WorldWideScience

Sample records for arabidopsis irregular xylem8

  1. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition

    Directory of Open Access Journals (Sweden)

    Zhangying eHao

    2014-07-01

    Full Text Available GAUT12 (GAlactUronosylTransferase12/IRX8 (IRregular Xylem8 is a putative glycosyltransferase involved in Arabidopsis secondary cell wall biosynthesis. Previous work showed that Arabidopsis irregular xylem8 (irx8 mutants have collapsed xylem due to a reduction in xylan and a lesser reduction in a subfraction of homogalacturonan (HG. We now show that male sterility in the irx8 mutant is due to indehiscent anthers caused by reduced deposition of xylan and lignin in the endothecium cell layer. The reduced lignin content was demonstrated by histochemical lignin staining and pyrolysis Molecular Beam Mass Spectrometry (pyMBMS and is associated with reduced lignin biosynthesis in irx8 stems. Examination of sequential chemical extracts of stem walls using 2D 13C-1H Heteronuclear Single-Quantum Correlation (HSQC NMR spectroscopy and antibody-based glycome profiling revealed a reduction in G lignin in the 1 M KOH extract and a concomitant loss of xylan, arabinogalactan and pectin epitopes in the ammonium oxalate, sodium carbonate, and 1 M KOH extracts from the irx8 walls compared with wild-type walls. Immunolabeling of stem sections using the monoclonal antibody CCRC-M138 reactive against an unsubstituted xylopentaose epitope revealed a bi-lamellate pattern in wild-type fiber cells and a collapsed bi-layer in irx8 cells, suggesting that at least in fiber cells, GAUT12 participates in the synthesis of a specific layer or type of xylan or helps to provide an architecture framework required for the native xylan deposition pattern. The results support the hypothesis that GAUT12 functions in the synthesis of a structure required for xylan and lignin deposition during secondary cell wall formation.

  2. Functional water flow pathways and hydraulic regulation in the xylem network of Arabidopsis.

    Science.gov (United States)

    Park, Joonghyuk; Kim, Hae Koo; Ryu, Jeongeun; Ahn, Sungsook; Lee, Sang Joon; Hwang, Ildoo

    2015-03-01

    In vascular plants, the xylem network constitutes a complex microfluidic system. The relationship between vascular network architecture and functional hydraulic regulation during actual water flow remains unexplored. Here, we developed a method to visualize individual xylem vessels of the 3D xylem network of Arabidopsis thaliana, and to analyze the functional activities of these vessels using synchrotron X-ray computed tomography with hydrophilic gold nanoparticles as flow tracers. We show how the organization of the xylem network changes dynamically throughout the plant, and reveal how the elementary units of this transport system are organized to ensure both long-distance axial water transport and local lateral water transport. Xylem vessels form distinct clusters that operate as functional units, and the activity of these units, which determines water flow pathways, is modulated not only by varying the number and size of xylem vessels, but also by altering their interconnectivity and spatial arrangement. Based on these findings, we propose a regulatory model of water transport that ensures hydraulic efficiency and safety. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  4. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation

    Czech Academy of Sciences Publication Activity Database

    Kollmer, I.; Novák, Ondřej; Strnad, Miroslav; Schmülling, T.; Werner, T.

    2014-01-01

    Roč. 78, č. 3 (2014), s. 359-371 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : xylem differentiation * Arabidopsis thaliana * cytokinin oxidase/dehydrogenase Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  5. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root.

    Science.gov (United States)

    Woerlen, Natalie; Allam, Gamalat; Popescu, Adina; Corrigan, Laura; Pautot, Véronique; Hepworth, Shelley R

    2017-06-01

    Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots. Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.

  6. Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis

    Directory of Open Access Journals (Sweden)

    Dawn eChiniquy

    2013-04-01

    Full Text Available Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9, Os01g48440 (OsIRX9L, and Os06g47340 (OsIRX14, from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the overexpression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in xylosyltransferase activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength.

  7. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  8. Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter.

    Science.gov (United States)

    Endo, Satoshi; Iwamoto, Kuninori; Fukuda, Hiroo

    2018-02-01

    Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Moss Pathogenesis-Related-10 protein enhances resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Alexandra eCastro

    2016-04-01

    Full Text Available Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.

  10. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  11. Classifying Taiwan Lianas with Radiating Plates of Xylem

    Directory of Open Access Journals (Sweden)

    Sheng-Zehn Yang

    2015-12-01

    Full Text Available Radiating plates of xylem are a lianas cambium variation, of which, 22 families have this feature. This study investigates 15 liana species representing nine families with radiating plates of xylem structures. The features of the transverse section and epidermis in fresh liana samples are documented, including shapes and colors of xylem and phloem, ray width and numbers, and skin morphology. Experimental results indicated that the shape of phloem fibers in Ampelopsis brevipedunculata var. hancei is gradually tapered and flame-like, which is in contrast with the other characteristics of this type, including those classified as rays. Both inner and outer cylinders of vascular bundles are found in Piper kwashoense, and the irregularly inner cylinder persists yet gradually diminishes. Red crystals are numerous in the cortex of Celastrus kusanoi. Aristolochia shimadai and A. zollingeriana develop a combination of two cambium variants, radiating plates of xylem and a lobed xylem. The shape of phloem in Stauntonia obovatifoliola is square or truncate, and its rays are numerous. Meanwhile, that of Neoalsomitra integrifolia is blunt and its rays are fewer. As for the features of a stem surface within the same family, Cyclea ochiaiana is brownish in color and has a deep vertical depression with lenticels, Pericampylus glaucus is greenish in color with a vertical shallow depression. Within the same genus, Aristolochia shimadai develops lenticels, which are not in A. zollingeriana; although the periderm developed in Clematis grata is a ring bark and tears easily, that of Clematis tamura is thick and soft.

  12. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development.

    Science.gov (United States)

    Schneider, Rene; Tang, Lu; Lampugnani, Edwin R; Barkwill, Sarah; Lathe, Rahul; Zhang, Yi; McFarlane, Heather E; Pesquet, Edouard; Niittyla, Totte; Mansfield, Shawn D; Zhou, Yihua; Persson, Staffan

    2017-10-01

    The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice ( Oryza sativa ). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development. © 2017 American Society of Plant Biologists. All rights reserved.

  13. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan.

    Science.gov (United States)

    Wu, Ai-Min; Hörnblad, Emma; Voxeur, Aline; Gerber, Lorenz; Rihouey, Christophe; Lerouge, Patrice; Marchant, Alan

    2010-06-01

    The hemicellulose glucuronoxylan (GX) is a major component of plant secondary cell walls. However, our understanding of GX synthesis remains limited. Here, we identify and analyze two new genes from Arabidopsis (Arabidopsis thaliana), IRREGULAR XYLEM9-LIKE (IRX9-L) and IRX14-LIKE (IRX14-L) that encode glycosyltransferase family 43 members proposed to function during xylan backbone elongation. We place IRX9-L and IRX14-L in a genetic framework with six previously described glycosyltransferase genes (IRX9, IRX10, IRX10-L, IRX14, FRAGILE FIBER8 [FRA8], and FRA8 HOMOLOG [F8H]) and investigate their function in GX synthesis. Double-mutant analysis identifies IRX9-L and IRX14-L as functional homologs of IRX9 and IRX14, respectively. Characterization of irx9 irx10 irx14 fra8 and irx9-L irx10-L irx14-L f8h quadruple mutants allows definition of a set of genes comprising IRX9, IRX10, IRX14, and FRA8 that perform the main role in GX synthesis during vegetative development. The IRX9-L, IRX10-L, IRX14-L, and F8H genes are able to partially substitute for their respective homologs and normally perform a minor function. The irx14 irx14-L double mutant virtually lacks xylan, whereas irx9 irx9-L and fra8 f8h double mutants form lowered amounts of GX displaying a greatly reduced degree of backbone polymerization. Our findings reveal two distinct sets of four genes each differentially contributing to GX biosynthesis.

  14. hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning

    Czech Academy of Sciences Publication Activity Database

    Pineau, C.; Amandine, F.; Ranocha, P.; Jauneau, A.; Turner, S.; Lemonnier, G.; Renou, J.P.; Tarkowski, Petr; Sandberg, G.; Jouanin, L.; Sundberg, B.; Boudet, A.M.; Goffner, D.; Pichon, M.

    2005-01-01

    Roč. 44, č. 2 (2005), s. 271-289 ISSN 0960-7412 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * cambium * secondary xylem Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.969, year: 2005

  15. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo; Byrt, Caitlin; Qiu, Jiaen; Baumann, Ute; Hrmova, Maria; Evrard, Aurelie; Johnson, Alexander A T; Birnbaum, Kenneth D.; Mayo, Gwenda M.; Jha, Deepa; Henderson, Sam W.; Tester, Mark A.; Gilliham, Mathew; Roy, Stuart J.

    2015-01-01

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  16. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  17. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    Directory of Open Access Journals (Sweden)

    Petersen Pia Damm

    2012-11-01

    Full Text Available Abstract Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of

  18. Measurement of xylem translocation of weak electrolytes with the pressure chamber technique

    DEFF Research Database (Denmark)

    Ciucani, Giovannella; Trevisan, M.; Sacchi, G.A.

    2002-01-01

    and triasulfuron). The compounds covered a wide range of log K-OW and pK(a) values. Concentrations in external solution and in xylem sap were measured by HPLC at pH values in external solution of 4.5, 6.5 and 8.5. For weak bases, translocation was higher at low pH and the transpiration stream concentration factors...... (TSCF) were in the range 0.31-0.95. At pH 8.5, the concentrations in leaking xylem sap were very low for fenpropimorph, and steady-state was probably not reached. For weak acids, TSCF values derived with external pH from 4.5 to 8.5 were in the range 0.55-1.50 for primisulfuron-methyl, 0...... to regulate their xylem sap pH, which was almost identical to the pH in external solution. Without pH differences, the ion-trap process, which is responsible for accumulation or exclusion of weak acids and bases in the xylem of living plants, does not take place. Model simulations carried out for intact...

  19. Compositions and methods for xylem-specific expression in plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyung-Hwan; Ko, Jae-Heung

    2017-12-19

    The invention provides promoter sequences that regulate specific expression of operably linked sequences in developing xylem cells and/or in developing xylem tissue. The developing xylem-specific sequences are exemplified by the DX5, DX8, DX11, and DX15 promoters, portions thereof, and homologs thereof. The invention further provides expression vectors, cells, tissues and plants that contain the invention's sequences. The compositions of the invention and methods of using them are useful in, for example, improving the quantity (biomass) and/or the quality (wood density, lignin content, sugar content etc.) of expressed biomass feedstock products that may be used for bioenergy, biorefinary, and generating wood products such as pulp, paper, and solid wood.

  20. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance

    Science.gov (United States)

    Frederick C. Meinzer; Daniel M. Johnson; Barbara Lachenbruch; Katherine A. McCulloh; David R. Woodruff

    2009-01-01

    The xylem pressure inducing 50% loss of hydraulic conductivity due to embolism (P50) is widely used for comparisons of xylem vulnerability among species and across aridity gradients. However, despite its utility as an index of resistance to catastrophic xylem failure under extreme drought, P50 may have no special...

  1. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths. Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  2. The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Monica Fornari

    Full Text Available Nuclear factor Y (NF-Y is a trimeric transcription factor composed of three distinct subunits called NF-YA, NF-YB and NF-YC. In Arabidopsis thaliana, NF-Y subunits are known to play roles in many processes, such as gametogenesis, embryogenesis, seed development, drought resistance, ABA signaling, flowering time, primary root elongation, Endoplasmic Reticulum (ER stress response and blue light responses. Here, we report that the closely related NF-YA3 and NF-YA8 genes control early embryogenesis. Detailed GUS and in situ analyses showed that NF-YA3 and NF-YA8 are expressed in vegetative and reproductive tissues with the highest expression being during embryo development from the globular to the torpedo embryo stage. Plants from the nf-ya3 and nf-ya8 single mutants do not display any obvious phenotypic alteration, whereas nf-ya3 nf-ya8 double mutants are embryo lethal. Morphological analyses showed that the nf-ya3 nf-ya8 embryos fail to undergo to the heart stage and develop into abnormal globular embryos with both proembryo and suspensor characterized by a disordered cell cluster with an irregular shape, suggesting defects in embryo development. The suppression of both NF-YA3 and NF-YA8 gene expression by RNAi experiments resulted in defective embryos that phenocopied the nf-ya3 nf-ya8 double mutants, whereas complementation experiments partially rescued the abnormal globular nf-ya3 nf-ya8 embryos, confirming that NF-YA3 and NF-YA8 are required in early embryogenesis. Finally, the lack of GFP expression of the auxin responsive DR5rev::GFP marker line in double mutant embryos suggested that mutations in both NF-YA3 and NF-YA8 affect auxin response in early developing embryos. Our findings indicate that NF-YA3 and NF-YA8 are functionally redundant genes required in early embryogenesis of Arabidopsis thaliana.

  3. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths.

    Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  4. Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance[W

    Science.gov (United States)

    Hernández-Blanco, Camilo; Feng, Dong Xin; Hu, Jian; Sánchez-Vallet, Andrea; Deslandes, Laurent; Llorente, Francisco; Berrocal-Lobo, Marta; Keller, Harald; Barlet, Xavier; Sánchez-Rodríguez, Clara; Anderson, Lisa K.; Somerville, Shauna; Marco, Yves; Molina, Antonio

    2007-01-01

    Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane–localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW–RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)–responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens. PMID:17351116

  5. The F8H Glycosyltransferase is a Functional Paralog of FRA8 Involved in Glucuronoxylan Biosynthesis in Arabidopsis

    Science.gov (United States)

    The FRAGILE FIBER8 gene was previously shown to be required for the biosynthesis of the reducing end tetrasaccharide sequence of glucuronoxylan (GX) in Arabidopsis thaliana. Here, we demonstrate that F8H, a close homolog of FRA8, is a functional ortholog of FRA8 involved in GX bi...

  6. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Vukašinović, Nemanja; Oda, Y.; Pejchar, Přemysl; Synek, Lukáš; Pečenková, Tamara; Rawat, Anamika; Sekereš, Juraj; Potocký, Martin; Žárský, Viktor

    2017-01-01

    Roč. 213, č. 3 (2017), s. 1052-1067 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA15-14886S Grant - others:GA MŠk(CZ) LO1417 Institutional support: RVO:61389030 Keywords : secondary cell-wall * tracheary element differentiation * cortical microtubules * plasma-membrane * vesicle trafficking * secretory pathways * auxin transport * exocytosis * deposition * thaliana * conserved oligomeric Golgi (COG) complex * exocyst * microtubules * secondary cell wall * tracheary elements * xylem Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  8. Arabidopsis ATG4 cysteine proteases specificity toward ATG8 substrates

    Science.gov (United States)

    Park, Eunsook; Woo, Jongchan; Dinesh-Kumar, SP

    2014-01-01

    Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes. PMID:24658121

  9. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  10. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  11. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis.

    Science.gov (United States)

    Keadtidumrongkul, Pornthep; Suttangkakul, Anongpat; Pinmanee, Phitsanu; Pattana, Kanokwan; Kittiwongwattana, Chokchai; Apisitwanich, Somsak; Vuttipongchaikij, Supachai

    2017-08-01

    The expression of cell-wall-targeted Carbohydrate Binding Modules (CBMs) can alter cell wall properties and modulate growth and development in plants such as tobacco and potato. CBM2a identified in xylanase 10A from Cellulomonas fimi is of particular interest for its ability to bind crystalline cellulose. However, its potential for promoting plant growth has not been explored. In this work, we tested the ability of CBM2a to promote growth when expressed using both CaMV35S and a vascular tissue-specific promoter derived from Arabidopsis expansin4 (AtEXP4) in three plant species: Arabidopsis, Nicotiana tabacum and Eucalyptus camaldulensis. In Arabidopsis, the expression of AtEXP4pro:CBM2a showed trends for growth promoting effects including the increase of root and hypocotyl lengths and the enlargements of the vascular xylem area, fiber cells and vessel cells. However, in N. tabacum, the expression of CBM2a under the control of either CaMV35S or AtEXP4 promoter resulted in subtle changes in the plant growth, and the thickness of secondary xylem and vessel and fiber cell sizes were generally reduced in the transgenic lines with AtEXP4pro:CBM2a. In Eucalyptus, while transgenics expressing CaMV35S:CBM2a showed very subtle changes compared to wild type, those transgenics with AtEXP4pro:CBM2a showed increases in plant height, enlargement of xylem areas and xylem fiber and vessel cells. These data provide comparative effects of expressing CBM2a protein in different plant species, and this finding can be applied for plant biomass improvement.

  12. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin (14C)carboxylic acid as xylem transfer marker

    International Nuclear Information System (INIS)

    Van Bel, A.J.

    1984-01-01

    Inulin ( 14 C)carboxylic acid and 14 C-labelled amino acid (α-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas the amino acid distribution resulted from both xylem and phloem import. Comparison of the distribution of inu and aib permitted a quantitative assessment of the xylem-to-phloem transfer in the stem. Of aib, 20.6% traversed from xylem to phloem in a plant with 12 leaves. The phloem import was not evenly distributed over the leaves and varied from 0% (first five leaves) to 95% (top leaf) of the aib import per leaf. Doubling the flow rates in the xylem reduced the aib supply to 25% in the top leaf and 55% in the next leaf, which reflects a reduced xylem-to-phloem transfer. (author)

  13. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.

    Science.gov (United States)

    Hsu, Po-Kai; Tsay, Yi-Fang

    2013-10-01

    This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed (15)NO3(-) was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate.

  14. Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction?

    Science.gov (United States)

    van Ieperen, Wim

    2007-04-01

    Although xylem provides an efficient transport pathway for water in plants, the hydraulic conductivity of xylem (K(h)) can still influence plant water status. For decades, the K(h) of functional xylem has been assumed to be constant in the short term because xylem consists of a network of dead interconnected capillary elements (conduits). Recent research has shown that K(h) can change in response to the cation content of the xylem fluid. Volume changes of pectin gel in nanometer-sized pores at inter-conduit connections are hypothesized to be the cause, and implications for xylem transport in planta are suggested. However, it seems too early to be conclusive about this phenomenon because the phenomenon has not been measured in planta with xylem fluids that realistically mimic natural xylem sap and the applied methods used to measure ion-mediated changes in K(h) have drawbacks.

  15. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1.

    Science.gov (United States)

    Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang; Chen, Jin-Gui; Wang, Shucai

    2017-08-01

    The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis ( Arabidopsis thaliana ). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant ( ntl8-1D ). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON ( TRY ) and TRICHOMELESS1 ( TCL1 ) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1 , in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction?

    NARCIS (Netherlands)

    Ieperen, van W.

    2007-01-01

    Although xylem provides an efficient transport pathway for water in plants, the hydraulic conductivity of xylem (Kh) can still influence plant water status. For decades, the Kh of functional xylem has been assumed to be constant in the short term because xylem consists of a network of dead

  17. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis

    DEFF Research Database (Denmark)

    Xu, Deyang; Hanschen, Franziska S.; Witzel, Katja

    2017-01-01

    Casparian strip-generated apoplastic barriers not only control the radial flow of both water and ions but may also constitute a hindrance for the rhizosecretion of stele-synthesized phytochemicals. Here, we establish root-synthesized glucosinolates (GLS) are in Arabidopsis as a model to study...... via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals....

  18. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl.

    Science.gov (United States)

    Ikematsu, Shuka; Tasaka, Masao; Torii, Keiko U; Uchida, Naoyuki

    2017-03-01

    Secondary growth is driven by continuous cell proliferation and differentiation of the cambium that acts as vascular stem cells, producing xylem and phloem to expand vascular tissues laterally. During secondary growth of hypocotyls in Arabidopsis thaliana, the xylem undergoes a drastic phase transition from a parenchyma-producing phase to a fiber-producing phase at the appropriate time. However, it remains to be fully elucidated how progression of secondary growth is properly controlled. We focused on phenotypes of hypocotyl vasculatures caused by double mutation in ERECTA (ER) and ER-LIKE1 (ERL1) receptor-kinase genes to elucidate their roles in secondary growth. ER and ERL1 redundantly suppressed excessive radial growth of the hypocotyl vasculature during secondary growth. ER and ERL1 also prevented premature initiation of the fiber differentiation process mediated by the NAC SECONDARY WALL THICKENING PROMOTING FACTORs in the hypocotyl xylem. Upon floral transition, the hypocotyl xylem gained a competency to respond to GA in a BREVIPEDICELLUS-dependent manner, which was a prerequisite for fiber differentiation. However, even after the floral transition, ER and ERL1 prevented precocious initiation of the GA-mediated fiber formation. Collectively, our findings reveal that ER and ERL1 redundantly prevent premature progression of sequential events in secondary growth. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases

    Science.gov (United States)

    Woo, Jongchan; Park, Eunsook; Dinesh-Kumar, S. P.

    2014-01-01

    Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a–AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants. PMID:24379391

  20. Xylem and phloem phenology in co-occurring conifers exposed to drought.

    Science.gov (United States)

    Swidrak, Irene; Gruber, Andreas; Oberhuber, Walter

    2014-01-01

    Variability in xylem and phloem phenology among years and species is caused by contrasting temperatures prevailing at the start of the growing season and species-specific sensitivity to drought. The focus of this study was to determine temporal dynamics of xylem and phloem formation in co-occurring deciduous and evergreen coniferous species in a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). By repeated micro-sampling of the stem, timing of key phenological dates of xylem and phloem formation was compared among mature Pinus sylvestris , Larix decidua and Picea abies during two consecutive years. Xylem formation in P. sylvestris started in mid and late April 2011 and 2012, respectively, and in both years about 2 week later in P. abies and L. decidua . Phloem formation preceded xylem formation on average by 3 week in P. sylvestris , and c . 5 week in P. abies and L. decidua . Based on modeled cell number increase, tracheid production peaked between early through late May 2011 and late May through mid-June 2012. Phloem formation culminated between late April and mid-May in 2011 and in late May 2012. Production of xylem and phloem cells continued for about 4 and 5-6 months, respectively. High variability in xylem increment among years and species is related to exogenous control by climatic factors and species-specific sensitivity to drought, respectively. On the other hand, production of phloem cells was quite homogenous and showed asymptotic decrease with respect to xylem cells indicating endogenous control. Results indicate that onset and culmination of xylem and phloem formation are controlled by early spring temperature, whereby strikingly advanced production of phloem compared to xylem cells suggests lower temperature requirement for initiation of the former.

  1. Water filtration using plant xylem.

    Directory of Open Access Journals (Sweden)

    Michael S H Boutilier

    Full Text Available Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  2. Branch xylem density variations across the Amazon Basin

    Science.gov (United States)

    Patiño, S.; Lloyd, J.; Paiva, R.; Baker, T. R.; Quesada, C. A.; Mercado, L. M.; Schmerler, J.; Schwarz, M.; Santos, A. J. B.; Aguilar, A.; Czimczik, C. I.; Gallo, J.; Horna, V.; Hoyos, E. J.; Jimenez, E. M.; Palomino, W.; Peacock, J.; Peña-Cruz, A.; Sarmiento, C.; Sota, A.; Turriago, J. D.; Villanueva, B.; Vitzthum, P.; Alvarez, E.; Arroyo, L.; Baraloto, C.; Bonal, D.; Chave, J.; Costa, A. C. L.; Herrera, R.; Higuchi, N.; Killeen, T.; Leal, E.; Luizão, F.; Meir, P.; Monteagudo, A.; Neil, D.; Núñez-Vargas, P.; Peñuela, M. C.; Pitman, N.; Priante Filho, N.; Prieto, A.; Panfil, S. N.; Rudas, A.; Salomão, R.; Silva, N.; Silveira, M.; Soares Dealmeida, S.; Torres-Lezama, A.; Vásquez-Martínez, R.; Vieira, I.; Malhi, Y.; Phillips, O. L.

    2009-04-01

    Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m-3 for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m-3 for an Aiouea sp. (Lauraceae) from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  3. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    Science.gov (United States)

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Branch xylem density variations across the Amazon Basin

    Directory of Open Access Journals (Sweden)

    S. Patiño

    2009-04-01

    Full Text Available Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m−3 for a Cordia sagotii (Boraginaceae from Mountagne de Tortue, French Guiana to 1130 kg m−3 for an Aiouea sp. (Lauraceae from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species accounted for 33% with environment (geographic location and plot accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  5. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport.

    Directory of Open Access Journals (Sweden)

    Valérie Lefebvre

    Full Text Available Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE, i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1 gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components.

  6. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    Directory of Open Access Journals (Sweden)

    Rocío Olmo

    2017-05-01

    Full Text Available Root-knot nematodes (RKNs; Meloidogyne spp. induce feeding cells (giant cells; GCs inside a pseudo-organ (gall from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs, auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those

  7. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.

    Science.gov (United States)

    Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang

    2008-09-01

    Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.

  8. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  9. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    Science.gov (United States)

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  10. Xylem-to-phloem transfer of organic nitrogen in young soybean plants

    International Nuclear Information System (INIS)

    Da Silva, M.C.; Shelp, B.J.

    1990-01-01

    Xylem-to-phloem transfer in young vegetative soybean (Glycine max [L.] Merr.) plants (V4 stage) was identified as the difference in the distribution of [ 14 C]inulin, a xylem marker, and [ 14 C]aminoisobutyric acid (AIB), a synthetic amino acid, fed via the transpiration stream. Since [ 14 C]AIB was retained in the stem to some extent, whereas [ 14 C]inulin was not, the distribution of these marker compounds in each leaf was expressed as a percentage of the total [ 14 C] radioactivity recovered in the foliage. The developing third trifoliolate was a consistent and reliable indicator of xylem-to-phloem transfer. The phloem stream provided to the developing trifoliolate up to fourfold the relative proportion of solute received from the xylem stream; this was markedly reduced by increased light intensity and consequently water flow through the xylem. Evidence from heat girdling experiments is discussed with respect to the vascular anatomy of the soybean plant, and interpreted to suggest that direct xylem-to-phloem transfer in the stem, in the region of the second node, accounted for about one-half of the AIB supplied to the developing trifoliolate, with the remainder being provided from the second trifoliolate. Since AIB is not metabolized it seems likely that rapid transfer within the second trifoliolate occurred as direct veinal transfer rather than indirect cycling through the mesophyll. This study confirmed that xylem-to-phloem transfer plays a major role in the partitioning of nitrogen for early leaf development

  11. Identification of Xylem Occlusions Occurring in Cut Clematis (Clematis L., fam. Ranunculaceae Juss. Stems during Their Vase Life

    Directory of Open Access Journals (Sweden)

    Agata Jedrzejuk

    2012-01-01

    Full Text Available During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems.

  12. Xylem development in prunus flower buds and the relationship to deep supercooling.

    Science.gov (United States)

    Ashworth, E N

    1984-04-01

    Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool.

  13. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  14. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress.

    Science.gov (United States)

    Gaber, Ahmed

    2014-01-01

    Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1-8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H 2O 2 or 600 mM NaCl.

  15. Effects of Age and Size on Xylem Phenology in Two Conifers of Northwestern China

    OpenAIRE

    Zeng, Qiao; Rossi, Sergio; Yang, Bao

    2018-01-01

    The climatic signals that directly affect the trees can be registered by xylem during its growth. If the timings and duration of xylem formation change, xylogenesis can occur under different environmental conditions and subsequently be subject to different climatic signals. An experimental design was applied in the field to disentangle the effects of age and size on xylem phenology, and it challenges the hypothesis that the timings and dynamics of xylem growth are size-dependent. Intra-annual...

  16. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    Science.gov (United States)

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  17. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species.

    Science.gov (United States)

    Martínez-Vilalta, Jordi; Prat, Ester; Oliveras, Imma; Piñol, Josep

    2002-09-01

    We studied the hydraulic architecture and water relations of nine co-occurring woody species in a Spanish evergreen oak forest over the course of a dry season. Our main objectives were to: (1) test the existence of a trade-off between hydraulic conductivity and security in the xylem, and (2) establish the safety margins at which the species operated in relation to hydraulic failure, and compare these safety margins between species and tissues (roots vs. stems). Our results showed that the relationship between specific hydraulic conductivity (K s) and resistance to cavitation followed a power function with exponent ≈-2, consistent with the existence of a trade-off between conductivity and security in the xylem, and also consistent with a linear relationship between vessel diameter and the size of inter-vessel pores. The diameter of xylem conduits, K s and vulnerability to xylem embolism were always higher in roots than in stems of the same species. Safety margins from hydraulic failure were narrower in roots than in stems. Among species, the water potential (Ψ) at which 50% of conductivity was lost due to embolism ranged between -0.9 and Cistus albidus=Ilex aquifolium>Phillyrea latifolia>Juniperus oxycedrus. Gas exchange and seasonal Ψ minima were in general correlated with resistance to xylem embolism. Hydraulic safety margins differed markedly among species, with some of them (J. oxycedrus, I. aquifolium, P. latifolia) showing a xylem overly resistant to cavitation. We hypothesize that this overly resistant xylem may be related to the shape of the relationship between K s and security we have found.

  18. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    Science.gov (United States)

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  19. Specific Fluorescence in Situ Hybridization (FISH) Test to Highlight Colonization of Xylem Vessels by Xylella fastidiosa in Naturally Infected Olive Trees (Olea europaea L.)

    Science.gov (United States)

    Cardinale, Massimiliano; Luvisi, Andrea; Meyer, Joana B.; Sabella, Erika; De Bellis, Luigi; Cruz, Albert C.; Ampatzidis, Yiannis; Cherubini, Paolo

    2018-01-01

    The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa. PMID:29681910

  20. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa.

    Science.gov (United States)

    Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline

    2017-09-01

    Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  1. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Salomón, Roberto Luis; De Roo, Linus; Steppe, Kathy

    2017-11-01

    Reassimilation of internal CO 2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE 50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE 50,light-excluded  = -1.00 ± 0.13 MPa; AE 50,control  = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  3. Direct observation of local xylem embolisms induced by soil drying in intact Zea mays leaves.

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin X; Lee, Sang Joon

    2016-04-01

    The vulnerability of vascular plants to xylem embolism is closely related to their stable long-distance water transport, growth, and survival. Direct measurements of xylem embolism are required to understand what causes embolism and what strategies plants employ against it. In this study, synchrotron X-ray microscopy was used to non-destructively investigate both the anatomical structures of xylem vessels and embolism occurrence in the leaves of intact Zea mays (maize) plants. Xylem embolism was induced by water stress at various soil drying periods and soil water contents. X-ray images of dehydrated maize leaves showed that the ratio of gas-filled vessels to all xylem vessels increased with decreased soil water content and reached approximately 30% under severe water stress. Embolism occurred in some but not all vessels. Embolism in maize leaves was not strongly correlated with xylem diameter but was more likely to occur in the peripheral veins. The rate of embolism formation in metaxylem vessels was higher than in protoxylem vessels. This work has demonstrated that xylem embolism remains low in maize leaves under water stress and that there xylem has characteristic spatial traits of vulnerability to embolism. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Conservation of element concentration in xylem sap of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    2001-01-01

    We investigated the chemistry of xylem sap as a marker of red spruce metabolism and soil chemistry at three locations in northern New England. A Scholander pressure chamber was used to extract xylem sap from roots and branches cut from mature trees in early June and September. Root sap contained significantly greater concentrations of K, Ca, Mg, Mn, and A1 than branch...

  5. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.

    Science.gov (United States)

    Hefer, Charles A; Mizrachi, Eshchar; Myburg, Alexander A; Douglas, Carl J; Mansfield, Shawn D

    2015-06-01

    Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    Science.gov (United States)

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  7. Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Lerch, H. E.; Verheyen, T.V.

    1990-01-01

    It is generally recognized that xylem from trees that are buried in peat swamps is transformed first to huminite macerals in brown coal and then to vitrinite macerals in bituminous coal by processes collectively known as coalification. In order to understand the chemical nature of coalification of xylem and the chemical structures that eventually evolve in coal, we examined a series of gymnospermous xylem samples coalified to varying degrees. The samples included modern fresh xylem, modern degraded xylem in peat, and xylem coalified to ranks of brown coal (lignite B), lignite A, and subbituminous coal. The organic geochemical methods used in this study included solid-state 13C nuclear magnetic resonance (NMR) and pyrolysis/gas chromatography/mass spectrometry. The NMR method provided average compositional information, and the pyrolysis provided detailed molecular information. Although the samples examined include different plants of different geologic ages, they all share a common feature in that they are gymnospermous and presumably have or had a similar kind of lignin. The data obtained in this study provide enough details to allow delineation of specific coalification pathway for the xylem is microbial degradation in peat (peatification), leading to selective removal of cellulosic components. These components constitute a large fraction of the total mass of xylem, usually greater than 50%. Although cellulosic components can survive degradation under certain conditions, their loss during microbial degradation is the rule rather than exception during peatification. As these components of xylem are degraded and lost, lignin, another major component of xylem, is selectively enriched because it is more resistant to microbial degradation than the cellulosic components. Thus, lignin survives peatification in a practically unaltered state and becomes the major precursor of coalified xylem. During its transformation to brown coal and lignite A, lignin in xylem is altered

  8. Wound-induced and bacteria-induced xylem blockage in roses, Astilbe and Viburnum

    NARCIS (Netherlands)

    Loubaud, M.; Doorn, van W.G.

    2004-01-01

    We previously concluded that the xylem blockage that prevents water uptake into several cut flowers is mainly due to the presence of bacteria, whilst in chrysanthemum and Bouvardia we observed a xylem occlusion that was mainly due to a wound-reaction of the plant. We have further tested which of

  9. Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers.

    Science.gov (United States)

    Gruber, A; Pirkebner, D; Oberhuber, W

    2013-10-01

    Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra (L.) and Larix decidua (Mill.) growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation during the course of the year. After a delayed start in spring, NSC concentrations in L. decidua were significantly higher in all sampled tissues from August until the end of growing season. In both species, NSC concentrations were five to seven times higher in phloem than that in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long-term carbon reserves in both tissues. In L. decidua also, free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while a lack of correlation between xylem and phloem free sugar pools in P. cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand.

  10. Effects of Age and Size on Xylem Phenology in Two Conifers of Northwestern China

    Directory of Open Access Journals (Sweden)

    Qiao Zeng

    2018-01-01

    Full Text Available The climatic signals that directly affect the trees can be registered by xylem during its growth. If the timings and duration of xylem formation change, xylogenesis can occur under different environmental conditions and subsequently be subject to different climatic signals. An experimental design was applied in the field to disentangle the effects of age and size on xylem phenology, and it challenges the hypothesis that the timings and dynamics of xylem growth are size-dependent. Intra-annual dynamics of xylem formation were monitored weekly during the growing seasons 2013 and 2014 in Chinese pine (Pinus tabulaeformis and Qilian juniper (Juniperus przewalskii with different sizes and ages in a semi-arid region of northwestern China. Cell differentiation started 3 weeks earlier in 2013 and terminated 1 week later in 2014 in small-young pines than in big-old pines. However, differences in the timings of growth reactivation disappeared when comparing the junipers with different sizes but similar age. Overall, 77 days were required for xylem differentiation to take place, but timings were shorter for older trees, which also exhibited smaller cell production. Results from this study suggest that tree age does play an important role in timings and duration of growth. The effect of age should also be considered to perform reliable responses of trees to climate.

  11. Effects of Age and Size on Xylem Phenology in Two Conifers of Northwestern China.

    Science.gov (United States)

    Zeng, Qiao; Rossi, Sergio; Yang, Bao

    2017-01-01

    The climatic signals that directly affect the trees can be registered by xylem during its growth. If the timings and duration of xylem formation change, xylogenesis can occur under different environmental conditions and subsequently be subject to different climatic signals. An experimental design was applied in the field to disentangle the effects of age and size on xylem phenology, and it challenges the hypothesis that the timings and dynamics of xylem growth are size-dependent. Intra-annual dynamics of xylem formation were monitored weekly during the growing seasons 2013 and 2014 in Chinese pine ( Pinus tabulaeformis ) and Qilian juniper ( Juniperus przewalskii ) with different sizes and ages in a semi-arid region of northwestern China. Cell differentiation started 3 weeks earlier in 2013 and terminated 1 week later in 2014 in small-young pines than in big-old pines. However, differences in the timings of growth reactivation disappeared when comparing the junipers with different sizes but similar age. Overall, 77 days were required for xylem differentiation to take place, but timings were shorter for older trees, which also exhibited smaller cell production. Results from this study suggest that tree age does play an important role in timings and duration of growth. The effect of age should also be considered to perform reliable responses of trees to climate.

  12. Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Liang, Yun-Kuan; Xie, Xiaodong; Lindsay, Shona E; Wang, Yi Bing; Masle, Josette; Williamson, Lisa; Leyser, Ottoline; Hetherington, Alistair M

    2010-11-01

    To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  13. Some considerations on the effect of xylem embolism in conductivity Hydraulic plant

    International Nuclear Information System (INIS)

    Socorro, Alfredo

    2008-01-01

    From the physical characteristics of the elements that make up the xylem tissue in the stems of plants, a hypotheses is proposed to obtain a mathematical expression that defines Water flows through these conductors systems, depending on the potential difference water between the top and bottom of the stem. It raises an expression for the number of air bubbles formed from the imperfections (pores) in the walls of the tracheids forming xylem vessels and high stresses to which it is subjected in this transpiration high activity situations. This leads to an equation for conductivity hydraulic function of water potential in the presence of xylem embolism. using data from the literature and estimated values ​​simulated values ​​is performed stream and the percentage loss of conductivity. These results are compared with evidence and practice is discussed on the basis of physiological mechanisms relating to vulnerability of plants to xylem cavitation. It analyzes how this situation can be be corrected, also valued as this phenomenon affects situations of water stress

  14. The role of SDG8i from the resurrection grass Sporobolus stapfianus in ectopic expression system of Arabidopsis

    OpenAIRE

    Islam, Sharmin

    2017-01-01

    Isolation of gene transcripts from desiccated leaf tissue of the resurrection grass Sporobolus stapfianus Gandoger, resulted in the identification of the gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Glycolsyltransferases transfer a sugar to a number of acceptor molecules, including hormones and secondary metabolites, changing the solubility, stability and biological activity of these compounds. Functional analysis of the SDG8i was undertaken in Arabidopsis thaliana because no pr...

  15. Uncoupling between soil and xylem water isotopic composition: how to discriminate mobile and tightly-bound water?

    Science.gov (United States)

    Martín Gómez, Paula; Aguilera, Mònica; Pemán, Jesús; Gil Pelegrín, Eustaquio; Ferrio, Juan Pedro

    2014-05-01

    As a general rule, no isotopic fractionation occurs during water uptake and water transport, thus, xylem water reflects source water. However, this correspondence does not always happen. Isotopic enrichment of xylem water has been found in several cases and has been either associated to 'stem processes' like cuticular evaporation 1 and xylem-phloem communication under water stress 2,3 or to 'soil processes' such as species-specific use of contrasting water sources retained at different water potential forces in soil. In this regard, it has been demonstrated that mobile and tightly-bound water may show different isotopic signature 4,5. However, standard cryogenic distillation does not allow to separate different water pools within soil samples. Here, we carried out a study in a mixed adult forest (Pinus sylvestris, Quercus subpyrenaica and Buxus sempervirens) growing in a relatively deep loamy soil in the Pre-Pyrenees. During one year, we sampled xylem from twigs and soil at different depths (10, 30 and 50 cm). We also sampled xylem from trunk and bigger branches to assess whether xylem water was enriched in the distal parts of the tree. We found average deviations in the isotopic signature from xylem to soil of 4o 2o and 2.4o in δ18O and 18.3o 7.3o and 8.9o in δ2H, for P.sylvestris, Q.subpyrenaica and B.sempervirens respectively. Xylem water was always enriched compared to soil. In contrast, we did not find clear differences in isotopic composition between xylem samples along the tree. Declining the hypothesis that 'stem processes' would cause these uncoupling between soil and xylem isotopic values, we tested the possibility to separate mobile and tightly-bound water by centrifugation. Even though we could separate two water fractions in soils close to saturation, we could not recover a mobile fraction in drier soils. In this regard, we welcome suggestions on alternatives to separate different soil fractions in order to find the correspondence between soil and

  16. XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1–Mediated Immunity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yong-Ju Xu

    2017-11-01

    Full Text Available Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1 boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150 positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3′ splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3 in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.

  17. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  18. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris).

    Science.gov (United States)

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-09-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  19. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  20. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  1. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  2. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.)

    Science.gov (United States)

    Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187

  3. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  4. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  5. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from .... the First strand cDNA synthesis kit (Fermentas, Pittsburgh,. USA). .... ing height of the rooted cutting, girth of the stem, leaf area.

  6. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    NARCIS (Netherlands)

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, B.J.C.; Rep, Martijn; Takken, Frank L.W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1

  7. Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises.

    Science.gov (United States)

    Jagels, Richard; Visscher, George E; Lucas, John; Goodell, Barry

    2003-07-01

    The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0.27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low-to-moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high-latitude Eocene palaeoenvironment is discussed.

  8. Palaeo‐adaptive Properties of the Xylem of Metasequoia: Mechanical/Hydraulic Compromises

    Science.gov (United States)

    JAGELS, RICHARD; VISSCHER, GEORGE E.; LUCAS, JOHN; GOODELL, BARRY

    2003-01-01

    The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0·27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low‐to‐moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high‐latitude Eocene palaeoenvironment is discussed. PMID:12763758

  9. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  10. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  11. Irregular Applications: Architectures & Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Feo, John T.; Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    2012-02-06

    Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.

  12. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    Science.gov (United States)

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  13. Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact.

    Science.gov (United States)

    Torres-Ruiz, José M; Cochard, Hervé; Choat, Brendan; Jansen, Steven; López, Rosana; Tomášková, Ivana; Padilla-Díaz, Carmen M; Badel, Eric; Burlett, Regis; King, Andrew; Lenoir, Nicolas; Martin-StPaul, Nicolas K; Delzon, Sylvain

    2017-07-01

    Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  15. The embryogenesis in Arabidopsis thaliana following the γ-irradiation of the plants in the generative phase

    International Nuclear Information System (INIS)

    Akhundova, G.G.; Grinich, L.I.; Shevchenko, V.V.

    1978-01-01

    The flowers and young pods of the Arabidopsis thaliana (B 3 -B 7 phases of development) were subjected to the γ-irradiation with the dose of 4kr. The irradiation did not influence upon duration of phases of flower development, independently of the phase it has been conducted. Cytological characteristics of embryos are given for each phase under study. The duration of embyogenesis (from zygote up to spherical stage) under control and after irradiation was practically identical. The irradiation excited various anomalies of development. The most frequently met type of violations is the first division of apical cell by transverse septum instead of longitudinal one. Observed were the irregular division of suspensor cells, arrest of embryo apical cell division at normal suspensor division, irregular septum location and irregular form of embryo body. Maximum of violations in seed-lobe formation was marked after irradiation of young pods (B 6 -B 7 phases)

  16. Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth

    Energy Technology Data Exchange (ETDEWEB)

    Shelp, B J; Kitheka, A M; Cauwenberghe, O.R. Van [Univ. of Guelph, Dept. of Horticultural Science, Guelph, ON (Canada); Vanderpool, R A [Grand Forks Human Nutrition Research Center, Agricultural Research service, Grand Forks, ND (United States); Spiers, G A [Univ. of Guelph, Dept. of Land Resource Science, Guelph, ON (Canada)

    1998-12-01

    The aim of this study was to test the hypothesis that newly-acquired boron (B) undergoes rapid xylem-to-phloem transfer in plants with restricted mobility. Analysis of the element accumulation and water usage by shoots of intact broccoli (Brassica oleracea var. italica Plenck cv. Commander) and lupin (Lupinus albus L. cv. Ultra) plants provided with a non-deficient supply of B, revealed that the concentration of various mineral elements (K, P, Mg, Ca, B, Fe, Zn, Mo, Cu, Mn) in xylem sap of intact plants ranged from 0.3 {mu}M to 3.5 mM, with B being present at 2.9-3.5 {mu}M. For each element assayed, the concentration was higher in phloem exudate (1.6 {mu}M to 91 mM) than in xylem sap; B was present at about 0.4 mM. Intact broccoli and lupin plants or detached transpiring broccoli shoots were supplied simultaneously with enriched {sup 10}B, strontium (a xylem marker) and rubidium (a xylem/phloem marker) during early reproductive growth. The contents of these three compounds were determined in foliage and florets or fruits as a function of time (i.e. up to 12 h and 4 days for broccoli and lupin plants, respectively), and the content in florets or fruits was expressed as a percent of the total recovered. In general, the percent recovery of both {sup 10}B and rubidium in florets or fruits was similar and markedly greater than that for strontium, even at the earliest harvest times (within 2 h for broccoli and 1 day for lupin). The data indicate that in plants with restricted B mobility, B is supplied to sink tissues in the phloem, and the extent of B xylem-to-phloem transfer is closely determined by current uptake. (au) 35 refs.

  17. Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth

    International Nuclear Information System (INIS)

    Shelp, B.J.; Kitheka, A.M.; Cauwenberghe, O.R. Van; Vanderpool, R.A.; Spiers, G.A.

    1998-01-01

    The aim of this study was to test the hypothesis that newly-acquired boron (B) undergoes rapid xylem-to-phloem transfer in plants with restricted mobility. Analysis of the element accumulation and water usage by shoots of intact broccoli (Brassica oleracea var. italica Plenck cv. Commander) and lupin (Lupinus albus L. cv. Ultra) plants provided with a non-deficient supply of B, revealed that the concentration of various mineral elements (K, P, Mg, Ca, B, Fe, Zn, Mo, Cu, Mn) in xylem sap of intact plants ranged from 0.3 μM to 3.5 mM, with B being present at 2.9-3.5 μM. For each element assayed, the concentration was higher in phloem exudate (1.6 μM to 91 mM) than in xylem sap; B was present at about 0.4 mM. Intact broccoli and lupin plants or detached transpiring broccoli shoots were supplied simultaneously with enriched 10 B, strontium (a xylem marker) and rubidium (a xylem/phloem marker) during early reproductive growth. The contents of these three compounds were determined in foliage and florets or fruits as a function of time (i.e. up to 12 h and 4 days for broccoli and lupin plants, respectively), and the content in florets or fruits was expressed as a percent of the total recovered. In general, the percent recovery of both 10 B and rubidium in florets or fruits was similar and markedly greater than that for strontium, even at the earliest harvest times (within 2 h for broccoli and 1 day for lupin). The data indicate that in plants with restricted B mobility, B is supplied to sink tissues in the phloem, and the extent of B xylem-to-phloem transfer is closely determined by current uptake. (au)

  18. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  19. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    Science.gov (United States)

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

  20. Arabidopsis: an adequate model for dicot root systems?

    Directory of Open Access Journals (Sweden)

    Richard W Zobel

    2016-02-01

    Full Text Available The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5 of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for eudicot plant root systems.

  1. Phloem as Capacitor: Radial Transfer of Water into Xylem of Tree Stems Occurs via Symplastic Transport in Ray Parenchyma[OPEN

    Science.gov (United States)

    Renard, Justine; Tjoelker, Mark G.; Salih, Anya

    2015-01-01

    The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees. PMID:25588734

  2. Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima.

    Science.gov (United States)

    Zimmermann, Matthias R; Hafke, Jens B; van Bel, Aart J E; Furch, Alexandra C U

    2013-01-01

    Collection of cucurbit exudates from cut petioles has been a powerful tool for gaining knowledge on phloem sap composition without full notion of the complex exudation mechanism. Only few publications explicitly mentioned that exudates were collected from the basal side of the cut, which exudes more copiously than the apical side. This is surprising since only exudation from the apical side is supposedly driven by phloem pressure gradients. Composition of carbohydrates and pH values at both wounding sides are equal, whereas protein concentration is higher at the basal side. Apparently, exudation is far more complex than just the delivery of phloem sap. Xylem involvement is indicated by lower protein concentrations after elimination of root pressure. Moreover, dye was sucked into xylem vessels owing to relaxation of negative pressure after cutting. The lateral water efflux from the vessels increases turgor of surrounding cells including sieve elements. Simultaneously, detached parietal proteins (PP1/PP2) induce occlusion of sieve plates and cover wound surface. If root pressure is strong enough, pure xylem sap can be collected after removal of the occlusion plug at the wound surface. The present findings provide a mechanism of sap exudation in Cucurbita maxima, in which the contribution of xylem water is integrated. © 2012 Blackwell Publishing Ltd.

  3. Physical analysis of the process of cavitation in xylem sap.

    Science.gov (United States)

    Shen, Fanyi; Gao, Rongfu; Liu, Wenji; Zhang, Wenjie

    2002-06-01

    Recent studies have confirmed that cavitation in xylem is caused by air bubbles. We analyzed expansion of a preexistent bubble adhering to a crack in a conduit wall and a bubble formed by the passage of air through a pore of a pit membrane, a process known as air seeding. We consider that there are two equilibrium states for a very small air bubble in the xylem: one is temporarily stable with a bubble radius r1 at point s1 on the curve P(r) relating pressure within the bubble (P) with bubble radius (r); the other is unstable with a bubble radius r2 at point s2 on Pr (where r1 equilibrium state, the bubble collapse pressure (2sigma/r, where sigma is surface tension of water) is balanced by the pressure difference across its surface. In the case of a bubble from a crack in a conduit wall, which is initially at point s1, expansion will occur steadily as water potential decreases. The bubble will burst only if the xylem pressure drops below a threshold value. A formula giving the threshold pressure for bubble bursting is proposed. In the case of an air seed entering a xylem conduit through a pore in a pit membrane, its initial radius may be r2 (i.e., the radius of the pore by which the air seed entered the vessel) at point s2 on Pr. Because the bubble is in an unstable equilibrium when entering the conduit, it can either expand or contract to point s1. As water vaporizes into the air bubble at s2, P rises until it exceeds the gas pressure that keeps the bubble in equilibrium, at which point the bubble will burst and induce a cavitation event in accordance with the air-seeding hypothesis. However, other possible perturbations could make the air-seeded bubble contract to s1, in which case the bubble will burst at a threshold pressure proposed for a bubble expanding from a crack in a conduit wall. For this reason some cavitation events may take place at a xylem threshold pressure (Pl'*) other than that determined by the formula, Plp'* = -2sigma/rp, proposed by Sperry and

  4. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease

    NARCIS (Netherlands)

    Lowe-Power, Tiffany M.; Hendrich, Connor G.; Roepenack-Lahaye, von Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L.; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J.; Allen, Caitilyn

    2018-01-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from

  5. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    Science.gov (United States)

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  7. Phenotype-gene: 500 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n organ named vascular leaf during process named phloem or xylem histogenesis for AT1G24100 Grubb C Douglas ... insufficient in organ named vascular leaf during process named phloem or xylem h

  8. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  9. Stromal haze, myofibroblasts, and surface irregularity after PRK.

    Science.gov (United States)

    Netto, Marcelo V; Mohan, Rajiv R; Sinha, Sunilima; Sharma, Ajay; Dupps, William; Wilson, Steven E

    2006-05-01

    The aim of this study was to investigate the relationship between the level of stromal surface irregularity after photorefractive keratectomy (PRK) and myofibroblast generation along with the development of corneal haze. Variable levels of stromal surface irregularity were generated in rabbit corneas by positioning a fine mesh screen in the path of excimer laser during ablation for a variable percentage of the terminal pulses of the treatment for myopia that does not otherwise generate significant opacity. Ninety-six rabbits were divided into eight groups: [see table in text]. Slit lamp analysis and haze grading were performed in all groups. Rabbits were sacrificed at 4 hr or 4 weeks after surgery and histochemical analysis was performed on corneas for apoptosis (TUNEL assay), myofibroblast marker alpha-smooth muscle actin (SMA), and integrin alpha4 to delineate the epithelial basement membrane. Slit-lamp grading revealed severe haze formation in corneas in groups IV and VI, with significantly less haze in groups II, III, and VII and insignificant haze compared with the unwounded control in groups I and V. Analysis of SMA staining at 4 weeks after surgery, the approximate peak of haze formation in rabbits, revealed low myofibroblast formation in group I (1.2+/-0.2 cells/400x field) and group V (1.8+/-0.4), with significantly more in groups II (3.5+/-1.8), III (6.8+/-1.6), VII (7.9+/-3.8), IV (12.4+/-4.2) and VI (14.6+/-5.1). The screened groups were significantly different from each other (p PRK groups. The -9.0 diopter PRK group VI had significantly more myofibroblast generation than the -9.0 diopter PRK with PTK-smoothing group VII (p PRK and the level of stromal surface irregularity. PTK-smoothing with methylcellulose was an effective method to reduce stromal surface irregularity and decreased both haze and associated myofibroblast density. We hypothesize that stromal surface irregularity after PRK for high myopia results in defective basement membrane

  10. Optical measurement of stem xylem vulnerability

    OpenAIRE

    Brodribb, Timothy J.; Carriqui, Marc; Delzon, Sylvain; Lucani, Christopher

    2017-01-01

    The vulnerability of plant water transport tissues to a loss of function by cavitation during water stress is a key indicator of the survival capabilities of plant species during drought. Quantifying this important metric has been greatly advanced by noninvasive techniques that allow embolisms to be viewed directly in the vascular system. Here, we present a new method for evaluating the spatial and temporal propagation of embolizing bubbles in the stem xylem during imposed water stress. We de...

  11. Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants.

    Science.gov (United States)

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2017-04-01

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  12. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.

    Science.gov (United States)

    MacMillan, Colleen P; Birke, Hannah; Chuah, Aaron; Brill, Elizabeth; Tsuji, Yukiko; Ralph, John; Dennis, Elizabeth S; Llewellyn, Danny; Pettolino, Filomena A

    2017-07-18

    Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in

  13. Transcriptome analysis of the phytobacterium Xylella fastidiosa growing under xylem-based chemical conditions.

    Science.gov (United States)

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  14. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    Directory of Open Access Journals (Sweden)

    Maristela Boaceff Ciraulo

    2010-01-01

    Full Text Available Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC and grapevine Pierce's disease (PD. Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW, the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  15. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    Directory of Open Access Journals (Sweden)

    Gauri A. Achari

    2014-01-01

    Full Text Available Eggplant (Solanum melongena L. is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA grouped these xylem residing bacteria (XRB into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  16. Arabidopsis CDS blastp result: AK072001 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072001 J013094L17 At2g22670.2 auxin-responsive protein / indoleacetic acid-induce...d protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 2e-11 ...

  17. Arabidopsis CDS blastp result: AK102396 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102396 J033092H03 At2g22670.1 auxin-responsive protein / indoleacetic acid-induce...d protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 2e-50 ...

  18. Arabidopsis CDS blastp result: AK061495 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061495 006-309-C06 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 3e-50 ...

  19. Arabidopsis CDS blastp result: AK099253 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099253 J013168H04 At2g22670.1 auxin-responsive protein / indoleacetic acid-induce...d protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 4e-51 ...

  20. Arabidopsis CDS blastp result: AK104018 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104018 001-007-H11 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 4e-51 ...

  1. Arabidopsis CDS blastp result: AK106181 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106181 001-208-D03 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 4e-51 ...

  2. Arabidopsis CDS blastp result: AK109363 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109363 006-206-E12 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 2e-51 ...

  3. Arabidopsis CDS blastp result: AK106121 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106121 001-207-E11 At2g22670.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 8 (IAA8) identical to SP|Q38826 Auxin-responsive protein IAA8 (Indoleacetic acid-induced protein 8) {Arabidopsis thaliana} 7e-51 ...

  4. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    Science.gov (United States)

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  5. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.; Hindt, Maria N.; Punshon, Tracy; Guerinot, Mary Lou

    2017-09-08

    Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolar transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.

  6. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter

    OpenAIRE

    Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Daemon, Birgit; Hacke, Uwe G.

    2014-01-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling starte...

  7. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series.

    Science.gov (United States)

    Rita, Angelo; Cherubini, Paolo; Leonardi, Stefano; Todaro, Luigi; Borghetti, Marco

    2015-08-01

    The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa.

    Science.gov (United States)

    Backus, Elaine A; Andrews, Kim B; Shugart, Holly J; Carl Greve, L; Labavitch, John M; Alhaddad, Hasan

    2012-07-01

    A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away

  9. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  10. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  11. AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana

    KAUST Repository

    Li, Bo

    2017-01-05

    The accumulation of high concentrations of chloride (Cl) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl sensitive plant species those that exclude relatively more Cl from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl into the root xylem, which affects the accumulation of Cl in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl efflux from roots, and a greater Cl accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, NO- content in 3 the shoot remained unaffected. Accumulation of Cl in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl efflux from the root, contributing to exclusion of Cl from the shoot of Arabidopsis.

  12. Lead mobility within the xylem of red spruce seedlings: Implications for the development of pollution histories

    Science.gov (United States)

    John R. Donnelly; John B. Shane; Paul G. Schaberg

    1990-01-01

    Development of Pb pollution histories using tree ring analyses has been troubled by possible mobility of Pb within stem xylem. In a 2-yr study, we exposed red spruce (Picea rubens Sarg.) seedlings to Pb during one growing season, with Pb excluded in either the previous or following growing season. Lead levels within xylem rings and bark were...

  13. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  14. The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; Scollary, Geoffrey R; McCully, Margaret E; Canny, Martin J; Rogiers, Suzy Y

    2016-08-01

    Amino acids are essential to grape berry and seed development and they are transferred to the reproductive structures through the phloem and xylem from various locations within the plant. The diurnal and seasonal dynamics of xylem and phloem amino acid composition in the leaf petiole and bunch rachis of field-grown Cabernet Sauvignon are described to better understand the critical periods for amino acid import into the berry. Xylem sap was extracted by the centrifugation of excised leaf petioles and rachises, while phloem exudate was collected by immersing these structures in an ethylenediaminetetraacetic acid (EDTA) buffer. Glutamine and glutamic acid were the predominant amino acids in the xylem sap of both grapevine rachises and petioles, while arginine and glycine were the principal amino acids of the phloem exudate. The amino acid concentrations within the xylem sap and phloem exudate derived from these structures were greatest during anthesis and fruit set, and a second peak occurred within the rachis phloem at the onset of ripening. The concentrations of the amino acids within the phloem and xylem sap of the rachis were highest just prior to or after midnight while the flow of sugar through the rachis phloem was greatest during the early afternoon. Sugar exudation rates from the rachis was greater than that of the petiole phloem between anthesis and berry maturity. In summary, amino acid and sugar delivery through the vasculature to grape berries fluctuates over the course of the day as well as through the season and is not necessarily related to levels near the source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  16. Zinc distribution and speciation in Arabidopsis halleri x Arabidops is lyrata progenies presenting various zinc accumulation capacities

    Energy Technology Data Exchange (ETDEWEB)

    Sarret, Geraldine; Willems, Glenda; Isaure, Marie-Pierre; Marcus, Matthew A.; Fakra, Sirine C.; Frerot, Helene; Pairis, Sebastien; Geoffroy, Nicolas; Manceau, Alain; Saumitou-Laprade, Pierre

    2010-04-08

    - The purpose of this study was to investigate the relationship between the chemical form and localization of zinc (Zn) in plant leaves and their Zn accumulationcapacity. - An interspecific cross between Arabidopsis halleri sp. halleri and Arabidopsis lyrata sp. petrea segregating for Zn accumulation was used. Zinc (Zn) speciation and Zn distribution in the leaves of the parent plants and of selected F1 and F2 progenies were investigated by spectroscopic and microscopic techniques and chemical analyses. - A correlation was observed between the proportion of Zn being in octahedral coordination complexed to organic acids and free in solution (Zn?OAs + Znaq) and Zn content in the leaves. This pool varied between 40percent and 80percent of total leaf Zn depending on the plant studied. Elemental mapping of the leaves revealed different Zn partitioning between the veins and the leaf tissue. The vein : tissue fluorescence ratio was negatively correlated with Zn accumulation. - The higher proportion of Zn?OAs + Znaq and the depletion of the veins in the stronger accumulators are attributed to a higher xylem unloading and vacuolar sequestration in the leaf cells. Elemental distributions in the trichomes were also investigated, and results support the role of carboxyl and⁄ or hydroxyl groups as major Zn ligands in these cells.

  17. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    Science.gov (United States)

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak. © The Author 2014. Published by Oxford University Press. All rights reserved

  18. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen.

    Science.gov (United States)

    Meitern, Annika; Õunapuu-Pikas, Eele; Sellin, Arne

    2017-06-01

    Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K + concentration ([K + ]), electrical conductivity (σ sap ), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (K wb ), leaf blade (K lb ) and petiole hydraulic conductances (K P ) showed clear daily dynamics. Air temperature (T A ) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on K wb K lb , K P , [K + ] and σ sap . Osm varied only with light intensity, while K B varied depending on atmospheric evaporative demand expressed as T A , VPD or RH. Xylem sap pH depended inversely on soil water potential (Ψ S ) and during daylight also on VPD. Although soil water content was close to saturation during the study period, Ψ S influenced also [K + ] and σ sap . The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Xylem monoterpenes of pines: distribution, variation, genetics, function

    Science.gov (United States)

    Richard Smith

    2000-01-01

    The monoterpenes of about 16,000 xylem resin samples of pine (Pinus) speciesand hybrids—largely from the western United States—were analyzed in this long-term study of the resistance of pines to attack by bark beetles (Coleoptera:Scolytidae), with special emphasis on resistance to the western pine beetle(Dendroctonus brevicomis). The samples were analyzed by gas liquid...

  20. Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula x P. tremuloides (Salicaceae).

    Science.gov (United States)

    Sokołowska, Katarzyna; Zagórska-Marek, Beata

    2012-11-01

    The picture of how long-distance transport proceeds in trees is still far from being complete. Beside the apoplasmic pathway, transport undoubtedly also takes place within the system of living cells in the secondary xylem and cambial region. Because detailed, thorough studies of the symplasmic routes in woody branches, using direct localization with fluorescent tracers, had not been done, here we focused on the main routes of long-distance symplasmic transport in xylem and cambial tissues and analyzed in detail tracer distribution in the rays on the extended cambial surface in branches of Acer pseudoplatanus and Populus tremula ×P. tremuloides. Fluorescent tracers were loaded into branches through the vascular system, then their distribution in xylem and cambial regions was analyzed. Tracer signal was present in the symplast of axial and radial xylem parenchyma cells and in both types of cambial cells. The living cells of xylem parenchyma and of the cambium were symplasmically interconnected via xylem rays. Tracer distribution in rays was uneven on the extended cambial surface; cambial regions with intensively or sparsely dyed rays alternated along the vertical axis of analyzed branches. Symplasmic, long-distance transport is present between the living cells of xylem and the cambial region in woody branches. The uneven distribution of fluorescent tracers in cambial rays along the stems is surprising and suggests the presence of an intrinsic pattern caused by an unknown mechanism.

  1. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease.

    Science.gov (United States)

    Lowe-Power, Tiffany M; Hendrich, Connor G; von Roepenack-Lahaye, Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J; Allen, Caitilyn

    2018-04-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  3. Upward translocation of 14C-amino compounds in xylem and phloem of citrus trees (citrus unshiu marc.)

    International Nuclear Information System (INIS)

    Kato, Tadashi; Yamagata, Makoto; Tsukahara, Sadao

    1985-01-01

    Upward and lateral movements of 14 C-amino compounds in intact trees and excised shoots, and upward translocation of major amino compounds in intact shoots were examined in the early stage of new shoot development. The results were summarized as follows. 1. Uniformly 14 C-labelled arginine, asparagine, aspartic acid and proline were steadily taken up by roots of intact trees, translocated to old leaves and new shoots, and appeared in the fed compound and its metabolized products in these organs. 2. 14 C-arginine, asparagine and proline were translocated upward not only via the xylem but also via the phloem. Lateral movements, from the xylem to the pholoem and from the phloem to the xylem, also occurred. These compounds showed different patterns in their movements. 14 C-arginine and its metabolic products tended to accumulate in the xylem and translocate upward in the xylem. This was in contrast to 14 C-proline and its metabolic products, which tended to accumulate in the phloem and translocate upward in the phloem. These findings were supported by the results obtained in intact shoots. 3. The 14 C-amino compounds were metabolized to soluble and insoluble compounds during the translocation and in the new shoots. However, they differed significantly in the extent of metabolic conversion during translocation; proline was hardly metabolized, arginine and asparagine were moderately metabolized, and aspartic acid was almost completely metabolized. (author)

  4. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  5. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christoph Schmal

    Full Text Available The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7 and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this

  6. Influence of Drought on the Hydraulic Efficiency and the Hydraulic Safety of the Xylem - Case of a Semi-arid Conifer.

    Science.gov (United States)

    Gentine, P.; Guerin, M. F.; von Arx, G.; Martin-Benito, D.; Griffin, K. L.; McDowell, N.; Pockman, W.; Andreu-Hayles, L.

    2017-12-01

    Recent droughts in the Southwest US have resulted in extensive mortality in the pinion pine population (Pinus Edulis). An important factor for resiliency is the ability of a plant to maintain a functional continuum between soil and leaves, allowing water's motion to be sustained or resumed. During droughts, loss of functional tracheids happens through embolism, which can be partially mitigated by increasing the hydraulic safety of the xylem. However, higher hydraulic safety is usually achieved by building narrower tracheids with thicker walls, resulting in a reduction of the hydraulic efficiency of the xylem (conductivity per unit area). Reduced efficiency constrains water transport, limits photosynthesis and might delay recovery after the drought. Supporting existing research on safety-efficiency tradeoff, we test the hypothesis that under dry conditions, isohydric pinions grow xylem that favor efficiency over safety. Using a seven-year experiment with three watering treatments (drought, control, irrigated) in New Mexico, we investigate the effect of drought on the xylem anatomy of pinions' branches. We also compare the treatment effect with interannual variations in xylem structure. We measure anatomical variables - conductivities, cell wall thicknesses, hydraulic diameter, cell reinforcement and density - and preliminarily conclude that treatment has little effect on hydraulic efficiency while hydraulic safety is significantly reduced under dry conditions. Taking advantage of an extremely dry year occurrence during the experiment, we find a sharp increase in vulnerability for xylem tissues built the same year.

  7. Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, R.; Raschi, A. [Consiglio Nazionale della Ricerche, Firenze (Italy); Longobucco, A. [Centro Studi per l`Informatica applicata all`Agricoltura, Firenze (Italy)

    1999-04-01

    The effect of proximity to natural CO{sub 2} springs on seasonal patterns of xylem embolism in various species of Quercus (oak), Fraxinus, Populus (poplar) and Arbutus was studied. Xylem embolism was evaluated in both artificially dehydrated branches and in hydrated apical branches collected at monthly intervals over a 20-month period. Species-dependent differences in xylem hydraulic properties in response to elevated CO{sub 2} were noted. Populus tremula was the most embolized, an Arbutus unedo was the least embolized among the species examined. The actual differences in xylem vulnerability between trees growing near the CO{sub 2} spring and those growing in control area were small, however, these differences combined with the interaction of seasonal stress events, may be of great importance in determining future community composition in Mediterranean forest ecosystems. Causes and ecological significance of such differences are discussed vis-a-vis elevated carbon dioxide concentration and other environmental factors. 48 refs., 2 tabs., 3 figs.

  8. Hierarchical statistical modeling of xylem vulnerability to cavitation.

    Science.gov (United States)

    Ogle, Kiona; Barber, Jarrett J; Willson, Cynthia; Thompson, Brenda

    2009-01-01

    Cavitation of xylem elements diminishes the water transport capacity of plants, and quantifying xylem vulnerability to cavitation is important to understanding plant function. Current approaches to analyzing hydraulic conductivity (K) data to infer vulnerability to cavitation suffer from problems such as the use of potentially unrealistic vulnerability curves, difficulty interpreting parameters in these curves, a statistical framework that ignores sampling design, and an overly simplistic view of uncertainty. This study illustrates how two common curves (exponential-sigmoid and Weibull) can be reparameterized in terms of meaningful parameters: maximum conductivity (k(sat)), water potential (-P) at which percentage loss of conductivity (PLC) =X% (P(X)), and the slope of the PLC curve at P(X) (S(X)), a 'sensitivity' index. We provide a hierarchical Bayesian method for fitting the reparameterized curves to K(H) data. We illustrate the method using data for roots and stems of two populations of Juniperus scopulorum and test for differences in k(sat), P(X), and S(X) between different groups. Two important results emerge from this study. First, the Weibull model is preferred because it produces biologically realistic estimates of PLC near P = 0 MPa. Second, stochastic embolisms contribute an important source of uncertainty that should be included in such analyses.

  9. Vestured pits: a diagnostic character in the secondary xylem of Myrtales

    NARCIS (Netherlands)

    Jansen, S.; Pletsers, A.; Rabaey, D.; Lens, F.

    2008-01-01

    Vestures are small projections from the secondary cell wall associated with tracheary elements of the secondary xylem. They are usually associated with bordered pits and characterize various angiosperm families, including important timber species such as Dipterocarpaceae and Eucalyptus trees. The

  10. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    Science.gov (United States)

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  11. SPL8 Acts Together with the Brassinosteroid-Signaling Component BIM1 in Controlling Arabidopsis thaliana Male Fertility

    Directory of Open Access Journals (Sweden)

    Shuping Xing

    2013-06-01

    Full Text Available The non-miR156 targeted SBP-box gene SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8, plays an important role in Arabidopsis anther development, where its loss-of-function results in a semi-sterile phenotype. Fully male-sterile plants are obtained when a spl8 loss-of-function mutation is introduced into a 35S:MIR156 genetic background, thereby revealing functional redundancy between SPL8 and miR156-targeted SBP-box genes. Here, we show that BIM1, a gene encoding a bHLH protein involved in brassinosteroid signaling and embryonic patterning, functions redundantly with SPL8 in its requirement for male fertility. Although bim1 single mutants displayed a mild fertility problem due to shortened filaments in some flowers, mutation of BIM1 significantly enhanced the semi-sterile phenotype of the spl8 mutant. Expression of both SPL8 and BIM1 was detected in overlapping expression domains during early anther developmental stages. Our data suggest that in regulating anther development, SPL8 and BIM1 function cooperatively in a common complex or in synergistic pathways. Phylogenetic analysis supports the idea of an evolutionary conserved function for both genes in angiosperm anther development.

  12. Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees.

    Science.gov (United States)

    Petit, Giai; Savi, Tadeja; Consolini, Martina; Anfodillo, Tommaso; Nardini, Andrea

    2016-11-01

    Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year -1 ), and produced a higher leaf biomass (P trees in terms of leaf-specific conductivity (P > 0.05) and xylem safety (Ψ 50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Transport and use of CO2 in the xylem sap of Populus deltoides

    International Nuclear Information System (INIS)

    Stringer, J.W.; Kimmerer, T.W.

    1990-01-01

    Results of recent experiments indicate an internal cycling of respiratory CO 2 in woody plants. The CO 2 concentration of xylem sap expressed from the twigs of field grown Populus deltoides ranged from .14 to .50 mM. The pH of the xylem sap was 5.7 to 6.7, providing a significant bicarbonate concentration in many samples. Total dissolved inorganic carbon (DIC = CO 2 + H 2 CO 3 + HCO 3 - ) was 0.5 mM to 1.3 mM. Results from the analysis of xylem sap of 10 other species of woody plants were similar. To determine the fate of DIC delivered to the leaves of Populus deltoides, excised leaves were fed 1mM NaHCO 3 (2 μCi NaH 14 CO 3 ml -1 ). Less than 0.4% of the label escaped from the leaves, and ≥93% was fixed. Of the carbon fixed 56% of the 14 C was found in the petiole and midrib, and 14% was in the major veins, with the remaining 30% in the minor veins and lamina. Shading of the peptiole and midrib of leaves decreased the amount of fixed carbon in these tissues to 38% and increased the amount in the lamina to 55%

  14. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants.

    Science.gov (United States)

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-06-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cbeta. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units.

  15. Spatial and temporal patterns of xylem sap pH derived from stems and twigs of Populus deltoides L.

    Science.gov (United States)

    Doug Aubrey; Justin Boyles; Laura Krysinsky; Robert Teskey

    2011-01-01

    Xylem sap pH (pHX) is critical in determining the quantity of inorganic carbon dissolved in xylem solution from gaseous [CO2] measurements. Studies of internal carbon transport have generally assumed that pHX derived from stems and twigs is similar and that pHX remains constant through time; however, no empirical studies have investigated these assumptions. If any of...

  16. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires

    Science.gov (United States)

    S.T. Michaletz; E.A. Johnson; M.T. Tyree

    2012-01-01

    It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem:...

  17. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    Science.gov (United States)

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    Science.gov (United States)

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  19. Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method.

    Science.gov (United States)

    Tobin, M F; Pratt, R B; Jacobsen, A L; De Guzman, M E

    2013-05-01

    Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. The study of Cr(III) complexation in the xylem sap using ion exchange and radiotracer

    International Nuclear Information System (INIS)

    Juneja, Shikha; Prakash, Satya

    2003-01-01

    Radiotracer was employed to carry out ion exchange experiments to study the chromium speciation in the in vitro samples of xylem sap of maize stem of 60 days old plants. Cr(III) radiolabelled with its radioactive isotope ( 51 Cr) was mixed with both the ion exchange fraction of the sap which represented the carboxylic acids, as well as the whole sap and was analysed for complexation after 10 and 30 days at 25 degC. Prior to this, the ion exchange elution chromatography of Cr(III), and the Cr(III) complexes with oxalic and citric acid were used to compare the complexes being formed in the in vitro studies. The in vitro Cr(III) complexation results indicated that Cr(III) was vitally present as anionic species. The elution curve trend was similar to that of citric acid complexation. Citric acid was also found to be the major complexing acid in the xylem sap as determined by HPLC. The results indicate the transportation of Cr(III) as a citrate complex in the xylem sap of maize plants. (author)

  1. Data on xylem sap proteins from Mn- and Fe-deficient tomato plants obtained using shotgun proteomics.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-04-01

    This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

  2. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...... increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups...... to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family....

  3. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis.

    Science.gov (United States)

    Carrasco-López, Cristian; Hernández-Verdeja, Tamara; Perea-Resa, Carlos; Abia, David; Catalá, Rafael; Salinas, Julio

    2017-07-07

    Spliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood. Here, we present genetic and molecular evidence demonstrating that the LSM2-8 complex, the protein moiety of the U6 snRNP, regulates the spliceosome activity in Arabidopsis, and that this regulation is controlled by the environmental conditions. Our results show that the complex ensures the efficiency and accuracy of constitutive and alternative splicing of selected pre-mRNAs, depending on the conditions. Moreover, miss-splicing of most targeted pre-mRNAs leads to the generation of nonsense mediated decay signatures, indicating that the LSM2-8 complex also guarantees adequate levels of the corresponding functional transcripts. Interestingly, the selective role of the complex has relevant physiological implications since it is required for adequate plant adaptation to abiotic stresses. These findings unveil an unanticipated function for the LSM2-8 complex that represents a new layer of posttranscriptional regulation in response to external stimuli in eukaryotes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Irregular Migrants and the Law

    OpenAIRE

    Kassim, Azizah; Mat Zin, Ragayah Hj.

    2013-01-01

    This paper examines Malaysia`s policy on irregular migrants and its implementation, and discusses its impact. A survey and interview covering 404 respondents was conducted between July 2010 and June 2011 to ascertain the real situations surrounding irregular migrants in Malaysia, which is one of the major host countries of international migrants from developing nations. The policy on foreign workers was formulated in the mid-1980s to deal with the large number of irregular migrants and their ...

  5. Robustness of xylem properties in conifers: analyses of tracheid and pit dimensions along elevational transects.

    Science.gov (United States)

    Losso, Adriano; Anfodillo, Tommaso; Ganthaler, Andrea; Kofler, Werner; Markl, Yvonne; Nardini, Andrea; Oberhuber, Walter; Purin, Gerhard; Mayr, Stefan

    2018-02-01

    In alpine regions, tree hydraulics are limited by low temperatures that restrict xylem growth and induce winter frost drought and freezing stress. While several studies have dealt with functional limitations, data on elevational changes in functionally relevant xylem anatomical parameters are still scarce. In wood cores of Pinus cembra L. and Picea abies (L.) Karst. trunks, harvested along five elevational transects, xylem anatomical parameters (tracheid hydraulic diameter dh, wall reinforcement (t/b)2), pit dimensions (pit aperture Da, pit membrane Dm and torus Dt diameters) and respective functional indices (torus overlap O, margo flexibility) were measured. In both species, tracheid diameters decreased and (t/b)2 increased with increasing elevation, while pit dimensions and functional indices remained rather constant (P. cembra: Dt 10.3 ± 0.2 μm, O 0.477 ± 0.005; P. abies: Dt 9.30 ± 0.18 μm, O 0.492 ± 0.005). However, dh increased with tree height following a power trajectory with an exponent of 0.21, and also pit dimensions increased with tree height (exponents: Dm 0.18; Dt 0.14; Da 0.11). Observed elevational trends in xylem structures were predominantly determined by changes in tree size. Tree height-related changes in anatomical traits showed a remarkable robustness, regardless of the distributional ranges of study species. Despite increasing stress intensities towards the timberline, no adjustment in hydraulic safety at the pit level was observed. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.

    Science.gov (United States)

    Lei, Gui Jie; Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Dong, Ning Yu; Zheng, Shao Jian

    2014-04-01

    Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency-induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up-regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric-chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up-regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long-distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis. © 2013 John Wiley & Sons Ltd.

  7. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1

    Science.gov (United States)

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-01-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units. PMID:12805615

  8. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation

    Directory of Open Access Journals (Sweden)

    Sacha Escamez

    2016-02-01

    Full Text Available We uncovered that the level of autophagy in plant cells undergoing programmed cell death determines the fate of the surrounding cells. Our approach consisted of using Arabidopsis thaliana cell cultures capable of differentiating into two different cell types: vascular tracheary elements (TEs that undergo programmed cell death (PCD and protoplast autolysis, and parenchymatic non-TEs that remain alive. The TE cell type displayed higher levels of autophagy when expression of the TE-specific METACASPASE9 (MC9 was reduced using RNAi (MC9-RNAi. Misregulation of autophagy in the MC9-RNAi TEs coincided with ectopic death of the non-TEs, implying the existence of an autophagy-dependent intercellular signalling from within the TEs towards the non-TEs. Viability of the non-TEs was restored when AUTOPHAGY2 (ATG2 was downregulated specifically in MC9-RNAi TEs, demonstrating the importance of autophagy in the spatial confinement of cell death. Our results suggest that other eukaryotic cells undergoing PCD might also need to tightly regulate their level of autophagy to avoid detrimental consequences for the surrounding cells.

  9. Beech (Fagus sylvatica L.) branches show acclimation of xylem anatomy and hydraulic properties to increased light after thinning

    OpenAIRE

    Lemoine, D.; Jacquemin, S.; Granier, A.

    2002-01-01

    International audience; Hydraulic acclimation of Fagus sylvatica L. was analysed in response to forest thinning. Several months after thinning, leaf and xylem water potential and stomatal conductance of thinned branches were compared to sun-exposed and shade branches. We characterised vulnerability to cavitation for branches taken from these three treatments. We compared effect of thinning on xylem anatomy (mean vessel diameter, vessel density). Thinned branches exhibited higher stomatal cond...

  10. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  11. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  12. Xylem Resin in the Resistance of the Pinaceae to Bark Beetles

    Science.gov (United States)

    Richard H. Smith

    1972-01-01

    Xylem resin of Pinaceae is closely linked with their resistance and suseptibility to tree-killing bark beetles. This review of the literature on attacking adults suggests that all three resistance mechanisms proposed by Painter -- preference, antibiosis, and tolerance -- are active in this relationship: preference by attraction, repellency, and synergism; antibiosis...

  13. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kakehi

    Full Text Available Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5, shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10, respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1 homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5' leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.

  14. Quantitative Evaluation of Hybrid Aspen Xylem and Immunolabeling Patterns Using Image Analysis and Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    David Sandquist

    2015-06-01

    Full Text Available A new method is presented for quantitative evaluation of hybrid aspen genotype xylem morphology and immunolabeling micro-distribution. This method can be used as an aid in assessing differences in genotypes from classic tree breeding studies, as well as genetically engineered plants. The method is based on image analysis, multivariate statistical evaluation of light, and immunofluorescence microscopy images of wood xylem cross sections. The selected immunolabeling antibodies targeted five different epitopes present in aspen xylem cell walls. Twelve down-regulated hybrid aspen genotypes were included in the method development. The 12 knock-down genotypes were selected based on pre-screening by pyrolysis-IR of global chemical content. The multivariate statistical evaluations successfully identified comparative trends for modifications in the down-regulated genotypes compared to the unmodified control, even when no definitive conclusions could be drawn from individual studied variables alone. Of the 12 genotypes analyzed, three genotypes showed significant trends for modifications in both morphology and immunolabeling. Six genotypes showed significant trends for modifications in either morphology or immunocoverage. The remaining three genotypes did not show any significant trends for modification.

  15. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis.

    Science.gov (United States)

    Liu, X-P; Gong, C-M; Fan, Y-Y; Eiblmeier, M; Zhao, Z; Han, G; Rennenberg, H

    2013-01-01

    This study aimed to identify drought-mediated differences in amino nitrogen (N) composition and content of xylem and phloem in trees having different symbiotic N(2)-fixing bacteria. Under controlled water availability, 1-year-old seedlings of Robinia pseudoacacia (nodules with Rhizobium), Hippophae rhamnoides (symbiosis with Frankia) and Buddleja alternifolia (no such root symbiosis) were exposed to control, medium drought and severe drought, corresponding soil water content of 70-75%, 45-50% and 30-35% of field capacity, respectively. Composition and content of amino compounds in xylem sap and phloem exudates were analysed as a measure of N nutrition. Drought strongly reduced biomass accumulation in all species, but amino N content in xylem and phloem remained unaffected only in R. pseudoacacia. In H. rhamnoides and B. alternifolia, amino N in phloem remained constant, but increased in xylem of both species in response to drought. There were differences in composition of amino compounds in xylem and phloem of the three species in response to drought. Proline concentrations in long-distance transport pathways of all three species were very low, below the limit of detection in phloem of H. rhamnoides and in phloem and xylem of B. alternifolia. Apparently, drought-mediated changes in N composition were much more connected with species-specific changes in C:N ratios. Irrespective of soil water content, the two species with root symbioses did not show similar features for the different types of symbiosis, neither in N composition nor in N content. There was no immediate correlation between symbiotic N fixation and drought-mediated changes in amino N in the transport pathways. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. A Plumber's-Eye View of Xylem Water Transport in Woody Plants

    Science.gov (United States)

    Martinez-Vilalta, Jordi; Pinol, Josep

    2004-01-01

    We present a practical for university-level students aimed at measuring and comparing xylem hydraulic properties of co-existing plant species. After sampling branches of several woody species in the field, their main hydraulic properties were measured using a simple set-up. Hydraulic conductivity ("K[subscript h]") was calculated as the ratio…

  17. Effects of irregular-shift work and physical activity on cardiovascular risk factors in truck drivers

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Marqueze

    2013-06-01

    Full Text Available OBJECTIVE: To analyze the putative effect of type of shift and its interaction with leisure-time physical activity on cardiovascular risk factors in truck drivers. METHODS: A cross-sectional study was undertaken on 57 male truck drivers working at a transportation company, of whom 31 worked irregular shifts and 26 worked on the day-shift. Participants recorded their physical activity using the International Physical Activity Questionnaire along with measurements of blood pressure, body mass index and waist-hip ratio. Participants also provided a fasting blood sample for analysis of lipid-related outcomes. Data were analyzed using a factorial model which was covariate-controlled for age, smoking, work demand, control at work and social support. RESULTS: Most of the irregular-shift and day-shift workers worked more than 8 hours per day (67.7% and 73.1%, respectively. The mean duration of experience working the irregular schedule was 15.7 years. Day-shift workers had never engaged in irregular-shift work and had been working as a truck driver for 10.8 years on average. The irregular-shift drivers had lower work demand but less control compared to day-shift drivers (p < 0.05. Moderately-active irregular-shift workers had higher systolic and diastolic arterial pressures (143.7 and 93.2 mmHg, respectively than moderately-active day-shift workers (116 and 73.3 mmHg, respectively (p < 0.05 as well as higher total cholesterol concentrations (232.1 and 145 mg/dl, respectively (p = 0.01. Irrespective of their physical activity, irregular-shift drivers had higher total cholesterol and LDL-cholesterol concentrations (211.8 and 135.7 mg/dl, respectively than day-shift workers (161.9 and 96.7 mg/dl, respectively (ANCOVA, p < 0.05. CONCLUSIONS: Truck drivers are exposed to cardiovascular risk factors due to the characteristics of the job, such as high work demand, long working hours and time in this profession, regardless of shift type or leisure-time physical

  18. Molecular Cloning and Functional Analysis of UV RESISTANCE LOCUS 8 (PeUVR8 from Populus euphratica.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Ultraviolet-B (UV-B; 280-315 nm light, which is an integral part of the solar radiation reaching the surface of the Earth, induces a broad range of physiological responses in plants. The UV RESISTANCE LOCUS 8 (UVR8 protein is the first and only light photoreceptor characterized to date that is specific for UV-B light and it regulates various aspects of plant growth and development in response to UV-B light. Despite its involvement in the control of important plant traits, most studies on UV-B photoreceptors have focused on Arabidopsis and no data on UVR8 function are available for forest trees. In this study, we isolated a homologue of the UV receptor UVR8 of Arabidopsis, PeUVR8, from Populus euphratica (Euphrates poplar and analyzed its structure and function in detail. The deduced PeUVR8 amino acid sequence contained nine well-conserved regulator of chromosome condensation 1 (RCC1 repeats and the region 27 amino acids from the C terminus (C27 that interact with COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC1. Secondary and tertiary structure analysis showed that PeUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis thaliana. Using heterologous expression in Arabidopsis, we showed that PeUVR8 overexpression rescued the uvr8 mutant phenotype. In addition, PeUVR8 overexpression in wild-type background seedlings grown under UV-B light inhibited hypocotyl elongation and enhanced anthocyanin accumulation. Furthermore, we examined the interaction between PeUVR8 and AtCOP1 using a bimolecular fluorescence complementation (BiFC assay. Our data provide evidence that PeUVR8 plays important roles in the control of photomorphogenesis in planta.

  19. Arabidopsis CDS blastp result: AK288935 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288935 J090082J19 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 8e-21 ...

  20. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  1. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  2. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  3. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Science.gov (United States)

    Chen, Hong; Wang, Haiyang; Liu, Yanfang; Dong, Li

    2013-01-01

    1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining

  4. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available 1. The terminal shoot (or current-year shoot, as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary

  5. Assessing inter- and intraspecific variability of xylem vulnerability to embolism in oaks

    DEFF Research Database (Denmark)

    Lobo, Albin; Torres-Ruiz, José M.; Burlett, Regis

    2018-01-01

    for future afforestation. However, the presence of long vessels makes it difficult to assess xylem vulnerability to embolism in these species. Thanks to the development of a flow centrifuge equipped with a large rotor, we quantified (i) the between species variability of embolism resistance in four native...

  6. A low cost apparatus for measuring the xylem hydraulic conductance in plants

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.

  7. Strategic Analysis of Irregular Warfare

    Science.gov (United States)

    2010-03-01

    the same mathematical equations used by Lanchester .10 Irregular Warfare Theory and Doctrine It is time to develop new analytical methods and models...basis on which to build, similar to what Lanchester provided almost 100 years ago. Figure 9 portrays both Lanchester’s approach and an irregular 17

  8. Irregular Migration in Jordan, 1995-2007

    OpenAIRE

    AROURI, Fathi A.

    2008-01-01

    Euro-Mediterranean Consortium for Applied Research on International Migration (CARIM) This paper tackles the question of irregular migration in Jordan through its four main aspects. The first concerns irregular labour migrants and has been approached by using figures showing the socio-economic profile of non Jordanians working in Jordan and, additionally, unemployment in Jordan. This is done by assuming close similarities between legal and irregular labour migrants. The second is an attemp...

  9. Mixed xylem and phloem sap ingestion in sheath-feeders as normal dietary behavior: Evidence from the leafhopper Scaphoideus titanus.

    Science.gov (United States)

    Chuche, Julien; Sauvion, Nicolas; Thiéry, Denis

    2017-10-01

    In phytophagous piercing-sucking insects, salivary sheath-feeding species are often described as xylem- or phloem-sap feeding specialists. Because these two food sources have very different characteristics, two feeding tactics are often associated with this supposed specialization. Studying the feeding behavior of insects provides substantial information on their biology, ecology, and evolution. Furthermore, study of feeding behavior is of primary importance to elucidate the transmission ability of insects that act as vectors of plant pathogens. In this study, we compared the durations of ingestion performed in xylem versus phloem by a leafhopper species, Scaphoideus titanus Ball, 1932. This was done by characterizing and statistically analyzing electrical signals recorded using the electropenetrography technique, derived from the feeding behaviors of males and females. We identified three groups of S. titanus based on their feeding behavior: 1) a group that reached the phloem quickly and probed for a longer time in phloem tissue than the other groups, 2) a group that reached the xylem quickly and probed for a longer time in xylem tissue than the other groups, and 3) a group where individuals did not ingest much sap. In addition, the numbers and durations of waveforms representing ingestion of xylem and phloem saps differed significantly depending on the sex of the leafhopper, indicating that the two sexes exhibit different feeding behaviors. Males had longer phloem ingestion events than did females, which indicates that males are greater phloem feeders than females. These differences are discussed, specifically in relation to hypotheses about evolution of sap feeding and phytoplasma transmission from plant to plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  11. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  12. Arabidopsis CDS blastp result: AK059838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059838 006-206-C11 At3g04730.1 auxin-responsive protein / indoleacetic acid-induc...ed protein 16 (IAA16) identical to SP|O24407 Auxin-responsive protein IAA16 (Indoleacetic acid-induced protein 16) {Arabidopsis thaliana} 8e-45 ...

  13. Arabidopsis CDS blastp result: AK100988 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100988 J023145H17 At1g63440.1 copper-exporting ATPase, putative / responsive-to-a...ntagonist 1, putative / copper-transporting ATPase, putative similar to ATP dependent copper transporter SP|Q9S7J8 [Arabidopsis thaliana] 0.0 ...

  14. Arabidopsis CDS blastp result: AK063759 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063759 001-121-A10 At1g63440.1 copper-exporting ATPase, putative / responsive-to-...antagonist 1, putative / copper-transporting ATPase, putative similar to ATP dependent copper transporter SP|Q9S7J8 [Arabidopsis thaliana] 0.0 ...

  15. Arabidopsis CDS blastp result: AK072990 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072990 J023144D18 At1g63440.1 copper-exporting ATPase, putative / responsive-to-a...ntagonist 1, putative / copper-transporting ATPase, putative similar to ATP dependent copper transporter SP|Q9S7J8 [Arabidopsis thaliana] 0.0 ...

  16. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.).

    Science.gov (United States)

    de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter

    2012-10-01

    The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.

  17. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  18. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-01-06

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary

  19. Fitting Irregular Shape Figures into Irregular Shape Areas for the Nesting Problem in the Leather Industry

    Directory of Open Access Journals (Sweden)

    Guevara-Palma Luis

    2015-01-01

    Full Text Available The nesting problem of irregular shapes within irregular areas has been studied from several approaches due to their application in different industries. The particular case of cutting leather involves several restrictions that add complexity to this problem, it is necessary to generate products that comply with the quality required by customers This paper presents a methodology for the accommodation of irregular shapes in an irregular area (leather considering the constraints set by the footwear industry, and the results of this methodology when applied by a computer system. The scope of the system is to develop a working prototype that operates under the guidelines of a commercial production line of a sponsor company. Preliminary results got a reduction of 70% of processing time and improvement of 5% to 7% of the area usage when compared with manual accommodation.

  20. Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides x Populus nigra hybrids.

    Science.gov (United States)

    Fichot, Régis; Laurans, Françoise; Monclus, Romain; Moreau, Alain; Pilate, Gilles; Brignolas, Franck

    2009-12-01

    Six Populus deltoides Bartr. ex Marsh. x P. nigra L. genotypes were selected to investigate whether stem xylem anatomy correlated with gas exchange rates, water-use efficiency (WUE) and growth performance. Clonal copies of the genotypes were grown in a two-plot common garden test under contrasting water regimes, with one plot maintained irrigated and the other one subjected to moderate summer water deficit. The six genotypes displayed a large range of xylem anatomy, mean vessel and fibre diameter varying from about 40 to 60 microm and from 7.5 to 10.5 microm, respectively. Decreased water availability resulted in a reduced cell size and an important rise in vessel density, but the extent of xylem plasticity was both genotype and trait dependent. Vessel diameter and theoretical xylem-specific hydraulic conductivity correlated positively with stomatal conductance, carbon isotope discrimination and growth performance-related traits and negatively with intrinsic WUE, especially under water deficit conditions. Vessel diameter and vessel density measured under water deficit conditions correlated with the relative losses in biomass production in response to water deprivation; this resulted from the fact that a more plastic xylem structure was generally accompanied by a larger loss in biomass production.

  1. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil.

    Directory of Open Access Journals (Sweden)

    Christopher J Love

    Full Text Available It has long been known that there is a sustained electrical potential (voltage difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50-200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored.

  2. Characterization of the low latitude plasma density irregularities observed using C/NOFS and SCINDA data

    Science.gov (United States)

    Andima, Geoffrey; Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2018-01-01

    Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude -9.3°N) and Nairobi (Geographic coordinate 36.8°E, -1.3°N, and dip latitude -10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135-180°E and 270-300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270-300°E and 300-330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50-150 m s-1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.

  3. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events.

    Science.gov (United States)

    Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio

    2016-01-01

    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting

  4. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events

    Directory of Open Access Journals (Sweden)

    Angelo Rita

    2016-08-01

    Full Text Available In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale and Shape (GAMLSS technique and Bayesian modeling procedures to xylem traits data set, with the aim of i detecting non-linear long-term responses to climate and ii exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks rises at extreme values of Standardized Precipitation Index (SPI. Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport

  5. A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca.

    Science.gov (United States)

    Bar-Nun, Nurit; Sachs, Tsvi; Mayer, Alfred M

    2008-01-01

    Vascular continuity is established between a host plant and the root parasite broomrape. It is generally accepted that the direction of vascular continuity results from polar flow of auxin. Our hypothesis was that chemical disruptions of auxin transport and activity could influence the infection of the host by the parasite. A sterile system for the routine infection of Arabidopsis thaliana seedlings in Nunc cell culture plates by germinated seeds of Orobanche aegyptiaca was developed. This method permitted a quantitative assay of the rate of host infection. The three-dimensional structure of the vascular contacts was followed in cleared tissue. IAA (indole acetic acid) or substances that influence its activity and transport were applied locally to the host root. The orientation of the xylem contacts showed that broomrape grafts itself upon the host by acting hormonally as a root rather than a shoot. Local applications of IAA, PCIB (p-chlorophenoxyisobutyric acid) or NPA (naphthylphthalamic acid) all resulted in drastic reductions of Orobanche infection Broomrape manipulates the host by acting as a sink for auxin. Disruption of auxin action or auxin flow at the contact site could be a novel basis for controlling infection by Orobanche.

  6. Soil water and xylem chemistry in declining sugar maple stands in Pennsylvania

    Science.gov (United States)

    David R. DeWalle; Bryan R. Swistock; William E. Sharpe

    1999-01-01

    Evidence is accumulating that decline of sugar maple, Acer saccharum Marsh., in northern Pennsylvania may be related to overall site fertility as reflected in the chemistry of soil water and bolewood xylem. In this paper we discuss factors related to varying site fertility, including effects of soil liming, past glacialion, topographic position and...

  7. Processes and xylem anatomical properties involved in rehydration dynamics of cut flowers

    NARCIS (Netherlands)

    Meeteren, van U.; Ieperen, van W.; Nijsse, J.; Scheenen, T.W.J.; As, van H.; Keijzer, C.J.

    2001-01-01

    In cut flowers, which are harvested in air and transported dry, all cut xylem vessels in the basal part of the stem contain air instead of water. These air-emboli initially block water transport at the start of vase life, but usually (partly) disappear during the first hours of vase life, resulting

  8. Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography.

    Science.gov (United States)

    Bouche, Pauline S; Delzon, Sylvain; Choat, Brendan; Badel, Eric; Brodribb, Timothy J; Burlett, Regis; Cochard, Hervé; Charra-Vaskou, Katline; Lavigne, Bruno; Li, Shan; Mayr, Stefan; Morris, Hugh; Torres-Ruiz, José M; Zufferey, Vivian; Jansen, Steven

    2016-04-01

    Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought-induced embolism in needles and stems of Pinus pinaster using high-resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra-xylary pathways to declining hydraulic conductance. High-resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem  = -3.62 MPa, P50 stem xylem  = -3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle  = -1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra-xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves. © 2015 John Wiley & Sons Ltd.

  9. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Legal aspects of the EU policy on irregular immigration

    Directory of Open Access Journals (Sweden)

    Voinikov Vadim

    2015-12-01

    Full Text Available This article addresses the issues pertaining to the adoption and development of legislation on irregular migration in the context of uncontrolled growth in the number of immigrants from North Africa and the Middle East to the EU. The article attempts at studying the EU legislation on irregular migration, classifying it, and analysing the prospects of EU migration legislation in the light of an increase in irregular immigration into the EU. The author systematises, classifies the current EU legislation on irregular immigration, and analyses the conditions, in which this legislation was developed. Using the legislation analysis method, the author proposes the following system of EU legislation on irregular immigration: rules preventing assistance to irregular immigration, rules preventing employment of irregular immigrants, rules on the return of irregular migrants and readmission, rules on border control, and rules on collaboration with third countries. The author pays special attention to analysing the current state of irregular immigration to the EU, which was dubbed the ‘greatest migration crisis in Europe’. The conclusion is that the European Union succeeded in the development of pioneering legislation on irregular immigration, which can serve as the basis for reception by other states. However, changes in the political and economic situation in the EU’s southern borderlands made the current legal mechanisms incapable of withstanding new threats. It necessitates a radical reform of the legislation on irregular immigration.

  11. Irregular menstruation according to occupational status.

    Science.gov (United States)

    Kwak, Yeunhee; Kim, Yoonjung

    2017-07-06

    This cross-sectional study explored associations of irregular menstruation with occupational characteristics, using secondary analyses of data from 4,731 women aged 19-54 years, collected from a nationally representative sample, the Korea National Health and Nutrition Examination Survey-V during 2010-2012. The associations between irregular menstruation and occupation were explored using multiple logistic regression. Compared to non-manual workers, service/sales workers had a greater odds of irregular menstruation (adjusted odds ratio [aOR]: 1.44; 95percent confidence interval [CI]: 1.04-1.99) as did manual workers and unemployed women (aOR: 1.56; 95percent CI: 1.10-2.22, aOR: 1.46; 95percent CI: 1.14-1.89, respectively). Compared to regular workers, temporary workers and unemployed women had aORs of 1.52 (95percent CI: 1.08-2.13) and 1.33 (95percent CI: 1.05-1.69), respectively. Also, when compared to full-time workers, part-time workers and unemployed women had greater odds of irregular menstruation (aOR: 1.41; 95percent CI: 1.00-2.00 and aOR: 1.29; 95percent CI: 1.03-1.63, respectively). Furthermore, compared to daytime workers, shift workers and unemployed women had greater odds irregular menstruation (aOR: 1.39; 95percent CI: 1.03-1.88 and aOR: 1.28; 95percent CI: 1.04-1.59, respectively). Women with these occupational characteristics should be screened for early diagnosis and intervention for irregular menstruation.

  12. Irregular conformal block, spectral curve and flow equations

    International Nuclear Information System (INIS)

    Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong

    2016-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of irregular conformal block using the spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2) for the gauge theory) and third order (W_3 symmetry, SU(3)) differential equations of a polynomial with finite degree. The conformal and W symmetry generate the flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  13. Xylem sap nitrogen compounds of some Crotalaria species

    Directory of Open Access Journals (Sweden)

    Vitória Angela Pierre

    1999-01-01

    Full Text Available Thirteen species of Crotalaria were analysed for nitrogen compounds in the xylem root bleeding sap. Amino acids were the main form of organic nitrogen found, but only traces of ureides were present. Of the four species analysed for amino acid composition, asparagine was found to be the major amino acid, accounting for over 68% of the nitrogen transported. No striking deviations from this general pattern was found between species, between vegetative and floral stages of development, or between nodulated and non-nodulated plants. It was concluded that the Crotalaria species studied here have an asparagine-based nitrogen metabolism, consistent with many other non-ureide-producing legume species.

  14. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  15. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of this...

  17. Ethical issues in irregular migration research

    NARCIS (Netherlands)

    Duvell, F.; Triandafyllidou, A.; Vollmer, B.

    2008-01-01

    This paper is concerned with the ethical issues arising for researchers engaged in the study of irregular migration. Irregular migration is by definition an elusive phenomenon as it takes place in violation of the law and at the margins of society. This very nature of the phenomenon raises important

  18. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.

    Science.gov (United States)

    Nikinmaa, Eero; Sievänen, Risto; Hölttä, Teemu

    2014-09-01

    Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics. A mechanistic model of xylem and phloem transport was used, together with a tested leaf assimilation and transpiration model in a realistic tree architecture to simulate leaf gas exchange and water and carbohydrate transport within an 8-year-old Scots pine tree. The model solved the dynamics of the amounts of water and sucrose solute in the xylem, cambium and phloem using a fine-grained mesh with a system of coupled ordinary differential equations. The simulations predicted the observed patterns of pressure gradients and sugar concentration. Diurnal variation of environmental conditions influenced tree-level gradients in turgor pressure and sugar concentration, which are important drivers of carbon allocation. The results and between-shoot variation were sensitive to structural and functional parameters such as tree-level scaling of conduit size and phloem unloading. Linking whole-tree-level water and assimilate transport, gas exchange and sink activity opens a new avenue for plant studies, as features that are difficult to measure can be studied dynamically with the model. Tree-level responses to local and external conditions can be tested, thus making the approach described here a good test-bench for studies of whole-tree physiology.

  19. Multiple frequency radar observations of high-latitude E region irregularities in the HF modified ionosphere

    International Nuclear Information System (INIS)

    Noble, S.T.; Djuth, F.T.; Jost, R.J.

    1987-01-01

    In September 1983, experiments were conducted in Scandinavia using the high-power heating facility near Tromso, Norway. The purpose of the HF ionospheric modification experiments was to investigate the behavior of artificially produced E region irregularities at auroral latitudes. The majority of observations were made with backscatter radars operating at 46.9 and 143.8 MHz, but limited observations were also made at 21.4 and 140.0 MHz. These radars are sensitive to irregularities having scale lengths of between 1 and 7 m across the geomagnetic field lines. The growth and decay of the irregularities are scale length dependent with the shorter lengths growing and dissipating more rapidly than the longer lengths (e-folding growth times = 10 1 --10 2 ms; decay times = 10 2 --10 3 ms). During periods of full power ordinary mode heating, irregularities having peak cross sections of 10 4 m 2 at 46.9 MHz and 10 5 m 2 at 143.8 MHz are observed. However, the cross sections normally measured are 1 to 2 orders of magnitude smaller than the peak values. The cross sections are nonlinearly dependent on the HF power and begin to saturate at levels greater than 50--75 percent of full power. Past E and F region data from Arecibo are used in conjunction with the Tromso measurements to ascertain the relative roles played by various mechanisms in exciting irregularities. In the E region, the results tend to favor those instability processes which operate at the upper hybrid resonance level (e.g., thermal parametric and resonance instabilities) over those that operate at the reflection level (e.g., parametric decay instability). However, it is likely that anyh of the mechanisms studied could at times contribute to irregularity production in the E regions

  20. Xylem anisotropy and water transport--a model for the double sawcut experiment

    Science.gov (United States)

    Paul J. Schulte; David G. Costa

    2010-01-01

    Early experiments with overlapping cuts to the stems of trees demonstrated that lateral flow within the stem must be possible to allow such trees to maintain water flow to their leaves. We present a mathematical approach to considering lateral flow in stems by treating the xylem as an anisotropic medium for flow and develop an expression of its conductivity in the form...

  1. The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem

    KAUST Repository

    Ruzvidzo, Oziniel

    2011-09-01

    Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. Here we show that a recombinant Arabidopsis thaliana PNP (AtPNP-A) rapidly increased the rate of dark respiration in treated leaves after 5 min. In addition, we observed increases in lower leaves, and with a lag time of 10 min, the effect spread to the upper leaves and subsequently (after 15 min) to the opposite leaves. This response signature is indicative of phloem mobility of the signal, a hypothesis that was further strengthened by the fact that cold girdling, which affects phloem but not xylem or apoplastic processes, delayed the long distance AtPNP-A effect. We conclude that locally applied AtPNP-A can induce a phloem-mobile signal that rapidly modifies plant homeostasis in distal parts. © 2011 Elsevier GmbH.

  2. Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis.

    Science.gov (United States)

    Zhang, Qiong; Berkey, Robert; Pan, Zhiyong; Wang, Wenming; Zhang, Yi; Ma, Xianfeng; King, Harlan; Xiao, Shunyuan

    2015-01-01

    Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi.

  3. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Science.gov (United States)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  4. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Peter Kitin; Steven H. Strauss

    2011-01-01

    We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after...

  5. Arabidopsis thaliana Ei-5: Minor Vein Architecture Adjustment Compensates for Low Vein Density in Support of Photosynthesis.

    Science.gov (United States)

    Stewart, Jared J; Polutchko, Stephanie K; Demmig-Adams, Barbara; Adams, William W

    2018-01-01

    An Arabidopsis thaliana accession with naturally low vein density, Eifel-5 (Ei-5), was compared to Columbia-0 (Col-0) with respect to rosette growth, foliar vein architecture, photosynthesis, and transpiration. In addition to having to a lower vein density, Ei-5 grew more slowly, with significantly lower rates of rosette expansion, but had similar capacities for photosynthetic oxygen evolution on a leaf area basis compared to Col-0. The individual foliar minor veins were larger in Ei-5, with a greater number of vascular cells per vein, compared to Col-0. This compensation for low vein density resulted in similar values for the product of vein density × phloem cell number per minor vein in Ei-5 and Col-0, which suggests a similar capacity for foliar sugar export to support similar photosynthetic capacities per unit leaf area. In contrast, the product of vein density × xylem cell number per minor vein was significantly greater in Ei-5 compared to Col-0, and was associated not only with a higher ratio of water-transporting tracheary elements versus sugar-transporting sieve elements but also significantly higher foliar transpiration rates per leaf area in Ei-5. In contrast, previous studies in other systems had reported higher ratios of tracheary to sieve elements and higher transpiration rate to be associated with higher - rather than lower - vein densities. The Ei-5 accession thus further underscores the plasticity of the foliar vasculature by illustrating an example where a higher ratio of tracheary to sieve elements is associated with a lower vein density. Establishment of the Ei-5 accession, with a low vein density but an apparent overcapacity for water flux through the foliar xylem network, may have been facilitated by a higher level of precipitation in its habitat of origin compared to that of the Col-0 accession.

  6. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  7. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  8. Menstrual irregularity and poly cystic ovarian syndrome among adolescent girls--a 2 year follow-up study.

    Science.gov (United States)

    Nair, M K C; Pappachan, Princly; Balakrishnan, Sheila; Leena, M L; George, Babu; Russell, Paul S

    2012-01-01

    To study the clinical outcome after a gap of 2 years, among adolescent girls with confirmed menstrual irregularity and with or without ultrasound diagnosed polycystic ovaries. 136 adolescent girls from a cohort of 301 girls between 15 and 17 years of age with confirmed menstrual irregularity, with or without ultrasound diagnosed polycystic ovaries, were assessed in detail after a gap of 2 years. Present menstrual history and symptoms as well as signs of polycystic ovary syndrome (PCOS) were recorded, apart from ultrasound scanning of abdomen. PCOS was diagnosed using Rotterdam's consensus criteria and a comparative analysis was done among cases with and without PCOS. In the phase-II study done after a gap of 2 years, there was a statistically significant lower percentage of irregularities in menses, acne and enlarged thyroid, but a statistically significant increase in hirsuitism as compared to Phase-I study. Of the 136 cases reported, 36.0% cases were found to have PCOS and 63.9% cases were normal. Comparison of the two groups showed a statistically significant higher percentage difference in prevalence of irregular menses (59.9%), hirsuitism (56.3%), acne (17.8%), obesity (17.3%), polycystic ovaries on ultrasound (47.8%) and clinical hyperandrogenism (56.1%) among those with PCOS as against those without PCOS. The results of this study support screening for menstrual irregularity, obesity and signs of clinical hyperandrogenism for early diagnosis of PCOS in an effort to improve the reproductive health of adolescent girls.

  9. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    Science.gov (United States)

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  10. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei

    International Nuclear Information System (INIS)

    Lorkovic, Zdravko J.; Hilscher, Julia; Barta, Andrea

    2008-01-01

    SR proteins are multidomain splicing factors which are important for spliceosome assembly and for regulation of alternative splicing. In mammalian nuclei these proteins localise to speckles from where they are recruited to transcription sites. By using fluorescent protein fusion technology and different experimental approaches it has been shown that Arabidopsis SR proteins, in addition to diffuse nucleoplasmic staining, localise into an irregular nucleoplasmic network resembling speckles in mammalian cells. As Arabidopsis SR proteins fall into seven conserved sub-families we investigated co-localisation of members of the different sub-families in transiently transformed tobacco protoplast. Here we demonstrate the new finding that members of different SR protein sub-families localise into distinct populations of nuclear speckles with no, partial or complete co-localisation. This is particularly interesting as we also show that these proteins do interact in a yeast two-hybrid assay as well as in pull-down and in co-immunopreciptiation assays. Our data raise the interesting possibility that SR proteins are partitioned into distinct populations of nuclear speckles to allow a more specific recruitment to the transcription/pre-mRNA processing sites of particular genes depending on cell type and developmental stage

  11. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  12. Locating irregularly shaped clusters of infection intensity

    Directory of Open Access Journals (Sweden)

    Niko Yiannakoulias

    2010-05-01

    Full Text Available Patterns of disease may take on irregular geographic shapes, especially when features of the physical environment influence risk. Identifying these patterns can be important for planning, and also identifying new environmental or social factors associated with high or low risk of illness. Until recently, cluster detection methods were limited in their ability to detect irregular spatial patterns, and limited to finding clusters that were roughly circular in shape. This approach has less power to detect irregularly-shaped, yet important spatial anomalies, particularly at high spatial resolutions. We employ a new method of finding irregularly-shaped spatial clusters at micro-geographical scales using both simulated and real data on Schistosoma mansoni and hookworm infection intensities. This method, which we refer to as the “greedy growth scan”, is a modification of the spatial scan method for cluster detection. Real data are based on samples of hookworm and S. mansoni from Kitengei, Makueni district, Kenya. Our analysis of simulated data shows how methods able to find irregular shapes are more likely to identify clusters along rivers than methods constrained to fixed geometries. Our analysis of infection intensity identifies two small areas within the study region in which infection intensity is elevated, possibly due to local features of the physical or social environment. Collectively, our results show that the “greedy growth scan” is a suitable method for exploratory geographical analysis of infection intensity data when irregular shapes are suspected, especially at micro-geographical scales.

  13. Detecting chaos in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  14. Conflict Without Casualties: Non-Lethal Weapons in Irregular Warfare

    Science.gov (United States)

    2007-09-01

    the body,” and the Geneva Protocol of 1925, bans the use of chemical and biological weapons .11 On 8 April 1975, President Ford issued Executive...E Funding – PE 63851M) (accessed 15 December 2006). The American Journal of Bioethics . “Medical Ethics and Non-Lethal Weapons .” Bioethics.net...CASUALTIES: NON-LETHAL WEAPONS IN IRREGULAR WARFARE by Richard L. Scott September 2007 Thesis Advisor: Robert McNab Second Reader

  15. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    Science.gov (United States)

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season.

    Science.gov (United States)

    Ito, Akiko; Sugiura, Toshihiko; Sakamoto, Daisuke; Moriguchi, Takaya

    2013-04-01

    In order to elucidate which physiological event(s) are involved in the seasonal changes of carbohydrate dynamics during winter, we examined the effects of different low temperatures on the carbohydrate concentrations of Japanese pear (Pyrus pyrifolia (Burm.) Nakai). For four winter seasons, large increases in the sorbitol concentration of shoot xylem sap occurred during mid- to late December, possibly due to the endodormancy completion and low-temperature responses. When trees were kept at 15 °C from 3 November to 3 December in order to postpone the initiation and completion of chilling accumulation that would break endodormancy, sorbitol accumulation in xylem sap was always higher from trees with sufficient chilling accumulation than from trees that received insufficient chilling. However, an additional increase in xylem sap sorbitol occurred around late December in trees regardless of whether their chilling accumulation naturally progressed or was postponed. To examine different temperature effects more closely, we compared the carbohydrate concentrations of trees subjected to either 6 or 0 °C treatment. The sorbitol concentration in xylem sap tremendously increased at 0 °C treatment compared with 6 °C treatment. However, an additional increase in xylem sap sorbitol occurred at both the temperatures when sufficient chilling accumulated with a peak coinciding with the peak expression in shoots of the sorbitol transporter gene (PpSOT2). Interestingly, the total carbohydrate concentration of shoots tremendously increased with exposure to 0 °C compared with exposure to 6 °C, but was not affected by the amount of accumulated chilling. Instead, as chilling accumulated the ratio of sorbitol to total soluble sugars in shoots increased. We presumed that carbohydrates in the shoot tissues may be converted to sorbitol and loaded into the xylem sap so that the sorbitol accumulation patterns were synchronized with the progression of dormancy, whereas the total

  17. Fatigue damage estimation using irregularity factor. First report, irregularity factor calculations for narrow and broadband random time histories

    Science.gov (United States)

    Susuki, I.

    1981-11-01

    The results of an analysis of the irregularity factors of stationary and Gaussian random processes which are generated by filtering the output of a pure or a band-limited white noise are presented. An ideal band pass filter, a trapezoidal filter, and a Butterworth type band pass filter were examined. It was found that the values of the irregularity factors were approximately equal among these filters if only the end-slopes were the same rates. As the band width of filters increases, irregularity factors increase monotonically and approach the respective constant values depending on the end-slopes. This implies that the noise characteristics relevant to the fatigue damage such as statistical aspects of the height of the rise and fall or the distribution of the peak values are not changed for a broad band random time history. It was also found that the effect of band limitation of input white noise on irregularity factors is negligibly small.

  18. On irregularity strength of disjoint union of friendship graphs

    Directory of Open Access Journals (Sweden)

    Ali Ahmad

    2013-11-01

    Full Text Available We investigate the vertex total and edge total modication of the well-known irregularity strength of graphs. We have determined the exact values of the total vertex irregularity strength and the total edge irregularity strength of a disjoint union of friendship graphs.

  19. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  20. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA

    DEFF Research Database (Denmark)

    Leihne, Vibeke; Kirpekar, Finn; Vågbø, Cathrine B

    2011-01-01

    Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or derivatives thereof. Here, we...... demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm(5)U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic...... activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm(5)U to (S)-mchm(5)U in tRNA(Gly)(UCC), and has a function similar to the mammalian dioxygenase ALKBH8...

  1. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  2. VHF and UHF radar observations of equatorial F region ionospheric irregularities and background densities

    Science.gov (United States)

    Towle, D. M.

    1980-02-01

    A series of measurements of the properties of equatorial ionospheric irregularities were made at Kwajalein, Marshall Islands (M.I.) in August 1977 and July-August 1978. These measurements, sponsored by the Defense Nuclear Agency (DNA), involved coordinated ground-based and in situ sensors. The ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR), operated by Lincoln Laboratory, obtained backscatter and transmission data during five nights in August 1977 and eight nights in July-August 1978. This report describes the ALTAIR data from the night of August 11, 1978, which yield direct quantitative measurements of 1-m and 3/8-m irregularities and of plasma depleted regions. These plasma depleted regions, previously predicted on the basis of theoretical analysis and in situ data, were observed during the decay phase and not the generative phase of the field-aligned irregularities.

  3. Efficient Plastid Transformation in Arabidopsis.

    Science.gov (United States)

    Yu, Qiguo; Lutz, Kerry Ann; Maliga, Pal

    2017-09-01

    Plastid transformation is routine in tobacco ( Nicotiana tabacum ) but 100-fold less frequent in Arabidopsis ( Arabidopsis thaliana ), preventing its use in plastid biology. A recent study revealed that null mutations in ACC2 , encoding a plastid-targeted acetyl-coenzyme A carboxylase, cause hypersensitivity to spectinomycin. We hypothesized that plastid transformation efficiency should increase in the acc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation of the plastid-encoded ACC β-carboxylase subunit. We bombarded ACC2 -defective Arabidopsis leaves with a vector carrying a selectable spectinomycin resistance ( aadA ) gene and gfp , encoding the green fluorescence protein GFP. Spectinomycin-resistant clones were identified as green cell clusters on a spectinomycin medium. Plastid transformation was confirmed by GFP accumulation from the second open reading frame of a polycistronic messenger RNA, which would not be translated in the cytoplasm. We obtained one to two plastid transformation events per bombarded sample in spectinomycin-hypersensitive Slavice and Columbia acc2 knockout backgrounds, an approximately 100-fold enhanced plastid transformation frequency. Slavice and Columbia are accessions in which plant regeneration is uncharacterized or difficult to obtain. A practical system for Arabidopsis plastid transformation will be obtained by creating an ACC2 null background in a regenerable Arabidopsis accession. The recognition that the duplicated ACCase in Arabidopsis is an impediment to plastid transformation provides a rational template to implement plastid transformation in related recalcitrant crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    Science.gov (United States)

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  5. Intervessel connectivity and relationship with patterns of lateral water exchange within and between xylem sectors in seven xeric shrubs from the great Sahara desert.

    Science.gov (United States)

    Halis, Youcef; Mayouf, Rabah; Benhaddya, Mohamed Lamine; Belhamra, Mohamed

    2013-03-01

    The main objective of this study was to evaluate the role of intervessel contacts in determining the patterns of hydraulic integration both within and between xylem sectors. The degree of intervessel contacts and the lateral exchange capability within and between sectors were examined and correlated in different xeric shrubs. A dye injection method was used to detect the connections between vessels; an apoplastic dye was sucked through a known number of vessels and its distribution in the xylem network was followed. Hydraulic techniques were used to measure axial and tangential conductivity both within and between xylem sectors. The intra- and inter-sector integration indexes were then determined as the ratio of tangential to axial conductance. Species differed significantly in the degree of intervessel contacts, intra- and inter-sector integration index. In all cases, hydraulic integration was observed to be higher within sector than between sectors. From the correlation analyses, the intervessel contacts showed a very weak relationship with inter-sector integration index and a strong positive relationship with intra-sector integration index. Results suggested that (1) the factors affecting patterns of lateral flow within xylem sectors might be relatively different from those between sectors. (2) The degree of intervessel contacts was a major determinant of hydraulic integration within the same xylem sector. (3) Intervessel connectivity alone was a poor predictor of hydraulic integration between different sectors, implying a significant contribution of other anatomical, physiological and environmental factors in determining the patterns of integrated-sectored transport within woody stems.

  6. Targeting overall equipment efficiency for small medium enterprises with irregular production system

    Science.gov (United States)

    Prasetyawan, Y.; Suef, M.; Claudia, L.; Handayani, F. D.

    2018-04-01

    Overall Equipment Effectiveness (OEE) is widely used to measure the maturity of a production system. The company will be considered as World Class Manufacturing if it reaches more than 85% value, with near perfect value for availability, performance and quality factor. This assessment is usually taken on industries with regular production times named shift system. A typical 8 hours shift system is used in OEE measurement and performance monitoring. There are few Small to Medium Enterprise (SME) perform regular production times with shift systems, others using irregular production systems. The irregular production time in the SME production system is used because of demand fluctuations. This paper shows a quantitative analysis as a part of manufacturing system design to achieve a specific value of OEE for SME with irregular production systems, for individual businesses as well as collective business systems (some companies use the same production facilities for several processes). The results of experiments on several companies are presented, as a basis for determining the technical strategy of achieving OEE values.

  7. Characteristics of ionospheric irregularities causing scintillations at VHF/UHF

    International Nuclear Information System (INIS)

    Vats, H.O.; Deshpande, M.R.; Rastogi, R.G.

    1978-01-01

    Some properties of ionization irregularities using amplitude scintillation records of radio beacons from ATS-6 (phase II) at Ootacamund, India have been investigated. For the estimation of scale-size and strength of the irregularities a simple diffraction model has been used which explains only weak and moderate equatorial scintillation observations. It was found that the scale sizes of day time E-region irregularities are smaller than those in the F-region during night time in addition, irregularities are generated initially at large scale sizes which later break up into smaller scale sizes

  8. Arabidopsis CDS blastp result: AK242789 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242789 J090057B20 At2g31510.1 68415.m03850 IBR domain-containing protein / ARIADN...E-like protein ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contai...ns similarity to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 8e-12 ...

  9. A comprehensive strategy for identifying long-distance mobile peptides in xylem sap.

    Science.gov (United States)

    Okamoto, Satoru; Suzuki, Takamasa; Kawaguchi, Masayoshi; Higashiyama, Tetsuya; Matsubayashi, Yoshikatsu

    2015-11-01

    There is a growing awareness that secreted pemediate organ-to-organ communication in higher plants. Xylem sap peptidomics is an effective but challenging approach for identifying long-distance mobile peptides. In this study we developed a simple, gel-free purification system that combines o-chlorophenol extraction with HPLC separation. Using this system, we successfully identified seven oligopeptides from soybean xylem sap exudate that had one or more post-transcriptional modifications: glycosylation, sulfation and/or hydroxylation. RNA sequencing and quantitative PCR analyses showed that the peptide-encoding genes are expressed in multiple tissues. We further analyzed the long-distance translocation of four of the seven peptides using gene-encoding peptides with single amino acid substitutions, and identified these four peptides as potential root-to-shoot mobile oligopeptides. Promoter-GUS analysis showed that all four peptide-encoding genes were expressed in the inner tissues of the root endodermis. Moreover, we found that some of these peptide-encoding genes responded to biotic and/or abiotic factors. These results indicate that our purification system provides a comprehensive approach for effectively identifying endogenous small peptides and reinforce the concept that higher plants employ various peptides in root-to-shoot signaling. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G; Geissbuehler, P; Siegwolf, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  11. Accuracy limits of the equivalent field method for irregular photon fields

    International Nuclear Information System (INIS)

    Sanz, Dario Esteban

    2002-01-01

    A mathematical approach is developed to evaluate the accuracy of the equivalent field method using basic clinical photon beam data. This paper presents an analytical calculation of dose errors arising when field equivalencies, calculated at a certain reference depth, are translated to other depths. The phantom scatter summation is expressed as a Riemann-Stieltjes integral and two categories of irregular fields are introduced: uniform and multiform. It is shown that multiform fields produce errors whose magnitudes are nearly twice those corresponding to uniform fields in extreme situations. For uniform field shapes, the maximum, local, relative dose errors, when the equivalencies are calculated at 10 cm depth on the central axis and translated to a depth of 30 cm, are 3.8% and 8.8% for 6 MV and cobalt-60 photon beams, respectively. In terms of maximum dose those errors are within 1-2%. This supports the conclusion that the equivalencies between rectangular fields, which are examples of uniform fields, are applicable to dose ratio functions irrespective of beam energy. However, the magnitude of such errors could be of importance when assessing the exit dose for in vivo monitoring. This work provides a better understanding of the influence of the irregular field shapes on the accuracy of the equivalent field method. (author)

  12. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees.

    Science.gov (United States)

    Powell, Thomas L; Wheeler, James K; de Oliveira, Alex A R; da Costa, Antonio Carlos Lola; Saleska, Scott R; Meir, Patrick; Moorcroft, Paul R

    2017-10-01

    Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P 50 ), leaf turgor loss point (TLP), cellular osmotic potential (π o ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P 50 , TLP, and π o , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and

  13. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  14. 14 CFR 135.65 - Reporting mechanical irregularities.

    Science.gov (United States)

    2010-01-01

    ... irregularities and their correction. (b) The pilot in command shall enter or have entered in the aircraft maintenance log each mechanical irregularity that comes to the pilot's attention during flight time. Before each flight, the pilot in command shall, if the pilot does not already know, determine the status of...

  15. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  16. Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought.

    Science.gov (United States)

    Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter

    2011-05-01

    We determined the influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-10 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥5 °C from 1 January and 20 March, i.e., spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic sites, ranged from mid-April in 2007 to early May in 2008. Among most study years, statistically significant differences (Pdrought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. © The Author 2011. Published by Oxford University Press. All rights reserved.

  17. Detection of increase in corneal irregularity due to pterygium using Fourier series harmonic analyses with multiple diameters.

    Science.gov (United States)

    Minami, Keiichiro; Miyata, Kazunori; Otani, Atsushi; Tokunaga, Tadatoshi; Tokuda, Shouta; Amano, Shiro

    2018-05-01

    To determine steep increase of corneal irregularity induced by advancement of pterygium. A total of 456 eyes from 456 consecutive patients with primary pterygia were examined for corneal topography and advancement of pterygium with respect to the corneal diameter. Corneal irregularity induced by the pterygium advancement was evaluated by Fourier harmonic analyses of the topographic data that were modified for a series of analysis diameters from 1 mm to 6 mm. Incidences of steep increases in the asymmetry or higher-order irregularity components (inflection points) were determined by using segmented regression analysis for each analysis diameter. The pterygium advancement ranged from 2% to 57%, with a mean of 22.0%. Both components showed steep increases from the inflection points. The inflection points in the higher-order irregularity component altered with the analysis diameter (14.0%-30.6%), while there was no alternation in the asymmetry components (35.5%-36.8%). For the former component, the values at the inflection points were obtained in a range of 0.16 to 0.25 D. The Fourier harmonic analyses for a series of analysis diameters revealed that the higher-order irregularity component increased with the pterygium advancement. The analysis results confirmed the precedence of corneal irregularity due to pterygium advancement.

  18. Orbital and Collisional Evolution of the Irregular Satellites

    Science.gov (United States)

    Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.

    2003-07-01

    The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we report a study of the orbital and collisional evolution of the irregular satellites from times after their formation to the present epoch. The purpose of this study is to find out the features of the observed irregular moons that can be attributed to this evolution and separate them from signatures of the formation process. We numerically integrated ~60,000 test satellite orbits to map orbital locations that are stable on long time intervals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit's apocenter to the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by 2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic variations that would indicate

  19. Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien; Renault, Gabriel

    2016-01-01

    An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...

  20. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    Science.gov (United States)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  1. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity.

    Science.gov (United States)

    Astegno, Alessandra; Bonza, Maria Cristina; Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Luoni, Laura; Molesini, Barbara; Dominici, Paola

    2017-09-08

    Calmodulin-like (CML) proteins are major EF-hand-containing, calcium (Ca 2+ )-binding proteins with crucial roles in plant development and in coordinating plant stress tolerance. Given their abundance in plants, the properties of Ca 2+ sensors and identification of novel target proteins of CMLs deserve special attention. To this end, we recombinantly produced and biochemically characterized CML36 from Arabidopsis thaliana We analyzed Ca 2+ and Mg 2+ binding to the individual EF-hands, observed metal-induced conformational changes, and identified a physiologically relevant target. CML36 possesses two high-affinity Ca 2+ /Mg 2+ mixed binding sites and two low-affinity Ca 2+ -specific sites. Binding of Ca 2+ induced an increase in the α-helical content and a conformational change that lead to the exposure of hydrophobic regions responsible for target protein recognition. Cation binding, either Ca 2+ or Mg 2+ , stabilized the secondary and tertiary structures of CML36, guiding a large structural transition from a molten globule apo-state to a compact holoconformation. Importantly, through in vitro binding and activity assays, we showed that CML36 interacts directly with the regulative N terminus of the Arabidopsis plasma membrane Ca 2+ -ATPase isoform 8 (ACA8) and that this interaction stimulates ACA8 activity. Gene expression analysis revealed that CML36 and ACA8 are co-expressed mainly in inflorescences. Collectively, our results support a role for CML36 as a Ca 2+ sensor that binds to and modulates ACA8, uncovering a possible involvement of the CML protein family in the modulation of plant-autoinhibited Ca 2+ pumps. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. BRANCH JUNCTIONS AND THE FLOW OF WATER THROUGH XYLEM IN DOUGLAS-FIR AND PONDEROSA PINE STEMS

    Science.gov (United States)

    Water flowing through the xylem of most plants from the roots to the leaves must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect ...

  3. Computing proton dose to irregularly moving targets

    International Nuclear Information System (INIS)

    Phillips, Justin; Gueorguiev, Gueorgui; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C; Shackleford, James A

    2014-01-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in

  4. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available xpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 en...phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine. Overe

  5. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Science.gov (United States)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  7. Irregular activity arises as a natural consequence of synaptic inhibition

    International Nuclear Information System (INIS)

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-01-01

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects

  8. Irregular activity arises as a natural consequence of synaptic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Terman, D., E-mail: terman@math.ohio-state.edu [Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 (United States); Rubin, J. E., E-mail: jonrubin@pitt.edu [Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Diekman, C. O., E-mail: diekman@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  9. Actors and factors in the governance of irregular migration : a comparative analysis of Albanian, Georgian, Ukrainian, Pakistani and Afghani irregular flows to Greece

    OpenAIRE

    TRIANDAFYLLIDOU, Anna

    2015-01-01

    Proceedings from the conference "Governing Irregular Migration : States, Actors and Intermediaries", Athens 8-9 July 2015 The loss of over a thousand human lives in the effort to cross the Mediterranean during April 2015 has once again drawn media and political attention to the challenges that the EU is facing in its efforts to govern migration and asylum. However, what seems to be still far from complete is our (the experts and the politicians) understanding of what drives people to put t...

  10. Parallel Computing Strategies for Irregular Algorithms

    Science.gov (United States)

    Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

  11. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera).

    Science.gov (United States)

    Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang

    2018-02-01

    Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H 2 O 2 . In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    Science.gov (United States)

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. © 2014 Scandinavian Plant Physiology Society.

  13. The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species

    Science.gov (United States)

    Katherine A. McCulloh; Daniel M. Johnson; Frederick C. Meinzer; David R. Woodruff

    2013-01-01

    Recent work has suggested that plants differ in their relative reliance on structural avoidance of embolism versus maintenance of the xylem water column through dynamic traits such as capacitance, but we still know little about how and why species differ along this continuum. It is even less clear how or if different parts of a plant vary along this spectrum. Here we...

  14. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Advances in electron dosimetry of irregular fields; Avances en dosimetria de electrones de campos irregulares

    Energy Technology Data Exchange (ETDEWEB)

    Mendez V, J. [Departamento de Radioterapia, Instituto de Enfermedades Neoplasicas, Avenida Angamos Este 2520, Lima 34 (Peru)

    1998-12-31

    In this work it is presented an advance in Electron dosimetry of irregular fields for beams emitted by linear accelerators. At present diverse methods exist which are coming to apply in the Radiotherapy centers. In this work it is proposed a method for irregular fields dosimetry. It will be allow to calculate the dose rate absorbed required for evaluating the time for the treatment of cancer patients. Utilizing the results obtained by the dosimetric system, it has been possible to prove the validity of the method describe for 12 MeV energy and for square field 7.5 x 7.5 cm{sup 2} with percentile error less than 1 % . (Author)

  16. Experimental evidence of widespread regions of small-scale plasma irregularities in the magnetosphere

    International Nuclear Information System (INIS)

    Holmgren, G.; Kintner, P.M.

    1990-01-01

    Small-scale (≤ 1 km) plasma irregularities have previously been observed in situ from the E region to an altitude of 8,000 km. In this paper the authors report results from the Viking plasma wave experiments which extends the measurements of high-latitude irregularities in two ways: (1) they have acquired electron density fluctuation measurements up to an altitude of 13,500 km and (2) for the first time a measurement technique was used that made a phase velocity deduction possible from in situ measurements. The spacecraft was equipped with two spatially separated Langmuir probes, each with an ability to measure relative probe current fluctuations with frequencies from dc to about 400 Hz. Under certain assumptions the current fluctuations could be interpreted as relative plasma density fluctuations, δn e /n e . Data from this interferometric instrument has been used to infer the distribution and nature of plasma irregularities along Viking orbits. It is demonstrated that the interferometric technique offers great advantages compared to single point measurements in this kind of study. It is shown that the observed small-scale plasma irregularities are nondispersive and convecting with the background plasma. They exhibit a power law frequency spectrum as observed in the satellite reference frame. The spectral index varies with location. An attempt to map source regions by identifying regions of high power and shallow spectrums is made

  17. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  18. Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine

    International Nuclear Information System (INIS)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S.

    2007-01-01

    The effects of carbon dioxide (CO 2 ) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO 2 concentrations and 2 different temperature regimes. CO 2 concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO 2 concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO 2 levels were increased. It was noted that combined CO 2 and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO 2 and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO 2 concentrations. 48 refs., 2 tabs., 6 figs

  19. Reference: 255 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption...olyphosphate kinases in phosphate signaling biology. Generation of phytate-free seeds in Arabidopsis through disruption

  20. Role of parametric decay instabilities in generating ionospheric irregularities

    International Nuclear Information System (INIS)

    Kuo, S.P.; Cheo, B.R.; Lee, M.C.

    1983-01-01

    We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature

  1. Reference: 351 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene express...e family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being express...ed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was express...ins. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in ... plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis r

  2. Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector

    Directory of Open Access Journals (Sweden)

    Olushola Abel Oladipo

    2014-01-01

    Full Text Available Large-scale ionospheric irregularities usually measured by GPS TEC fluctuation indices are regular occurrence at the equatorial region shortly after sunset around solar maximum. Magnetic storm can trigger or inhibit the generation of these irregularities depending on the local time the main phase of a particular storm occurs. We studied the effect of nine (9 distinct storms on the occurrence of ionospheric irregularities at Fraceville in Gabon (Lat = −1.63˚, Long = 13.55˚, dip lat. = −15.94˚, an equatorial station in the African sector. These storms occurred between November 2001 and September 2002. We used TEC fluctuation indices (i.e. ROTI and ROTIAVE estimated from 30 s interval Rinex data and also we used the storm indices (i.e. Dst, dDst/dt, and IMF BZ to predict the likely effect of each storm on the irregularities occurrence at this station. The results obtained showed that most of the storms studied inhibited ionospheric irregularities. Only one out of all the storms studied (i.e. September 4, 2002 storms with the main phase on the night of September 7-8 triggered post-midnight ionospheric irregularities. There are two of the storms during which ionospheric irregularities were observed. However, these may not be solely attributed to the storms event because the level of irregularities observed during these two storms is comparable to that observed during previous days before the storms. For this station and for the storms investigated, it seems like a little modification to the use of Aarons categories in terms of the local time the maximum negative Dst occurs could lead to a better prediction. However, it would require investigating many storms during different level of solar activities and at different latitudes to generalize this modification.

  3. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    Directory of Open Access Journals (Sweden)

    Huiyan Guo

    2015-09-01

    Full Text Available Gibberellin (GA is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC, seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  4. Spatial distribution of xylem embolisms in the stems of Pinus thunbergii at the threshold of fatal drought stress.

    Science.gov (United States)

    Umebayashi, Toshihiro; Morita, Toshimitsu; Utsumi, Yasuhiro; Kusumoto, Dai; Yasuda, Yuko; Haishi, Tomoyuki; Fukuda, Kenji

    2016-10-01

    Although previous studies have suggested that branch dieback and whole-plant death due to drought stress occur at 50-88% loss of stem hydraulic conductivity (P 50 and P 88 , respectively), the dynamics of catastrophic failure in the water-conducting pathways in whole plants subjected to drought remain poorly understood. We examined the dynamics of drought stress tolerance in 3-year-old Japanese black pine (Pinus thunbergii Parl.). We nondestructively monitored (i) the spatial distribution of drought-induced embolisms in the stem at greater than P 50 and (ii) recovery from embolisms following rehydration. Stem water distributions were visualized by cryo-scanning electron microscopy. The percentages of both embolized area and loss of hydraulic conductivity showed similar patterns of increase, although the water loss in xylem increased markedly at -5.0 MPa or less. One seedling that had reached 72% loss of the water-conducting area survived and the xylem water potential recovered to -0.3 MPa. We concluded that Japanese black pines may need to maintain water-filled tracheids within earlywood of the current-year xylem under natural conditions to avoid disconnection of water movement between the stem and the tops of branches. It is necessary to determine the spatial distribution of embolisms around the point of the lethal threshold to gain an improved understanding of plant survival under conditions of drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  6. New Opportunities for Remote Sensing Ionospheric Irregularities by Fitting Scintillation Spectra

    Science.gov (United States)

    Carrano, C. S.; Rino, C. L.; Groves, K. M.

    2017-12-01

    In a recent paper, we presented a phase screen theory for the spectrum of intensity scintillations when the refractive index irregularities follow a two-component power law [Carrano and Rino, DOI: 10.1002/2015RS005903]. More recently we have investigated the inverse problem, whereby phase screen parameters are inferred from scintillation time series. This is accomplished by fitting the spectrum of intensity fluctuations with a parametrized theoretical model using Maximum Likelihood (ML) methods. The Markov-Chain Monte-Carlo technique provides a-posteriori errors and confidence intervals. The Akaike Information Criterion (AIC) provides justification for the use of one- or two-component irregularity models. We refer to this fitting as Irregularity Parameter Estimation (IPE) since it provides a statistical description of the irregularities from the scintillations they produce. In this talk, we explore some new opportunities for remote sensing ionospheric irregularities afforded by IPE. Statistical characterization of irregularities and the plasma bubbles in which they are embedded provides insight into the development of the underlying instability. In a companion paper by Rino et al., IPE is used to interpret scintillation due to simulated EPB structure. IPE can be used to reconcile multi-frequency scintillation observations and to construct high fidelity scintillation simulation tools. In space-to-ground propagation scenarios, for which an estimate of the distance to the scattering region is available a-priori, IPE enables retrieval of zonal irregularity drift. In radio occultation scenarios, the distance to the irregularities is generally unknown but IPE enables retrieval of Fresnel frequency. A geometric model for the effective scan velocity maps Fresnel frequency to Fresnel scale, yielding the distance to the irregularities. We demonstrate this approach by geolocating irregularities observed by the CORISS instrument onboard the C/NOFS satellite.

  7. State reconstruction and irregular wavefunctions for the hydrogen atom

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-07-01

    Inspired by a recently proposed procedure by Leonhardt and Raymer for wavepacket reconstruction, we calculate the irregular wavefunctions for the bound states of the Coulomb potential. We select the irregular solutions which have the simplest semiclassical limit.

  8. 78 FR 77649 - Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D...

    Science.gov (United States)

    2013-12-24

    ... inputs noted below and in the existing scope of authority. Customs duties also could possibly be deferred... December 2, 2013. Xylem already has authority to produce centrifugal pumps, submersible pumps, and related... components to the scope of authority. Pursuant to 15 CFR 400.14(b), FTZ activity would be limited to the...

  9. On a new process for cusp irregularity production

    Directory of Open Access Journals (Sweden)

    H. C. Carlson

    2008-09-01

    Full Text Available Two plasma instability mechanisms were thought until 2007 to dominate the formation of plasma irregularities in the F region high latitude and polar ionosphere; the gradient-drift driven instability, and the velocity-shear driven instability. The former mechanism was accepted as accounting for plasma structuring in polar cap patches, the latter for plasma structuring in polar cap sun aligned arcs. Recent work has established the need to replace this view of the past two decades with a new patch plasma structuring process (not a new mechanism, whereby shear-driven instabilities first rapidly structure the entering plasma, after which gradient drift instabilities build on these large "seed" irregularities. Correct modeling of cusp and early polar cap patch structuring will not be accomplished without allowing for this compound process. This compound process explains several previously unexplained characteristics of cusp and early polar cap patch irregularities. Here we introduce additional data, coincident in time and space, to extend that work to smaller irregularity scale sizes and relate it to the structured cusp current system.

  10. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  11. Bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  12. The Impact of Irregular Warfare on the US Army

    National Research Council Canada - National Science Library

    McDonald, III, Roger L

    2006-01-01

    Although the U.S. Army has yet to clearly define irregular warfare, it is imperative that the Army take near-term action to enhance the ability of Soldiers and units to operate effectively in an irregular warfare environment...

  13. Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space

    Science.gov (United States)

    Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares

    2015-10-01

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.

  14. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    International Nuclear Information System (INIS)

    Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M.

    1995-01-01

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  15. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  16. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    NARCIS (Netherlands)

    Bel, A.J.E. van; Erven, A.J. van

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and

  17. Apical control of xylem formation in the pine stem. II. Responses of differentiating tracheids

    Directory of Open Access Journals (Sweden)

    Jarosław Porandowski

    2014-01-01

    Full Text Available The effect of auxin supplied to the main stem of 5-year-old Pinus silvestris trees during various periods after decapitation upon differentiation of the secondary xylem tracheids was investigated. The results revealed the complexity of auxin involvement in the regulatory system of tracheid differentiation of secondary xylem. It is manifested both as the inductive effect to which the cells respond in the meristematic phase and in the continuous control during the consecutive stages of radial growth and maturation. A lack of auxin during the meristematic phase resulted in smaller cell diameters and reduced the daily rate of cell wall deposition even though these cells progressively grew and matured in the presence of auxin. The intensity of these two processes increased and the cells deposited thicker walls when auxin was supplied during all stages of tracheid differentiation even though the period of maturation decreased. Under these conditions tracheids of compression wood type differentiated. Continuous availability of auxin causes earlier termination of tracheid maturation while lack of auxin results in a delay of autolysis of protoplasts. In this case auxin probably functions in a system specifying information concerning the position of the cells in respect to the cambial layer.

  18. Elevated temperature and CO{sub 2} concentration effects on xylem anatomy of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S. [Joensuu Univ., Joensuu (Finland). Faculty of Forestry

    2007-09-15

    The effects of carbon dioxide (CO{sub 2}) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO{sub 2} concentrations and 2 different temperature regimes. CO{sub 2} concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO{sub 2} concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO{sub 2} levels were increased. It was noted that combined CO{sub 2} and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO{sub 2} and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO{sub 2} concentrations. 48 refs., 2 tabs., 6 figs.

  19. Golgi enrichment and proteomic analysis of developing Pinus radiata xylem by free-flow electrophoresis.

    Directory of Open Access Journals (Sweden)

    Harriet T Parsons

    Full Text Available Our understanding of the contribution of Golgi proteins to cell wall and wood formation in any woody plant species is limited. Currently, little Golgi proteomics data exists for wood-forming tissues. In this study, we attempted to address this issue by generating and analyzing Golgi-enriched membrane preparations from developing xylem of compression wood from the conifer Pinus radiata. Developing xylem samples from 3-year-old pine trees were harvested for this purpose at a time of active growth and subjected to a combination of density centrifugation followed by free flow electrophoresis, a surface charge separation technique used in the enrichment of Golgi membranes. This combination of techniques was successful in achieving an approximately 200-fold increase in the activity of the Golgi marker galactan synthase and represents a significant improvement for proteomic analyses of the Golgi from conifers. A total of thirty known Golgi proteins were identified by mass spectrometry including glycosyltransferases from gene families involved in glucomannan and glucuronoxylan biosynthesis. The free flow electrophoresis fractions of enriched Golgi were highly abundant in structural proteins (actin and tubulin indicating a role for the cytoskeleton during compression wood formation. The mass spectrometry proteomics data associated with this study have been deposited to the ProteomeXchange with identifier PXD000557.

  20. Structure of the secondary xylem of Aniba Aubl. species from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Cláudia Viana Urbinati

    2014-09-01

    Full Text Available The aim of this study was to characterize the wood of Aniba species from the Brazilian Amazon, on the basis of specimens in the wood collection of the Herbarium of the Museu Paraense Emílio Goeldi, in the city of Belém, Brazil. The species were found to present a homogeneous structure in the secondary xylem, as defined by the location of oil cells; the presence of tyloses and crystals; and singularities of the radial and axial parenchyma.

  1. Software support for irregular and loosely synchronous problems

    Science.gov (United States)

    Choudhary, A.; Fox, G.; Hiranandani, S.; Kennedy, K.; Koelbel, C.; Ranka, S.; Saltz, J.

    1992-01-01

    A large class of scientific and engineering applications may be classified as irregular and loosely synchronous from the perspective of parallel processing. We present a partial classification of such problems. This classification has motivated us to enhance FORTRAN D to provide language support for irregular, loosely synchronous problems. We present techniques for parallelization of such problems in the context of FORTRAN D.

  2. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  3. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  4. A Whole-Genome Microarray Study of Arabidopsis thaliana Semisolid Callus Cultures Exposed to Microgravity and Nonmicrogravity Related Spaceflight Conditions for 5 Days on Board of Shenzhou 8

    Directory of Open Access Journals (Sweden)

    Svenja Fengler

    2015-01-01

    Full Text Available The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes, this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.

  5. Effect of gamma-irradiation and colchicine on cell division and differentiation of xylem elements in citrus limon juice vesicle cultures

    International Nuclear Information System (INIS)

    Khan, Aysha; Chauhan, Y.S.

    1999-01-01

    The effects of varying doses of gamma irradiation on cell division and cytodifferentiation of tracheary elements in cultured juice vesicles of Citrus limon (L) Burmann var. Assam lemon were investigated. Low radiation doses stimulated cell division and differentiation of xylem fibres, sclereids and tracheids in explants given up to 10 Gy of gamma rays. Although cell division and cytodifferentiation of fibers and sclereids occurred in explants exposed to 150 dose of Gy radiation, the intensity of differentiation was much less than that induced by 10 Gy radiation dose. Amongst the differential elements, tracheids were more sensitive to radiation than fibres and sclereids. The requirement of cell division for differentiation of xylem cells was also studied by using different concentrations of colchicine in Citrus limon juice vesicle cultures. It was found that the low concentrations of colchicine permitted normal cell division and also resulted in normal differentiation of xylem cells; higher colchicine concentration, however, inhibited cell division as well as differentiation and resulted in an abnormal differentiation of tracheary element. A positive correlation between intensity of nucleic acid staining and cell division in both the above-mentioned experiments was qualitatively confirmed by Azur B staining test of nucleic acid. Thus, it was concluded that juice vesicle parenchyma cells go through nucleic acid synthesis, followed by cell division before differentiation. (author)

  6. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  7. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.

    Science.gov (United States)

    Bagniewska-Zadworna, Agnieszka; Byczyk, Julia; Eissenstat, David M; Oleksyn, Jacek; Zadworny, Marcin

    2012-09-01

    Root systems develop to effectively absorb water and nutrients and to rapidly transport these materials to the transpiring shoot. In woody plants, roots can be born with different functions: fibrous roots are primarily used for water and nutrient absorption, whereas pioneer roots have a greater role in transport. Because pioneer roots extend rapidly in the soil and typically quickly produce fibrous roots, they need to develop transport capacity rapidly so as to avoid becoming a bottleneck to the absorbed water of the developing fibrous roots and, as we hypothesized, immediately activate a specific type of autophagy at a precise time of their development. Using microscopy techniques, we monitored xylem development in Populus trichocarpa roots in the first 7 d after emergence under field conditions. Newly formed pioneer roots contained more primary xylem poles and had larger diameter tracheary elements than fibrous roots. While xylogenesis started later in pioneer roots than in fibrous, it was completed at the same time, resulting in functional vessels on the third to fourth day following root emergence. Programmed cell death was responsible for creating the water conducting capacity of xylem. Although the early xylogenesis processes were similar in fibrous and pioneer roots, secondary vascular development proceeded much more rapidly in pioneer roots. Compared to fibrous roots, rapid development of transport capacity in pioneer roots is not primarily caused by accelerated xylogenesis but by larger and more numerous tracheary elements and by rapid initiation of secondary growth.

  8. Saturn's Irregular Moon Ymir

    Science.gov (United States)

    Denk, Tilmann; Mottola, S.

    2012-10-01

    Ymir (diameter 18 km), Saturn's second largest retrograde outer or irregular moon, has been observed six times by the Cassini narrow-angle camera (NAC) during the first 7 months in 2012. The observations span phase angles from 2° up to 102° and were taken at ranges between 15 and 18 million kilometers. From such a distance, Ymir is smaller than a pixel in the Cassini NAC. The data reveal a sidereal rotation period of 11.93 hrs, which is 1.6x longer than the previously reported value (Denk et al. 2011, EPSC/DPS #1452). Reason for this discrepancy is that the rotational light curve shows a rather uncommon 3-maxima and 3-minima shape at least in the phase angle range 50° to 100°, which was not recognizable in earlier data. The data cover several rotations from different viewing and illumination geometries and allow for a convex shape inversion with possibly a unique solution for the pole direction. The model reproduces the observed light curves to a very good accuracy without requiring albedo variegation, thereby suggesting that the lightcurve is dominated by the shape of Ymir. Among Saturn's irregular moons, the phenomenon of more than two maxima and minima at moderate to high phase angles is not unique to Ymir. At least Siarnaq and Paaliaq also show light curves with a strong deviation from a double-sine curve. Their rotation periods, however, remain unknown until more data can be taken. The light curve of Phoebe is fundamentally different to Ymir's because it is mainly shaped by local albedo differences and not by shape. Other reliable rotation periods of irregular satellites measured by Cassini include: Mundilfari 6.74 h; Kari 7.70 h; Albiorix 13.32 h; Kiviuq 21.82 h. More uncertain values are: Skathi 12 h; Bebhionn 16 h; Thrymr 27 h; Erriapus 28 h.

  9. Uniform irradiation of irregularly shaped cavities for photodynamic therapy

    NARCIS (Netherlands)

    Rem, A. I.; van Gemert, M. J.; van der Meulen, F. W.; Gijsbers, G. H.; Beek, J. F.

    1997-01-01

    It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a

  10. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Science.gov (United States)

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  11. Analysis of an Irregular RC Multi-storeyed Building Subjected to Dynamic Loading

    Science.gov (United States)

    AkashRaut; Pachpor, Prabodh; Dautkhani, Sanket

    2018-03-01

    Many buildings in the present scenario have irregular configurations both in plan and elevation. This in future may subject to devastating earthquakes. So it is necessary to analyze the structure. The present paper is made to study three type of irregularity wiz vertical, mass and plan irregularity as per clause 7.1 of IS 1893 (part1)2002 code. The paper discusses the analysis of RC (Reinforced Concrete) Buildings with vertical irregularity. The study as a whole makes an effort to evaluate the effect of vertical irregularity on RC buildings for which comparison of three parameters namely shear force, bending moment and deflection are taken into account.

  12. Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations

    Science.gov (United States)

    Hinson, D. P.; Tyler, G. L.

    1982-01-01

    Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  13. Irregular Dwarf Galaxy IC 1613

    Science.gov (United States)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  14. The Biosynthetic Origin of Irregular Monoterpenes in Lavandula

    Science.gov (United States)

    Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.

    2013-01-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202

  15. Regularisation of irregular verbs in child English second language ...

    African Journals Online (AJOL)

    Data was collected from the language of English medium preschool children. The study concludes that when the Blocking Principle interferes, children resort to a novel interlanguage rule that regularises irregular verbs. This interlanguage rule applies in a similar way to all irregular verbs, thus children produce utterances ...

  16. Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System)

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2011-01-01

    of an irregular room model using the FDTD (Finite Difference Time Domain) method has been presented. CABS has been simulated in the irregular room model. Measurements of CABS in a real irregular room have been performed. The performance of CABS was affected by the irregular shape of the room due to the corner...

  17. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    NARCIS (Netherlands)

    Jansen, S.; Gortan, E.; Lens, F.; Assunta Lo Gullo, M.; Salleo, S.; Scholtz, A.; Stein, A.; Trifilò, P.; Nardini, A.

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the ‘ionic effect’ was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six

  18. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  19. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment.

    Science.gov (United States)

    Dalsing, Beth L; Truchon, Alicia N; Gonzalez-Orta, Enid T; Milling, Annett S; Allen, Caitilyn

    2015-03-17

    Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3(-), corresponding to R. solanacearum's optimal NO3(-) concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3(-) compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3(-) respiration directly enhanced growth, AniA-dependent NO2(-) reduction did not. NO2(-) and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3(-) acts as a TEA, but the resulting NO2(-) and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2(-) reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3(-) to respire, grow, and cause disease. Degradation of NO2(-) and NO is also important for successful infection and depends on denitrification and NO detoxification systems. The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world's most destructive crop diseases. This pathogen's explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show

  20. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  1. Menstrual irregularities and lactation failure may precede thyroid dysfunction or goitre.

    Directory of Open Access Journals (Sweden)

    Joshi J

    1993-07-01

    Full Text Available Menstrual and reproductive history of 178 women referred to the thyroid clinic was compared with 49 healthy controls. Cases were classified as euthyroid, hypothyroid or hyperthyroid after clinical examination and after serum T3, T4, TSH measurements. Reproductive history was related chronologically to symptoms and signs of thyroid dysfunction. Only 31.8% of hypothyroid and 35.3% of hyperthyroid women had normal menstrual pattern in contrast with 56.3% of Euthyroid and 87.8% of healthy controls (p < 0.001. Reproductive failure (infertility, pregnancy wastage, failure of lactation occurred in 37.5% of hypothyroid and 36.5% of hyperthyroid cases against 16.3% of euthyroid and 16.7% of healthy controls (p < 0.05. Interestingly, in 45% of cases with menstrual abnormality, the anomaly was antecedent to other clinical features by a variable period of two months to ten years. Reproductive failure and lactation failure also preceded thyroid dysfunction or goitre. Reproductive dysfunction may therefore be considered as one of the presenting symptoms of thyroid disorders in women, keeping in mind both menstrual irregularities and lactation failure may also arise from other common or idiopathic origins. Especially in women with menstrual irregularities in the perimenopausal age if thyroid dysfunction is detected, pharmacotherapy may be a superior alternative to surgical interventions like hysterectomy.

  2. Total edge irregularity strength of (n,t)-kite graph

    Science.gov (United States)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  3. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging.

    Science.gov (United States)

    Zwieniecki, Maciej A; Melcher, Peter J; Ahrens, Eric T

    2013-01-01

    We report results of an analysis of embolism formation and subsequent refilling observed in stems of Acer rubrum L. using magnetic resonance imaging (MRI). MRI is one of the very few techniques that can provide direct non-destructive observations of the water content within opaque biological materials at a micrometer resolution. Thus, it has been used to determine temporal dynamics and water distributions within xylem tissue. In this study, we found good agreement between MRI measures of pixel brightness to assess xylem liquid water content and the percent loss in hydraulic conductivity (PLC) in response to water stress (P50 values of 2.51 and 2.70 for MRI and PLC, respectively). These data provide strong support that pixel brightness is well correlated to PLC and can be used as a proxy of PLC even when single vessels cannot be resolved on the image. Pressure induced embolism in moderately stressed plants resulted in initial drop of pixel brightness. This drop was followed by brightness gain over 100 min following pressure application suggesting that plants can restore water content in stem after induced embolism. This recovery was limited only to current-year wood ring; older wood did not show signs of recovery within the length of experiment (16 h). In vivo MRI observations of the xylem of moderately stressed (~-0.5 MPa) A. rubrum stems revealed evidence of a spontaneous embolism formation followed by rapid refilling (~30 min). Spontaneous (not induced) embolism formation was observed only once, despite over 60 h of continuous MRI observations made on several plants. Thus this observation provide evidence for the presence of naturally occurring embolism-refilling cycle in A. rubrum, but it is impossible to infer any conclusions in relation to its frequency in nature.

  4. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.

    Science.gov (United States)

    Leitch, Michael; Macefield, Vaughan G

    2017-08-01

    Ballistic contractions are induced by brief, high-frequency (60-100 Hz) trains of action potentials in motor axons. During ramp voluntary contractions, human motoneurons exhibit significant discharge variability of ∼20% and have been shown to be advantageous to the neuromuscular system. We hypothesized that ballistic contractions incorporating discharge variability would generate greater isometric forces than regular trains with zero variability. High-impedance tungsten microelectrodes were inserted into human fibular nerve, and single motor axons were stimulated with both irregular and constant-frequency stimuli at mean frequencies ranging from 57.8 to 68.9 Hz. Irregular trains generated significantly greater isometric peak forces than regular trains over identical mean frequencies. The high forces generated by ballistic contractions are not based solely on high frequencies, but rather a combination of high firing rates and discharge irregularity. It appears that irregular ballistic trains take advantage of the "catchlike property" of muscle, allowing augmentation of force. Muscle Nerve 56: 292-297, 2017. © 2016 Wiley Periodicals, Inc.

  5. Classical limit of irregular blocks and Mathieu functions

    International Nuclear Information System (INIS)

    Piątek, Marcin; Pietrykowski, Artur R.

    2016-01-01

    The Nekrasov-Shatashvili limit of the N = 2 SU(2) pure gauge (Ω-deformed) super Yang-Mills theory encodes the information about the spectrum of the Mathieu operator. On the other hand, the Mathieu equation emerges entirely within the frame of two-dimensional conformal field theory (2d CFT) as the classical limit of the null vector decoupling equation for some degenerate irregular block. Therefore, it seems to be possible to investigate the spectrum of the Mathieu operator employing the techniques of 2d CFT. To exploit this strategy, a full correspondence between the Mathieu equation and its realization within 2d CFT has to be established. In our previous paper http://dx.doi.org/10.1007/JHEP12(2014)032, we have found that the expression of the Mathieu eigenvalue given in terms of the classical irregular block exactly coincides with the well known weak coupling expansion of this eigenvalue in the case in which the auxiliary parameter is the noninteger Floquet exponent. In the present work we verify that the formula for the corresponding eigenfunction obtained from the irregular block reproduces the so-called Mathieu exponent from which the noninteger order elliptic cosine and sine functions may be constructed. The derivation of the Mathieu equation within the formalism of 2d CFT is based on conjectures concerning the asymptotic behaviour of irregular blocks in the classical limit. A proof of these hypotheses is sketched. Finally, we speculate on how it could be possible to use the methods of 2d CFT in order to get from the irregular block the eigenvalues of the Mathieu operator in other regions of the coupling constant.

  6. Phenotype-gene: 558 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 558 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u3ria224u1555i non-functional ph...73-85. http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16024589i non-functional phloem or xylem hi

  7. Feasibility study of flexible phased array ultrasonic technology using irregular surface specimen

    International Nuclear Information System (INIS)

    Lee, Seung Pyo; Moon, Yong Sik; Jung, Nam Du

    2015-01-01

    Nuclear power plant contain many dissimilar metal welds that connect carbon steel components with stainless steel pipes using alloy 600 welding materials. Primary water stress corrosion cracks at dissimilar metal welds have been continuously reported around the world. In periodic integrity evaluations, dissimilar metal welds are examined using a generic ultrasonic testing procedure, KPD-UT-10. In this procedure, the gap between the probe and examination surface is limited to 1/32 inch (0.8 mm). It is not easy to test some dissimilar metal welds in Korean plants applying ordinary technology because of their tapered shapes and irregular surface conditions. This paper introduces a method for applying a flexible phased array technology to improve the reliability of ultrasonic testing results for various shapes and surface conditions. The artificial flaws in specimens with irregular surfaces were completely detected using the flexible phased array ultrasonic technology. Therefore, it can be said that the technology is applicable to field examination.

  8. Feasibility study of flexible phased array ultrasonic technology using irregular surface specimen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Pyo; Moon, Yong Sik; Jung, Nam Du [NDE Performance Demonstration Team, Korea Hydro and Nuclear Power, Central Research Institute, Daejeon (Korea, Republic of)

    2015-02-15

    Nuclear power plant contain many dissimilar metal welds that connect carbon steel components with stainless steel pipes using alloy 600 welding materials. Primary water stress corrosion cracks at dissimilar metal welds have been continuously reported around the world. In periodic integrity evaluations, dissimilar metal welds are examined using a generic ultrasonic testing procedure, KPD-UT-10. In this procedure, the gap between the probe and examination surface is limited to 1/32 inch (0.8 mm). It is not easy to test some dissimilar metal welds in Korean plants applying ordinary technology because of their tapered shapes and irregular surface conditions. This paper introduces a method for applying a flexible phased array technology to improve the reliability of ultrasonic testing results for various shapes and surface conditions. The artificial flaws in specimens with irregular surfaces were completely detected using the flexible phased array ultrasonic technology. Therefore, it can be said that the technology is applicable to field examination.

  9. Track Irregularity Time Series Analysis and Trend Forecasting

    Directory of Open Access Journals (Sweden)

    Jia Chaolong

    2012-01-01

    Full Text Available The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM (1,1 is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.

  10. The genome of Arabidopsis thaliana.

    OpenAIRE

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  11. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  12. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  13. Examining U.S. Irregular Warfare Doctrine

    National Research Council Canada - National Science Library

    Kimbrough, IV, James M

    2008-01-01

    ... of insurgency and terrorism. In response to the associated strategic challenges, a growing debate occurred among military historians, strategists, and leaders about the proper principles necessary for contemporary irregular...

  14. Traffic dispersion through a series of signals with irregular split

    Science.gov (United States)

    Nagatani, Takashi

    2016-01-01

    We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.

  15. GARCH and Irregularly Spaced Data

    NARCIS (Netherlands)

    Meddahi, N.; Renault, E.; Werker, B.J.M.

    2003-01-01

    An exact discretization of continuous time stochastic volatility processes observed at irregularly spaced times is used to give insights on how a coherent GARCH model can be specified for such data. The relation of our approach with those in the existing literature is studied.

  16. Database Description - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Database Description General information of database Database n... BioResource Center Hiroshi Masuya Database classification Plant databases - Arabidopsis thaliana Organism T...axonomy Name: Arabidopsis thaliana Taxonomy ID: 3702 Database description The Arabidopsis thaliana phenome i...heir effective application. We developed the new Arabidopsis Phenome Database integrating two novel database...seful materials for their experimental research. The other, the “Database of Curated Plant Phenome” focusing

  17. Xylem formation can be modeled statistically as a function of primary growth and cambium activity.

    Science.gov (United States)

    Huang, Jian-Guo; Deslauriers, Annie; Rossi, Sergio

    2014-08-01

    Primary (budburst, foliage and shoot) growth and secondary (cambium and xylem) growth of plants play a vital role in sequestering atmospheric carbon. However, their potential relationships have never been mathematically quantified and the underlying physiological mechanisms are unclear. We monitored primary and secondary growth in Picea mariana and Abies balsamea on a weekly basis from 2010 to 2013 at four sites over an altitudinal gradient (25-900 m) in the eastern Canadian boreal forest. We determined the timings of onset and termination through the fitted functions and their first derivative. We quantified the potential relationships between primary growth and secondary growth using the mixed-effects model. We found that xylem formation of boreal conifers can be modeled as a function of cambium activity, bud phenology, and shoot and needle growth, as well as species- and site-specific factors. Our model reveals that there may be an optimal mechanism to simultaneously allocate the photosynthetic products and stored nonstructural carbon to growth of different organs at different times in the growing season. This mathematical link can bridge phenological modeling, forest ecosystem productivity and carbon cycle modeling, which will certainly contribute to an improved prediction of ecosystem productivity and carbon equilibrium. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?

    Science.gov (United States)

    Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea

    2015-02-01

    Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Measurement of imidacloprid in xylem fluid from eastern hemlock (Tsuga canadensis) by derivitization/GC/MS and ELISA

    Science.gov (United States)

    Anthony Lagalante; Peter Greenbacker; Jonathan Jones; Richard Turcotte; Bradley Onken

    2007-01-01

    Imidacloprid is a nonvolatile insecticide and its direct quantification is not possible by gas chromatography. In order to ascertain imidacloprid levels in soil and trunk injection treated trees, a sensitive and selective method has been developed using GC/MS to measure the imidacloprid levels in xylem fluid exudates. In May 2005, a stand of hemlock trees in West...

  20. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  1. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  2. Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees

    OpenAIRE

    Zhang, Ya; Lamarque, Laurent J.; Torres-Ruiz, José Manuel; Schuldt, Bernhard; Karimi, Zohreh; Li, Shan; Qin, De-Wen; Bittencourt, Paulo; Burlett, Régis; Cao, Kun-Fang; Delzon, Sylvain; Oliveira, Rafael; Pereira, Luciano; Jansen, Steven

    2018-01-01

    Methods to estimate xylem embolism resistance generally rely on hydraulic measurements, which can be far from straightforward. Recently, a pneumatic method based on air flow measurements of terminal branch ends was proposed to construct vulnerability curves by linking the amount of air extracted from a branch with the degree of embolism. We applied this novel technique for 10 temperate tree species, including six diffuse, two ring-porous and two gymnosperm species, and compared the pneumatic ...

  3. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  4. Crime among irregular immigrants and the influence of internal border control

    OpenAIRE

    Leerkes, Arjen; Engbersen, Godfried; Leun, Joanne

    2012-01-01

    textabstractBoth the number of crime suspects without legal status and the number of irregular or undocumented immigrants held in detention facilities increased substantially in theNetherlands between 1997 and 2003. In this period, theDutch state increasingly attempted to exclude irregular immigrants from the formal labour market and public provisions. At the same time the registered crime among irregular migrants rose. The 'marginalisation thesis' asserts that a larger number of migrants hav...

  5. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  6. Reference: 170 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rice A et al. 2005 Mar. Plant Cell 17(3):791-803. Environmental time cues, such as photocycles (light/dark) and thermocycles...h is known about entrainment of the Arabidopsis thaliana clock to photocycles, th...e determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RES... an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus

  7. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus1[OPEN

    Science.gov (United States)

    Zeng, Wei; Picard, Kelsey L.; Song, Lili; Wu, Ai-Min; Farion, Isabela M.; Zhao, Jia; Ford, Kris; Bacic, Antony

    2016-01-01

    Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana. We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis. PMID:26951434

  8. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus.

    Science.gov (United States)

    Zeng, Wei; Lampugnani, Edwin R; Picard, Kelsey L; Song, Lili; Wu, Ai-Min; Farion, Isabela M; Zhao, Jia; Ford, Kris; Doblin, Monika S; Bacic, Antony

    2016-05-01

    Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. THE INFRARED SPECTRA OF VERY LARGE IRREGULAR POLYCYCLIC AROMATIC HYDROCARBONS (PAHs): OBSERVATIONAL PROBES OF ASTRONOMICAL PAH GEOMETRY, SIZE, AND CHARGE

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W.; Peeters, Els; Allamandola, Louis J.

    2009-01-01

    The mid-infrared (IR) spectra of six large, irregular polycyclic aromatic hydrocarbons (PAHs) with formulae (C 84 H 24 -C 120 H 36 ) have been computed using density functional theory (DFT). Trends in the dominant band positions and intensities are compared to those of large, compact PAHs as a function of geometry, size, and charge. Irregular edge moieties that are common in terrestrial PAHs, such as bay regions and rings with quartet hydrogens, are shown to be uncommon in astronomical PAHs. As for all PAHs comprised solely of C and H reported to date, mid-IR emission from irregular PAHs fails to produce a strong CC str band at 6.2 μm, the position characteristic of the important, class A astronomical PAH spectra. Earlier studies showed that inclusion of nitrogen within a PAH shifts this to 6.2 μm for PAH cations. Here we show that this band shifts to 6.3 μm in nitrogenated PAH anions, close to the position of the CC stretch in class B astronomical PAH spectra. Thus, nitrogenated PAHs may be important in all sources and the peak position of the CC stretch near 6.2 μm appears to directly reflect the PAH cation to anion ratio. Large irregular PAHs exhibit features at 7.8 μm but lack them near 8.6 μm. Hence, the 7.7 μm astronomical feature is produced by a mixture of small and large PAHs while the 8.6 μm band can only be produced by large compact PAHs. As with the CC str , the position and profile of these bands reflect the PAH cation to anion ratio.

  10. Reproducibility of irregular radiation fields for malignant lymphoma

    International Nuclear Information System (INIS)

    Mock, U.; Dieckmann, K.; Poetter, R.; Molitor, A.M.; Haverkamp, U.

    1998-01-01

    Purpose: Radiation treatment for malignant lymphoma requires large field irradiation with irregular blocks according to the individual anatomy and tumor configuration. For determination of safety margins (PTV) we quantitatively analysed the accuracy of field and block placement with regard to different anatomical regions. Patients and Methods: Forty patients with malignant lymphoma were irradiated using the classical supra-/infradiaphragmatic field arrangements. Treatment was performed with 10-MeV photons and irregularly shaped, large opposing fields. We evaluated the accuracy of field and block placements during the treatment courses by comparing the regularly performed verification - with the simulation films. Deviations were determined with respect to the field edges and the central axis, along the x- and z-axis. Results: With regard to the field edges, mean deviations of 2.0 mm and 3.4 mm were found along the x- and z-axis. The corresponding standard deviations were 3.4 mm and 5.5 mm, respectively. With regard to the shielding blocks, mean displacement along the x- and z-axis was 2.2 mm and 3.8 mm. In addition, overall standard deviations of 5.7 mm (x-axis) and 7.1 mm (z-axis) were determined. During the course of time an improved accuracy of block placement was notable. Conclusion: Systematic analysis of port films gives information for a better defining safety margins in external radiotherapy. Evaluation of verification films on a regular basis improves set-up accuracy by reducing displacements. (orig.) [de

  11. Measurements of electron density irregularities in the ionosphere of Jupiter by Pioneer 10

    International Nuclear Information System (INIS)

    Woo, R.; Yang, F.

    1976-01-01

    In this paper we demonstrate that when the frequency spectrum of the log amplitude fluctuations is used, the radio occultation experiment is a powerful tool for detecting, identifying, and studying ionospheric irregularities. Analysis of the Pioneer 10 radio occultation measurements reveals that the Jovian ionosphere possesses electron density irregularities which are very similar to those found in the earth's ionosphere. This is the first time such irregularities have been found in a planetary ionosphere other than that of earth. The Pioneer 10 results indicate that the spatial wave number spectrum of the electron density irregularities is close to the Kolmogorov spectrum and that the outer scale size is greater than the Fresnel size (6.15 km). This type of spectrum suggests that the irregularities are probably produced by the turbulent dissipation of irregularities larger than the outer scale size

  12. Numerical Investigation of the Influence of the Input Air Irregularity on the Performance of Turbofan Jet Engine

    Science.gov (United States)

    Novikova, Y.; Zubanov, V.

    2018-01-01

    The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.

  13. Arabidopsis CDS blastp result: AK108458 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108458 002-143-D05 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|152379...1|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 2e-35 ...

  14. Arabidopsis CDS blastp result: AK070842 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070842 J023074O14 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|1523791...|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 1e-112 ...

  15. Influence of initial stress, irregularity and heterogeneity on Love-type ...

    Indian Academy of Sciences (India)

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half- space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface.

  16. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  17. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Psomas, A.; Schweingruber, F. H.

    2014-01-01

    Roč. 25, č. 4 (2014), s. 967-977 ISSN 1100-9233 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : dendrochronology * dicotyledon * environmental change * functional traits * herbs * life form * non-forest vegetation * secondary growth * shrub * vegetation cover * wood anatomy * Xylem formation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.709, year: 2014

  18. Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures

    International Nuclear Information System (INIS)

    Xue Ming; Wang Jiang; Deng Bin; Wei Xi-Le; Yu Hai-Tao; Chen Ying-Yuan

    2013-01-01

    The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the ‘Zusanli’ point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate-independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture. (interdisciplinary physics and related areas of science and technology)

  19. Advances in electron dosimetry of irregular fields

    International Nuclear Information System (INIS)

    Mendez V, J.

    1998-01-01

    In this work it is presented an advance in Electron dosimetry of irregular fields for beams emitted by linear accelerators. At present diverse methods exist which are coming to apply in the Radiotherapy centers. In this work it is proposed a method for irregular fields dosimetry. It will be allow to calculate the dose rate absorbed required for evaluating the time for the treatment of cancer patients. Utilizing the results obtained by the dosimetric system, it has been possible to prove the validity of the method describe for 12 MeV energy and for square field 7.5 x 7.5 cm 2 with percentile error less than 1 % . (Author)

  20. New Model for Ionospheric Irregularities at Mars

    Science.gov (United States)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  1. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement... is beginning to define the molecular machinery that controls these movement...s. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabi...dopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensitie...s while maintaining a normal movement response under low light intensities. In wi

  2. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  3. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  4. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging (MRI.

    Directory of Open Access Journals (Sweden)

    Maciej Andrzej Zwieniecki

    2013-07-01

    Full Text Available We report results of an analysis of embolism formation and subsequent refilling observed in stems of Acer rubrum L. using magnetic resonance imaging (MRI. MRI is one of the very few techniques that can provide direct non-destructive observations of the water content within opaque biological materials at a micrometer resolution. Thus, it has been used to determine temporal dynamics and water distributions within xylem tissue. In this study, we found good agreement between MRI measures of pixel brightness to assess xylem liquid water content and the percent loss in hydraulic conductivity (PLC in response to water stress (P50 values of 2.51 and 2.70 for MRI and PLC, respectively. These data provide strong support that pixel brightness is well correlated to PLC and can be used as a proxy of PLC even when single vessels cannot be resolved on the image. Pressure induced embolism in moderately stressed plants resulted in initial drop of pixel brightness. This drop was followed by brightness gain over 100 minutes following pressure application suggesting that plants can restore water content in stem after induced embolism. This recovery was limited only to current year wood ring; older wood did not show signs of recovery within the length of experiment (16 hours. In vivo MRI observations of the xylem of moderately stressed (~-0.5 MPa A. rubrum stems revealed evidence of a spontaneous embolism formation followed by rapid refilling (~30 minutes. Spontaneous (not induced embolism formation was observed only once, despite over 60 hours of continuous MRI observations made on several plants. Thus this observation provide evidence for presence of naturally occurring embolism-refilling cycle in A. rubrum, but it is impossible to infer any conclusions in relation to its frequency in nature.

  5. Edge irregular total labellings for graphs of linear size

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Miškuf, J.

    2009-01-01

    As an edge variant of the well-known irregularity strength of a graph G = (V, E) we investigate edge irregular total labellings, i.e. functions f : V ∪ E → {1, 2, ..., k} such that f (u) + f (u v) + f (v) ≠ f (u) + f (u v) + f (v) for every pair of different edges u v, u v ∈ E. The smallest possi...

  6. Pharmacognostical and phytochemical studies of Helleborus niger L root

    Directory of Open Access Journals (Sweden)

    V Kishor Kumar

    2017-01-01

    Full Text Available Background: Helleborus niger L (Ranunculaceae is used Ayurvedic and Unani systems and other herbal medicine systems. The roots of H. niger have a good medicinal value. Aims: To conduct a pharmacognostical and phytochemical study of H. niger. Materials and Methods: The pharmacognostical studies on roots including parameters such as taxonomical, macroscopic, microscopic characters, physico-chemical, ultra-violet analysis and phytochemical studies are established. Results: Macroscopically, the roots are brownish-black in colour, cylindrical in shape, feeble odour, slightly acrid taste with irregularly branched. Microscopically the root showed the presence of epidermis, air-chambers, fissure periderm, periderm, inner cortex, pith, phloem, xylem, vessels and xylem vessels. Microscopic examination of the powder showed the presence of parenchyma cells, parenchyma mass, periderm, cell inclusion, laticifer, lateral wall pith, perforation, xylem bundle and xylem elements. Ultra-violet and ordinary light analyses with different reagents were conducted to identify the drug in powder form. Physico-chemical evaluation established, Ash values - Total, acid insoluble, water soluble and sulphated ash values were 7.3%, 4.1%, 3.7% and 5.2%, respectively. Extractive values - Alcohol soluble, water soluble and ether soluble extractive values were 22.8%, 7.4% and 5.6%, respectively. Loss on drying was 3.3%. Preliminary phytochemical screening showed the presence of carbohydrate, glycoside, saponins, flavonoid, phytosterols, tannins and phenolic compounds. Conclusions: The results of the study can serve as a valuable resource of pharmacognostic and phytochemical information. This will serve as appropriate, standards for discovery of this plant material in future investigations and applications and also contribute towards establishing pharmacopoeial standards.

  7. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa.

    Science.gov (United States)

    Clifford, Jennifer C; Rapicavoli, Jeannette N; Roper, M Caroline

    2013-06-01

    Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.

  8. Modulation of energy homeostasis in maize and Arabidopsis to develop lines tolerant to drought, genotoxic and oxidative stresses

    Directory of Open Access Journals (Sweden)

    Elizabeth Njuguna

    2018-02-01

    Full Text Available Abiotic stresses cause crop losses worldwide that reduce the average yield by more than 50%. Due to the high energy consumed to enhance the respiration rates, the excessive reactive oxygen species release provokes cell death and, ultimately, whole plant decay. A metabolic engineering approach in maize (Zea mays altered the expression of two poly(ADP-ribosylation metabolic pathway proteins, poly(ADP-ribose polymerase (PARP and ADP-ribose-specifIc Nudix hydrolase (NUDX genes that play a role in the maintenance of the energy homeostasis during stresses. By means of RNAi hairpin silencing and CRISPR/Cas9 gene editing strategies, the PARP expression in maize was downregulated or knocked down. The Arabidopsis NUDX7 gene and its two maize homologs, ZmNUDX2 and ZmNUDX8, were overexpressed in maize and Arabidopsis. Novel phenotypes were observed, such as significant tolerance to oxidative stress and improved yield in Arabidopsis and a trend of tolerance to mild drought stress in maize and in Arabidopsis. Key words: poly(ADP-ribose polymerase, Nudix hydrolase, CRISPR/Cas9, maize, oxidative stress, drought stress

  9. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  10. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.

    Science.gov (United States)

    Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M

    2016-08-01

    We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The application of carbon-isotope measurements to dendro- and xylem-chronology

    International Nuclear Information System (INIS)

    Yonenobu, Hitoshi; Hattori, Yoshiaki; Kikata, Yoji; Mitsutani, Takumi; Nakamura, Toshio.

    1990-01-01

    We measured 14 C/ 13 C Ratio of the Teak. The 14 C excess, which reflects the execution of the tropospheric nuclear tests, is stamped in the Teak trunk. In place of the annual rings this stamp can estimate the xylem-chronologies and more accurate growth rates of tropical trees which have no annual rings. And replacing the shot-pinning method we can estimate the growing period in an annual ring formed especially in 1963-1966, when the 14 C concentration in the tropospheric air changes dramatically. And we measured 14 C-chronologies of the annual rings of O-Hinoki, 14 C-chronologies agree well with dendrochronologies for the past 600 years. And the 14 C chronologies support more determinative cross-dating of the archaeological samples. (author)

  12. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    Directory of Open Access Journals (Sweden)

    Chaolong Jia

    2014-01-01

    Full Text Available Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described.

  13. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  14. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  15. Multi-element bioimaging of Arabidopsis thaliana roots

    DEFF Research Database (Denmark)

    Persson, Daniel Olof; Chen, Anle; Aarts, Mark G.M.

    2016-01-01

    Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventio......Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using...... omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images...... looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion...

  16. Seasonal and Local Time Variations of E-Region Field-Aligned Irregularities Observed with 30.8-MHz Radar at Kototabang, Indonesia

    Directory of Open Access Journals (Sweden)

    Y. Otsuka

    2012-01-01

    Full Text Available A VHF backscatter radar with operating frequency 30.8 MHz has been operated at Kototabang (0.20°S, 100.32°E; dip latitude 10.36°S, Indonesia, since February 2006. We analyzed E-region field-aligned irregularities (FAIs observed by this radar through a year of 2007 and found that the E-region FAI observed at Kototabang can be classified into two groups. One is “descending FAI”. Altitude of the FAI echo region descends with time from 102 km to 88 km altitude during 0700–1000 and 1900–0000 LT in June solstice season. The other is “low-altitude FAI”, which is observed in an altitude range from 88 to 94 km mainly during nighttime. The observed Doppler velocity show distinct local time and altitude dependence. The seasonally averaged zonal velocity above (below approximately 94 km altitude is westward (eastward during daytime and eastward (westward during nighttime. Meridional/vertical velocity perpendicular to the geomagnetic fields is upward during daytime and downward during nighttime. The direction of the FAI velocity above approximately 94 km altitude is consistent with that of the background E × B plasma drifts reported previously.

  17. Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2017-07-01

    Full Text Available Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA and abiotic stresses. Four different-length 5′ deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -1481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf- and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

  18. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato

    Czech Academy of Sciences Publication Activity Database

    Visentin, I.; Vitali, M.; Ferrero, M.; Zhang, Y.; Ruyter-Spira, C.; Novák, Ondřej; Strnad, Miroslav; Lovisolo, C.; Schubert, A.; Cardinale, F.

    2016-01-01

    Roč. 212, č. 4 (2016), s. 954-963 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : abscisic-acid * plant-responses * lotus-japonicus * biosynthesis * arabidopsis * pea * hormone * growth * xylem * soil * abscisic acid (ABA) * drought * strigolactones (SL) * systemic signalling * tomato (Solanum lycopersicum) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.330, year: 2016

  19. Frequency and irregularity of heart rate in drivers suspected of driving under the influence of cannabis.

    Science.gov (United States)

    Khiabani, Hassan Z; Mørland, Jørg; Bramness, Jørgen G

    2008-12-01

    Delta 9-tetrahydrocannabinol (THC) is the major active component of cannabis. Cardiovascular effects of THC have previously been reported: tachycardia after intake, but also bradycardia at higher doses. The purpose of this study was, firstly, to investigate the frequency and irregularity of heart rate in a group of cannabis users in their natural surroundings. We also compared THC-positive drivers with a regular pulse with THC-positive drivers with an irregular pulse. The division of Forensic Toxicology and Drug Abuse (DFTDA) at the Norwegian Institute of Public Heath analyzes blood samples from all drivers suspected of driving under the influence of drugs. We studied pulse rate and regularity in 502 THC-positive drivers who tested negative for other substances. As a control group, we randomly selected 125 drug-negative cases from the database of the DFTDA; no alcohol, narcotics, or medicinal drugs of abuse were detected. The Delta9-THC-positive drivers had a higher mean pulse rate than the control group [82.8 beats/min (SD 16.3) versus 75.6 beats/min (SD 9.2)] and more cases with tachycardia were detected in the Delta9-THC-positive group (19.4% versus 1.6%). There was only one driver with an irregular heart beat in the control group, while there were nine among the Delta9-THC-positive drivers. The drivers with an irregular pulse were over-represented amongst those with the lowest blood Delta9-THC concentrations. This report represents a large study of subjects in a real-life situation and includes observations on pulse frequency, regularity, and blood Delta9-THC concentration. A substantial fraction of Delta9-THC-positive drivers had tachycardia, but there was no correlation between blood Delta9-THC concentration and pulse rate in the present study. We had no further diagnostic information on the cause of the pulse irregularities, but our results indicate that occasional users of cannabis tend to have irregular heart rates at low THC concentrations and at low

  20. Xylem anatomy of the Caesalpiniaceae registered in wood collection of the Universidad Distrital Francisco Jose de Caldas

    International Nuclear Information System (INIS)

    Pulido Rodriguez, Esperanza N; Mateus, Durley; Lozano D, Ivan

    2011-01-01

    The anatomical study of the xylem of 21 species of Caesalpiniaceae registered in the wood collection Jos Anatolio Lastra Rivera (JALR), of the Universidad Distrital Francisco Jose de Caldas, included the macroscopic, microscopic and biometric characterization of the cellular elements that constitute the xylematic tissue. These analyses were developed following parameters defined by the International Association Wood Anatomist Committee (IAWA Committee 1989) and methods established by the Wood Technology Laboratory of Universidad Distrital. Measurements and descriptions were used to prepare identification keys and similarity analysis. The wood of Caesalpiniaceae family illustrated common characteristics in growth rings differentiation, porosity, vessel arrangement, deposits, diameter and length, plates perforation type, alternate and vestured intervessel pits; fibers wall thickness and length; paratracheal axial vasicentric parenchyma, aliform and banded parenchyma and presence of prismatic crystals. Also, variations in anatomical features such us longitudinal channels were found as diagnostic for some genera like Copaifera. The variation and analysis of anatomical characteristics of the xylem tissue allowed to verify some taxonomic relations of the family Caesalpiniaceae, like the observed with the species Mora megistosperma, Mora oleofera, Peltogyne pubescens, Peltogyne paniculata, Sclerolobium odoratissimum and Tachigali polyphylla .

  1. Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance

    NARCIS (Netherlands)

    Gollner, K.; Schweizer, P.; Bai, Y.; Panstruga, R.

    2008-01-01

    Here, an approach based on natural genetic variation was adopted to analyse powdery mildew resistance in Arabidopsis thaliana. ¿ Accessions resistant to multiple powdery mildew species were crossed with the susceptible Col-0 ecotype and inheritance of resistance was analysed. Histochemical staining

  2. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  3. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Science.gov (United States)

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  4. Characterizing spontaneous irregular behavior in coupled map lattices

    International Nuclear Information System (INIS)

    Dobyns, York; Atmanspacher, Harald

    2005-01-01

    Two-dimensional coupled map lattices display, in a specific parameter range, a stable phase (quasi-) periodic in both space and time. With small changes to the model parameters, this stable phase develops spontaneous eruptions of non-periodic behavior. Although this behavior itself appears irregular, it can be characterized in a systematic fashion. In particular, parameter-independent features of the spontaneous eruptions may allow useful empirical characterizations of other phenomena that are intrinsically hard to predict and reproduce. Specific features of the distributions of lifetimes and emergence rates of irregular states display such parameter-independent properties

  5. Characterizing spontaneous irregular behavior in coupled map lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dobyns, York [PEAR, Princeton University Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene Wilhelmstrasse 3a, Freiburg 79098 (Germany)]. E-mail: haa@igpp.de

    2005-04-01

    Two-dimensional coupled map lattices display, in a specific parameter range, a stable phase (quasi-) periodic in both space and time. With small changes to the model parameters, this stable phase develops spontaneous eruptions of non-periodic behavior. Although this behavior itself appears irregular, it can be characterized in a systematic fashion. In particular, parameter-independent features of the spontaneous eruptions may allow useful empirical characterizations of other phenomena that are intrinsically hard to predict and reproduce. Specific features of the distributions of lifetimes and emergence rates of irregular states display such parameter-independent properties.

  6. Thyroid function and body weight in girls with irregular menstrual cycle living in mild iodine deficiency region

    Directory of Open Access Journals (Sweden)

    L Sh Vagapova

    2011-09-01

    Full Text Available To establish the relation of body weight indexes and functional state of thyroid in female adolescents with menstrual cycle disorder, living in the iodine-deficiency region, the investigation was conducted in 130 female adolescents with irregular menses. Obesity incidence and overweight in them was 18.5%, body weight deficiency was 43.8%.37.7% of the girls had normal body weight. Statistically significant differences were not defined according to TSH, fT4 and fT3 in patients with different body weight indexes. So, the results of investigation can help to come to the conclusion about the absence of true correlation between body weight and functional thyroid state in female adolescents with irregular menses.

  7. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  8. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W; Chobot, J M; Niskala, B J; Needhammer, C J

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series.

  9. Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Diallo, Thierno M.O.; Zhao, Xudong; Fancey, Kevin; Li, Deying; Chen, Hongbing

    2016-01-01

    The paper presents an investigation into the energy performance of a novel irregular heat and mass exchanger for dew point cooling which, compared to the existing flat-plate heat exchangers, removed the use of the channel supporting guides and implemented the corrugated heat transfer surface, thus expecting to achieve the reduced air flow resistance, increased heat transfer area, and improved energy efficiency (i.e. Coefficient of Performance (COP)) of the air cooling process. CFD simulation was carried out to determine the flow resistance (K) factors of various elements within the dry and wet channels of the exchanger, while the ‘finite-element’ based ‘Newton-iteration’ numerical simulation was undertaken to investigate its cooling capacity, cooling effectiveness and COP at various geometrical and operational conditions. Compared to the existing flat-plate heat and mass exchangers with the same geometrical dimensions and operational conditions, the new irregular exchanger could achieve 32.9%–37% higher cooling capacity, dew-point and wet-bulb effectiveness, 29.7%–33.3% higher COP, and 55.8%–56.2% lower pressure drop. While undertaking dew point air cooling, the irregular heat and mass exchanger had the optimum air velocity of 1 m/s within the flow channels and working-to-intake air ratio of 0.3, which allowed the highest cooling capacity and COP to be achieved. In terms of the exchanger dimensions, the optimum height of the channel was 5 mm while its length was in the range 1–2 m. Overall, the proposed irregular heat and mass exchanger could lead to significant enhanced energy performance compared to the existing flat-plate dew point cooling heat exchanger of the same geometrical dimensions. To achieve the same amount cooling output, the irregular heat and mass exchanger had the reduced size and cost against the flat-plate ones. - Highlights: • Numerical investigation of an irregular heat and mass exchanger was undertaken. • A

  10. Linking xylem water storage with anatomical parameters in five temperate tree species.

    Science.gov (United States)

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights

  11. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  12. The structure of plasma-density irregularities in the interplanetary medium

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1975-01-01

    The conflict in the literature as to whether the plasma-density spatial spectrum of the irregularities in the interplanetary medium is of Gaussian or power law form is discussed. Particular attention is paid to the interplanetary scintillation effects ascribed to these irregularities. It is shown that the phase-screen theory of scintillations can be invoked to devise a set of critical tests which provide a means of discriminating between the conflicting hypotheses. Differences in the predicted behaviour of the single sensor temporal spectra of the scintillations for the two irregularity forms provide the main tests of the conflicting hypotheses. However, it is also shown that the two hypotheses lead to different forms of the variation of scintillation index with the observing frequency and the solar elongation of the scintillating source. Consideration is given to the optimum conditions for observing the Fourier and Bessel temporal spectra modulation which is due to the Fresnel filtering of the spatial spectrum. Determination of irregularity shape, orientation and motion in terms of this modulation is also discussed. (author)

  13. Xylem and Leaf Functional Adjustments to Drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary.

    Science.gov (United States)

    Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D; Cañellas, Isabel; Gea-Izquierdo, Guillermo

    2017-01-01

    Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1-3 weeks earlier in P. sylvestris . The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris

  14. Xylem and Leaf Functional Adjustments to Drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary

    Directory of Open Access Journals (Sweden)

    Laura Fernández-de-Uña

    2017-07-01

    Full Text Available Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1–3 weeks earlier in P. sylvestris. The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought

  15. On the Automatic Parallelization of Sparse and Irregular Fortran Programs

    Directory of Open Access Journals (Sweden)

    Yuan Lin

    1999-01-01

    Full Text Available Automatic parallelization is usually believed to be less effective at exploiting implicit parallelism in sparse/irregular programs than in their dense/regular counterparts. However, not much is really known because there have been few research reports on this topic. In this work, we have studied the possibility of using an automatic parallelizing compiler to detect the parallelism in sparse/irregular programs. The study with a collection of sparse/irregular programs led us to some common loop patterns. Based on these patterns new techniques were derived that produced good speedups when manually applied to our benchmark codes. More importantly, these parallelization methods can be implemented in a parallelizing compiler and can be applied automatically.

  16. NEOWISE: OBSERVATIONS OF THE IRREGULAR SATELLITES OF JUPITER AND SATURN

    Energy Technology Data Exchange (ETDEWEB)

    Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Bauer, J. M.; Mainzer, A. K.; Masiero, J. R.; Sonnett, S.; Kramer, E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Nugent, C. R.; Cutri, R. M., E-mail: tgrav@psi.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-08-10

    We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE data set. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and provide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular satellites. The best-fit thermal model beaming parameters are comparable to what is observed for other small bodies in the outer solar system, while the visible, W1, and W2 albedos trace the taxonomic classifications previously established in the literature. Reflectance properties for the irregular satellites measured are similar to the Jovian Trojan and Hilda Populations, implying common origins.

  17. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Yoshihara, Ryohei; Nozawa, Shigeki; Hase, Yoshihiro; Sakamoto, Ayako N.; Narumi, Issay; Hidema, Jun

    2013-01-01

    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12 C 6+ ), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12 C 6+ . Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12 C 6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12 C 6+ , however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. (author)

  19. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    Science.gov (United States)

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and

  20. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  1. Crime among irregular immigrants and the influence of internal border control

    NARCIS (Netherlands)

    Leerkes, A.S.; Engbersen, G.; Leun, van der J.P.

    2012-01-01

    Abstract Both the number of crime suspects without legal status and the number of irregular or undocumented immigrants held in detention facilities increased substantially in theNetherlands between 1997 and 2003. In this period, theDutch state increasingly attempted to exclude irregular immigrants

  2. Crime among irregular immigrants and the influence of internal border control

    NARCIS (Netherlands)

    A.S. Leerkes (Arjen); G.B.M. Engbersen (Godfried); J.P. van der Leun (Joanne)

    2012-01-01

    textabstractBoth the number of crime suspects without legal status and the number of irregular or undocumented immigrants held in detention facilities increased substantially in theNetherlands between 1997 and 2003. In this period, theDutch state increasingly attempted to exclude irregular

  3. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    Science.gov (United States)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  4. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Bajaj, Mamta; Moriyama, Hideaki

    2007-01-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V M of 1.8 Å 3 Da −1

  5. You Shall Not Pass: Root Vacuoles as a Symplastic Checkpoint for Metal Translocation to Shoots and Possible Application to Grain Nutritional Quality

    Directory of Open Access Journals (Sweden)

    Felipe K. Ricachenevsky

    2018-04-01

    Full Text Available Plant nutrient uptake is performed mostly by roots, which have to acquire nutrients while avoiding excessive amounts of essential and toxic elements. Apoplastic barriers such as the casparian strip and suberin deposition block free diffusion from the rhizosphere into the xylem, making selective plasma membrane transporters able to control elemental influx into the root symplast, efflux into the xylem and therefore shoot translocation. Additionally, transporters localized to the tonoplast of root cells have been demonstrated to regulate the shoot ionome, and may be important for seed elemental translocation. Here we review the role of vacuolar transporters in the detoxification of elements such as zinc (Zn, manganese (Mn, cadmium (Cd, cobalt (Co and nickel (Ni that are co-transported with iron (Fe during the Fe deficiency response in Arabidopsis thaliana, and the possible conservation of this mechanism in rice (Oryza sativa. We also discuss the evidence that vacuolar transporters are linked to natural variation in shoot ionome in Arabidopsis and rice, indicating that vacuolar storage might be amenable to genetic engineering without strong phenotypical changes. Finally, we discuss the possible use of root’s vacuolar transporters to increase the nutritional quality of crop grains.

  6. Generating Performance Models for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav; Kerbyson, Darren J.; Hoisie, Adolfy

    2017-05-30

    Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scaling when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.

  7. The Simbox Experiment with Arabidopsis Thaliana Cell Cultures: Hardware-Tests and First Resutls from the German-Chinese satellite Mission Shenzhou 8

    Science.gov (United States)

    Fengler, Svenja; Neef, Maren; Ecke, Margret; Hampp, Ruediger

    2013-02-01

    The Simbox experiment was the first joint German-Chinese space project. In this context Arabidopsis thaliana cell cultures were exposed to microgravity for a 17-day period. To carry out a successful space mission, diverse hardware tests were performed in advance. Due to the limited oxygen supply inside the hardware units, cells were fixed after 5 days under microgravity conditions. As a control, samples were exposed in an on-board 1g reference centrifuge. To investigate the space effect, a ground-based study was performed with the same hardware and identical experimental procedures. As we were able to obtain high quality RNA from the RNAlater quenched samples, we used the Affymetrix Arabidopsis genome array for a transcriptome analysis. Our experiment aimed at the identification of plant genes that were differentially expressed after long-term exposure to microgravity. Pair-wise comparison of flight samples with 1g controls revealed the largest differences between space 1g and ground 1g controls.

  8. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress.

    Science.gov (United States)

    Gao, Limei; Li, Yongfeng; Shen, Zhihua; Han, Rong

    2018-05-01

    UV-B acclimation effects and UV-B damage repair induced by a 632.8-nm He-Ne laser were investigated in Arabidopsis thaliana plants in response to supplementary UV-B stress. There was an increasing trend in growth parameters in the combination-treated plants with He-Ne laser and UV-B light compared to those stressed with enhanced UV-B light alone during different developmental stages of plants. The photosynthetic efficiency (Pn) and survival rates of seedlings were significantly higher in the combination treatments than UV-B stress alone. The expression of UVR8, phytochrome B (PhyB), and their mediated signal responsive genes such as COP1, HY5, and CHS were also significantly upregulated in plants with the laser irradiation compared with other groups without the laser. Levels of flavonol accumulation in leaves and capsule yield of He-Ne laser-treated plants were increased. The phyB-9 mutants were more sensitive to enhanced UV-B stress and had no obvious improvements in plant phenotypic development and physiological damage caused by enhanced UV-B stress after He-Ne laser irradiation. Our results suggested that UVR8 and its mediated signaling pathway via interaction with COP1 can be induced by He-Ne laser, and these processes were dependent on cytoplasmic PhyB levels in plant cells, which might be one of the most important mechanisms of He-Ne laser on UV-B protection and UV-B damage repair. These current data have also elucidated that the biostimulatory effects of He-Ne laser on Arabidopsis thaliana plants would happen not only during the early growth stage but also during the entire late developmental stage.

  9. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere.

    Science.gov (United States)

    Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; Huang, Jian-Guo; Jyske, Tuula; Kašpar, Jakub; King, Gregory; Krause, Cornelia; Liang, Eryuan; Mäkinen, Harri; Morin, Hubert; Nöjd, Pekka; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K; Saracino, Antonio; Swidrak, Irene; Treml, Václav

    2016-11-01

    The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C -1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere. © 2016 John Wiley & Sons Ltd.

  10. A study of the H I and optical properties of Low Surface Brightness galaxies: spirals, dwarfs, and irregulars

    Science.gov (United States)

    Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.

    2018-06-01

    We present a study of the H I and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars, and dwarfs. Of these, we could use ˜490 LSBGs to study their H I and stellar masses, colours, and colour-magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in H I and stellar masses, and have a similar M_{H I}/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average H I and stellar masses, both of about 109.8 M⊙. The LSGBs' (g - r) integrated colour is nearly constant as function of H I mass for all classes. In the colour-magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the M_{H I}/M⋆-M⋆ plane. Within their local environment, we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the H I mass, stellar mass, and number of neighbours indicate that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and H I evolution than the dwarfs and irregulars.

  11. Effects of magnetic storm phases on F layer irregularities below the auroral oval

    International Nuclear Information System (INIS)

    Aarons, J.; Gurgiolo, C.; Rodger, A.S.

    1988-01-01

    Observations of F-layer irregularity development and intensity were obtained between September and October 1981, primarily over subauroral latitudes in the area of the plasmapause. The results reveal the descent of the auroral irregularity region to include subauroral latitudes in the general area of the plasmapause during the main phases of a series of magnetic storms. Irregularities were found primarily at lower latitudes during the subauroral or plasmapause storm. A model for the subauroral irregularities in recovery phases of magnetic storms is proposed in which energy stored in the ring current is slowly released. 27 references

  12. Dependence on zenith angle of the strength of 3-meter equatorial electrojet irregularities

    International Nuclear Information System (INIS)

    Ierkic, H.M.; Fejer, B.G.; Farley, D.T.

    1980-01-01

    Radar measurements in Peru were used to deduce the zenith angle dependence of the scattering cross section of plasma irregularities generated by instabilities in the equatorial electrojet. The irregularities probed by the 50 MHz Jicamarca radar had a wavelength of 3m. The cross section for the type 2 irregularities was isotopic in the plane perpendicular to the magnetic field, while the cross section for the stronger type 1 irregularities varied with zenith angle at a rate of approximately 0.3 dB/degree; the horizontally traveling waves were more than 100 times stronger than those traveling vertically

  13. Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Václavík, L.; Mishra, Anamika; Mishra, Kumud; Hajslova, J.

    2013-01-01

    Roč. 405, č. 8 (2013), s. 2671-2683 ISSN 1618-2642 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC08055 Institutional support: RVO:67179843 Keywords : cold tolerance * Arabidopsis thaliana * metabolomic fingerprinting * LC-MS * DART-MS * chemometric analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.578, year: 2013

  14. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Spatial irregularities in Jupiter's upper ionosphere observed by voyager radio occultations

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, D.P.; Tyler, G.L.

    1982-07-01

    Dual frequency radio occultation experiments carried out with Voyagers 1 and 2 provided data on the spatial irregularities in Jupiter's ionosphere at four different locations. Sample spectra of weak fluctuations in amplitude and phase of the 3.6-cm and 13-cm wavelength radio signals can be interpreted by using the theory for scattering from an anisotropic power law phase screen. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yielded estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. Equipment limitations and the method of analysis constrain the observations to irregularities of approximate size 1--200 km. No evidence of the inner or outer scale of the irregularities was found. For length scales in the range given, the three-dimensional spatial spectrum obeys a power law with exponent varying from -3.0 to -3.7, and the root mean square fractional variations in electron density are 1--15%. All observed irregularities appear to be anisotropic with axial ratios between 2:1 and 10:1. Ionospheric parameters vary with altitude and latitude. We conclude that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  16. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  17. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  18. Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features.

    Science.gov (United States)

    Nardini, Andrea; Dimasi, Federica; Klepsch, Matthias; Jansen, Steven

    2012-12-01

    The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of k(xyl), either as a result of high evaporative demand or increased risk of hydraulic failure.

  19. Irregular menses: an independent risk factor for gestational diabetes mellitus.

    Science.gov (United States)

    Haver, Mary Claire; Locksmith, Gregory J; Emmet, Emily

    2003-05-01

    Our purpose was to determine whether a history of irregular menses predicts gestational diabetes mellitus independently of traditional risk factors. We analyzed demographic characteristics, body mass index, and menstrual history of 85 pregnant women with gestational diabetes mellitus and compared them with 85 systematically selected control subjects who were matched for age, race, and delivery year. Subjects with pregestational diabetes mellitus, previous gestational diabetes mellitus, family history of diabetes mellitus, weight >200 pounds, previous macrosomic infants, or previous stillbirth were excluded. Demographic characteristics between case and control groups were similar. Mean body mass index was higher among cases (26.5 kg/m(2)) versus control subjects (24.5 kg/m(2), P =.004). Irregular cycles were more prevalent in the cases (24% vs 7%, P =.006). With the use of body mass index as a stratification factor, menstrual irregularity maintained a strong association with gestational diabetes mellitus (P =.014). A history of irregular menstrual cycles was a significant independent predictor of gestational diabetes mellitus. If selective screening is implemented for gestational diabetes mellitus, such history should be considered in the decision of whom to test.

  20. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  1. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  2. FIP1 Plays an Important Role in Nitrate Signaling and Regulates CIPK8 and CIPK23 Expression in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2018-05-01

    Full Text Available Unraveling the molecular mechanisms of nitrate regulation and deciphering the underlying genetic network is vital for elucidating nitrate uptake and utilization in plants. Such knowledge could lead to the improvement of nitrogen-use efficiency in agriculture. Here, we report that the FIP1 gene (factor interacting with poly(A polymerase 1 plays an important role in nitrate signaling in Arabidopsis thaliana. FIP1 encodes a putative core component of the polyadenylation factor complex. We found that FIP1 interacts with the cleavage and polyadenylation specificity factor 30-L (CPSF30-L, which is also an essential player in nitrate signaling. The induction of nitrate-responsive genes following nitrate treatment was inhibited in the fip1 mutant. The nitrate content was also reduced in fip1 seedlings due to their decreased nitrate uptake activity. Furthermore, the nitrate content was higher in the roots but lower in the roots of fip1, which may result from the downregulation of NRT1.8 and the upregulation of the nitrate assimilation genes. In addition, qPCR analyses revealed that FIP1 negatively regulated the expression of CIPK8 and CIPK23, two protein kinases involved in nitrate signaling. In the fip1 mutant, the increased expression of CIPK23 may affect nitrate uptake, resulting in its lower nitrate content. Genetic and molecular evidence suggests that FIP1 and CPSF30-L function in the same nitrate-signaling pathway, with FIP1 mediating signaling through its interaction with CPSF30-L and its regulation of CIPK8 and CIPK23. Analysis of the 3′-UTR of NRT1.1 showed that the pattern of polyadenylation sites was altered in the fip1 mutant. These findings add a novel component to the nitrate regulation network and enhance our understanding of the underlying mechanisms for nitrate signaling.

  3. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  4. Backscatter measurements of 11-cm equatorial spread-F irregularities

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    In the equatorial F-region ionosphere, a turbulent cascade process has been found to exist that extends from irregularity spatial wavelengths longer than tens of kilometers down to wavelengths as short as 36 cm. To investigate the small-scale regime of wavelengths less than 36 cm, an equatorial radar experiment was conducted using a frequency of 1320 MHz that corresponds to an irregularity wavelength of 11 cm. The first observations of radar backscatter from 11-cm field-aligned irregularities (FAI) are described. These measurements extend the spatial wavelength regime of F-region FAI to lengths that approach both electron gyroradius and the Debye length. Agreement of these results with the theory of high-frequency drift waves suggests that these observations may be unique to the equatorial ionosphere. That is, the requirement of low electron densities for which the theroy calls may preclude the existence of 11-cm FAI elsewhere in the F-region ionosphere, except in equatorial plasma bubbles

  5. Vascular Morphodynamics During Secondary Growth.

    Science.gov (United States)

    de Reuille, Pierre Barbier; Ragni, Laura

    2017-01-01

    Quantification of vascular morphodynamics during secondary growth has been hampered by the scale of the process. Even in the tiny model plant Arabidopsis thaliana, the xylem can include more than 2000 cells in a single cross section, rendering manual counting impractical. Moreover, due to its deep location, xylem is an inaccessible tissue, limiting live imaging. A novel method to visualize and measure secondary growth progression has been proposed: "the Quantitative Histology" approach. This method is based on a detailed anatomical atlas, and image segmentation coupled with machine learning to automatically extract cell shapes and identify cell type. Here we present a new version of this approach, with a user-friendly interface implemented in the open source software LithoGraphX.

  6. Investigation on the Assimilation of Nitrogen by Maize Roots and the Transport of Some Major Nitrogen Compounds by Xylem Sap. III

    DEFF Research Database (Denmark)

    Ivanko, S.; Ingversen, J.

    1971-01-01

    Xylem sap was collected from nitrogen-starved maize plants and investigations were made on the nitrogen transported. It appears from the results that several pools for different amino acids exist, which have different relations to the transport of nitrogen taken up. While in maize roots Glu, Glu...

  7. Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.

    Directory of Open Access Journals (Sweden)

    Yahya Karimipanah

    Full Text Available A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at a critical regime, which is defined as a transition point between two phases of short lasting and chaotic activity. However, despite the fact that criticality brings about certain functional advantages for information processing, its supporting evidence is still far from conclusive, as it has been mostly based on power law scaling of size and durations of cascades of activity. Moreover, to what degree such hypothesis could explain some fundamental features of neural activity is still largely unknown. One of the most prevalent features of cortical activity in vivo is known to be spike irregularity of spike trains, which is measured in terms of the coefficient of variation (CV larger than one. Here, using a minimal computational model of excitatory nodes, we show that irregular spiking (CV > 1 naturally emerges in a recurrent network operating at criticality. More importantly, we show that even at the presence of other sources of spike irregularity, being at criticality maximizes the mean coefficient of variation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that such a maximized irregularity results in maximum correlation between neuronal firing rates and their corresponding spike irregularity (measured in terms of CV. On the one hand, using a model in the universality class of directed percolation, we propose new hallmarks of criticality at single-unit level, which could be applicable to any network of excitable nodes. On the other hand, given the controversy of the neural criticality hypothesis, we discuss the limitation of this approach to neural systems and to what degree they support the criticality hypothesis in real neural networks. Finally

  8. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.

    Science.gov (United States)

    Curthoys, Ian S; Kim, Juno; McPhedran, Samara K; Camp, Aaron J

    2006-11-01

    6-8 g and was usually around 60-70 dB above the animal's own ABR threshold for BCV clicks). Regular otolithic afferents likewise had a poor response; only 14 of 99 tested (14.1%) showed any increase in firing rate up to the maximum BCV stimulus level. However, most irregular otolithic afferents (82.8%) showed a clear increase in firing rate in response to BCV stimuli: of the 58 irregular otolith neurons tested, 48 were activated, with some being activated at very low intensities (only about 10 dB above the animal's ABR threshold to BCV clicks). Most of the activated otolith afferents were in the superior division of the vestibular nerve and were probably utricular afferents. That was confirmed by evidence using juxtacellular injection of neurobiotin near BCV activated neurons to trace their site of origin to the utricular macula. We conclude there is a very clear preference for irregular otolith afferents to be activated selectively by BCV stimuli at low stimulus levels and that BCV stimuli activate some utricular irregular afferent neurons. The BCV generates compressional and shear waves, which travel through the skull and constitute head accelerations, which are sufficient to stimulate the most sensitive otolithic receptor cells.

  9. Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots

    NARCIS (Netherlands)

    Gujas, Bojan; Cruz, Tiago M D; Kastanaki, Elizabeth; Vermeer, Joop E M; Munnik, Teun; Rodriguez-Villalon, Antia

    2017-01-01

    The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big

  10. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  11. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  12. Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil

    Directory of Open Access Journals (Sweden)

    S. Savio Odriozola

    2017-03-01

    Full Text Available A two-stage VS-30 Orion rocket was launched from the equatorial rocket launching station in Alcântara, Brazil, on 8 December 2012 soon after sunset (19:00 LT, carrying a Langmuir probe operating alternately in swept and constant bias modes. At the time of launch, ground equipment operated at equatorial stations showed rapid rise in the base of the F layer, indicating the pre-reversal enhancement of the F region vertical drift and creating ionospheric conditions favorable for the generation of plasma bubbles. Vertical profiles of electron density estimated from Langmuir probe data showed wave patterns and small- and medium-scale plasma irregularities in the valley region (100–300 km during the rocket upleg and downleg. These irregularities resemble those detected by the very high frequency (VHF radar installed at Jicamarca and so-called equatorial quasi-periodic echoes. We present evidence suggesting that these observations could be the first detection of this type of irregularity made by instruments onboard a rocket.

  13. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    Science.gov (United States)

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks...to 00-00-2012 4. TITLE AND SUBTITLE Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks 5a. CONTRACT NUMBER 5b

  14. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis.

    Science.gov (United States)

    Gillmor, C Stewart; Lukowitz, Wolfgang; Brininstool, Ginger; Sedbrook, John C; Hamann, Thorsten; Poindexter, Patricia; Somerville, Chris

    2005-04-01

    Mutations at five loci named PEANUT1-5 (PNT) were identified in a genetic screen for radially swollen embryo mutants. pnt1 cell walls showed decreased crystalline cellulose, increased pectins, and irregular and ectopic deposition of pectins, xyloglucans, and callose. Furthermore, pnt1 pollen is less viable than the wild type, and pnt1 embryos were delayed in morphogenesis and showed defects in shoot and root meristems. The PNT1 gene encodes the Arabidopsis thaliana homolog of mammalian PIG-M, an endoplasmic reticulum-localized mannosyltransferase that is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor. All five pnt mutants showed strongly reduced accumulation of GPI-anchored proteins, suggesting that they all have defects in GPI anchor synthesis. Although the mutants are seedling lethal, pnt1 cells are able to proliferate for a limited time as undifferentiated callus and do not show the massive deposition of ectopic cell wall material seen in pnt1 embryos. The different phenotype of pnt1 cells in embryos and callus suggest a differential requirement for GPI-anchored proteins in cell wall synthesis in these two tissues and points to the importance of GPI anchoring in coordinated multicellular growth.

  15. Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24.

    Directory of Open Access Journals (Sweden)

    Sharmin Islam

    Full Text Available Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT. Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.

  16. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung; Kim, SoonKap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-01-01

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  17. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung

    2016-01-11

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  18. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Mamta [School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States); Moriyama, Hideaki, E-mail: hmoriyama2@unl.edu [Department of Chemistry, e-Toxicology and Biotechnology, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, Nebraska 68588-0304 (United States); School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States)

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  19. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  20. Application of the pothole DAF method to vehicles traversing periodic roadway irregularities

    Science.gov (United States)

    Pesterev, A. V.; Bergman, L. A.; Tan, C. A.; Yang, B.

    2005-01-01

    This paper is a sequel to the work discussed in Pesterev et al. (Journal of Sound and Vibration, in press). In that paper, it was suggested that the technique to determine the effect of a local road surface irregularity on the dynamics of a vehicle modelled as a linear multi-degree-of-freedom system relies on the so-called pothole dynamic amplification factor (DAF), which is a complex-valued function specific to the irregularity shape. This paper discusses the companion problem of how to determine the DAF function for an irregularity represented as a superposition of simpler ones. Another purpose of this paper is to demonstrate the application of the pothole DAF functions technique to finding a priori estimates of the effect of irregularities with a repeated structure. Specifically, we solve the problem of finding the conditions under which the dynamic effect of two identical potholes located one after another is greater than that due to the single pothole. We also find the estimate for the number of periods of a periodic irregularity that are sufficient in order to consider the oscillator response as steady state. The discussions are illustrated by numerical examples.

  1. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, D. [Institute for Advanced Study (IAS), Princeton, NJ (United States); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S{sup 4}. (orig.)

  2. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    International Nuclear Information System (INIS)

    Gaiotto, D.; Teschner, J.

    2012-03-01

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S 4 . (orig.)

  3. Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    DEFF Research Database (Denmark)

    Palma, K.; Thorgrimsen, S.; Malinovsky, F.G.

    2010-01-01

    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death....... The accelerated cell death 11 (acd11) "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown......, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity....

  4. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  5. Effects of surface irregularities on intensity data from laser scanning: an experimental approach.

    Directory of Open Access Journals (Sweden)

    G. Teza

    2008-06-01

    Full Text Available The results of an experiment carried out with the aim to investigate the role of surface irregularities on the intensity data provided by a terrestrial laser scanner (TLS survey are reported here. Depending on surface roughness, the interaction between an electromagnetic wave and microscopic irregularities leads to a Lambertian-like diffusive light reflection, allowing the TLS to receive the backscattered component of the signal. The described experiment consists in a series of TLS-based acquisitions of a rotating artificial target specifically conceived in order to highlight the effects on the intensity data due to surface irregularity. This target is articulated in a flat plate and in an irregular surface, whose macro-roughness has a characteristic length with the same order of the spot size. Results point out the different behavior of the plates. The intensity of the signal backscattered by the planar element decreases if the incidence angle increases, whereas the intensity of the signal backscattered by the irregular surface is almost constant if the incidence angle varies. Since the typical surfaces acquired in a geological/geophysical survey are generally irregular, these results imply that the intensity data can be easily used in order to evaluate the reflectance of the material at the considered wavelength, e.g. for pattern recognition purposes.

  6. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geon; Shin, Kyo Chul [Dankook Univ., College of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., College of Medicine, Seoul (Korea, Republic of); Lee, Hyoung Koo [The Catholic Univ., College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within {+-}1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within {+-}1.0% in most situations and within {+-}3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry.

  7. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    International Nuclear Information System (INIS)

    Yun, Hyong Geon; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within ±1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ±1.0% in most situations and within ±3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry

  8. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)

    2016-11-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  9. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    International Nuclear Information System (INIS)

    Jiang, Yu; Baoyin, Hexi

    2016-01-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  10. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    International Nuclear Information System (INIS)

    Johnson, A.L.

    1988-01-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references

  11. On the Total Edge Irregularity Strength of Generalized Butterfly Graph

    Science.gov (United States)

    Dwi Wahyuna, Hafidhyah; Indriati, Diari

    2018-04-01

    Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .

  12. Exploring Manycore Multinode Systems for Irregular Applications with FPGA Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Ceriani, Marco; Palermo, Gianluca; Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2013-04-29

    We present a prototype of a multi-core architecture implemented on FPGA, designed to enable efficient execution of irregular applications on distributed shared memory machines, while maintaining high performance on regular workloads. The architecture is composed of off-the-shelf soft-core cores, local interconnection and memory interface, integrated with custom components that optimize it for irregular applications. It relies on three key elements: a global address space, multithreading, and fine-grained synchronization. Global addresses are scrambled to reduce the formation of network hot-spots, while the latency of the transactions is covered by integrating an hardware scheduler within the custom load/store buffers to take advantage from the availability of multiple executions threads, increasing the efficiency in a transparent way to the application. We evaluated a dual node system irregular kernels showing scalability in the number of cores and threads.

  13. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses

    Science.gov (United States)

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 7...

  14. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees.

    Science.gov (United States)

    J.C. Domec; B. Lachenbruch; F.C. Meinzer

    2006-01-01

    The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs...

  15. Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy

    Science.gov (United States)

    Peter Kitin; Steven L. Voelker; Frederick C. Meinzer; Hans Beekman; Steven H. Strauss; Barbara. Lachenbruch

    2010-01-01

    Of 14 transgenic poplar genotypes (Populus tremula x Populus alba) with antisense 4-coumarate:coenzynle A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small...

  16. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Science.gov (United States)

    2011-01-01

    Background All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. Results This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species

  17. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    Science.gov (United States)

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  18. Seismic performance for vertical geometric irregularity frame structures

    Science.gov (United States)

    Ismail, R.; Mahmud, N. A.; Ishak, I. S.

    2018-04-01

    This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.

  19. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    Science.gov (United States)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  20. Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root

    Science.gov (United States)

    Xu, Lina

    2018-02-01

    CuO NPs, the size ranging from 20 to 80 nm were used to detect the adsorption and inhibition on the Arabidopsis thaliana roots. In this study, CuO NPs were adsorbed and agglomerated on the surface of root top after exposed for 7 days. With the increasing of CuO NPs concentrations, CuO NPs also adsorbed on the meristernatic zone. The growth of Arabidopsis thaliana lateral roots were also inhibited by CuO NPs exposure. The Inhibition were concentration dependent. The number of root top were 246, 188 and 123 per Arabidopsis thaliana, respectively. The number of root tops after CuO NPs exposure were significantly decreased compared with control groups. This results suggested the phytotoxicity of CuO NPs on Arabidopsis thaliana roots.

  1. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™

    OpenAIRE

    Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.

    2015-01-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high perfo...

  2. Irregular menses predicts ovarian cancer: Prospective evidence from the Child Health and Development Studies.

    Science.gov (United States)

    Cirillo, Piera M; Wang, Erica T; Cedars, Marcelle I; Chen, Lee-May; Cohn, Barbara A

    2016-09-01

    We tested the hypothesis that irregular menstruation predicts lower risk for ovarian cancer, possibly due to less frequent ovulation. We conducted a 50-year prospective study of 15,528 mothers in the Child Health and Development Studies cohort recruited from the Kaiser Foundation Health Plan from 1959 to 1966. Irregular menstruation was classified via medical record and self-report at age 26. We identified 116 cases and 84 deaths due to ovarian cancer through 2011 via linkage to the California Cancer Registry and Vital Statistics. Contrary to expectation, women with irregular menstrual cycles had a higher risk of ovarian cancer incidence and mortality over the 50-year follow-up. Associations increased with age (p irregular menstruation and ovarian cancer-we unexpectedly found higher risk for women with irregular cycles. These women are easy to identify and many may have polycystic ovarian syndrome. Classifying high-risk phenotypes such as irregular menstruation creates opportunities to find novel early biomarkers, refine clinical screening protocols and potentially develop new risk reduction strategies. These efforts can lead to earlier detection and better survival for ovarian cancer. © 2016 UICC.

  3. Comparison of correlation analysis techniques for irregularly sampled time series

    Directory of Open Access Journals (Sweden)

    K. Rehfeld

    2011-06-01

    Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.

    All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.

    We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.

  4. Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Morales Andrea

    2008-05-01

    Full Text Available Abstract Background The isolation of green fluorescent protein (GFP and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types. Results We generated a transgenic Arabidopsis plant that contains four spectrally different fluorescent proteins. Nuclei, plastids, mitochondria and plasma membranes were genetically tagged with cyan, red, yellow and green fluorescent proteins, respectively. In addition, methods to track nuclei, mitochondria and chloroplasts and quantify the interaction between these organelles at a submicron resolution were developed. These analyzes revealed that N-ethylmaleimide disrupts nuclear-mitochondrial but not nuclear-plastids interactions in root epidermal cells of live Arabidopsis seedlings. Conclusion We developed a tool and associated methods for analyzing the complex dynamic of organelle-organelle interactions in real time in planta. Homozygous transgenic Arabidopsis (Kaleidocell is available through Arabidopsis Biological Resource Center.

  5. Optimized Irregular Low-Density Parity-Check Codes for Multicarrier Modulations over Frequency-Selective Channels

    Directory of Open Access Journals (Sweden)

    Valérian Mannoni

    2004-09-01

    Full Text Available This paper deals with optimized channel coding for OFDM transmissions (COFDM over frequency-selective channels using irregular low-density parity-check (LDPC codes. Firstly, we introduce a new characterization of the LDPC code irregularity called “irregularity profile.” Then, using this parameterization, we derive a new criterion based on the minimization of the transmission bit error probability to design an irregular LDPC code suited to the frequency selectivity of the channel. The optimization of this criterion is done using the Gaussian approximation technique. Simulations illustrate the good performance of our approach for different transmission channels.

  6. Drug Intoxicated Irregular Fighters: Complications, Dangers, and Responses

    National Research Council Canada - National Science Library

    Kan, Paul R

    2008-01-01

    .... Drug consumption in contemporary wars has coincided with the use of child soldiers, has led to increased unpredictability among irregular fighters, provided the conditions for the breakdown of social...

  7. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    Science.gov (United States)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  8. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  9. Artificial periodic irregularities in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    M. T. Rietveld

    1996-12-01

    Full Text Available Artificial periodic irregularities (API are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the

  10. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  11. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C

    2013-02-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity. © 2012 Blackwell Publishing Ltd.

  12. Irregular ionization and scintillation of the ionosphere in equator region

    International Nuclear Information System (INIS)

    Shinno, Kenji

    1974-01-01

    The latest studies on the scintillation in satellite communication and its related irregularities of ionosphere are reviewed. They were made clear by means of spread-F, the direct measurement with scientific satellites, VHF radar observation, and radio wave propagation in equator region. The fundamental occurrence mechanism may be instability of plasma caused by the interaction of movement of neutral atmosphere and magnetic field. Comparison of the main characteristics of scintillation, namely the dependence on region, solar activity, season, local time, geomagnetic activity, movement in ionosphere, scattering source, frequency and transmission mode, was made and the correlation among spread-F, TEP and scintillation was summarized. The latest principal studies were the observations made by Intelsat and by ATS. Scintillation of Syncom-3 and Intelsat-II-F2 and spread-F by ionosphere observation were compared by Huang. It is reasonable to consider that the occurrence of scintillation is caused by the irregularities in ionosphere which are particular in equator region, because of the similar characteristics of spread-F and VHF propagation in the equator region. These three phenomena may occur in relation to the irregularities of ionosphere. Interpretation of spread-F and the abnormal propagation wave across the equator are given. The study using VHF radar and the movement of irregular ionization by the direct observation with artificial satellites are reviewd. (Iwakiri, K.)

  13. Comparative analysis of drought resistance genes in Arabidopsis and rice

    NARCIS (Netherlands)

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  14. Irregular Warfare: New Challenges for Civil-Military Relations

    National Research Council Canada - National Science Library

    Cronin, Patrick M

    2008-01-01

    .... Irregular warfare introduces new complications to what Eliot Cohen has called an unequal dialogue between civilian and military leaders in which civilian leaders hold the true power but must modulate...

  15. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S......-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were...

  16. Method of determining effects of heat-induced irregular refractive index on an optical system.

    Science.gov (United States)

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  17. Significance of scatter radar studies of E and F region irregularities at high latitudes

    International Nuclear Information System (INIS)

    Greenwald, R.A.

    1983-01-01

    This chapter considers the mechanisms by which electron density irregularities may be generated in the high latitude ionosphere and the techniques through which they are observed with ground base radars. The capabilities of radars used for studying these irregularities are compared with the capabilities of radars used for incoherent scatter measurements. The use of irregularity scatter techniques for dynamic studies of larger scale structured phenomena is discussed. Topics considered include E-region irregularities, observations with auroral radars, plasma drifts associated with a westward travelling surge, and ionospheric plasma motions associated with resonant waves. It is shown why high latitude F-region irregularity studies must be made in the HF frequency band (3-30 MHz). The joint use of the European Incoherent Scatter Association (EISCAT), STARE and SAFARI facilities is examined, and it is concluded that the various techniques will enhance each other and provide a better understanding of the various processes being studied

  18. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    Science.gov (United States)

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  19. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  20. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  1. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2016-03-11

    Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.

  2. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe Reitan; Asp, Torben; Mansfield, Shawn

    2009-01-01

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases...... for LAC15 T-DNA mutant seeds and an approximate 24 hour delay in germination was observed for these seeds. An approximate 20% reduction in glucose, galactose, and xylose was observed in primary stem cell walls of the LAC2 T-DNA mutants while similar relative increases in xylose were observed for LAC8...

  3. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    Science.gov (United States)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  4. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol; Choi, Wonkyun; Park, Heejin; Cheong, Misun; Koo, Yoonduck; Shin, Gilok; Chung, Woosik; Kim, Woeyeon; Kim, Mingab; Bressan, Ray Anthony; Bohnert, Hans Jü rgen; Lee, Sangyeol; Yun, Daejin

    2011-01-01

    in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern

  5. [Comparision of Different Methods of Area Measurement in Irregular Scar].

    Science.gov (United States)

    Ran, D; Li, W J; Sun, Q G; Li, J Q; Xia, Q

    2016-10-01

    To determine a measurement standard of irregular scar area by comparing the advantages and disadvantages of different measurement methods in measuring same irregular scar area. Irregular scar area was scanned by digital scanning and measured by coordinate reading method, AutoCAD pixel method, Photoshop lasso pixel method, Photoshop magic bar filled pixel method and Foxit PDF reading software, and some aspects of these methods such as measurement time, repeatability, whether could be recorded and whether could be traced were compared and analyzed. There was no significant difference in the scar areas by the measurement methods above. However, there was statistical difference in the measurement time and repeatability by one or multi performers and only Foxit PDF reading software could be traced back. The methods above can be used for measuring scar area, but each one has its advantages and disadvantages. It is necessary to develop new measurement software for forensic identification. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. Irregular flowering patterns in terrestrial orchids: theories vs. empirical data

    Directory of Open Access Journals (Sweden)

    P. Kindlmann

    2001-11-01

    Full Text Available Empirical data on many species of terrestrial orchids suggest that their between-year flowering pattern is extremely irregular and unpredictable. A long search for the reason has hitherto proved inconclusive. Here we summarise and critically review the hypotheses that were put forward as explanations of this phenomenon: irregular flowering was attributed to costs associated with sexual reproduction, to herbivory, or to the chaotic behaviour of the system represented by difference equations describing growth of the vegetative and reproductive organs. None of these seems to explain fully the events of a transition from flowering one year to sterility or absence the next year. Data on the seasonal growth of leaves and inflorescence of two terrestrial orchid species, Epipactis albensis and Dactylorhiza fuchsii and our previous results are then used here to fill gaps in what has been published until now and to test alternative explanations of the irregular flowering patterns of orchids.

  7. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    Science.gov (United States)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  8. Observations of inner plasmasphere irregularities with a satellite-beacon radio-interferometer array

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Hoogeveen, G.; Carlos, R.C.; Wu, G.; Fejer, B.G.; Kelley, M.C.

    1996-01-01

    A radio-interferometer array illuminated by 136-MHz beacons of several geosynchronous satellites has been used to study small (≥10 13 m -2 ) transient disturbances in the total electron content along the lines of sight to the satellites. High-frequency (f>3 mHz) electron content oscillations are persistently observed, particularly during night and particularly during geomagnetically disturbed periods. The oscillations move across the array plane at speeds in the range 200 endash 2000 m/s, with propagation azimuths that are strongly peaked in lobes toward the western half-plane. Detailed analysis of this azimuth behavior, involving comparison between observations on various satellite positions, indicates compellingly that the phase oscillations originate in radio refraction due to geomagnetically aligned plasma density perturbations in the inner plasmasphere. The motion of the phase perturbations across the array plane is caused by EXB drift of the plasma medium in which the irregularities are embedded. We review the statistics of 2.5 years of around-the-clock data on the local time, magnetic disturbance, seasonal, and line-of-sight variations of these observed irregularities. We compare the irregularities close-quote inferred electrodynamic drifts to what is known about midlatitude plasma drift from incoherent scatter. Finally, we show in detail how the observation of these irregularities provides a unique and complementary monitor of inner plasmasphere irregularity incidence and zonal drift.copyright 1996 American Geophysical Union

  9. Influence of xylem ray integrity and degree of polymerization on bending strength of beech wood decayed by Pleurotus ostreatus and Trametes versicolor

    Science.gov (United States)

    Ehsan Bari; Reza Oladi; Olaf Schmidt; Carol A. Clausen; Katie Ohno; Darrel D. Nicholas; Mehrdad Ghodskhah Daryaei; Maryam Karim

    2015-01-01

    The scope of this research was to evaluate the influence of xylem ray (XR) and degree of polymerization (DP) of holocellulose in Oriental beech wood (Fagus orientalis Lipsky.) on impact bending strength against two white-rot fungi. Beech wood specimens, exposed to Pleurotus ostreatus and Trametes versicolor, were evaluated for...

  10. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  11. Influence of long-wavelength track irregularities on the motion of a high-speed train

    Science.gov (United States)

    Hung, C. F.; Hsu, W. L.

    2018-01-01

    Vertical track irregularities over viaducts in high-speed rail systems could be possibly caused by concrete creep if pre-stressed concrete bridges are used. For bridge spans that are almost uniformly distributed, track irregularity exhibits a near-regular wave profile that excites car bodies as a high-speed train moves over the bridge system. A long-wavelength irregularity induces low-frequency excitation that may be close to the natural frequencies of the train suspension system, thereby causing significant vibration of the car body. This paper investigates the relationship between the levels of car vibration, bridge vibration, track irregularity, and the train speed. First, this study investigates the vibration levels of a high-speed train and bridge system using 3D finite-element (FE) transient dynamic analysis, before and after adjustment of vertical track irregularities by means of installing shimming plates under rail pads. The analysis models are validated by in situ measurements and on-board measurement. Parametric studies of car body vibration and bridge vibration under three different levels of track irregularity at five train speeds and over two bridge span lengths are conducted using the FE model. Finally, a discontinuous shimming pattern is proposed to avoid vehicle suspension resonance.

  12. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  13. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  14. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2012-05-31

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniques in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.

  15. Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes

    Data.gov (United States)

    National Aeronautics and Space Administration — This experiment compared the spaceflight transcriptomes of four commonly used natural variants (ecotypes) of Arabidopsis thaliana using RNAseq. In nature Arabidopsis...

  16. Update History of This Database - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Update History of This Database Date Update contents 2017/02/27 Arabidopsis Phenome Data...base English archive site is opened. - Arabidopsis Phenome Database (http://jphenom...e.info/?page_id=95) is opened. About This Database Database Description Download License Update History of This Database... Site Policy | Contact Us Update History of This Database - Arabidopsis Phenome Database | LSDB Archive ...

  17. Uniform irradiation of irregularly shaped cavities for photodynamic therapy.

    Science.gov (United States)

    Rem, A I; van Gemert, M J; van der Meulen, F W; Gijsbers, G H; Beek, J F

    1997-03-01

    It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a cubical box, a sphere, a cylinder and a 'bottle-neck' geometry have been investigated experimentally and the results have been compared with computed light distributions obtained using the 'radiosity method'. A high reflection coefficient of the mould and the best uniform direct irradiance possible on the inside of the mould were found to be important determinants for achieving a uniform light distribution.

  18. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels

    Directory of Open Access Journals (Sweden)

    Pieretti Isabelle

    2012-11-01

    Full Text Available Abstract Background Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa—another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH, genomic features of two strains differing in pathogenicity. Results Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the “artillery” of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity. Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism

  19. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    Science.gov (United States)

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  20. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.