b Interact to Maintain Polar Cell Elongation and Directional Organ Growth in Arabidopsis[W

    Science.gov (United States)

    Galva, Charitha; Kirik, Viktor; Lindeboom, Jelmer J.; Kaloriti, Despoina; Rancour, David M.; Hussey, Patrick J.; Bednarek, Sebastian Y.; Ehrhardt, David W.; Sedbrook, John C.

    2014-01-01

    The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in Arabidopsis thaliana. We found that eb1b-2 spr1-6 double mutant roots exhibit substantially more severe polar expansion defects than either single mutant, undergoing right-looping growth and severe axial twisting instead of waving on tilted hard-agar surfaces. Protein interaction assays revealed that EB1b and SPR1 bind each other and tubulin heterodimers, which is suggestive of a microtubule loading mechanism. EB1b and SPR1 show antagonistic association with microtubules in vitro. Surprisingly, our combined analyses revealed that SPR1 can load onto microtubules and function independently of EB1 proteins, setting SPR1 apart from most studied +TIPs in animals and fungi. Moreover, we found that the severity of defects in microtubule dynamics in spr1 eb1b mutant hypocotyl cells correlated well with the severity of growth defects. These data indicate that SPR1 and EB1b have complex interactions as they load onto microtubule plus ends and direct polar cell expansion and organ growth in response to directional cues. PMID:25415978

  16. Parameterising root system growth models using 2D neutron radiography images

    Science.gov (United States)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  17. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek;

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from...

  18. Intracerebroventricular Administration of Nerve Growth Factor Induces Gliogenesis in Sensory Ganglia, Dorsal Root, and within the Dorsal Root Entry Zone

    OpenAIRE

    Schlachetzki, Johannes C.M.; Pizzo, Donald P.; Debbi A. Morrissette; Jürgen Winkler

    2015-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia...

  19. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  20. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.

    Science.gov (United States)

    Nakamura, Ryoji; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-11-01

    We investigated soil exploration by roots and plant growth in a heterogeneous environment to determine whether roots can selectively explore a nutrient-rich patch, and how nutrient heterogeneity affects biomass allocation and total biomass before a patch is reached. Lolium perenne L. plants were grown in a factorial experiment with combinations of fertilization (heterogeneous and homogeneous) and day of harvest (14, 28, 42, or 56 days after transplanting). The plant in the heterogeneous treatment was smaller in its mean total biomass, and allocated more biomass to roots. The distributions of root length and root biomass in the heterogeneous treatment did not favor the nutrient-rich patch, and did not correspond to the patchy distribution of inorganic nitrogen. Specific root length (length/biomass) was higher and root elongation was more extensive both laterally and vertically in the heterogeneous treatment. These characteristics may enable plants to acquire nutrients efficiently and increase the probability of encountering nutrient-rich patches in a heterogeneous soil. However, heterogeneity of soil nutrients would hold back plant growth before a patch was reached. Therefore, although no significant selective root placement in the nutrient-rich patch was observed, plant growth before reaching nutrient-rich patches differed between heterogeneous and homogeneous environments.

  1. Basic Pentacysteine Proteins Repress Abscisic Acid Insensitive4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development.

    Science.gov (United States)

    Mu, Ying; Zou, Meijuan; Sun, Xuwu; He, Baoye; Xu, Xiumei; Liu, Yini; Zhang, Lixin; Chi, Wei

    2017-01-30

    Plant transcription factors generally act in complex regulatory networks that function at multiple levels to govern plant developmental programs. Dissection of the interconnections among different classes of transcription factors can elucidate these regulatory networks and thus improve our understanding of plant development. Here, we investigated the molecular and functional relationships of the transcription factors ABSCISIC ACID INSENSITIVE 4 (ABI4) and members of the BASIC PENTACYSTEINE (BPC) family in lateral root (LR) development of Arabidopsis thaliana Genetic analysis showed that BPCs promote LR development by repressing ABI4 expression. Molecular analysis showed that BPCs bind to the ABI4 promoter and repress ABI4 transcription in roots. BPCs directly recruit the Polycomb Repressive Complex 2 (PRC2) to the ABI4 locus and epigenetically repress ABI4 expression by catalyzing the trimethylation of histone H3 at lysine 27. In addition, BPCs and ABI4 coordinate their activities to fine-tune the levels of PIN-FORMED1, a component of the auxin signaling pathway, and thus modulate LR formation. These results establish a functional relationship between two universal and multiple-role transcription factors and provide insight into the mechanisms of the transcriptional regulatory networks that affect Arabidopsis organogenesis.

  2. Fe-Chlorophyllin Promotes the Growth of Wheat Roots Associated with Nitric Oxide Generation

    OpenAIRE

    Hui Jiang; Yong Ren; Liefeng Zhang; Yifan Wang; Min Tong

    2010-01-01

    : Effects of Fe-chlorophyllin on the growth of wheat root were investigated in this study. We found that Fe-chlorophyllin can promote root growth. The production of nitric oxide in wheat root was detected using DAF-2DA fluorescent emission. The intensity of fluorescent in the presence of 0.1 mg/L Fe-chlorophyllin was near to that observed with the positive control of sodium nitroprusside (SNP), the nitric oxide donor. IAA oxidase activity decreased with all treatments of Fe-chlorophyllin from...

  3. The Carboxy-terminus of BAK1 regulates kinase activity and is required for normal growth of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Man-Ho eOh

    2014-02-01

    Full Text Available Binding of brassinolide to the BRASSINOSTEROID-INSENSTIVE 1 (BRI1 receptor kinase promotes interaction with its co-receptor, BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1. Juxtaposition of the kinase domains that occurs then allows reciprocal transphosphorylation and activation of both kinases, but details of that process are not entirely clear. In the present study we show that the carboxy (C - terminal polypeptide of BAK1 may play a role. First, we demonstrate that the C-terminal domain is a strong inhibitor of the transphosphorylation activity of the recombinant BAK1 cytoplasmic domain protein. However, recombinant BAK1 lacking the C-terminal domain is unable to transactivate the peptide kinase activity of BRI1 in vitro. Thus, the C-terminal domain may play both a positive and negative role. Interestingly, a synthetic peptide corresponding to the full C-terminal domain (residues 576 to 615 of BAK1 interacted with recombinant BRI1 in vitro, and that interaction was enhanced by phosphorylation at the Tyr-610 site. Expression of a BAK1 C-terminal domain truncation (designated BAK1-ΔCT-Flag in transgenic Arabidopsis plants lacking endogenous bak1 and its functional paralog, bkk1, produced plants that were wild type in appearance but much smaller than plants expressing full-length BAK1-Flag. The reduction in growth may be attributed to a partial inhibition of BR signaling in vivo as reflected in root growth assays but other factors are likely involved as well. Our working model is that in vivo, the inhibitory action of the C-terminal domain of BAK1 is relieved by binding to BRI1. However, that interaction is not essential for BR signaling, but other aspects of cellular signaling are impacted when the C-terminal domain is truncated and result in inhibition of growth. These results increase the molecular understanding of the C-terminal domain of BAK1 as a regulator of kinase activity that may serve as a model for other receptor kinases.

  4. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    Science.gov (United States)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  5. Low Root Zone Temperature Limits Nutrient Effects on Cucumber Seedling Growth and Induces Adversity Physiological Response

    Institute of Scientific and Technical Information of China (English)

    YAN Qiu-yan; DUAN Zeng-qiang; MAO Jing-dong; LI Xun; DONG Fei

    2013-01-01

    Effects of root-zone temperatures (RZT) (12°C-RZT and 20°C-RZT) and different N, P, and K nutrient regimes on the growth, reactive oxygen species (ROS), and antioxidant enzyme in cucumber seedlings were investigated in hydroponics. Strong interactions were observed between RZT and nutrient on the dry weight (P=0.001), root length (P=0.001) and leaf area (P=0.05). Plant dry weights were suppressed at low RZT of 12°C, while higher biomass and growth of cucumber seedlings were produced at elevated RZT of 20°C under each nutrient treatment. Growth indexes (plant height, internode length, root length, and leaf area) at 12°C-RZT had less difference among nutrient treatments, but greater response was obtained for different nutrients at high RZT. RZT had larger effects (P=0.001) on cucumber seedling growth than nutrients. In addition, N was more effective nutrients to plant growth than P and K under low root temperature to plant growth. Higher hydrogen peroxide (H2O2), malondialdehyde (MDA), soluble sugar (SS) contents in leaves were observed at 12°C-RZT in all nutrient treatments than those at 20°C-RZT, indicating the chilling adversity damaged to plant growth. In general, antioxidant enzyme had larger response under low root-zone temperature. Superoxide dismutase (SOD) activities were higher in both leaves and roots while peroxidase (POD) and catalase (CAT) showed large different action in leaves and roots at both the two root-zone temperature.

  6. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  7. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue

    2012-01-01

    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  8. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    Science.gov (United States)

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  9. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  10. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.

    Science.gov (United States)

    Postma, Johannes A; Schurr, Ulrich; Fiorani, Fabio

    2014-01-01

    In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.

  11. Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis.

    Science.gov (United States)

    Dubois, Marieke; Skirycz, Aleksandra; Claeys, Hannes; Maleux, Katrien; Dhondt, Stijn; De Bodt, Stefanie; Vanden Bossche, Robin; De Milde, Liesbeth; Yoshizumi, Takeshi; Matsui, Minami; Inzé, Dirk

    2013-05-01

    Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms remain largely unknown. Here, we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR5 (ERF5) and ERF6 as master regulators that adapt leaf growth to environmental changes. ERF5 and ERF6 gene expression is induced very rapidly and specifically in actively growing leaves after sudden exposure to osmotic stress that mimics mild drought. Subsequently, enhanced ERF6 expression inhibits cell proliferation and leaf growth by a process involving gibberellin and DELLA signaling. Using an ERF6-inducible overexpression line, we demonstrate that the gibberellin-degrading enzyme GIBBERELLIN 2-OXIDASE6 is transcriptionally induced by ERF6 and that, consequently, DELLA proteins are stabilized. As a result, ERF6 gain-of-function lines are dwarfed and hypersensitive to osmotic stress, while the growth of erf5erf6 loss-of-function mutants is less affected by stress. Besides its role in plant growth under stress, ERF6 also activates the expression of a plethora of osmotic stress-responsive genes, including the well-known stress tolerance genes STZ, MYB51, and WRKY33. Interestingly, activation of the stress tolerance genes by ERF6 occurs independently from the ERF6-mediated growth inhibition. Together, these data fit into a leaf growth regulatory model in which ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth inhibition.

  12. A Novel Rice Gene, NRR Responds to Macronutrient Deficiency and Regulates Root Growth

    Institute of Scientific and Technical Information of China (English)

    Yu-Man Zhang; Xiao-Ying Chen; Yong-Sheng Yan; Li-Na Wang; Kun Yang; Na Xiao; Yun-Feng Liu; Ya-Ping Fu; Zong-Xiu Sun; Rong-Xiang Fang

    2012-01-01

    To better understand the response of rice to nutrient stress,we have taken a systematic approach to identify rice genes that respond to deficiency of macronutrients and affect rice growth.We report here the expression and biological functions of a previously uncharacterized rice gene that we have named NRR (nutrition response and root growth).NRR is alternatively spliced,producing two 5′-coterminal transcripts,NRRa and NRRb,encoding two proteins of 308 and 223 aa,respectively.Compared to NRRb,NRRa possesses an additional CCT domain at the C-terminus.Expression of NRR in rice seedling roots was significantly influenced by deficiency of macronutrients.Knock-down of expression of NRRa or NRRb by RNA interference resulted in enhanced rice root growth.By contrast,overexpression of NRRa in rice exhibited significantly retarded root growth.These results revealed that both NRRa and NRRb played negative regulatory roles in rice root growth.Our findings suggest that NRRa and NRRb,acting as the key components,modulate the rice root architecture with the availability of macronutrients.

  13. Impact of different culture media on hairy roots growth of Valeriana officinalis L.

    Directory of Open Access Journals (Sweden)

    Ali PAKDIN PARIZI

    2015-12-01

    Full Text Available Transformed hairy root cultures of Valeriana officinalis were established by infection with Agrobacterium rhizogenes strain ATCC 15834. To determine the effect of different media on the growth of V. officinalis hairy roots, MS, B5 media (1.0X and 0.5X strength, N6 medium and a modified MS medium without phytohormones were used. In addition, different NH4+ to NO3- ratios in MS medium were studied. The effects of these treatments were evaluated after 21 days of culture in relation to hairy root growth. B5 and ½ B5 media were the best basal media for hairy root growth. MS medium supplemented with a 20:20 ratio (mM of NH4+ to NO3- displayed highest growth rates and biomass yield in hairy root cultures. The present study demonstrated that the composition of culture medium and the ratio of different nitrogen sources have significant impact on the growth of V. officinalis hairy roots.

  14. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions.

    Science.gov (United States)

    North, Kathryn Anne; Ehlting, Barbara; Koprivova, Anna; Rennenberg, Heinz; Kopriva, Stanislav

    2009-10-01

    Improving nutrient use efficiency of crop plants, especially at low input, is essential to ensure sustainable food production in the future. In order to address the genetic basis of nutrient use efficiency in a model system, growth of Arabidopsis ecotypes at normal and low nitrogen (N) supply was compared. The ecotypes differed significantly in the extent of growth reduction in limiting conditions. The fresh weight of Shahdara and Ws grown at 1mM nitrate was reduced by 30% compared to control, whereas Col-0 and Ga-0 were almost unaffected. Total N content was reduced in all ecotypes by 10-30%. The capacity to store nitrate correlated with the tolerance to low N; in Shahdara and Ws, but not in Col-0 and Ga-0, nitrate content on low N was significantly reduced compared to control nutrition. The mRNA levels for genes of nitrate uptake and assimilation were only moderately affected by the treatment. The transcript levels of nitrate reductase NIA1 and nitrite reductase were higher in the ecotypes tolerant to low N (Col-0 and Ga-0) with normal N nutrition but on low N they were reduced to a much higher extent than the sensitive ecotypes (Shahdara and Ws). It seems that a higher capacity to keep nitrate reserves at low N, perhaps due to the ability to turn down nitrate reduction rate, is responsible for a better tolerance of Col-0 and Ga-0 to low N supply.

  15. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development.

    Science.gov (United States)

    Reinhold, Heike; Soyk, Sebastian; Simková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K; Monroe, Jonathan D; Zeeman, Samuel C

    2011-04-01

    Plants contain β-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains--also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function.

  16. Lipidomic profiling analysis reveals the dynamics of phospholipid molecules in Arabidopsis thaliana seedling growth

    Institute of Scientific and Technical Information of China (English)

    Yi-Sheng Wang; Hong-Yan Yao; Hong-Wei Xue

    2016-01-01

    High-throughput lipidomic profiling provides a sensitive approach for discovering minor lipid species. By using an advance in electrospray ionization tandem mass spectrome-try, a large set of phospholipid molecular species (126 species) with high resolution were identified from Arabidopsis seedling;of them 31 species are newly identified (16 are unique in plants), including 13 species of phosphatidic acid (PA), nine phosphati-dylcholine, six phosphatidylinositol and three phosphatidylser-ine. Further analysis of the lipidomic profile reveals dynamics of phospholipids and distinct species alterations during seedling development. PA molecules are found at the lowest levels in imbibition and fol ow an increasing trend during seedling growth, while phosphatidylethanolamine (PE) molecules show the opposite pattern with highest levels at imbibition and a general decreasing trend at later stages. Of PA molecular species, 34:2-, 34:3-, 36:4-, 36:5-, 38:3- and 38:4-PA increase during radicle emergence, and 34:2-and 34:3-PA reach highest levels during hypocotyl and cotyledon emergence from the seed coat. Conversely, molecular species of PE show higher levels in imbibition and decrease in later stages. These results suggest the crucial roles of specific molecular species and homeostasis of phospholipid molecules in seedling growth and provide insights into the mechanisms of how phospholipid molecules are involved in regulating plant development.

  17. Expression of an Antisense BcMF3 Affects Microsporogenesis and Pollen Tube Growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LIU Le-cheng; CAO Jia-shu; YU Xiao-lin; XIANG Xun; FEI Yong-jun

    2006-01-01

    In an effort to provide some information relevant to the molecular mechanism of genic male sterility in plants, BcMF3 gene that encodes a pectin methylesterase was isolated from the fertile B line of Chinese cabbage-pak-choi (Brassica rapa ssp.chinensis, syn. B. campestris ssp. chinensis). In the present paper, a 455-bp antisense cDNA fragment of BcMF3 was introduced to binary vector pBI121, and then was mobilized into Agrobacterium tumefaciens strain LBA4404. The A.tumefaciens harboring the BcMF3 antisense fragment was transformed to Arabidopsis thaliana by floral dip. Scanning electronic microscopy examination demonstrated that 47.8% of BcMF3 antisense pollen grains exhibited abnormal shape,which might lead to decreased germination of pollens, suggesting that the product of BcMF3 gene plays an important role during microsporogenesis. The evidence on burst of 45.7% of BcMF3 antisense pollen tubes in vitro and a majority of BcMF3 antisense pollens restricted within the stigmatic tissue revealed that BcMF3 is involved in aiding the growth of pollen tubes. The results suggest that BcMF3 acts at both stages of microsporogensis and pollen tube growth.

  18. Investigation of the effect of phosphogypsum amendment on two Arabidopsis thaliana ecotype growth and development.

    Science.gov (United States)

    Ayadi, Amal; Chorriba, Amal; Fourati, Amine; Gargouri-Bouzid, Radhia

    2015-01-01

    The production of phosphoric acid from natural phosphate rock leads to an industrial waste called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid produced. This acidic waste (pH 2.2) is mostly disposed of by dumping into large stockpiles close to fertilizer production units, where they occupy large land areas that can cause serious environmental damages. Several attempts were made to test PG valorization via soil amendment because of its phosphate, sulphate and calcium content. The aim of the this study was to evaluate the potential use of PG as phosphate amendment in soil using two wild-type Arabidopsis thaliana ecotypes (Wassilewskija and Colombia) as model plants. Plants were grown in a greenhouse for 30 days, on substrates containing various PG concentrations (0%, 15%, 25%, 40% and 50%). The growth rate and physiological parameters (fresh weight, phosphate and chlorophyll content) were determined. The data revealed that 15% PG did not alter plant survival and leaf's dry weight, and the inorganic phosphate (Pi) uptake by plant seemed to be efficient. However, some alterations in Chlorophyll a/Chlorophyll b ratio were noticed. Higher PG concentrations (40 and 50% PG) exhibited an enhanced negative effect on plant growth, survival and Pi uptake. These inhibitory effects of the substrates may be related to the acidity of the medium in addition to its Cd content.

  19. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis.

    Science.gov (United States)

    Tamirisa, Srinath; Vudem, Dashavantha R; Khareedu, Venkateswara R

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant gr