WorldWideScience

Sample records for arabidopsis freezing tolerance

  1. Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions

    Directory of Open Access Journals (Sweden)

    Lee Yang

    2012-08-01

    Full Text Available Abstract Background Thellungiella has been proposed as an extremophile alternative to Arabidopsis to investigate environmental stress tolerance. However, Arabidopsis accessions show large natural variation in their freezing tolerance and here the tolerance ranges of collections of accessions in the two species were compared. Results Leaf freezing tolerance of 16 Thellungiella accessions was assessed with an electrolyte leakage assay before and after 14 days of cold acclimation at 4°C. Soluble sugars (glucose, fructose, sucrose, raffinose and free polyamines (putrescine, spermidine, spermine were quantified by HPLC, proline photometrically. The ranges in nonacclimated freezing tolerance completely overlapped between Arabidopsis and Thellungiella. After cold acclimation, some Thellungiella accessions were more freezing tolerant than any Arabidopsis accessions. Acclimated freezing tolerance was correlated with sucrose levels in both species, but raffinose accumulation was lower in Thellungiella and only correlated with freezing tolerance in Arabidopsis. The reverse was true for leaf proline contents. Polyamine levels were generally similar between the species. Only spermine content was higher in nonacclimated Thellungiella plants, but decreased during acclimation and was negatively correlated with freezing tolerance. Conclusion Thellungiella is not an extremophile with regard to freezing tolerance, but some accessions significantly expand the range present in Arabidopsis. The metabolite data indicate different metabolic adaptation strategies between the species.

  2. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nair Prasanth

    2012-11-01

    Full Text Available Abstract Background We have previously shown that lipophilic components (LPC of the brown seaweed Ascophyllum nodosum (ANE improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5% in comparison with untreated plants. A total of 463 genes (2% were up regulated while 650 genes (3% were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.

  3. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Rayirath, Prasanth; Benkel, Bernhard; Mark Hodges, D; Allan-Wojtas, Paula; Mackinnon, Shawna; Critchley, Alan T; Prithiviraj, Balakrishnan

    2009-06-01

    Extracts of the brown seaweed Ascophyllum nodosum enhance plant tolerance against environmental stresses such as drought, salinity, and frost. However, the molecular mechanisms underlying this improved stress tolerance and the nature of the bioactive compounds present in the seaweed extracts that elicits stress tolerance remain largely unknown. We investigated the effect of A. nodosum extracts and its organic sub-fractions on freezing tolerance of Arabidopsis thaliana. Ascophyllum nodosum extracts and its lipophilic fraction significantly increased tolerance to freezing temperatures in in vitro and in vivo assays. Untreated plants exhibited severe chlorosis, tissue damage, and failed to recover from freezing treatments while the extract-treated plants recovered from freezing temperature of -7.5 degrees C in in vitro and -5.5 degrees C in in vivo assays. Electrolyte leakage measurements revealed that the LT(50) value was lowered by 3 degrees C while cell viability staining demonstrated a 30-40% reduction in area of damaged tissue in extract treated plants as compared to water controls. Moreover, histological observations of leaf sections revealed that extracts have a significant effect on maintaining membrane integrity during freezing stress. Treated plants exhibited 70% less chlorophyll damage during freezing recovery as compared to the controls, and this correlated with reduced expression of the chlorphyllase genes AtCHL1 and AtCHL2. Further, the A. nodosum extract treatment modulated the expression of the cold response genes, COR15A, RD29A, and CBF3, resulting in enhanced tolerance to freezing temperatures. More than 2.6-fold increase in expression of RD29A, 1.8-fold increase of CBF3 and two-fold increase in the transcript level of COR15A was observed in plants treated with lipophilic fraction of A. nodosum at -2 degrees C. Taken together, the results suggest that chemical components in A. nodosum extracts protect membrane integrity and affect the expression of

  4. Cold Shock Domain Protein 3 Regulates Freezing Tolerance in Arabidopsis thaliana*

    OpenAIRE

    Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo

    2009-01-01

    In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also fu...

  5. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance.

    Science.gov (United States)

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2015-10-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG.

  6. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Brunel Dominique

    2008-10-01

    Full Text Available Abstract Background Plants from temperate regions are able to withstand freezing temperatures due to a process known as cold acclimation, which is a prior exposure to low, but non-freezing temperatures. During acclimation, a large number of genes are induced, bringing about biochemical changes in the plant, thought to be responsible for the subsequent increase in freezing tolerance. Key regulatory proteins in this process are the CBF1, 2 and 3 transcription factors which control the expression of a set of target genes referred to as the "CBF regulon". Results To assess the role of the CBF genes in cold acclimation and freezing tolerance of Arabidopsis thaliana, the CBF genes and their promoters were sequenced in the Versailles core collection, a set of 48 accessions that maximizes the naturally-occurring genetic diversity, as well as in the commonly used accessions Col-0 and WS. Extensive polymorphism was found in all three genes. Freezing tolerance was measured in all accessions to assess the variability in acclimated freezing tolerance. The effect of sequence polymorphism was investigated by evaluating the kinetics of CBF gene expression, as well as that of a subset of the target COR genes, in a set of eight accessions with contrasting freezing tolerance. Our data indicate that CBF genes as well as the selected COR genes are cold induced in all accessions, irrespective of their freezing tolerance. Although we observed different levels of expression in different accessions, CBF or COR gene expression was not closely correlated with freezing tolerance. Conclusion Our results indicate that the Versailles core collection contains significant natural variation with respect to freezing tolerance, polymorphism in the CBF genes and CBF and COR gene expression. Although there tends to be more CBF and COR gene expression in tolerant accessions, there are exceptions, reinforcing the idea that a complex network of genes is involved in freezing tolerance

  7. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Lili Zhuang

    Full Text Available Dehydration-Responsive Element Binding proteins (DREB/C-repeat (CRT Binding Factors (CBF have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L., which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000] or salt stress (150 mM NaCl. Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

  8. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jeong Chan [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Lee, Sangmin [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Shin, Su Young [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Chae, Ho Byoung; Jung, Young Jun [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Jung, Hyun Suk [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Kyun Oh [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Jung Ro, E-mail: leejr73@nie.re.kr [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Department of Biochemistry and Biophysics, Texas A& M University, College Station, TX (United States); Lee, Sang Yeol, E-mail: sylee@gnu.ac.kr [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-08-07

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.

  9. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    International Nuclear Information System (INIS)

    Overexpression of AtNTRC (AtNTRCOE) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro

  10. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Hong, E-mail: Zhai.h@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Yong, E-mail: Yong@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Zuojun, E-mail: jizuojun_2001@163.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Liu, Xiaofei, E-mail: liuxfme@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2010-04-16

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  11. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis.

    OpenAIRE

    Wathugala, D.L.; Richards, S.A.; Knight, H; Knight, M.R.

    2011-01-01

    The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabido...

  12. 磷脂酶D对拟南芥抗冻性的影响%Study on the Effect of Phospholipase D on the Freezing Tolerance of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    赵鹏; 王道龙

    2011-01-01

    为了探索磷脂酶D(PLD)在调控植物抗冻性中的作用,进一步揭示植物抗冻机理和磷脂低温信号转导机制的研究.笔者应用人工气候霜箱,对PLDγ1、PLDγ3基因分别被敲除的拟南芥突变体及野生型材料,进行低温驯化和冻害胁迫处理.试验发现,这2个基因的敲除型无论是经过还是未经过低温驯化冻害处理的离子渗漏率都与相同处理野生型拟南芥的离子渗漏率无显著差异.试验结果表明,PLDT,1和PLDy3这2个基因既未参与组成型调控植物的抗冻性,也未参与低温信号转导过程.%The experiment was purposely to research the effect of phospholipase D on the freezing tolerance of Arabidopsis thaliana, reveal the mechanism of plants freezing tolerance and phospholipid signal transduction.Arabidopsis thaliana mutant PLDγ1 or PLDγ3 was deficient and wild-type was used as materials.The two mutants and wild-type were cold acclimated and freezing stressed using a climate chamber.There were no significant differences between the ion leakage of the mutants and wild-type whether cold acclimation freeze or non-acclimation freeze.The results showed that PLDγ1 and PLDγ3 neither mediate regulation of constitutive freezing tolerance nor low temperature signaling.

  13. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis.

    Science.gov (United States)

    Wathugala, Deepthi L; Richards, Shane A; Knight, Heather; Knight, Marc R

    2011-09-01

    The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabidopsis. OsSFR6 was identified by homology searches, and a full-length coding region isolated using reverse transcription polymerase chain reaction (RT-PCR) from Oryza sativa cDNA. To test for orthology, OsSFR6 was expressed in an Arabidopsis sfr6 loss-of-function mutant background, and restoration of wild-type phenotypes was assessed. Searching the rice genome revealed a single homologue of AtSFR6. Cloning and sequencing the OsSFR6 coding region showed OsSFR6 to have 61.7% identity and 71.1% similarity to AtSFR6 at the predicted protein sequence level. Expression of OsSFR6 in the atsfr6 mutant background restored the wild-type visible phenotype, as well as restoring wild-type levels of COR gene expression and tolerance of osmotic and freezing stresses. OsSFR6 is an orthologue of AtSFR6, and thus a target for future manipulation to improve tolerance to osmotic and other abiotic stresses. PMID:21585388

  14. Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhi-Yan; Zhang, Xin; Schläppi, Michael; Xu, Zi-Qin

    2011-09-01

    AZI1 (AZELAIC ACID INDUCED 1) of Arabidopsis thaliana could be induced by azelaic acid and was involved in priming of systemic plant immunity. In the present work, expression of AZI1 in response to low temperature was investigated via RNA gel blot analysis. AZI1 could be induced slowly by cold stress and more than 6h treatment at 4°C was required to detect an increase in mRNA abundance. However, the high expression state could not be maintained stably and would decline to basal level when the plants were transferred to room temperature. In order to clarify the function of AZI1 in resistance to abiotic stresses, overexpressing, RNA interference and T-DNA knockout lines of this gene were used in electrolyte leakage assays. Overexpression of AZI1 resulted in reduced electrolyte leakage during freezing damage. In contrast, AZI1 knockdown and knockout lines showed increased tendencies in cellular damage after freezing treatment. To further validate the potential resistance of AZI1 to low-temperature stress, Saccharomyces cerevisiae cells were transformed with pESC-AZI1 in which AZI1 was under the control of GAL1 promoter. Compared to yeast cells containing empty pESC-URA, the survival rate of yeast cells harboring AZI1 increased obviously after freezing treatment. All these results suggested that AZI1 might be multifunctional and associated with cold tolerance of Arabidopsis.

  15. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available The C-repeat (CRT/dehydration-responsive element (DRE binding factor (CBF/DREB1 transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1 was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193-228 (SsCBF1(193-228. The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions.

  16. Freeze-Tolerant Condensers

    Science.gov (United States)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  17. Characterization of three Arabidopsis AP2/EREBP family transcription factors involved in ABA sensitivity,freeze and salt tolerance

    Institute of Scientific and Technical Information of China (English)

    MEI WenQian; LEI Juan; Xu Yu; WEI Gang; ZHU YuXian

    2007-01-01

    AP2/EREBP transcription factors (TFs) play very important roles in plant development,hormonal regulation and stress response. Upon genome-wide cDNA cloning,phylogenetic and expression pattern analyses of this plant specific TF family,we found that three of the members including At1g71450,At1g50680 and At5g13910,were likely involved in responses to ABA,cold and salt. Complementary DNAs containing putative full-length ORFs of these three TFs were obtained and fused individually to the GAL4 DNA-binding domains. All the 3 genes functioned effectively as trans-activators using yeast one-hybrid assays. RT-PCR experiments showed that the At1g71450 gene was induced by ABA and low temperature; the At1g50680 gene was responsive to quite a few stress conditions,but especially to freezing temperature; and the At5g13910 gene was induced by high salt treatment,drought and ethylene. By searching the ABRC T-DNA insertion mutant stocks,we obtained knockout lines for these TFs. Homozygous ko1 (At1g71450) plants showed a hypersensitive response to ABA during seed germination and also in stomata movement. Homozygous ko2 (At1g50680) plants showed a significant reduction in plant freezing tolerance compared to the wild type after chilling treatment. Homozygous ko3 (At5g13910) were less tolerant to high salinity than wild type plants. Our data suggest that At1g71450 is a negative regulator in ABA signaling,while At1g50680 and At5g13910 are positive regulators in cold and salt stress responses,respectively.

  18. Anhydrobiosis and Freezing-Tolerance

    DEFF Research Database (Denmark)

    McGill, Lorraine; Shannon, Adam; Pisani, Davide;

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode...... Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth...

  19. Potential role of salicylic acid in modulating diacylglycerol homeostasis in response to freezing temperatures in Arabidopsis.

    Science.gov (United States)

    Tan, Wei-Juan; Xiao, Shi; Chen, Qin-Fang

    2015-01-01

    In our recent article in Molecular Plant, we reported that 3 lipase-like defense regulators SENESCENCE-ASSOCIATED GENE101 (SAG101), ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are involved in the regulation of freezing tolerance in Arabidopsis. The transcripts of SAG101, EDS1 and PAD4 were inducible by cold stress and their knockout or knockdown mutants exhibited enhanced chilling and freezing tolerance in comparison to the wild type. The freezing tolerance phenotype showed in the sag101, eds1 and pad4 mutants was correlated with the transcriptional upregulation of C-REPEAT/DRE BINDING FACTORs (CBFs) and their regulons as well as increased levels of proline. Upon cold exposure, the sag101, eds1 and pad4 mutants showed ameliorated cell death and accumulation of hydrogen peroxide, which were highly induced by freezing stress in the wild-type leaves. Moreover, the contents of salicylic acid (SA) and diacylglycerol (DAG) were significantly decreased in the sag101, eds1 and pad4 mutants compared to the wild type. Taken together, our results suggest that the SAG101, EDS1 and PAD4 are negative regulators in the freezing response and function, at least in part, by modulating the homeostasis of SA and DAG in Arabidopsis.

  20. Freeze tolerance of soil chytrids from temperate climates in Australia.

    Science.gov (United States)

    Gleason, Frank H; Letcher, Peter M; McGee, Peter A

    2008-08-01

    Very little is known about the capacity of soil chytrids to withstand freezing in the field. Tolerance to freezing was tested in 21 chytrids isolated from cropping and undisturbed soils in temperate Australia. Samples of thalli grown on peptone-yeast-glucose (PYG) agar were incubated for seven days at -15 degrees C. Recovery of growth after thawing and transferring to fresh medium at 20 degrees C indicated survival. All isolates in the Blastocladiales and Spizellomycetales survived freezing in all tests. All isolates in the Chytridiales also survived freezing in some tests. None of the isolates in the Rhizophydiales survived freezing in any of the tests. However, some isolates in the Rhizophydiales recovered growth after freezing if they were grown on PYG agar supplemented with either 1% sodium chloride or 1% glycerol prior to freezing. After freezing, the morphology of the thalli of all isolates was observed under LM. In those isolates that recovered growth after transfer to fresh media, mature zoosporangia were observed in the monocentric isolates and resistant sporangia or resting spores in the polycentric isolates. Encysted zoospores in some monocentric isolates also survived freezing. In some of the experiments the freezing and thawing process caused visible structural damage to the thalli. The production of zoospores after freezing and thawing was also used as an indicator of freeze tolerance. The chytrids in this study responded differently to freezing. These data add significantly to our limited knowledge of freeze tolerance in chytrids but leave many questions unanswered. PMID:18550351

  1. DOES GLUTATHIONE PLAY A ROLE IN FREEZING TOLERANCE OF PLANTS

    NARCIS (Netherlands)

    Stuiver, C.E.E.; De Kok, Luit J.; Kuiper, P.J.C.

    1992-01-01

    During low temperature hardening enhanced levels of glutathione (GSH) are generally observed in plant shoots and are often related to the development of freezing tolerance. The present communication shows that there is no direct relation between an increased GSH content and freezing tolerance of lea

  2. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts.

    Science.gov (United States)

    Hino, A; Mihara, K; Nakashima, K; Takano, H

    1990-05-01

    Five freeze-tolerant yeast strains suitable for frozen dough were compared with ordinary commercial bakers' yeast. Kluyveromyces thermotolerans FRI 501 cells showed high survival ability after freezing when their resting cells were fermented for 0 to 180 min in modified liquid medium, and they grew to log and stationary phases. Among the freeze-tolerant strains of Saccharomyces cerevisiae, FRI 413 and FRI 869 showed higher surviving and trehalose-accumulating abilities than other S. cerevisiae strains, but were affected by a prolonged prefermentation period and by growth phases. The freeze tolerance of the yeasts was, to some extent, associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. In the freeze-sensitive yeasts, the degree of hydrolysis of trehalose may thus be affected by the kind of saccharide, unlike in freeze-tolerant yeasts. PMID:2339891

  3. Induction of Freeze-sensitive Mutants from a Freeze-tolerant Yeast, Torulaspora delbrueckii.

    Science.gov (United States)

    Murakami, Y; Hahn, Y S; Yokoigawa, K; Endo, K; Kawai, H

    1994-01-01

    Freeze-sensitive strains of yeast were induced from a freeze-tolerant yeast Torulaspora delbrueckii by incubation with ethyl-methane sulfonate as a mutagen. A maximum ratio of mutation was attained by the incubation at 30°C for 75min. One-hundred and fifty strains of freeze-sensitive yeast were selected by plating-culture for the first screening. The freeze-tolerance ratio of each strain was examined based on the fermentative activity before and after freezing in liquid medium and dough. Strain 60B3 showed the highest freeze-sensitivity in a pre-fermented frozen dough (pre-fermented at 30°C for 2h, and frozen at -20°C for 7 days) among eight strains finally selected. PMID:27315725

  4. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis

    OpenAIRE

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H.

    2013-01-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fu...

  5. Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains.

    Science.gov (United States)

    Tanghe, An; Van Dijck, Patrick; Dumortier, Françoise; Teunissen, Aloys; Hohmann, Stefan; Thevelein, Johan M

    2002-12-01

    Little information is available about the precise mechanisms and determinants of freeze resistance in baker's yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant baker's yeast strains for use in frozen dough applications. PMID:12450819

  6. Burkholderia phytofirmans PsJN reduces damages to freezing temperature in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fan eSU

    2015-10-01

    Full Text Available Several plant growth-promoting rhizobacteria (PGPR are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN, on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers.Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyllImpact of inoculation modes (either on seeds or by soil irrigation and their effects overnight at 0, -1 or -3°C, were investigated by following photosystem II (PSII activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A

  7. Freezing Tolerance of Bulb Scales of Lily Cultivars : Effects of Freezing and Storage Duration and Partial Dehydration

    NARCIS (Netherlands)

    Bonnier, Frans J.M.; Jansen, Ritsert C.; Tuyl, Jaap M. van

    1997-01-01

    Effects of freezing duration, previous storage duration of bulbs at -2 °C, and partial dehydration of scales on freezing tolerance of lily (Lilium hybrids) scales were studied for a series of cultivars. Freezing tolerance of scales was estimated by measuring ion leakage and recording scale bulblet r

  8. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.

    Science.gov (United States)

    Larson, Don J; Barnes, Brian M

    2016-01-01

    Ice nucleation across the skin of wood frogs (Lithobates sylvaticus) rapidly induces endogenous production of glucose, a cryoprotectant necessary for freeze tolerance. In laboratory studies of freeze tolerance, wood frogs are cooled slowly, often at -0.05°C h(-1), to facilitate high cryoprotectant production and survival. Under natural conditions in Alaska, however, wood frogs accumulate maximal tissue glucose concentrations while cooling at much faster rates, -0.35° to -1.6°C h(-1), and in addition undergo multiple successive freeze-thaw cycles before remaining frozen for the winter. We examined whether simulating these ecologically relevant cooling rates and repeated freeze-thaw events in captive wood frogs results in the high glucose concentrations found in naturally frozen wood frogs. We found that over successive freezing and thawing events, glucose concentrations increased stepwise in all measured tissues. Short thawing periods did not result in a statistically significant decline of glucose concentrations. Wood frogs that experienced three freeze-thaw events had fresh weight glucose concentrations that approached values found in tissues of wood frogs frozen in natural conditions. Laboratory wood frogs survive frozen for 2 mo, while wood frogs frozen under natural conditions survive frozen for up to 7 mo at temperatures below -18°C. We hypothesize that repeated freeze-thaw cycles with rapid cooling and warming rates allow for greater survival in Alaskan wood frogs through enhanced cryoprotectant production. PMID:27327184

  9. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.

    Science.gov (United States)

    Tanghe, An; Van Dijck, Patrick; Colavizza, Didier; Thevelein, Johan M

    2004-06-01

    Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought. PMID:15184134

  10. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    Science.gov (United States)

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants.

  11. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    Science.gov (United States)

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants. PMID:24329902

  12. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  13. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    Science.gov (United States)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  14. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    Science.gov (United States)

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  15. FREEZING TOLERANCE AND BIOCHEMICAL-CHANGES IN WHEAT SHOOTS AS AFFECTED BY H2S FUMIGATION

    NARCIS (Netherlands)

    Stuiver, C.E.E.; De Kok, Luit J.; Kuiper, P.J.C.

    1992-01-01

    Fumigation of winter wheat with H2S during low temperature acclimation substantially reduced the development of freezing tolerance of the leaves. After 6 weeks of low temperature exposure (3-degrees-C), the freezing tolerance was increased by 6 and 2-degrees-C at 0 and 0.25-mu-l l-1 H2S, respectivel

  16. Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs

    DEFF Research Database (Denmark)

    Slotsbo, Stine; Hansen, Lars Monrad; Jordaens, Kurt;

    2012-01-01

    Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in....... Glucose increased from about 6 to 22 µg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates....

  17. The oatmeal nematode Panagrellus redivivus survives moderately low temperatures by freezing tolerance and cryoprotective dehydration.

    Science.gov (United States)

    Hayashi, Masakazu; Wharton, David A

    2011-04-01

    The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S (50)) of -2.5°C after cooling at 0.5°C min(-1) and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S (50) being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S (50) is lowered by 0.55°C, compared to the control, after 4 h freezing at -1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.

  18. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    Science.gov (United States)

    McGill, Lorraine M; Shannon, Adam J; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A; Burnell, Ann M

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent "ecological fitting

  19. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    Directory of Open Access Journals (Sweden)

    Lorraine M McGill

    Full Text Available Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent

  20. Importance of freeze-thaw events in low temperature ecotoxicology of cold tolerant enchytraeids.

    Science.gov (United States)

    Silva, Ana L Patrício; Enggrob, Kirsten; Slotsbo, Stine; Amorim, Mónica J B; Holmstrup, Martin

    2014-08-19

    Due to global warming it is predicted that freeze-thaw cycles will increase in Arctic and cold temperate regions. The effects of this variation becomes of particular ecological importance to freeze-tolerant species when it is combined with chemical pollutants. We compared the effect of control temperature (2 °C), daily freeze-thaw cycles (2 to -4 °C) and constant freezing (-2 °C) temperatures on the cold-tolerance of oligochaete worms (Enchytraeus albidus) and tested how survival was influenced by pre-exposure to 4-nonylphenol (4-NP), a common nonionic detergent found in sewage sludge amended soils. Results showed that combined effect of 4-NP and daily freeze-thaw cycles can cause higher mortality to worms as compared with sustained freezing or control temperature. Exposure to 4-NP caused a substantial depletion of glycogen reserves which is catabolized during freezing to produce cryoprotective concentrations of free glucose. Further, exposure to freeze-thaw cycles resulted in higher concentrations of 4-NP in worm tissues as compared to constant freezing or control temperature (2 °C). Thus, worms exposed to combined effect of freeze-thaw cycles and 4-NP suffer higher consequences, with the toxic effect of the chemical potentiating the deleterious effects of freezing and thawing.

  1. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. PMID:27489218

  2. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    Science.gov (United States)

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature. PMID:25809016

  3. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level

    KAUST Repository

    Fanucchi, Francesca

    2012-06-01

    This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at - 10 °C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries. © 2012 Elsevier B.V. All rights reserved.

  4. Freeze-tolerance of Trichinella muscle larvae in experimentally infected wild boars

    DEFF Research Database (Denmark)

    Lacour, Sandrine A.; Heckmann, Aurelie; Mace, Pauline;

    2013-01-01

    Freeze-tolerance of encapsulated Trichinella muscle larvae (ML) is mainly determined by Trichinella species, but is also influenced by host species, the age of the infection and the storage time and temperature of the infected meat. Moreover, the freeze-tolerance of the encapsulated species appears...... to be correlated to the development of thick capsule walls which increases with age. An extended infection period and the muscle composition in some hosts (e.g. herbivores) may provide freeze-avoiding matrices due to high carbohydrate contents. The present experiment compares freeze-tolerance of Trichinella...... served as negative controls. All wild boars were sacrificed 24 wpi. Muscle samples of 70 g were stored at -21 degrees C for 19,30 and 56h, and for 1-8 weeks. Larvae were recovered by artificial digestion. Their mobilities were recorded using Saisam (R) image analysis software and their infectivities were...

  5. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    Science.gov (United States)

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  6. Lipid composition of commercial bakers' yeasts having different freeze-tolerance in frozen dough.

    Science.gov (United States)

    Murakami, Y; Yokoigawa, K; Kawai, F; Kawai, H

    1996-11-01

    The lipid composition of some commercial bakers' yeasts having different freeze-sensitivity in frozen dough was investigated to clarify the correlation between their lipid composition and freeze-tolerance. The total lipid content including neutral lipid, free fatty acid, sterol, and phospholipid ranged between 23.0 to 32.2 mg/100 mg protein of the yeasts tested. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine were the main phospholipids found in all yeast strains, but no distinct difference in these components between freeze-tolerant and freeze-sensitive strains was observed. Palmitoleic (C16:1), oleic (C18:1), palmitic (16:0), and stearic (C18:0) acids were the major fatty acids present in total lipid and phospholipid, and unsaturation indices of fatty acid in these lipid components were almost equal by the strains. The molar ratios of sterol to phospholipid of freeze-sensitive strains were higher than those of freeze-tolerant strains. The difference in the sterol-phospholipid ratio that influences the fluidity of plasma membranes in yeast cells was supposed to reflect the difference in freeze-sensitivity of bakers' yeast. PMID:8987866

  7. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  8. The relationship of freeze tolerance with intracellular compounds in baker's yeasts.

    Science.gov (United States)

    Shi, Xiaojian; Miao, Yelian; Chen, Jie Yu; Chen, Jun; Li, Wenli; He, Xun; Wang, Jining

    2014-03-01

    Freeze-tolerant baker's yeasts are required for the processing of frozen doughs. The present study was carried out to investigate the cell survival rate after frozen storage and the change of fermentability in dough due to frozen storage, and to discuss quantitatively the relationship of freeze tolerance with intracellular trehalose, amino acids, and glycerol, using six types of baker's yeasts as the test materials. The experimental results showed that the fermentability of yeast cells in frozen dough was strongly correlated with the cell survival rate. The baker's yeast with a higher level of cell survival rate had a larger increase in the total intracellular compound content after frozen storage, and the cell survival rate increased linearly with increasing total intracellular compound content in frozen yeast cells. Trehalose was a primary compound affecting freeze tolerance, followed by glutamic acid, arginine, proline, asparagic acid, and glycerol. The basic information provided by the present study is useful for exploring the freeze-tolerance mechanisms of baker's yeast cells, breeding better freeze-tolerant baker's yeast strains, and developing more effective cryoprotectants. PMID:24482281

  9. Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yanjuan Jiang; Gang Liang; Diqiu Yu

    2012-01-01

    Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide.However,the mechanism underlying drought tolerance in plants is unclear.WRKY transcription factors are known to function in adaptation to abiotic stresses.By screening a pool of WRKY-associated T-DNA insertion mutants,we isolated a gain-of-function mutant,acquired drought tolerance (adt),showing improved drought tolerance.Under drought stress conditions,adt accumulated higher levels of ABA than wild-type plants.Stomatal aperture analysis indicated that adt was more sensitive to ABA than wild-type plants.Molecular genetic analysis revealed that a T-DNA insertion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein.Constitutive expression of WRKY57 also conferred similar drought tolerance.Consistently with the high ABA content and enhanced drought tolerance,three stress-responsive genes (RD29A,NCED3,and ABA3) were up-regulated in adt.ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences.In addition,during ABA treatment,seed germination and early seedling growth of adt were inhibited,whereas,under high osmotic conditions,adt showed a higher seed germination frequency.In summary,our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels.Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches.

  10. Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions

    Science.gov (United States)

    Silva-Guzman, Macarena; Addo-Quaye, Charles; Dilkes, Brian P.

    2016-01-01

    Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana. PMID:27467746

  11. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    Science.gov (United States)

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  12. The PSE1 gene modulates lead tolerance in Arabidopsis

    Science.gov (United States)

    Fan, Tingting; Yang, Libo; Wu, Xi; Ni, Jiaojiao; Jiang, Haikun; Zhang, Qi’an; Fang, Ling; Sheng, Yibao; Ren, Yongbing; Cao, Shuqing

    2016-01-01

    Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40. PMID:27335453

  13. The interaction between freezing tolerance and phenology in temperate deciduous trees

    Directory of Open Access Journals (Sweden)

    Yann eVitasse

    2014-10-01

    Full Text Available Temperate climates are defined by a distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees, and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues.

  14. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Takahashi, Nobuyuki; Inoue, Yoshiharu

    2007-06-01

    The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker's yeast. PMID:17505771

  15. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog.

    Directory of Open Access Journals (Sweden)

    Jon P Costanzo

    Full Text Available Wood frogs (Rana sylvatica exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to -8°C, either directly or following three cycles of freezing/thawing between -4 and 0°C, or -16°C increased the liver's synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle or two-thirds (liver of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.

  16. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism

    DEFF Research Database (Denmark)

    Calderon, Sofia; Holmstrup, Martin; Westh, Peter;

    2009-01-01

    Ectothermic animals inhabiting the subarctic and temperate regions have evolved strategies to deal with periods of continuous frost during winter. The earthworm Dendrobaena octaedra is freeze tolerant and accumulates large concentrations of glucose upon freezing. The present study investigates...... degrees C of the 'average' D. octaedra. Such conditions are very likely to occur in the northern distribution ranges of this stress-tolerant earthworm....

  17. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Shima, Jun; Sakata-Tsuda, Yuko; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Kawamoto, Shinichi; Takano, Hiroyuki

    2003-01-01

    The effect of intracellular charged amino acids on freeze tolerance in dough was determined by constructing homozygous diploid arginase-deficient mutants of commercial baker's yeast. An arginase mutant accumulated higher levels of arginine and/or glutamate and showed increased leavening ability during the frozen-dough baking process, suggesting that disruption of the CAR1 gene enhances freeze tolerance. PMID:12514069

  18. Cold acclimation induced accumulation of phenolic compounds and freezing tolerance in Ammopiptanthus mongolicus

    Institute of Scientific and Technical Information of China (English)

    Liu Mei-qin; Chen Yi-yin; Lu Cun-fu; Zhang Hui; Yin Wei-lun

    2007-01-01

    Ammopiptanthus mongolicus, the only freezing tolerant evergreen broad-leaved shrub, local species of the Alashan desert,northwest sand area of China, can survive -30℃ or even lower temperature in winter. In the present study, the secondary products phenolics in A. mongolicus cotyledons were determined to study the effects ofphenolics on cold tolerance. Cytochemical localization of phenolics in cotyledon cells was observed by electron microscopy and the content of phenolic compounds was assayed by spectrophotometric measurement. The results showed that the freezing tolerance of A. mongolicus seedlings increased after acclimation at 2-6℃ for 14 days, which accompanied the increase of the content of phenolic compounds in cotyledons. Cytochemical observation showed that phenolic deposits were mainly localized in vacuoles and in close proximity to tonoplast, and also in the cytoplasm. The amount and the size of phenolics droplets increased obviously in cytoplasm and vacuoles after cold acclimation, predominantly aggregated along membranes of vacuoles and tonoplast. No phenolic deposits were found in cell walls. As hydrogen- or electron-donating agents, phenolics may protect plant cells against reactive oxygen species formed during chilling or freezing stress and improve the freezing tolerance of cold-acclimated A. mongolicus seedlings.

  19. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate.

    Science.gov (United States)

    Yokoigawa, Kumio; Sato, Machiko; Soda, Kenji

    2006-09-01

    We examined the effect of poly-gamma-glutamate (PGA) on the freeze-tolerance of four types of commercial bakers' yeast (freeze-tolerant, osmotic-tolerant, low-temperature-sensitive, and ordinary bakers' yeasts). The survival ratio of ordinary bakers' yeast cells frozen at -30 degrees C for 3 d in a medium (0.5% yeast extract, 0.5% peptone, and 2% glucose: YPD medium) was improved by adding more than 1% PGA to the medium; the survival ratio increased from about 10% to more than 70%. All PGA preparations, which differed in average molecular mass (50, 2,000, 4,000, 6,000, 8,000, and 10,000 kDa), showed a similar cryoprotecive effect on the cells. Similar results were also obtained with other types of bakers' yeast, sake yeast and beer yeast. When the four types of bakers' yeast cell were frozen at -30 degrees C for 3 d in dough supplemented with more than 1% PGA, the cells (after freezing and thawing) showed higher leavening ability than those frozen in dough without PGA, irrespective of the molecular mass of PGA. Thus, PGA appears to protect bakers' yeast from lethal freeze injury, leading to a high leavening ability after freezing and thawing. PGA did not decrease the original leavening ability of the bakers' yeast, and was not decomposed by the yeast cells. PGA suppressed the decrease in leavening ability during a prolonged fermentation time, probably because PGA adsorbed inhibitory metabolites accumulated in the dough. PGA could prove useful for improving the freeze-tolerance of bakers' yeast by its addition to dough. PMID:17046536

  20. AN ASSESSMENT OF COLD/FREEZE TOLERANCE IN SUGARCANE

    Science.gov (United States)

    The complexity of tolerance mechanisms of crops to environmental stresses requires a multipronged approach to decipher the genetics of and breed for stress resistance. Field tests and a proteomics analysis were carried out on sugarcane genotypes to assess the time-course deterioration of sucrose in ...

  1. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Zhao, F J; Jiang, R F; Dunham, S J; McGrath, S P

    2006-01-01

    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively. PMID:17096791

  2. Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants.

    Science.gov (United States)

    Isshiki, Ryutaro; Galis, Ivan; Tanakamaru, Shigemi

    2014-02-01

    The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6 °C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subsequent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species.

  3. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  4. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize

    Science.gov (United States)

    Li, Zhao; Hu, Guanghui; Liu, Xiangfeng; Zhou, Yao; Li, Yu; Zhang, Xu; Yuan, Xiaohui; Zhang, Qian; Yang, Deguang; Wang, Tianyu; Zhang, Zhiwu

    2016-01-01

    Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels—highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential. PMID:27774095

  5. Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Zhou, Yanli; Cheng, Ying; Yang, Yunqiang; Li, Xiong; Supriyo, Basak; Sun, Xudong; Yang, Yongping

    2016-09-01

    The purpose of the present study was to characterize SpCBL6 (GenBank accession number: KT780442) from Stipa purpurea and elucidate the function of this protein in abiotic stress. The full-length cDNA of SpCBL6 was isolated from S. purpurea by rapid amplification of cDNA ends methods. Laser confocal microscopy was used to analyze the subcellular localization of SpCBL6. The constructs of 35S:GFP-SpCBL6 was used to transform wild-type (WT) Arabidopsis plants (ecotype Columbia-0) with the floral dip method. Quantitative reverse-transcription PCR (qRT-PCR), water potential, photosynthetic efficiency (F v/F m), and ion leakage was performed to investigate the role of SpCBL6 in abiotic stress. The open reading frame of SpCBL6 contains 681 bp nucleotides and encodes a 227-amino acid polypeptide. Phylogenetic analysis indicated that SpCBL6 showed the highest similarity with rice OsCBL6. SpCBL6 transcripts were induced by freezing and drought treatments. Subcellular localization analysis showed that SpCBL6 was located in membrane of protoplast. Overexpression of SpCBL6 in Arabidopsis thaliana demonstrated that the transgenic plants were more tolerant to cold treatment, but less tolerant to drought, compared with the plants. qRT-PCR analysis showed that the drought stress marker genes were inhibited in transgenic plants, whereas the cold stress marker genes were enhanced. Further analysis showed that SpCBL6-overexpressing plants showed enhanced water potential, photosynthetic efficiency (F v/F m), and reduced ion leakage compared with the wild-type after cold treatment. Collectively, these results indicate that SpCBL6, a new member of the CBL gene family isolated from S. purpurea, enhances cold tolerance and reduces drought tolerance in plants. PMID:27393148

  6. Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance.

    Science.gov (United States)

    Blödner, Constanze; Skroppa, Torre; Johnsen, Oystein; Polle, Andrea

    2005-05-01

    The goal of the present study was to investigate whether seedlings of Norway spruce (Picea abies [L.] Karst.) from a frost tolerant progeny (P2), were more drought tolerant than seedlings from a less frost tolerant progeny (P1). Progenies differing in freezing tolerance were identified by exposing seedlings in autumn in a large-scale trial to temperatures from -11 to -15 degrees C and scoring the degree of needle injury. Seedlings from P1 and P2 were grown from seeds for about 1 year under controlled conditions in a climatized growth room and were exposed to drought stress by withholding water for about 3 weeks. Drought caused reductions in biomass in both progenies but to a stronger extent in P1 than in P2. Seedlings of P2 were able to fully maintain root biomass. They also showed less water loss in different tissues. Decreases in quantum yield efficiency of photosystem II of dark-adapted plants occurred several days later in P2 than in P1. New proteins of molecular masses of 24.3 and 25.5 kDa appeared during drought stress. Since they occurred in both progenies a role of these proteins in progeny-related differences in drought performance is unlikely. Progeny 2 contained inherently higher superoxide dismutase and lower peroxidase activities than progeny 1. In conclusion, freezing and drought-tolerance respective -sensitivity were co-occurring traits in the spruce progenies studied here. Pre-existing high activities of enzymes protecting against oxidative stress in seedlings may have contributed to increase stress tolerance in P2 compared with P1. PMID:15940872

  7. Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica.

    Science.gov (United States)

    Lee, M R; Lee, R E; Strong-Gunderson, J M; Minges, S R

    1995-08-01

    Ice-nucleating active (INA) bacteria were isolated from the gut of field-collected freeze-tolerant wood frogs (Rana sylvatica) collected in winter. Thirteen strains of Pseudomonas fluorescens, four strains of Pseudomonas putida, and two strains of Enterobacter agglomerans had ice-nucleating activity. Each of the INA pseudomonad strains was psychrophilic. P. putida strains were differentiated from P. fluorescens strains by gelatinase, lecithinase, and lipase production. The maximum nucleation temperatures (Tmax) of aqueous suspensions (10(9) bacteria/ml) of the four INA P. putida strains ranged from -1.6 to -3.0 degrees C, which places this INA species among the most potent known biological nucleators. Ingestion of INA P. putida isolated from R. sylvatica by another freeze-tolerant frog. Pseudacris crucifer, decreased the capacity of this frog to supercool and remain unfrozen at -2 degrees C. This is the first report of INA bacteria isolated from a vertebrate, and suggests that, as part of the gut flora in some posthibernation freeze-tolerant wood frogs, these bacteria may play a role in enhancing winter survival by promoting ice nucleation at high subzero temperatures (ca. -2 degrees C). PMID:7656570

  8. A new application of the SFDA-staining method to assessment of the freezing tolerance in leaves of alpine plants

    OpenAIRE

    Yamori,Wataru/Kogami,Hiroyuki/Masuzawa,Takehiro

    2006-01-01

    For the first time, this study used 5- (6-) sulfofluorescein diacetate (SFDA), a fluorescent product in plant cells converted by esterase activity to fluorescein-5- (and 6-) sulfonic acid (FSA), to assess the freezing tolerance of leaf cells. We were able to readily distinguish living and dead cells, and detect differences in freezing tolerance among five alpine plants using the SFDA-staining method. We also compared this method with two conventional methods, the electrolyte leakage test and ...

  9. Recrystallization in a Freezing Tolerant Antarctic Nematode, Panagrolaimus davidi, and a Alpine Weta, Hemideina maori (Orthoptera; Stenopelmatidae)

    DEFF Research Database (Denmark)

    Ramløv, Hans; Wharton, David A.; Wilson, Peter W.

    1996-01-01

    The ability of haemolymph from the freezing tolerant weta,Hemideina maori,and supernatant from homogenates of the freezing tolerant nematodePanagrolaimus davidito inhibit the recrystallization of ice was examined using the “splat freezing” technique and annealing on a cryomicroscope stage. There...... was no recrystallization inhibition in weta haemolymph or in insect ringer controls. Recrystallization inhibition was present in the nematode supernatant but this was destroyed by heating and was absent in controls.P. davidisurvives intracellular freezing and recrystallization inhibition may be...

  10. Identification and characterization of a salt tolerance-responsive gene( AtGRP9) of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Soil salinity is one of the important limiting factors for plant growth and development. A cDNA clone encoding a glycine-rich protein (designated AtGRP9) was identified from Arabidopsis by functional expression of the plant cDNA library in the fission yeast S. pombe. Yeast cells overexpressing AtGRP9 displayed significantly enhanced salt tolerance. Northern analysis showed that expression of AtGRP9 in Arabidopsis was induced by NaCl and plant hormone abscisic acid (ABA). These results suggest that AtGRP9 may be involved in the salt stress response in Arabidopsis.

  11. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs.

    Science.gov (United States)

    Almeida, M J; Pais, C

    1996-12-01

    Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts. PMID:8953712

  12. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) activated root malate and citrate exudation play an important role in Al tolerance in many plant species. AtALMT1, an Al-activated malate transporter, is a major contributor to Arabidopsis Al tolerance. Here, we demonstrate that a second, unrelated gene, AtMATE, encodes an Arabidopsi...

  13. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    Directory of Open Access Journals (Sweden)

    Farman Ali

    Full Text Available Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization.

  14. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    Science.gov (United States)

    Ali, Farman; Wharton, David A

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  15. An Autophosphorylation Site of the Protein Kinase SOS2 Is Important for Salt Tolerance in Arabidopsis

    OpenAIRE

    Fujii, Hiroaki; Zhu, Jian-Kang

    2009-01-01

    The protein kinase SOS2 (Salt Overly Sensitive 2) is essential for salt-stress signaling and tolerance in Arabidopsis. SOS2 is known to be activated by calcium-SOS3 and by phosphorylation at its activation loop. SOS2 is autophosphorylated in vitro, but the autophosphorylation site and its role in salt tolerance are not known. In this study, we identified an autophosphorylation site in SOS2 and analyzed its role in the responses of Arabidopsis to salt stress. Mass spectrometry analysis showed ...

  16. Seasonal Variation in the Hepatoproteome of the Dehydration- and Freeze-Tolerant Wood Frog, Rana sylvatica

    Directory of Open Access Journals (Sweden)

    Jon P. Costanzo

    2011-11-01

    Full Text Available Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC in combination with tandem mass spectrometry (MS/MS quantitative isobaric (iTRAQ™ peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica, a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. They also exhibited altered levels of certain metabolic enzymes that participate in the biochemical reorganization associated with aphagia and reliance on energy reserves, as well as the freezing mobilization and post-thaw recovery of glucose, an important cryoprotective solute in freezing adaptation.

  17. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    Science.gov (United States)

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). PMID:26049089

  18. Enzymatic regulation of glycogenolysis in a subarctic population of the wood frog: implications for extreme freeze tolerance.

    Directory of Open Access Journals (Sweden)

    M Clara F do Amaral

    Full Text Available The wood frog, Rana sylvatica, from Interior Alaska survives freezing at -16°C, a temperature 10-13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA. In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype's exceptional freeze tolerance, which is necessary for their survival in a subarctic climate.

  19. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    Science.gov (United States)

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper. PMID:26965428

  20. Effects of cold-hardening on compatible solutes and antioxidant enzyme activities related to freezing tolerance in Ammopiptanthus mongolicus seedlings

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-juan; CHEN Yu-zhen; LIU Mei-qin; LU Cun-fu

    2008-01-01

    Cold acclimation is associated with many metabolic changes that lead to an increase of freezing tolerance. In order to investigate the biochemical process of cold acclimation in Ammopiptanthus mongolicus, seedlings were acclimated at 2℃ under 16-h photoperiod (150 μmol·m-2·s-1 photosynthetically active radiation) for 14 d. Freezing tolerance in seedlings increased after 14 d of cold-hardening. Contents of protein, proline and solute carbohydrate in cotyledon increased after cold acclimation. Patterns of isozymes of superoxide dismutase (SOD), peroxidase, catalase and polyphenol oxidase (PPO) were investigated. The activities of SOD, peroxidase and PPO in cold acclimated plants were increased during cold-hardening. We deduced that compatible solutes and antioxidant enzymes play important roles in development of freezing tolerance during cold acclimation in this evergreen woody plant.

  1. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo

    2014-11-01

    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals.

  2. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  3. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    Science.gov (United States)

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  4. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  5. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  6. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Amarjeet Singh

    Full Text Available Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108, which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

  7. A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6

    OpenAIRE

    Tayeh, Nadim; Bahrman, Nasser; Sellier, Hélène; Bluteau, Aurélie; Blassiau, Christelle; Fourment, Joelle; Bellec, Arnaud; Debellé, Frederic; Lejeune-Henaut, Isabelle; Delbreil, Bruno

    2013-01-01

    Background Freezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped...

  8. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong

    2009-01-01

    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  9. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  10. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  11. Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.

    Science.gov (United States)

    Zhang, Lihong; Ackley, Ashley R; Pilon-Smits, Elizabeth A H

    2007-03-01

    Selenium (Se) is an essential element for many organisms but also toxic at higher levels. The objective of this study was to identify accessions from the model species Arabidopsis thaliana that differ in Se tolerance and accumulation. Nineteen Arabidopsis accessions were grown from seed on agar medium with or without selenate (50 microM) or selenite (20 microM), followed by analysis of Se tolerance and accumulation. Tissue sulfur levels were also compared. The Se Tolerance Index (root length+Se/root length control) varied among the accessions from 0.11 to 0.44 for selenite and from 0.05 to 0.24 for selenate. When treated with selenite, the accessions differed by two-fold in shoot Se concentration (up to 250 mgkg(-1)) and three-fold in root Se concentration (up to 1000 mgkg(-1)). Selenium accumulation from selenate varied 1.7-fold in shoot (up to 1000 mgkg(-1)) and two-fold in root (up to 650 mgkg(-1)). Across all accessions, a strong correlation was observed between Se and S concentration in both shoot and root under selenate treatment, and in roots of selenite-treated plants. Shoot Se accumulation from selenate and selenite were also correlated. There was no correlation between Se tolerance and accumulation, either for selenate or selenite. The F(1) offspring from a cross between the extreme selenate-sensitive Dijon G and the extreme selenate-tolerant Estland accessions showed intermediate selenate tolerance. In contrast, the F(1) offspring from a cross between selenite-sensitive and -tolerant accessions (Dijon GxCol-PRL) were selenite tolerant. The results from this study give new insight into the mechanisms of plant selenium (Se) tolerance and accumulation, which may help develop better plants for selenium phytoremediation or as fortified foods. PMID:16513208

  12. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  13. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  14. Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions.

    Directory of Open Access Journals (Sweden)

    Yanling Sun

    Full Text Available Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K(+ content and a lower Na(+/K(+ ratio when exposed to salinity stress, but its Na(+ content was the same as that of Col-0. The K(+ transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K(+ retention.

  15. RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses.

    Science.gov (United States)

    Zhang, Xuan; Lu, Songchong; Jiang, Changhua; Wang, Yaofeng; Lv, Bo; Shen, Jiabin; Ming, Feng

    2014-07-01

    The late embryogenesis abundant (LEA) protein family is a large protein family that is closely associated with resistance to abiotic stresses in many organisms, such as plants, bacteria and animals. In this study, we isolated a LEA gene, RcLEA, which was cytoplasm-localized, from Rosa chinensis. RcLEA was found to be induced by high temperature through RT-PCR. Overexpression of RcLEA in Escherichia coli improved its growth performance compared with the control under high temperature, low temperature, NaCl and oxidative stress conditions. RcLEA was also overexpressed in Arabidopsis thaliana. The transgenic Arabidopsis showed better growth after high and low temperature treatment and exhibited less peroxide according to 3, 3-diaminobenzidine staining. However, RcLEA did not improve the tolerance to NaCl or osmotic stress in Arabidopsis. In vitro analysis showed that RcLEA was able to prevent the freeze-thaw-induced inactivation or heat-induced aggregation of various substrates, such as lactate dehydrogenase and citrate synthase. It also protected the proteome of E. coli from denaturation when the proteins were heat-shocked or subjected to acidic conditions. Furthermore, bimolecular fluorescence complementation assays suggested that RcLEA proteins function in a complex manner by making the form of homodimers. PMID:24760474

  16. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules.

    Science.gov (United States)

    Jalali, M; Abedi, D; Varshosaz, J; Najjarzadeh, M; Mirlohi, M; Tavakoli, N

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate.

  17. Increased STM expression is associated with drought tolerance in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Choi, Yee-Ram; Seo, Pil Joon

    2016-08-20

    In higher plants, shoot apical meristem (SAM) maintains cell division activity in order to give rise to aerial plant organs. Several lines of evidence have suggested that plants ensure stem cell proliferation activity in response to various external stimuli, thereby contributing to plant adaptation and fitness. Here, we report that the abscisic acid (ABA)-inducible R2R3-type MYB96 transcription factor regulates transcript accumulation of SHOOT MERISTEMLESS (STM) possibly to contribute to plant adaptation to environmental stress. STM was up-regulated in MYB96-overexpressing activation-tagging myb96-ox plants, but down-regulated in MYB96-deficient myb96-1 mutant plants, even in the presence of ABA. Notably, the MYB96 transcription factor bound directly to the STM promoter. In addition, consistent with the role of MYB96 in drought tolerance, transgenic plants overexpressing STM (35S:STM-MYC) were more tolerant to drought stress. These observations suggest that the MYB96-STM module contributes to enhancing plant tolerance to drought stress. PMID:27448723

  18. An Autophosphorylation Site of the Protein Kinase SOS2 Is Important for Salt Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Fujii; Jian-Kang Zhu

    2009-01-01

    The protein kinase SOS2 (Salt Overly Sensitive 2) is essential for salt-stress signaling and tolerance in Arabidopsis. SOS2 is known to be activated by calcium-SOS3 and by phosphorylation at its activation loop. SOS2 is autophosphorylated in vitro, but the autophosphorylation site and its role in salt tolerance are not known. In this study, we identified an autophosphorylation site in SOS2 and analyzed its role in the responses of Arabidopsis to salt stress. Mass spectrometry analysis showed that Ser 228 of SOS2 is autophosphorylated. When this site was mutated to Ala, the autophosphorylation rate of SOS2 decreased. The substrate phosphorylation by the mutated SOS2 was also less than that by the wild-type SOS2. In contrast, changing Ser228 to Asp to mimic the autophosphorylation enhanced substrate phosphorylation by SOS2. Complementation tests in a sos2 mutant showed that the S228A but not the S228D mutation partially disrupted the function of SOS2 in salt tolerance. We also show that activation loop phosphorylation at Thr168 and autophosphorylation at Ser228 cannot substitute for each other, suggesting that both are required for salt tolerance. Our results indicate that Ser 228 of SOS2 is autophosphorylated and that this autophosphorylation is important for SOS2 function under salt stress.

  19. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause.

    Science.gov (United States)

    Toxopeus, Jantina; Warner, Alden H; MacRae, Thomas H

    2014-11-01

    Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications. PMID:24846336

  20. Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis.

    Science.gov (United States)

    Carvalho, Fabricio E L; Ware, Maxwell A; Ruban, Alexander V

    2015-12-01

    The amount of light plants can tolerate during different phases of ontogenesis remains largely unknown. This was addressed here employing a novel methodology that uses the coefficient of photochemical quenching (qP) to assess the intactness of photosystem II reaction centres. Fluorescence quenching coefficients, total chlorophyll content and concentration of anthocyanins were determined weekly during the juvenile, adult, reproductive and senescent phases of plant ontogenesis. This enabled quantification of the protective effectiveness of non-photochemical fluorescence quenching (NPQ) and determination of light tolerance. The light intensity that caused photoinhibition in 50% of leaf population increased from ∼70 μmol m(-2)  s(-1) , for 1-week-old seedlings, to a maximum of 1385 μmol m(-2)  s(-1) for 8-week-old plants. After 8 weeks, the tolerated light intensity started to gradually decline, becoming only 332 μmol m(-2)  s(-1) for 13-week-old plants. The dependency of light tolerance on plant age was well-related to the amplitude of protective NPQ (pNPQ) and the electron transport rates (ETRs). Light tolerance did not, however, show a similar trend to chlorophyll a/b ratios and content of anthocyanins. Our data suggest that pNPQ is crucial in defining the capability of high light tolerance by Arabidopsis plants during ontogenesis. PMID:26012511

  1. Incorporation of [14C]-palmitate into lipids of Brassica cells during the induction of freezing tolerance

    International Nuclear Information System (INIS)

    Changes in plasma membrane lipid composition have been causally related to increased freezing tolerance. Studies of lipid metabolism during ABA induction of freezing tolerance in Brassica napus suspension cultures were undertaken. Cells were labeled with [14C]-palmitate four days after transfer to fresh medium (control) or medium containing ABA (which increases freezing tolerance). At times between one and 20 hrs after labeling, ABA-treated cells incorporated almost twice the amount of label as controls cells. Approximately 80% of the radioactivity was associated with neutral lipids in ABA-treated cells and controls. Incorporation of label into total cellular polar lipids was 4.9 x 105 dpm/mg protein for control cells and 1 x 106 dpm/mg protein for cells transferred to medium containing ABA. Analysis of lipids following alkaline hydrolysis indicated that incorporation of [14C]-palmitate into glucosylceramide of ABA-treated cells was less than 60% of control values when expressed relative to that of the total polar lipids. Incorporation into ceramides was also depressed in ABA-treated cells

  2. Anatomical Structure Comparison Between Leaves of Two Winter Wheat Cultivars with Different Cold/Freezing Tolerance Under Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    YU Jing; CANG Jing; ZHOU Zishan; LIU Lijie

    2011-01-01

    Winter wheat (Triticum aestivum) cultivars Dongnongdongmai 1 with strong cold/freezing tolerance and Jimai 22 with weak cold/freezing tolerance were used for investigating the difference of microstructure and ultrastructure between leaves of two cultivars under low temperature stress (5℃ and -15 ℃) using optical and electron microscope. The results showed that there was no obvious difference between leaves of Dongnongdongmai 1 and Jimai 22 in microstructure. However, the difference between those leaves was distinct in ultrastructure. The grana lamella and stroma lamella were stacked regularly and arranged parallelly along the long axis of chloroplasts in cv. Dongnongdongmai 1, while the arrangement directions of thylakoids in Jimai 22's leaves were so irregular as to form various angles with the long axis of chloroplasts. At -15℃, the mitochondrias were swelled to be round and the structure of cristaes became blurry in both cultivars' leaves, while some cristaes of Jimai 22 disappeared. These results would provide theoretical evidence for selecting cold/freezing tolerant winter wheat germplasm resources

  3. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.

    Directory of Open Access Journals (Sweden)

    Guillaume Wos

    Full Text Available The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but-unexpectedly-they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.

  4. A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana.

    Science.gov (United States)

    Liu, Z B; Zhang, W J; Gong, X D; Zhang, Q; Zhou, L R

    2015-01-01

    Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To characterize the function of this gene with respect to salt tolerance, the construct p35S:JcCu/Zn-SOD was developed and transformed into Arabidopsis using Agrobacterium-mediated transformation. Compared with wild-type, transgenic plants over-expressing JcCu/Zn-SOD showed enhanced tolerance to salt stress during germination, seedling establishment, and growth in terms of longer root, larger rosette area, and a larger number of leaves in addition to higher SOD activity levels under NaCl stress. In addition, over-expression of JcCu/Zn-SOD resulted in lower monodialdehyde content in transgenic Arabidopsis compared to wild-type plants under the same NaCl stress. Therefore, JcCu/Zn-SOD can increase a plant salt stress tolerance potentially by reducing oxidant injury. PMID:25867355

  5. Growth characteristics of freeze-tolerant baker's yeast Saccharomyces cerevisiae AFY in aerobic batch culture.

    Science.gov (United States)

    Ji, Meng; Miao, Yelian; Chen, Jie Yu; You, Yebing; Liu, Feilong; Xu, Lin

    2016-01-01

    Saccharomyces cerevisiae AFY is a novel baker's yeast strain with strong freeze-tolerance, and can be used for frozen-dough processing. The present study armed to clarify the growth characteristics of the yeast AFY. Aerobic batch culture experiments of yeast AFY were carried out using media with various initial glucose concentrations, and the culture process was analyzed kinetically. The growth of the yeast AFY exhibited a diauxic pattern with the first growth stage consuming glucose and the second growth stage consuming ethanol. The cell yield decreased with increasing initial glucose concentration in the first growth stage, and also decreased with increasing initial ethanol concentration in the second growth stage. In the initial glucose concentration range of 5.0-40.0 g/L, the simultaneous equations of Monod equation, Luedeking-Piret equation and pseudo-Luedeking-Piret equation could be used to describe the concentrations of cell, ethanol and glucose in either of the two exponential growth phases. At the initial glucose concentrations of 5.0, 10.0 and 40.0 g/L, the first exponential growth phase had a maximal specific cell growth rate of 0.52, 0.98 and 0.99 h(-1), while the second exponential growth phase had a maximal specific cell growth rate of 0.11, 0.06 and 0.07 h(-1), respectively. It was indicated that the efficiency of the yeast production could be improved by reducing the ethanol production in the first growth stage. PMID:27186467

  6. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    OpenAIRE

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2004-01-01

    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  7. Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance.

    Science.gov (United States)

    Ramiro, Daniel Alves; Melotto-Passarin, Danila Montewka; Barbosa, Mariana de Almeida; Santos, Flavio Dos; Gomez, Sergio Gregorio Perez; Massola Júnior, Nelson Sidnei; Lam, Eric; Carrer, Helaine

    2016-09-01

    The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor-1 from Arabidopsis thaliana (AtBI-1), can confer increased tolerance of sugarcane plants to long-term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long-term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world. PMID:26872943

  8. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance.

    Science.gov (United States)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-11-28

    Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis. PMID:25450686

  9. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance

    DEFF Research Database (Denmark)

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso;

    2014-01-01

    of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions...... and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination....... Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located...

  10. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Zhao, Xun; Yang, Xuanwen; Pei, Shengqiang; He, Guo; Wang, Xiaoyu; Tang, Qi; Jia, Chunlin; Lu, Ying; Hu, Ruibo; Zhou, Gongke

    2016-07-15

    NAC (NAM, ATAF1/2, and CUC2) transcription factors are known to play important roles in responses to abiotic stresses in plants. Currently, little information regarding the functional roles of NAC genes in stress tolerance is available in Miscanthus lutarioriparius, a promising bioenergy plant for cellulosic ethanol production. In this study, we carried out the functional characterization of MlNAC9 in abiotic stresses. MlNAC9 was shown to act as a nuclear localized transcription activator with the activation domain in its C-terminus. The overexpression of MlNAC9 in Arabidopsis conferred hypersensitivity to abscisic acid (ABA) at seed germination and root elongation stages. In addition, the overexpression of MlNAC9 led to increased seed germination rate and root growth under salt (NaCl) treatment. Meanwhile, the transgenic Arabidopsis overexpressing MlNAC9 showed enhanced tolerance to drought and cold stresses. The expression of stress-responsive marker genes was significantly increased in MlNAC9 overexpression lines compared to that of WT under ABA, drought, salt, and cold stresses. Correspondingly, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased and the malondialdehyde (MDA) content was lower accumulated in MlNAC9 overexpression lines under drought and salt treatments. These results indicated that the overexpression of MlNAC9 improved the tolerance to abiotic stresses via an ABA-dependent pathway, and the enhanced tolerance of transgenic plants was mainly attributed to the increased expression of stress-responsive genes and the enhanced scavenging capability of reactive oxygen species (ROS). PMID:27085481

  11. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.

    Science.gov (United States)

    Lee, David A; Chen, Alice; Schroeder, Julian I

    2003-09-01

    Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.

  12. Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis.

    Science.gov (United States)

    Liu, Bing; Feng, Dongru; Zhang, Bipei; Mu, Peiqiang; Zhang, Yang; He, Yanming; Qi, Kangbiao; Wang, Jinfa; Wang, Hongbin

    2012-03-01

    The mechanisms involved in Na⁺/K⁺ uptake and extrusion are important in plant salt tolerance. In this study, we investigated the physiological role of a plasma membrane (PM)-localized protein, MpRCI, from plantain in transgenic Arabidopsis under NaCl and KCl stress and determined its effect on PM fluidity and H⁺-ATPase activity. The MpRCI gene exhibited high homology to the AtRCI2 gene family in Arabidopsis and was therefore able to complement for loss of the yeast AtRCI2-related PMP3 gene. Results of phenotypic espial and atomic emission spectrophotometer (AES) assays indicated that MpRCI overexpression in the AtRCI2A knockout mutant with reduced shoot Na⁺ and increased K⁺ exhibited increased Na⁺-tolerance and K⁺-sensitivity under NaCl or KCl treatments, respectively. Furthermore, comparisons of PM fluidity and H⁺-ATPase activity in shoots, with expression or absence of MpRCI/AtRCI2A expression under NaCl or KCl stress, showed MpRCI maintained PM fluidity and H⁺-ATPase activity under stress conditions. Results suggest that MpRCI plays an essential role in Na⁺/K⁺ flux in plant cells. PMID:22284714

  13. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    Science.gov (United States)

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance. PMID:26899912

  14. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea.

    Science.gov (United States)

    Craciun, Adrian Radu; Courbot, Mikael; Bourgis, Fabienne; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2006-01-01

    Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri. In order to identify genes potentially implicated in Cd tolerance, a backcross (BC1) segregating population was produced from crosses between A. halleri ssp. halleri and its closest non-tolerant relative A. lyrata ssp. petraea. The most sensitive and tolerant genotypes of the BC1 were analysed on a transcriptome-wide scale by cDNA-amplified fragment length polymorphism (AFLP). A hundred and thirty-four genes expressed more in the root of tolerant genotypes than in sensitive genotypes were identified. Most of the identified genes showed no regulation in their expression when exposed to Cd in a hydroponic culture medium and belonged to diverse functional classes, including reactive oxygen species (ROS) detoxification, cellular repair, metal sequestration, water transport, signal transduction, transcription regulation, and protein degradation, which are discussed. PMID:16916885

  15. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  16. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  17. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  18. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available BACKGROUND: Soybean [Glycine max (L. Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.

  19. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  20. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms.

    Science.gov (United States)

    Guo, Bin; Liu, Chen; Li, Hua; Yi, Keke; Ding, Nengfei; Li, Ningyu; Lin, Yicheng; Fu, Qinglin

    2016-10-01

    A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed. PMID:27209521

  1. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  2. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  3. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. Results The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. Conclusions Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As. PMID:24734953

  4. Increased Drought Tolerance through the Suppression of ESKMO1 Gene and Overexpression of CBF-Related Genes in Arabidopsis

    OpenAIRE

    Fuhui Xu; Zhixue Liu; Hongyan Xie; Jian Zhu; Juren Zhang; Josef Kraus; Tasja Blaschnig; Reinhard Nehls; Hong Wang

    2014-01-01

    Improved drought tolerance is always a highly desired trait for agricultural plants. Significantly increased drought tolerance in Arabidopsis thaliana (Columbia-0) has been achieved in our work through the suppression of ESKMO1 (ESK1) gene expression with small-interfering RNA (siRNA) and overexpression of CBF genes with constitutive gene expression. ESK1 has been identified as a gene linked to normal development of the plant vascular system, which is assumed directly related to plant drought...

  5. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

    OpenAIRE

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-01-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform i...

  6. Over-Expression of ScMnSOD, a SOD Gene Derived from Jojoba, Improve Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-fei; ZHANG Gen-fa; SUN Wei-min; LI Ze-qin; BAI Rui-xue; LI Jing-xiao; SHI Zi-han; GENG Hong-wei; ZHENG Ying; ZHANG Jun

    2013-01-01

    Jojoba (Simmondsia chinensis) is mainly distributed in desert, and the molecular mechanisms of jojoba in response to abiotic stress still remain elusive. In this paper, we cloned and characterized a SOD gene from jojoba named as ScMnSOD, and introduced into Arabidopsis to investigate its functions of responding to drought stress. The transgenic Arabidopsis showed an improvement in drought tolerance. Moreover, under a water deifcit condition, the accumulation of reactive oxygen species (ROS) was remarkably decreased in the transgenic lines compared to the WT. Furthermore, the ScMnSOD promoter was cloned to the 5´-upstream of GUS coding region in a binary vector, and introduced into Arabidopsis. And results showed that ScMnSOD expression can be induced by drought, salt, ABA, and low temperature. In conclusion, ScMnSOD plays an important role in drought tolerance which is, at least partially, attributed to its role in ROS detoxiifcation.

  7. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves

    OpenAIRE

    Phoon, Pui Yeu; Gómez Galindo, Federico; Vicente, A.A.; Dejmek, Petr

    2008-01-01

    Pulsed electric fields in combination with vacuum infusion have been utilized to impregnate cells with trehalose, aiming at substantially improving the freezing tolerance of spinach leaves. Spinach samples were first treated with ten trains of bi-polar, rectangular electric field pulses with a nominal electric field strength of 580 V/cm and immediately immersed in a 40% (w/w) solution of trehalose under vacuum for 20 min. The samples were kept in the trehalose solution for 2.5 h at a...

  8. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Ando, Akira; Nakamura, Toshihide; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun

    2007-03-01

    Yeasts used in bread making are exposed to freeze-thaw stress during frozen-dough baking. To clarify the genes required for freeze-thaw tolerance, genome-wide screening was performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 58 gene deletions that conferred freeze-thaw sensitivity. These genes were then classified based on their cellular function and on the localization of their products. The results showed that the genes required for freeze-thaw tolerance were frequently involved in vacuole functions and cell wall biogenesis. The highest numbers of gene products were components of vacuolar H(+)-ATPase. Next, the cross-sensitivity of the freeze-thaw-sensitive mutants to oxidative stress and to cell wall stress was studied; both of these are environmental stresses closely related to freeze-thaw stress. The results showed that defects in the functions of vacuolar H(+)-ATPase conferred sensitivity to oxidative stress and to cell wall stress. In contrast, defects in gene products involved in cell wall assembly conferred sensitivity to cell wall stress but not to oxidative stress. Our results suggest the presence of at least two different mechanisms of freeze-thaw injury: oxidative stress generated during the freeze-thaw process, and defects in cell wall assembly. PMID:16989656

  9. Mechanisms of Salt Tolerance in Transgenic Arabidopsis thaliana Carrying a Peroxisomal Ascorbate Peroxidase Gene from Barley

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Feng; SHI Wei-Ming; A. UEDA; T. TAKABE

    2008-01-01

    Ascorbate peroxidases (APX), localized in the cytosol, peroxisome, mitochondria, and chloroplasts of plant cells,catalyze the reduction of H2O2 to water by using ascorbic acid as the specific electron donor. To determine the role of peroxisomal type ascorbate peroxidasc (pAPX), an antioxidant enzyme, in protection against salt-induced oxidative stress, transgenic Arabidopsis thaliana plant carrying a pAPX gene (HvAPX1) from barley (Hordeum vulgare L.) was analyzed. The transgenic line pAPX3 was found to be more tolerant to salt stress than the wild type. Irrespective of salt stress, there were no significant differences in Na+, K+, Ca2+, and Mg2+ contents and the ratio of K+ to Na+ between pAPX3 and the wild type. Clearly, the salt tolerance in pAPX3 was not due to the maintenance and reestablishment of cellular ion homeostasis. However, the degree of H2O2 and lipid peroxidation (measured as the levels of malondialdehyde)accumulation under salt stress was higher in the wild type than in pAPX3. The mechanism of salt tolerance in transgenic pAPX3 can thus be explained by reduction of oxidative stress injury. Under all conditions tested, activities of superoxide,glutathionc reductase, and catalase were not significantly different between pAPX3 and the wild type. In contrast, the activity of APX was significantly higher in the transgcnic plant than in wild type under salt stress. These results suggested that in higher plants, HvAPX1 played an important role in salt tolerance and was a candidate gene for developing salt-tolerant crop plants.

  10. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-05-11

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions.

  11. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-01-01

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions. PMID:25966262

  12. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  13. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  14. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.

    Science.gov (United States)

    Eroglu, Seckin; Meier, Bastian; von Wirén, Nicolaus; Peiter, Edgar

    2016-02-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  15. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  16. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  17. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    Science.gov (United States)

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.

  18. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Maeta, Kazuhiro; Inoue, Yoshiharu

    2004-12-01

    Intracellular glycerol content affects the freeze-thaw stress tolerance of Saccharomyces cerevisiae. We have recently reported that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability even in dough after frozen storage [Izawa et al. (2004) Appl Microbiol Biotechnol http://dx.doi.org/10.1007/s00253-004-1624-4]. A deletion mutant of the FPS1 gene, which encodes a glycerol channel, accumulates glycerol inside the cell without an exogenous supply of glycerol into the medium. We found that the fps1delta cells acquired tolerance to freeze stress and retained high leavening ability in dough after frozen storage for 7 days. These results suggest that the fps1delta mutant is a useful strain for developing better frozen-dough with a commercial advantage. PMID:15278313

  19. Freezing tolerance and the histology of recovering nodes in St. Augustinegrass

    Science.gov (United States)

    St. Augustinegrass [Stenataphrum secundatum (Walt.) Kuntze] is a coarse-textured turfgrass commonly utilized for its excellent shade tolerance. However, inferior cold tolerance in comparison to other warm-season grasses limits its range primarily to the southeastern U. S., The objectives of this stu...

  20. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Haitao Shi; Tiantian Ye; Ning Han; Hongwu Bian; Xiaodong Liu; Zhulong Chan

    2015-01-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interest-ingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcrip-tional y regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors.

  1. Host responses in life-history traits and tolerance to virus infection in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    Full Text Available Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host-parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV. Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues.

  2. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors.

  3. Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth.

    Science.gov (United States)

    Wei, Tao; Deng, Kejun; Gao, Yonghong; Liu, Yu; Yang, Meiling; Zhang, Lipeng; Zheng, Xuelian; Wang, Chunguo; Song, Wenqin; Chen, Chengbin; Zhang, Yong

    2016-07-01

    Multiple stress response genes are controlled by transcription factors in a coordinated manner; therefore, these factors can be used for molecular plant breeding. CBF1/DREB1B, a known stress-inducible gene, was isolated from Arabidopsis thaliana and introduced into Salvia miltiorrhiza under the control of the CaMV35S or RD29A promoter. Under drought stress, relative water content, chlorophyll content, and the net photosynthetic rate were observed to be higher in the transgenic lines than in the wild type (WT). Moreover, O2(-) and H2O2 accumulation was observed to be lower in the transgenic lines. Additional analyses revealed that the AtDREB1B transgenic plants generally displayed lesser malondialdehyde (MDA) but higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities than the WT under drought stress. Quantitative real-time polymerase chain reaction of a subset of genes involved in photosynthesis, stress response, carbohydrate metabolism, and cell protection further verified that AtDREB1B could enhance tolerance to drought by activating different downstream DREB/CBF genes in the transgenic plants. Furthermore, no growth inhibition was detected in transgenic S. miltiorrhiza plants that expressed AtDREB1B driven by either the constitutive CaMV35S promoter or the stress-inducible RD29A promoter. Together, these results suggest that AtDREB1B is a good candidate gene for increasing drought tolerance in transgenic S. miltiorrhiza. PMID:27002402

  4. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  5. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L..

    Directory of Open Access Journals (Sweden)

    Yao Lu

    Full Text Available Abscisic acid (ABA is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5 in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L. exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA and H(2O(2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  6. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors. PMID:25329496

  7. Prefoldins 3 and 5 Play an Essential Role in Arabidopsis Tolerance to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Miguel A.Rodriguez-Milla; Julio Salinas

    2009-01-01

    During the last years,our understanding of the mechanisms that control plant response to salt stress has been steadily progressing.Pharmacological studies have allowed the suggestion that the cytoskeleton may be involved in reg-ulating such a response.Nevertheless,genetic evidence establishing that the cytoskeleton has a role in plant tolerance to salt stress has not been reported yet.Here,we have characterized Arabidopsis T-DNA mutants for genes encoding proteins orthologous to prefoldin (PFD) subunits 3 and 5 from yeast and mammals.In these organisms,PFD subunits,also known as Genes Involved in Microtubule biogenesis (GIM),form a heterohexameric PFD complex implicated in tubulin and actin folding.We show that,indeed,PFD3 and PFD5 can substitute for the loss of their yeast orthologs,as they are able to complement yeast gim2△ and gim5△ mutants,respectively.Our results indicate thatpfd3 and pfd5 mutants have reduced levels of α- and β-tubulin compared to the wild-type plants when growing under both control and salt-stress conditions.In addition,pfd3 and pfd5 mutants display alterations in their developmental patterns and microtubule organization,and,more importantly,are hypersensitive to high concentrations of NaCI but not of LiCI or mannitol.These results demonstrate that the cytoskeleton plays an essential role in plant tolerance to salt stress.

  8. Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber

    Institute of Scientific and Technical Information of China (English)

    LIU Li-ying; DUAN Liu-sheng; ZHANG Jia-chang; MI Guo-quan; ZHANG Xiao-lan; ZHANG Zhen-xian; REN Hua-zhong

    2013-01-01

    Low temperature and high salinity are the major abiotic stresses that restrict cucumber growth and production, breeding materials with multiple abiotic resistance are in greatly need. Here we investigated the effect of introducing the LOS5 gene, a key regulator of ABA biosynthesis in Arabidopsis thaliana, under the stress-responsive RD29A promoter into cucumber (Cucumis sativus L. cv. S516). We found that T1 RD29A-LOS5 transgenic lines have enhanced tolerance to cold and salt stresses. Specifically, transgenic lines exhibited dwarf phenotypes with reduced leaf number, shorter internode, decreased length of the biggest leaf, fewer female flowers, shorter fruit neck and lower vitamin C (Vc). The increased cold tolerance can be reflected from the significantly decreased cold index, the reduced electrolyte leakage index and the MDA content upon cold treatment as compared to those in the control. This may result from the accumulation of internal ABA, soluble sugars and proline, and the enhanced activities of protective enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic lines. Under salt treatment, the transgenic lines exhibited increased germination index, vigor index, more lateral roots and increased root fresh weight. Moreover, RD29A-LOS5 transgenic plants displayed quicker responses in salt stress than that in low-temperature stress.

  9. Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Song-Mi Cho

    2013-06-01

    Full Text Available Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

  10. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Kevin Begcy

    Full Text Available BACKGROUND: Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1 from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. CONCLUSIONS/SIGNIFICANCE: Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.

  11. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    Science.gov (United States)

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast. PMID:24951963

  12. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs.

    Science.gov (United States)

    Teunissen, Aloys; Dumortier, Françoise; Gorwa, Marie-Françoise; Bauer, Jürgen; Tanghe, An; Loïez, Annie; Smet, Peter; Van Dijck, Patrick; Thevelein, Johan M

    2002-10-01

    The routine production and storage of frozen doughs are still problematic. Although commercial baker's yeast is highly resistant to environmental stress conditions, it rapidly loses stress resistance during dough preparation due to the initiation of fermentation. As a result, the yeast loses gassing power significantly during storage of frozen doughs. We obtained freeze-tolerant mutants of polyploid industrial strains following screening for survival in doughs prepared with UV-mutagenized yeast and subjected to 200 freeze-thaw cycles. Two strains in the S47 background with a normal growth rate and the best freeze tolerance under laboratory conditions were selected for production in a 20-liter pilot fermentor. Before frozen storage, the AT25 mutant produced on the 20-liter pilot scale had a 10% higher gassing power capacity than the S47 strain, while the opposite was observed for cells produced under laboratory conditions. AT25 also retained more freeze tolerance during the initiation of fermentation in liquid cultures and more gassing power during storage of frozen doughs. Other industrially important properties (yield, growth rate, nitrogen assimilation, and phosphorus content) were very similar. AT25 had only half of the DNA content of S47, and its cell size was much smaller. Several diploid segregants of S47 had freeze tolerances similar to that of AT25 but inferior performance for other properties, while an AT25-derived tetraploid, TAT25, showed only slightly improved freeze tolerance compared to S47. When AT25 was cultured in a 20,000-liter fermentor under industrial conditions, it retained its superior performance and thus appears to be promising for use in frozen dough production. Our results also show that a diploid strain can perform at least as well as a tetraploid strain for commercial baker's yeast production and usage. PMID:12324320

  13. Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland?

    Science.gov (United States)

    Thyrring, Jakob; Juhl, Bodil Klein; Holmstrup, Martin; Blicher, Martin E; Sejr, Mikael K

    2015-11-01

    In their natural habitats, organisms are exposed to multiple stressors. Heavy metal contamination stresses the cell membrane due to increased peroxidation of lipids. Likewise, sub-zero air temperatures potentially reduce membrane functionality in ectothermal animals. We tested if acute lead (Pb) exposure for 7 days would influence survival in intertidal blue mussels (Mytilus edulis) after exposure to realistic sub-zero air temperatures. A full factorial experiment with five tissue Pb concentrations between 0 and 3500 μg Pb/g and six sub-zero temperatures from 0 to -17 °C were used to test the hypothesis that sub-lethal effects of Pb may increase the lethality caused by freezing in blue mussels exposed to temperatures simulating Greenland winter conditions. We found a significant effect of temperature on mortality. However, the short-term exposure to Pb did not result in any effects of Pb, nor did we find interactions between Pb and temperature. We analysed the relative abundance of major phospholipid fatty acids (PLFAs) in the gill tissue, but we found no significant effect of Pb tissue concentration on PLFA composition. Results suggest that Pb accumulation has limited effects on freeze tolerance and does not induce membrane damage in terms of persistent lipid peroxidation.

  14. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  15. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  16. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wencai [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China); Zhang, Liang [College of Life Science, Henan Normal University, Xinxiang 453007 (China); Xu, Hangbo; Wang, Lin [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China); Jiao, Zhen, E-mail: jiaozhen@zzu.edu.cn [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  17. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance.

    Science.gov (United States)

    Bipfubusa, Marie; Rocher, Solen; Bertrand, Annick; Castonguay, Yves; Renaut, Jenny

    2016-09-01

    The data provide an overview of proteomic changes in red clover (Trifolium pratense L.) in response to cold acclimation and recurrent selection for superior freezing tolerance. Proteins were extracted from crowns of two red clover cultivars grown under non-acclimated or cold-acclimated conditions, and plants obtained from the initial genetic background (TF0) and from populations obtained after three (TF3) and four cycles (TF4) of recurrent selection for superior freezing tolerance. Proteins were analyzed using a two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled to mass spectroscopy (MS and MS/MS). Differentially regulated proteins were subsequently identified using MALDI TOF/TOF analysis. The data are related to a recently published research article describing proteome composition changes associated with freezing tolerance in red clover, "A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.)" (Bertrand et al., 2016 [1]). They are available in the ProteomeXchange Consortium database via the PRIDE partner repository under the dataset identifier PRIDE: PXD003689. PMID:27408927

  18. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  19. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.

    Science.gov (United States)

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A; Rentsch, Doris; Schroeder, Julian I; Lee, Youngsook; Martinoia, Enrico

    2010-12-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.

  20. SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shengchun Zhang; Yanli Qi; Ming Liu; ChengweiYang

    2013-01-01

    Post-translational modifications of proteins by small ubiquitin-like modifiers (SUMOs) play crucial roles in plant growth and development,and in stress responses.The MMS21 is a newly-identified Arabidopsis thaliana L.SUMO E3 ligase gene aside from the SIZ1,and its function requires further elucidation.Here,we show that MMS21 deficient plants display improved drought tolerance,and constitutive expression of MMS21 reduces drought tolerance.The expression of MMS21 was reduced by abscisic acid (ABA),polyethylene glycol (PEG) or drought stress.Under drought conditions,mms21 mutants showed the highest survival rate and the slowest water loss,and accumulated a higher level of free proline compared to wild-type (WT) and MMS21 over-expression plants.Stomatal aperture,seed germination and cotyledon greening analysis indicated that mms21 was hypersensitive to ABA.Molecular genetic analysis revealed that MMS21 deficiency led to elevated expression of a series of ABA-mediated stress-responsive genes,including COR15A,RD22,and P5CS1 The ABA and drought-induced stress-responsive genes,including RAB18,RD29A and RD29B,were inhibited by constitutive expression of MMS21.Moreover,ABA-induced accumulation of SUMO-protein conjugates was blocked in the mms21 mutant.We thus conclude that MMS21 plays a role in the drought stress response,likely through regulation of gene expression in an ABA-dependent pathway.

  1. The role of glutathione in mercury tolerance resembles its function under cadmium stress in Arabidopsis.

    Science.gov (United States)

    Sobrino-Plata, Juan; Carrasco-Gil, Sandra; Abadía, Javier; Escobar, Carolina; Álvarez-Fernández, Ana; Hernández, Luis E

    2014-02-01

    Recent research efforts have highlighted the importance of glutathione (GSH) as a key antioxidant metabolite for metal tolerance in plants. Little is known about the mechanisms involved in stress due to mercury (Hg), one of the most hazardous metals to the environment and human health. To understand the implication of GSH metabolism for Hg tolerance, we used two γ-glutamylcysteine synthetase (γECS) Arabidopsis thaliana allele mutants (rax1-1 and cad2-1) and a phytochelatin synthase (PCS) mutant (cad1-3). The leaves of these mutants and of wild type (Col-0) were infiltrated with a solution containing Cd or Hg (0, 3 and 30 μM) and incubated for 24 and 48 h. The formation of phytochelatins (PCs) in the leaf extracts was followed by two different HPLC-based methods and occurred in Col-0, cad2-1 and rax1-1 plants exposed to Cd, whereas in the Hg treatments, PCs accumulated mainly in Col-0 and rax1-1, where Hg-PC complexes were also detected. ASA and GSH/GSSG levels increased under moderate metal stress conditions, accompanied by increased GSH reductase (GR) activity and expression. However, higher metal doses led to a decrease in the analysed parameters, and stronger toxic effects appeared with 30 μM Hg. The GSH concentration was significantly higher in rax1-1 (70% of Col-0) than in cad2-1 (40% of Col-0). The leaves of rax1-1 were less sensitive than cad2-1, in accordance with the greater expression of γECS in rax1-1. Our results underline the existence of a minimal GSH concentration threshold needed to minimise the toxic effects exerted by Hg.

  2. The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Olga V.Popova; Huy Q.Dinh; Werner Aufsatz; Claudia Jonak

    2013-01-01

    Heat stress affects epigenetic gene silencing in Arabidopsis.To test for a mechanistic involvement of epigenetic regulation in heat-stress responses,we analyzed the heat tolerance of mutants defective in DNA methylation,histone modifications,chromatin-remodeling,or siRNA-based silencing pathways.Plants deficient in NRPD2,the common second-largest subunit of RNA polymerases Ⅳ and V,and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure.Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress.The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription.We provide evidence that the transcriptional response to temperature stress,at least partially,relies on the integrity of the RNA-dependent DNA methylation pathway.

  3. Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice.

    Science.gov (United States)

    Datta, Karabi; Baisakh, Niranjan; Ganguly, Moumita; Krishnan, Sellapan; Yamaguchi Shinozaki, Kazuko; Datta, Swapan K

    2012-06-01

    Rice yield is greatly affected by environmental stresses such as drought and salinity. In response to the challenge of producing rice plants tolerant to these stresses, we introduced cDNA encoding the transcription factors DREB1A and DREB1B under the control of the stress inducible rd29 promoter. Two different indica rice cultivars were used, BR29, an improved commercially cultivated variety from Bangladesh and IR68899B, an IRRI bred maintainer line for hybrid rice. Agrobacterium mediated transformation of BR29 was done independently with DREB1A isolated from rice and Arabidopsis and DREB1B isolated from rice, whereas biolistic transformation was done with rice- DREB1B in the case of IR68899B. Initial genetic integration was confirmed by PCR and Southern blot analysis. Salinity tolerance was assayed in very young seedlings. Drought stress tests were found to be more reliable when they were carried out at the pre-flowering booting stage. RNA gel blot analysis as well as quantitative PCR analysis was performed to estimate the transcription level under stressed and unstressed conditions. Agronomic performance studies were done with stressed and unstressed plants to compare the yield losses due to dehydration and salt loading stresses. Noticeably enhanced tolerance to dehydration was observed in the plants transformed with DREB1A isolated from Arabidopsis while DREB1B was found to be more effective for salt tolerance.

  4. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  5. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth.

    Science.gov (United States)

    Li, N G

    2016-10-01

    Yakutia is a part of eastern Siberia, located in north-eastern Russia. The climate of this area is very harsh even by Siberian standards, and is characterized by the absolute temperature minimum, which is below -64.4 °C, and a long period of low temperatures reaching to a range between -47 and -55 °C. Despite such a severe climate, the fauna and flora of Yakutia present a considerably rich biodiversity, suggesting a high adaptation potential of the organisms in this area. In this study, 30 local species of insects belonging to Coleoptera, Diptera and Lepidoptera were selected to investigate cold adaptation. The identification of the cold adaptation strategy was based on the measurement of the insect body supercooling point (SCP) and hemolymph ice-nucleating activity. According to the data collected, there is a high incidence of freeze tolerant species among the insects found in Yakutsk area (Yakutsk, 62° latitude, 130° longitude): 93.3% of them were freeze tolerant, and only 6.7% were freeze avoiding. It is suggested that the evolution of cold hardiness in this region preferably develops for the selection of the strong freeze tolerance that allow the insects to survive extreme cold conditions. PMID:27424094

  6. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaolian Zhang

    Full Text Available Ariadne (ARI subfamily of RBR (Ring Between Ring fingers proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L. Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.

  7. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. PMID:26876611

  8. Soybean GmMYB76,GmMYB92,and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Hong-Feng Zou; Hui-Wen Wang; Wan-Ke Zhang; Biao Ma; Jin-Song Zhang; Shou-Yi Chen

    2008-01-01

    MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth,development,metabolism and stress responses.From soybean plants,we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes,and 48 were found to have full-length open-reading frames.Expressions of all these identified genes were examined,and we found that expressions of 43 genes were changed upon treatment with ABA,salt,drought and/or cold stress.Three GmMYB genes,GmMYB76,GmMYB92 and GmMYB177,were chosen for further analysis.Using the yeast assay system,GmMYB76 and GmMYB92 were found to have transactivation activity and can form homodimers.GmMYBI77 did not appear to have transactivation activity but can form heterodimers with GmMYB76.Yeast onehybrid assay revealed that all the three GmMYBs could bind to cis-elements TAT AAC GGT TTT TT and CCG GAA AAAAGG AT,but with different affinity,and GmMYB92 could also bind to TCT CAC CTA CC.The transgenic Arabidopsis plants overexpressing GmMYB76 or GmMYB177 showed better performance than the GmMYB92-transgenic plants in salt and freezing tolerance.However,these transgenic plants exhibited reduced sensitivity to ABA treatment at germination stage in comparison with the wild-type plants.The three GmMYB genes differentially affected a subset of stress-responsive genes in addition to their regulation of a common subset of stress-responsive genes.These results indicate that the three GmMYB genes may play differential roles in stress tolerance,possibly through regulation of stress-responsive genes.

  9. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    Science.gov (United States)

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  10. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. PMID:26603028

  11. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana

    OpenAIRE

    Ahammed, Golam Jalal; LI, XIN; Yu, Jingquan; Kai SHI

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol−1) conditions, HS (42°C, 24 h) drastically decrea...

  12. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    OpenAIRE

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and t...

  13. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    Science.gov (United States)

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts. PMID:7986027

  14. Research progress on improvement in freeze-tolerance of baker's yeast%提高面包酵母耐冷冻性的研究进展

    Institute of Scientific and Technical Information of China (English)

    苏从毅; 王辛; 王四维; 张福钊

    2012-01-01

    Baker yeast is a necessary material of bread making, and improvement in freeze- tolerance of baker's yeast is very important to the development of frozen dough. In this paper, the species and effects of baker's yeast were introduced, and the freeze-tolerance mechanism of baker's yeast and the development review on improvement in freeze-tolerance of baker's yeast were emphasized.%面包酵母是制作面包不可缺少的原料,提高面包酵母的耐冷冻性对冷冻面团工业的发展有着十分重要的作用。本文介绍了面包酵母的种类和作用,重点讲述了面包酵母的耐冷冻机理及国内外对提高面包酵母耐冷冻性的研究进展。

  15. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice.

    Science.gov (United States)

    Sato, Hikaru; Todaka, Daisuke; Kudo, Madoka; Mizoi, Junya; Kidokoro, Satoshi; Zhao, Yu; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-08-01

    The enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3-1 (DPB3-1)/nuclear factor Y subunit C10 (NF-YC10) has been reported as a positive regulator of Dehydration-responsive element binding protein 2A (DREB2A), and the overexpression of DPB3-1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3-1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3-1 and its rice homologue OsDPB3-2 function as positive regulators of DREB2A homologues. Overexpression of DPB3-1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3-1-overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress-inducible genes were up-regulated in DPB3-1-overexpressing rice under heat stress conditions. However, the overexpression of DPB3-1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3-1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3-1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth. PMID:26841113

  16. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  17. H(2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.

    Directory of Open Access Journals (Sweden)

    Yanjie Xie

    Full Text Available BACKGROUND: The metabolism of hydrogen gas (H(2 in bacteria and algae has been extensively studied for the interesting of developing H(2-based fuel. Recently, H(2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H(2 in plants as well as its signalling cascade remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H(2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H(2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H(2-saturated liquid medium, mimicking the induction of endogenous H(2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H(2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS overproduction and lipid peroxidation. Additionally, H(2 pretreatment maintained ion homeostasis by regulating the antiporters and H(+ pump responsible for Na(+ exclusion (in particular and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H(2 signalling. CONCLUSIONS: Overall, our findings indicate that H(2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.

  18. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  19. Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus.

    Science.gov (United States)

    Lee, J M; Hartman, G L; Domier, L L; Bent, A F

    1996-11-01

    The interaction between Arabidopsis and the nepovirus tobacco ringspot virus (TRSV) was characterized. Of 97 Arabidopsis lines tested, all were susceptible when inoculated with TRSV grape strain. Even though there was systemic spread of the virs, there was a large degree of variation in symptoms as the most sensitive lines died 10 days after inoculation, while the most tolerant lines either were symptomless or developed only mild symptoms. Four lines were selected for further study based on their differential reactions to TRSV. Infected plants of line Col-0 and Col-0 gl1 flowered and produced seeds like noninfected plants, while those of lines Estland and H55 died before producing seeds. Symptoms appeared on sensitive plants approximately 5 to 6 days after inoculation. Serological studies indicated that in mechanically inoculated seedlings, the virus, as measured by coat protein accumulation, developed at essentially the same rates and to the same levels in each of the four lines, demonstrating that differences in symptom development were not due to a suppression of virus accumulation. Two additional TRSV strains gave similar results when inoculated on the four lines. Genetic studies with these four Arabidopsis lines revealed segregation of a single incompletely dominant locus controlling tolerance to TRSV grape strain. We have designated this locus TTR1. By using SSLP and CAPS markers, TTR1 was mapped to chromosome V near the nga129 marker. Seed transmission frequency of TRSV for Col-0 and Col-0 gl1 was over 95% and their progeny from crosses all had seed transmission frequencies of over 83%, which made it possible to evaluate the segregation of TTR1 in F2 progeny from infected F1 plants without inoculating F2 plants. Seed transmission of TRSV will be further exploited to streamline selection of individuals for fine mapping the TTR1 gene. The identification of tolerant and sensitive interactions between TRSV and A. thaliana lines provides a model system for

  20. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    Science.gov (United States)

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  1. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    Science.gov (United States)

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development. PMID:26711633

  2. Study of natural variation for Zn deficiency tolerance in Arabidopsis thaliana

    NARCIS (Netherlands)

    Campos, A.C.A.L.

    2015-01-01

    English summary Zinc is an important structural component and co-factor of proteins in all living organisms. The model plant species for genetic and molecular studies, Arabidopsis thaliana, expresses more than 2,000 proteins with one or more Zn binding domains. Low Zn availability i

  3. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis

    Science.gov (United States)

    Freezing temperatures during winter generally do not injure floral buds of horticulturally important crops. Entry into dormancy coupled with cold acclimation provides adequate protection unless the temperatures are exceptionally low. This measure of protection is lost in spring when the floral bud...

  4. Comparison of the pharmacokinetics, safety and tolerability of two concentrations of a new liquid recombinant human growth hormone formulation versus the freeze-dried formulation

    OpenAIRE

    Liedert, Bernd; Forssmann, Ulf; Wolna, Peter; Golob, Michaela; Kovar, Andreas

    2010-01-01

    Background Somatropin is recombinant human growth hormone (GH) used for the treatment of growth failure in children and GH deficiency in adults. Two concentrations of a liquid formulation have been developed: 5.83 and 8.0 mg/mL. This trial compared the pharmacokinetics (PK), safety and tolerability of these two liquid concentrations against the freeze-dried (FD) formulation in healthy volunteers. Methods In an open-label, single-centre, three-way crossover study, volunteers (aged 18-45 years)...

  5. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  6. Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants

    OpenAIRE

    Lee, Kyounghee; Seo, Pil Joon

    2014-01-01

    Plants have evolved sophisticated defense mechanisms to overcome their sessile nature. One remarkable strategy is the inter-plant communication mediated by volatile organic compounds (VOCs). Quantity and quality of plant VOCs are intricately regulated by biotic and abiotic stresses, and the alterations facilitate plant community to optimize their growth, development, and endogenous physiology to environmental fluctuations. Here, we report that Arabidopsis thaliana plants that experience high ...

  7. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis.

    Science.gov (United States)

    Fang, Huihui; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Liu, Danmei; Pei, Yanxi

    2016-06-01

    Increasing attention has been focused on the health of vegetables and grains grown in the contaminated agricultural soil, it is thus meaningful to find ways to reduce the heavy metals (HMs) accumulation in plants. As sulfur is considered to be an essential macronutrient for plant stress defenses, the important role of sulfur assimilation in plants responding to HMs stress has been followed. However, the potential mechanism of the only sulfur-containing gasotransmitter hydrogen sulfide (H2S) and its main endogenously generated substrate, cysteine (Cys), in plant defense is poorly understood. The physiological and biochemical methods together with qRT-PCR were used to explore the response pattern of H2S-Cys cycle in plants resisting to chromium (Cr(6+)) stress. Our results suggested that Cr(6+) stress inhibited Arabidopsis root elongation, increased the H2S and Cys contents time-dependently, and H2S production was activated earlier than Cys. Furthermore, H2S increased Cys accumulation more quickly than Cr(6+) stress. The qRT-PCR results revealed that H2S up-regulated the Cys generation-related genes OASTLa, SAT1 and SAT5 expression levels, and that SAT1 and SAT5 expression was elevated for a longer duration. Data suggested that H2S might regulate Cys metabolism-related genes expression to participate in Cr(6+)-mediated Cys accumulation. H2S and Cys relieved the root elongation inhibition caused by Cr(6+) in Arabidopsis. Both H2S and Cys enhanced glutathione generation and activated phytochelatins (PCs) synthesis by up-regulating PCS1 and PCS2 expression levels to fight against Cr(6+) stress. Besides regulating the expression of PCs synthase encoding genes, H2S might promote metallothioneins accumulation by significantly increasing the MT2A gene expression. Overall, H2S and H2S-induced Cys accumulation (H2S-Cys system) was critical in imparting Cr(6+) tolerance in Arabidopsis. This paper is the first to indicate that gasotransmitter H2S induced Cys accumulation in

  8. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  9. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Aftab Ahmad

    Full Text Available An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8 as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'. The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  10. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  11. Estimating Broad Sense Heritability and Investigating the Mechanism of Genetic Transmission of Cold Tolerance Using Mannitol as a Measure of Post-freeze Juice Degradation in Sugarcane and Energycane (Saccharum spp.).

    Science.gov (United States)

    Hale, Anna L; Viator, Ryan P; Eggleston, Gillian; Hodnett, George; Stelly, David M; Boykin, Debbie; Miller, Donnie K

    2016-03-01

    In approximately 25% of the sugarcane-producing countries worldwide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. A study was conducted during the 2009 and 2010 harvest seasons to compare late-season freeze tolerance among three groups: commercial Louisiana sugarcane genotypes, early generation genotypes selected for cold tolerance in the U.S. Department of Agriculture sugarcane breeding programs at Houma, LA, and Canal Point, FL, and potential energycane genotypes selected for high total biomass per acre. Mannitol concentrations in cane juice following freezing temperatures were determined to evaluate levels of cold tolerance. Genotypes selected for cold tolerance in Houma, LA, had significantly more late-season freeze tolerance than commercial sugarcane genotypes and genotypes selected in Canal Point, FL. Genotypes showing the most cold tolerance were Ho02-146 and Ho02-152, and those that were most highly susceptible were US87-1006 and US87-1003 (early-generation breeding genotypes) and L99-233 (commercial genotype). Broad-sense heritability for late-season cold tolerance in the two-year study was estimated at g(2) = 0.78. The enzymatic mannitol analysis successfully differentiated high-fiber energycane genotypes from those from other sources.

  12. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  13. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-03-01

    Full Text Available The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.

  14. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Science.gov (United States)

    Park, Hyun Ji; Lee, Sang Sook; You, Young Nim; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding. PMID:23485991

  15. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  16. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.

  17. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis1[OPEN

    Science.gov (United States)

    Chen, Jian; Yan, Xingxing; Liu, Yunlei; Wang, Ren; Fan, Tingting; Ren, Yongbing; Tang, Xiaofeng; Xiao, Fangming

    2016-01-01

    Cadmium (Cd) is an environmental pollutant with high toxicity to animals and plants. It has been established that the glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is one of the most important mechanisms contributing to Cd accumulation and tolerance in plants. However, the transcription factors involved in regulating GSH-dependent PC synthesis pathway remain largely unknown. Here, we identified an Arabidopsis (Arabidopsis thaliana) Cd-resistant mutant xcd2-D (XVE system-induced cadmium-tolerance2) using a forward genetics approach. The mutant gene underlying xcd2-D mutation was revealed to encode a known zinc-finger transcription factor, ZAT6. Transgenic plants overexpressing ZAT6 showed significant increase of Cd tolerance, whereas loss of function of ZAT6 led to decreased Cd tolerance. Increased Cd accumulation and tolerance in ZAT6-overexpressing lines was GSH dependent and associated with Cd-activated synthesis of PC, which was correlated with coordinated activation of PC-synthesis related gene expression. By contrast, loss of function of ZAT6 reduced Cd accumulation and tolerance, which was accompanied by abolished PC synthesis and gene expression. Further analysis revealed that ZAT6 positively regulates the transcription of GSH1, GSH2, PCS1, and PCS2, but ZAT6 is capable of specifically binding to GSH1 promoter in vivo. Consistently, overexpression of GSH1 has been shown to restore Cd sensitivity in the zat6-1 mutant, suggesting that GSH1 is a key target of ZAT6. Taken together, our data provide evidence that ZAT6 coordinately activates PC synthesis-related gene expression and directly targets GSH1 to positively regulate Cd accumulation and tolerance in Arabidopsis. PMID:26983992

  18. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress.

  19. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    Science.gov (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  20. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis.

    Science.gov (United States)

    Remy, Estelle; Cabrito, Tânia R; Baster, Pawel; Batista, Rita A; Teixeira, Miguel C; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-03-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.

  1. 游离高表达Mal62基因对面包酵母耐冷冻性的影响%Effects of High-expressed Ma162 Gene on Freezing Tolerance of Baker's Yeast

    Institute of Scientific and Technical Information of China (English)

    孙溪; 张翠英; 董建; 吴鸣月; 王光路; 肖冬光

    2012-01-01

    通过测定胞内海藻糖积累量、冷冻前后相对发酵力以及存活率的变化,对比游离高表达麦芽糖酶基因(Md62)的突变株BYCPM与亲本BY14的海藻糖合成能力,研究Ma/62基因游离高表达与酵母耐冷冻性之间的关系。结果表明.Ma/62基因游离高表达与酵母耐冷冻性有一定的相关性,突变株耐冷冻性改善,其在烘焙产业中具有潜在商业价值。%AThe relations between high-expressed Ma162 gene and freezing tolerance of baker's yeast were investigated through measuring the accumulating quantity of intracellular trehalose, observing the change of cell fermenting power and cell viability before and after freezing, and com- paring trehalose synthesis of parent strain BY14 and mutant strain BYCPM. The results showed that there was certain relativity between high-expressed ma/62 gene and freezing tolerance of baker' s yeast (freezing tolerance got improved for mutant strain). Accordingly, the improved freezing tolerance of BYCPM may make it useful in commercial baking industry.

  2. A Novel Non-coding RNA Regulates Drought Stress Tolerance in Arabidopsis thaliana

    KAUST Repository

    Albesher, Nour H.

    2014-05-01

    Drought (soil water deficit) as a major adverse environmental condition can result in serious reduction in plant growth and crop production. Plants respond and adapt to drought stresses by triggering various signalling pathways leading to physiological, metabolic and developmental changes that may ultimately contribute to enhanced tolerance to the stress. Here, a novel non-coding RNA (ncRNA) involved in plant drought stress tolerance was identified. We showed that increasing the expression of this ncRNA led to enhanced sensitivity during seed germination and seedling growth to the phytohormone abscisic acid. The mutant seedlings are also more sensitive to osmotic stress inhibition of lateral root growth. Consistently, seedlings with enhanced expression of this ncRNA exhibited reduced transiprational water loss and were more drought-tolerant than the wild type. Future analyses of the mechanism for its role in drought tolerance may help us to understand how plant drought tolerance could be further regulated by this novel ncRNA.

  3. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis

    Indian Academy of Sciences (India)

    Ji Bao Chen; Jian Wei Yang; Zhao Yuan Zhang; Xiao Fan Feng; Shu Min Wang

    2013-12-01

    Many plants accumulate proline in response to salt stress. -pyrroline-5-carboxylate synthetase (P5CS) is the rate-limiting enzyme in proline biosynthesis in plants. Plasmid DNA (pCHF3-PvP5CS1 and pCHF3-PvP5CS2) containing the selectable neomycin phosphotransferase gene for kanamycin resistance and Phaseolus vulgaris P5CS (PvP5CS1 and PvP5CS2) cDNA was introduced into Arabidopsis plants using Agrobacterium-mediated gene transfer. Southern blot, northern blot and RT-PCR analyses demonstrated that the foreign genes were integrated into Arabidopsis chromosomal DNA and expressed. Single-gene transformants were analysed in this study. Transgenic plants expressed higher levels of PvP5CS1 and PvP5CS2 transcripts under salt stress conditions than under normal conditions. When treated with 0, 100 and 200 mM NaCl, the average proline content in leaves of transgenic plants was significantly higher $(P \\lt 0.01)$ than control plants. The average relative electrical conductivity (REC) of transgenic lines was significantly lower $(P \\lt 0.01)$ than control plants under salt stress condition. Biomass production of transgenic lines was significantly higher $(P \\lt 0.05)$ than control plants under 200 mM NaCl stress treatment. These results indicated that introducing PvP5CS1 and PvP5CS2 cDNA into transgenic Arabidopsis caused proline overproduction, increasing salt tolerance. Although the expression of PvP5CS1 in L4 lines and PvP5CS2 in S4 lines was the same under salt stress condition, the S4 lines accumulated 1.6 and 1.9 times more proline than the L4 lines under 100 and 200 mM NaCl treatments, respectively. The REC of S4 plants was 0.5 (100 mM NaCl) and 0.6 times (200 mM NaCl) that of L4 plants. The biomass production of S4 plants was 1.6 times (200 mM NaCl) more than in L4 plants. Total P5CS enzyme activity of S4 was significantly higher than that of L4. These results implied that the PvP5CS2 protein had stronger capacity to catalyze proline synthesis than PvP5CS1 under salt

  4. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance

    OpenAIRE

    Xie, Yanjie; Mao, Yu; Lai, Diwen; Zhang, Wei; Zheng, Tianqing; Shen, Wenbiao

    2013-01-01

    Despite substantial evidence on the separate roles of Arabidopsis nitric oxide-associated 1 (NOA1)-associated nitric oxide (NO) production and haem oxygenase 1 (HY1) expression in salt tolerance, their integrative signalling pathway remains largely unknown. To fill this knowledge gap, the interaction network among nitrate reductase (NIA/NR)- and NOA1-dependent NO production and HY1 expression was studied at the genetic and molecular levels. Upon salinity stress, the majority of NO production ...

  5. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize. PMID:24974327

  6. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.

    Science.gov (United States)

    Picault, N; Cazalé, A C; Beyly, A; Cuiné, S; Carrier, P; Luu, D T; Forestier, C; Peltier, G

    2006-11-01

    The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.

  7. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana

    KAUST Repository

    Awlia, Mariam

    2016-09-28

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions.

  8. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough.

    Science.gov (United States)

    Panadero, Joaquin; Randez-Gil, Francisca; Prieto, Jose Antonio

    2005-12-28

    The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions. PMID:16366681

  9. Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice

    Institute of Scientific and Technical Information of China (English)

    WU Liangqi; FAN Zhanmin; GUO Lei; LI Yongqing; ZHANG Wenjing; QU Li-Jia; CHEN Zhangliang

    2003-01-01

    δ-OAT, ornithine-δ-aminotransferase, is the key enzyme involved in proline biosynthesis. In this study the Arabidopsisδ-OAT gene was transferred into rice (Oryza sativa L. ssp japonica cv. Zhongzuo 321), whose successful integration was demonstrated by PCR and Southern blot analysis. The over-expression of the gene in transgenic rice was also confirmed. Biochemical analysis showed that, under salt or drought stress conditions, proline contents in the leaves and roots in transgenic rice plants were 5- to 15-fold of those in non-transgenic controls. Under stress conditions, germinating rate of transgenic lines is higher than that of controls. Although the growth of rice plants tested were more and more retarded with the increasing of NaCl concentration, the transgenic plants grow faster compared to the controls under the same stress condition. Meanwhile, the resistance to KCl and MgSO4 stresses was also found enhanced in transgenic rice. Furthermore, the over-expression ofδ-OAT also improved the yield of transgenic plants under stress conditions. The average yield per plant of transgenic lines increases about 12%-41% more than that of control lines under 0.1 mol/L NaCl stress. These data indicated that the over-expression of δ-OAT, with the accumulation of proline, resulted in the enhancement of salt and drought tolerance and an increase of rice yield, which is of significance in agriculture.

  10. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  11. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS, named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG. Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD in transgenic seedlings. In addition, the level of malondialdehyde (MDA was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.

  12. Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica.

    Science.gov (United States)

    Rider, Mark H; Hussain, Nusrat; Horman, Sandrine; Dilworth, Stephen M; Storey, Kenneth B

    2006-12-01

    Survival in the frozen state depends on biochemical adaptations that deal with multiple stresses on cells including long-term ischaemia and tissue dehydration. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the metabolic re-sculpting that occurs during freezing. AMPK activity and the phosphorylation state of translation factors were measured in liver and skeletal muscle of wood frogs (Rana sylvatica) subjected to anoxia, dehydration, freezing, and thawing after freezing. AMPK activity was increased 2-fold in livers of frozen frogs compared with the controls whereas in skeletal muscle, AMPK activity increased 2.5-, 4.5- and 3-fold in dehydrated, frozen and frozen/thawed animals, respectively. Immunoblotting with phospho-specific antibodies revealed an increase in the phosphorylation state of eukaryotic elongation factor-2 at the inactivating Thr56 site in livers from frozen frogs and in skeletal muscles of anoxic frogs. No change in phosphorylation state of eukaryotic initiation factor-2alpha at the inactivating Ser51 site was seen in the tissues under any of the stress conditions. Surprisingly, ribosomal protein S6 phosphorylation was increased 2-fold in livers from frozen frogs and 10-fold in skeletal muscle from frozen/thawed animals. However, no change in translation capacity was detected in cell-free translation assays with skeletal muscle extracts under any of the experimental conditions. The changes in phosphorylation state of translation factors are discussed in relation to the control of protein synthesis and stress-induced AMPK activation. PMID:16973146

  13. Proteomics Analysis Reveals Post-Translational Mechanisms for Cold-Induced Metabolic Changes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Tian Li; Alma L.Burlingame; Zhi-Ping Deng; Zhi Yong Wang; Shou-Ling Xu; Juan A.Oses-Prieto; Sunita Putil; Peng Xu; Rui-Ju Wang; Kathy H.Li; David A.Malty; Liz-He An

    2011-01-01

    Cold-induced changes of gene expression and metabolism are critical for plants to survive freezing. Largely by changing gene expression, exposure to a period of non-freezing low temperatures increases plant tolerance to freezing-a phenomenon known as cold acclimation. Cold also induces rapid metabolic changes, which provide instant protection before temperature drops below freezing point. The molecular mechanisms for such rapid metabolic responses to cold remain largely unknown. Here, we use two-dimensional difference gel electrophoresis (2-D DIGE) analysis of sub-cellular fractions of Arabidopsis thaliana proteome coupled with spot identification by tandem mass spectrometry to identify early cold-responsive proteins in Arabidopsis. These proteins include four enzymes involved in starch degradation, three HSP100 proteins, several proteins in the tricarboxylic acid cycle, and sucrose metabolism. Upon cold treatment, the Disproportionating Enzyme 2 (DPE2), a cytosolic transglucosidase metabolizing maltose to glucose, increased rapidly in the centrifugation pellet fraction and decreased in the soluble fraction. Consistent with cold-induced inactivation of DPE2 enzymatic activity, the dpe2 mutant showed increased freezing tolerance without affecting the C-repeat binding transcription factor (CBF) transcriptional pathway. These results support a model that cold-induced inactivation of DPE2 leads to rapid accumulation of maltose, which is a cold-induced compatible solute that protects cells from freezing damage. This study provides evidence for a key role of rapid post-translational regulation of carbohydrate metabolic enzymes in plant protection against sudden temperature drop.

  14. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed.

  15. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LI Chunguang; CHEN Qijun; GAO Xinqi; QI Bishu; CHEN Naizhi; XU Shouming; CHEN Jia; WANG Xuechen

    2005-01-01

    There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H2O2 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.

  16. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana.

    Science.gov (United States)

    Guo, Jiangbo; Dai, Xiaojing; Xu, Wenzhong; Ma, Mi

    2008-07-01

    The goal of this study was to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by simultaneous overexpression of AsPCS1 and GSH1 (derived from garlic and baker's yeast) in Arabidopsis thaliana. Phytochelatins (PCs) and glutathione (GSH) are the main binding peptides involved in chelating heavy metal ions in plants and other living organisms. Single-gene transgenic lines had higher tolerance to and accumulated more Cd and As than wild-type. Compared to single-gene transgenic lines, dual-gene transformants exhibited significantly higher tolerance to and accumulated more Cd and As. One of the dual-gene transgenic lines, PG1, accumulated twice the amount of Cd as single-gene transgenic lines. Simultaneous overexpression of AsPCS1 and GSH1 led to elevated total PC production in transgenic Arabidopsis. These results indicate that such a stacking of modified genes is capable of increasing Cd and As tolerance and accumulation in transgenic lines, and represents a highly promising new tool for use in phytoremediation efforts.

  17. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  18. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress.

    Directory of Open Access Journals (Sweden)

    Anirudha R Dixit

    Full Text Available We describe here the functional characterization of a novel AtSAP10, a member of the Stress Associated Protein (SAP gene family, from Arabidopsis thaliana ecotype Columbia. AtSAP10 contains an A20 and AN1 zinc-finger domain at the N- and C-terminal, respectively. Arabidopsis SAP10 showed differential regulation by various abiotic stresses such as heavy metals and metalloids (Ni, Cd, Mn, Zn, and As, high and low temperatures, cold, and ABA. Overexpression of AtSAP10 in Arabidopsis conferred strong tolerance to heavy metals such as Ni, Mn, and Zn and to high temperature stress. AtSAP10 transgenic plants under these stress conditions grew green and healthy, attained several-fold more biomass, and had longer roots as compared to wild type plants. Further, while these transgenic plants accumulated significantly greater amounts of Ni and Mn in both shoots and root tissues, there was no significant difference in the accumulation of Zn. AtSAP10 promoter-GUS fusion studies revealed a root and floral organ-specific expression of AtSAP10. Overexpression of AtSAP10-GFP fusion protein showed the localization in both nucleus and cytoplasm. Taken together, these results showed that AtSAP10 is a potentially useful candidate gene for engineering tolerance to heavy metals and to abiotic stress in cultivated plants.

  19. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm.

    Science.gov (United States)

    Waterhouse, K E; Hofmo, P O; Tverdal, A; Miller, R R

    2006-05-01

    The response of sperm to cryopreservation and the fertility of frozen-thawed semen varies between species. Besides species differences in sperm physiology, structure and biochemistry, factors such as sperm transport and female reproductive tract anatomy will affect fertility of frozen-thawed semen. Therefore, studying differences in sperm cryotolerance between breeds and individuals instead of between species may reveal sources of variability in sperm cryotolerance. In the present study, the effect of cooling, re-warming and freezing and thawing on plasma membrane and acrosome integrity of sperm within and between Norwegian Landrace and Duroc breeds was studied. Furthermore, the relation between post-thaw survival rate and fatty acid composition of the sperm plasma membranes was investigated. Flow cytometry assessments of plasma membrane and acrosome integrity revealed no significant differences between breeds; however there were significant male-to-male variations within breeds in post-thaw percentages of live sperm (plasma membrane intact). The most abundant fatty acids in the plasma membranes from both breeds were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1, n-9), docosapentaenoic acid (22:5, n-6) and docosahexaenoic acid (22:6, n-3). The ratio of sigma operator 22:5, n-6 and 22:6, n-3/ sigma operator all other membrane fatty acids was significantly related to survival rate (plasma membrane integrity) of sperm for both Norwegian Landrace (correlation coefficient (r(s)) = 0.64, P boars. In conclusion, male-to-male differences in sperm survival rate after freezing and thawing may be partly related to the amount of long-chain polyunsaturated fatty acids in the sperm plasma membranes. PMID:16672353

  20. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    Science.gov (United States)

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  1. Assessment of Freezing Tolerance of Juglans Germplasms by Using Annual Dormant Branches%核桃属植物休眠期的抗寒性鉴定

    Institute of Scientific and Technical Information of China (English)

    田景花; 王红霞; 高仪; 张志华

    2013-01-01

    The test materials were annual dormant branches of 18 Juglans germplasms that belong to 4 species including J.regia L.,J.hopeiensis Hu.,J.mandshurica Maxim.,and J.nigra L.The semi-lethal temperatures (LTs0) were assessed separately by electrolyte leakage,tissue browning,and triphenyl tetrazolium chloride (TTC) dyeing method with Logistic equation.Branch anatomical structures were observed with paraffin sections.The correlations between branch anatomical structures and freezing tolerance were analyzed.The results showed that relative electrical conductivities (REC) of walnut annual branches were rising with the temperature drop.The significant differences of LTs0 of Juglans germplasms were observed between-38 ℃ and-22 ℃.The interspecific differences were distinct,and the order of freezing tolerance was J.nigra > J.mandshurica,J.hopeiensis > J.regia.Electrolyte leakage,tissuebrowning,and TTC dyeing method all could be used for assessment of the freezing tolerance in dormant period,but LT50 assessed by electrolyte leakage was more accurate than the other methods.There was significant positive correlation (P < 0.01) between LT50 and REC at-24 ℃,which was a little higher than LT50 of the most Juglans germplasms.LT50 and REC at-24 ℃ could be used as physicochemical indexes for freezing tolerance identification of Juglans in dormant period.In addition,the tissues thickness of annual branches with roughly similar stem diameter had significant differences.The significant negative correlation (P < 0.01) was showed between LT50 and phellem layer thickness or phellem layer ratio in the branch,which provided morphological indexes to assess the freezing tolerance of Juglans in dormant period.%以核桃属(Juglans)中的普通核桃、核桃楸、河北核桃和黑核桃4个种的18份种质休眠期的1年生枝条为试验材料,采用电解质渗出率法、组织褐变法及氯化三苯基四氮唑(TTC)染色法并配合Logistic方程确定枝

  2. Effects of salt stress on wild type and vte4 mutant Arabidopsis thaliana: Model plant to engineer tolerance towards salinity

    Directory of Open Access Journals (Sweden)

    Khalatbari Amir Ali

    2013-01-01

    Full Text Available One of the major environmental constraints impairing plant distribution and yield is believed to be salt stress. Additionally, engineered abiotic stress resistance or/and tolerance is considered as an indispensable target in order to enhance plant productivity. In this study, the effects of salinity on physiological and morphological of wild type (Columbia-0 and vte4 mutant Arabidopsis thaliana were investigated under different NaCl concentrations. These salt treatments, including control condition, 50mM and 100mM NaCl were imposed on the plants. Each salt treatment was replicated three times in a complete randomized design with factorial arrangement. Wild type and mutant A.thaliana plants were subjected to the abiotic stress (salinity for up to 11 days to evaluate the parameters of growth, development and water relations. As a result, the performance of wild type plants was stronger than vte4 mutant under different salt treatments. Under control condition, rosette dry weight, maximum quantum efficiency (PSII and specific leaf area obtained the highest values of 13.85 mg, considered, wild type A.thaliana recorded higher value of 0.82 gW/gFW for relative water content (RWC under 50mM NaCl whereas mutant plants gained the value of 0.78 gW/gFW under the same condition. However, root mass fraction indicated an increase for both wild type and vte4 mutant plants after 11 days of salt stress onset. The reduction of water potential was observed for wild type and mutant A.thaliana where it scored -1.3 MPa and -1.4, respectively. As a conclusion, these findings implied that under different salt treatments morphological and physiological responses of wild type and vte4 mutant were affected in which wild type plants showed more tolerance. Lack of γ-tocopherol methyltransferase (γ -TMT gene in vte4 seemed to impair defence mechanism of this mutant against salinity.

  3. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  4. A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis.

    Science.gov (United States)

    Yao, Luming; Jiang, Yina; Lu, Xinxin; Wang, Biao; Zhou, Pei; Wu, Tianlong

    2016-10-01

    Few regulators for drought tolerance have been identified in Lablab purpureus which is a multipurpose leguminous crop. The transcription factor MYB is involved in regulatory networks in response to abiotic and biotic stresses in plants. A novel R2R3-MYB factor in L. purpureus has been identified. An suppression subtraction hybridization (SSH) library was constructed using root tissues of L. purpureus MEIDOU 2012 from well-watered and water-stress treatments that were subjected to drought stress for 10 days. In addition, the cDNA of LpMYB1 was identified based on the SSH library. The cDNA of LpMYB1 is 858 bp and encodes a 285-amino acid protein with a calculated mass of 33.4 kDa. The LpMYB1 protein localizes to the nucleus and has transactivation activity with the activation domain in the C terminal region of the protein. In LpMYB1 overexpressed Arabidopsis, the tolerance of transgenic seedlings to drought and salt was improved, and the germination potential of transgenic seeds increase in the presence of NaCl or ABA. LpMYB1 is a drought-responsive R2R3-MYB factor that can increase the drought and salt tolerance of LpMYB1-overexpressed Arabidopsis. PMID:27565983

  5. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Xi; Li, Yong; Ji, Wei; Bai, Xi; Cai, Hua; Zhu, Dan; Sun, Xiao-Li; Chen, Lian-Jiang; Zhu, Yan-Ming

    2011-07-15

    Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.

  6. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.

    Science.gov (United States)

    Middleton, Adam J; Marshall, Christopher B; Faucher, Frédérick; Bar-Dolev, Maya; Braslavsky, Ido; Campbell, Robert L; Walker, Virginia K; Davies, Peter L

    2012-03-01

    The grass Lolium perenne produces an ice-binding protein (LpIBP) that helps this perennial tolerate freezing by inhibiting the recrystallization of ice. Ice-binding proteins (IBPs) are also produced by freeze-avoiding organisms to halt the growth of ice and are better known as antifreeze proteins (AFPs). To examine the structural basis for the different roles of these two IBP types, we have solved the first crystal structure of a plant IBP. The 118-residue LpIBP folds as a novel left-handed beta-roll with eight 14- or 15-residue coils and is stabilized by a small hydrophobic core and two internal Asn ladders. The ice-binding site (IBS) is formed by a flat beta-sheet on one surface of the beta-roll. We show that LpIBP binds to both the basal and primary-prism planes of ice, which is the hallmark of hyperactive AFPs. However, the antifreeze activity of LpIBP is less than 10% of that measured for those hyperactive AFPs with convergently evolved beta-solenoid structures. Whereas these hyperactive AFPs have two rows of aligned Thr residues on their IBS, the equivalent arrays in LpIBP are populated by a mixture of Thr, Ser and Val with several side-chain conformations. Substitution of Ser or Val for Thr on the IBS of a hyperactive AFP reduced its antifreeze activity. LpIBP may have evolved an IBS that has low antifreeze activity to avoid damage from rapid ice growth that occurs when temperatures exceed the capacity of AFPs to block ice growth while retaining the ability to inhibit ice recrystallization.

  7. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  8. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  9. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs.

    Science.gov (United States)

    Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi

    2016-05-01

    Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. PMID:27012548

  10. Tolerance

    NARCIS (Netherlands)

    Doorn, van M.

    2012-01-01

    Tolerance entails acceptance of the very things one disagrees with, disapproves of or dislikes. Tolerance can be seen as ‘a flawed virtue’ (Schuyt, 2001), because it concerns acceptance of the differences between others and ourselves we would rather fight, ignore or overcome. Although tolerance carr

  11. Overexpression of a Chloroplast-located Peroxiredoxin Q Gene, SsPrxQ, Increases the Salt and Low-temperature Tolerance of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Li-Wen Jing; Shi-Hua Chen; Xiao-Li Guo; Hui Zhang; Yan-Xiu Zhao

    2006-01-01

    Abiotic stress, such as salt, drought and extreme temperature,can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging systems. The major ROS-scavenging enzymes of plants include superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxins (Prxs). In the present work, we identified a gene encoding chloroplast-located peroxiredoxin Q, SsPrxQ, from Suaeda salsa L. Located at chloroplast. Overexpression of SsPrxQ in Arabidopsis leads to an increase in salt and low-temperature tolerance.

  12. Cloning and Sequence Analysis of a Glucose-6-Phosphate Dehydrogenase Gene PsG6PDH from Freezing-tolerant Populus suaveolens

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan-zhen; Lin Shan-zhi; Zhang Wei; Zhang Qian; Zhang Zhi-yi; Guo Huan

    2005-01-01

    A 1207 hp cDNA fragment (PsG6PDH) was amplified by PT-PCR from cold-induced total Pna of the freexing-tolerant P. Suaveolens, using primers based on the highly comserved region of published plant glucose-6-phosphate dehydrogenase (G6PDH)genes. The sepuence analysis showed that PsG6PDH coding region had 1 101 bp and encoded 367 predicted aminoacid residues. Moreover, the nucleotide sequence of psG6PDH showed 83%,82%,79%,79% and 78% identity, and the derived amino acid sequence shared 44.2%,44.7%,42.0%,40.5% and 43.9% identity with those of the Solanum tuberosum, Nicotiana tabacum, Triticum aestivum, Oryxa sativa and Arabidopsis thaliana, respectively. The results show that PsG6PDH is a new member of G6PDH gene family and belongs to cytosolic G6PDH gene. This is the first report on clonign of the G6PDH gene from woody plants.

  13. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.

    Science.gov (United States)

    Chiang, Huai-Chih; Lo, Jing-Chi; Yeh, Kuo-Chen

    2006-11-01

    To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation. PMID:17144312

  14. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis.

    Science.gov (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A

    2016-01-01

    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors. PMID:27113714

  15. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis.

    Science.gov (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A

    2016-04-26

    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.

  16. ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis.

    Science.gov (United States)

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2009-09-01

    A forward-genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 was the strongest arsenate- and arsenite-resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knock-out mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by the overexpression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild-type (WT) Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces the enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in the WT, and this arsenic induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5, compared with WT, suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  17. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid.

    Science.gov (United States)

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.

  18. STOP2 Activates Transcription of Several Genesfor AI- and Low pH-Tolerance that Are Regulatedby STOP1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    The zinc-finger protein STOP1 (sensitive to proton rhizotoxicity 1) regulates transcription of multiple genescritical for tolerance to aluminum (AI) and low pH in Arabidopsis. We evaluated the contributions of genes that are sup-pressed in the stop1 mutant to AI- and low pH-tolerance using T-DNA-inserted disruptants, and transgenic stop1 mutantsexpressing each of the suppressed genes. STOP2, a STOP1 homolog, partially recovered AI- and low pH-tolerance byrecovering the expression of genes regulated by STOP1. Growth and root tip viability under proton stress were partiallyrescued in the STOP2-complemented line. STOP2 localized in the nucleus and regulated transcription of two genes (PGIP1and PGIP2) associated with cell wall stabilization at low pH. GUS assays revealed that STOP1 and STOP2 showed similarcellular expression in the root. However, the expression level of STOP2 was much lower than that of STOP1. In a STOP1promoter::STOP2-complemented line, AI tolerance was slightly recovered, concomitant with the recovery of expressionof ALS3 (aluminum sensitive 3) and AtMATE (Arabidopsis thaliana multidrug and toxic compound extrusion), while theexpression of AtALMT1 (aluminum-activated malate transporter 1) was not recovered. These analyses indicated thatSTOP2 is a physiologically minor isoform of STOP1, but it can activate expression of some genes regulated by STOP1.

  19. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Yanping; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2016-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses.

  20. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech.......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  1. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance

    Science.gov (United States)

    Bai, Xuegui; Long, Juan; He, Xiaozhao; Yan, Jinping; Chen, Xuanqin; Tan, Yong; Li, Kunzhi; Chen, Limei; Xu, Huini

    2016-01-01

    A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses. PMID:27211528

  2. Cloning of a Vacuolar H+-pyrophosphatase Gene from the Halophyte Suaeda corniculata whose Heterologous Overexpression Improves Salt,Saline-alkali and Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Liang Liu; Ying Wang; Nan Wana; Yuan-Yuan Dong; Xiu-Duo Fan; Xiu-Ming Liu; Jing Yang

    2011-01-01

    Salt,saline-alkali conditions,and drought are major environmental factors limiting plant growth and productivity.The vacuolar H+-translocating inorganic pyrophosphatase (V-H+-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells.Expression of V-H+-PPase increases in plants under a number of abiotic stresses,and is thought to have an important role in adaptation to abiotic stress.In this work,we report the isolation and characterization of the gene,ScVP,encoding a vacuolar inorganic pyrophosphatase (V-H+-PPase) from the halophyte,Suaeda corniculata.Semiquantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots,stems and leaves under treatment with salt,saline-alkali and drought.Compared with wild-type (WT) Arabidopsis,transgenic plants overexpressing ScVP accumulated more Na+ in leaves and roots,and showed increased tolerance to high salinity,saline-alkali and drought stresses.The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses.The root length of transgenic plants under salt stress was longer than that of WT plants.Furthermore,the rate of water loss during drought stress was higher in WT than in transgenic plants.Collectively,these results indicate that ScVP plays an important role in plant tolerance to salt,saline-alkali and drought stress.

  3. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis.

    Science.gov (United States)

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  4. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  5. Universal Stress Protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress

    Directory of Open Access Journals (Sweden)

    Jung eYoung Jun

    2015-12-01

    Full Text Available Although a wide range of physiological information on Universal Stress Proteins (USPs is available from many organisms, their biochemical and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990 from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW species to high molecular weight (HMW complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

  6. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance.

    Science.gov (United States)

    Gasic, Ksenija; Korban, Schuyler S

    2007-07-01

    Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.

  7. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus.

    Science.gov (United States)

    Gamboa, M C; Baltierra, F; Leon, G; Krauskopf, E

    2013-12-01

    Vacuolar solute accumulation has been shown to be a mechanism by which plants are capable of increasing drought and salt tolerance. The exposure of plants to NaCl induces H+ transport into the vacuole by specialized pumps. One of them corresponds to the vacuolar H+-pyrophosphatase, which generates a H+ gradient across the vacuolar membrane. In our laboratory we isolated the first cDNA sequence of a vacuolar pyrophosphatase type I (EVP1) from Eucalyptus globulus. Using real-time PCR we confirmed that EVP1 participates in Eucalyptus plants' response to drought and salt stress through an ABA independent pathway. Additionally, the overexpression of EVP1 in transgenic Arabidopsis resulted in an enhancement of drought and salt tolerance. Interestingly we established that the transgenic plants had a higher number of root hairs, which may have a positive effect on the plant's response to drought and salt stress. These results suggest that EVP1 plays an active role in abiotic stress tolerance in E. globulus, and that it may be potentially used to enhance drought and stress tolerance of plants.

  8. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis.

    Science.gov (United States)

    Zhu, Lin; Guo, Jiansheng; Zhu, Jian; Zhou, Cheng

    2014-02-01

    Drought can activate several stress responses in plants, such as stomatal closure, accumulation of cuticular wax and ascorbic acid (AsA), which have been correlated with improvement of drought tolerance. In this study, a novel MYB gene, designed as EsWAX1, was isolated and characterized from Eutrema salsugineum. EsWAX1 contained a full-length open reading frame (ORF) of 1068 bp, which encoding 355 amino acids. Transcript levels of EsWAX1 were quickly inducible by drought stress and ABA treatment, indicating that EsWAX1 may act as a positive regulator in response to drought stress. Ectopic expression of EsWAX1 increased accumulation of cuticular wax via modulating the expression of several wax-related genes, such as CER1, KCS2 and KCR1. Scanning electron microscopy further revealed higher densities of wax crystalline structures on the adaxial surfaces of leaves in transgenic Arabidopsis plants. In addition, the expression of several AsA biosynthetic genes (VTC1, GLDH and MIOX4) was significantly up-regulated in EsWAX1-overexpressing lines and these transgenic plants have approximately 23-27% more total AsA content than WT plants. However, the high-level expression of EsWAX1 severely disrupted plant normal growth and development. To reduce negative effects of EsWAX1 over-expression on plant growth, we generated transgenic Arabidopsis plants expressing EsWAX1 driven by the stress-inducible RD29A promoter. Our data indicated the RD29A::EsWAX1 transgenic plants had greater tolerance to drought stress than wild-type plants. Taken together, the EsWAX1 gene is a potential regulator that may be utilized to improve plant drought tolerance by genetic manipulation.

  9. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis

    Science.gov (United States)

    Wang, Xiuyun; Huang, Wanlu; Yang, Zhimin; Liu, Jun; Huang, Bingru

    2016-01-01

    Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance. PMID:27320381

  10. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  11. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity.

    Science.gov (United States)

    Zhang, Hui; Shi, Wu Liang; You, Jiang Feng; Bian, Ming Di; Qin, Xiao Mei; Yu, Hui; Liu, Qing; Ryan, Peter R; Yang, Zhen Ming

    2015-06-01

    Seventy-one cultivars of sweet sorghum (Sorghum bicolor L.) were screened for aluminium (Al) tolerance by measuring relative root growth (RRG). Two contrasting cultivars, ROMA (Al tolerant) and POTCHETSTRM (Al sensitive), were selected to study shorter term responses to Al stress. POTCHETSTRM had higher callose synthase activity, lower β-1,3-glucanase activity and more callose deposition in the root apices during Al treatment compared with ROMA. We monitored the expression of 12 genes involved in callose synthesis and degradation and found that one of these, SbGlu1 (Sb03g045630.1), which encodes a β-1,3-glucanase enzyme, best explained the contrasting deposition of callose in ROMA and POTCHETSTRM during Al treatment. Full-length cDNAs of SbGlu1 was prepared from ROMA and POTCHETSTRM and expressed in Arabidopsis thaliana using the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Independent transgenic lines displayed significantly greater Al tolerance than wild-type plants and vector-only controls. This phenotype was associated with greater total β-1,3-glucanase activity, less Al accumulation and reduced callose deposition in the roots. These results suggest that callose production is not just an early indicator of Al stress in plants but likely to be part of the toxicity pathway that leads to the inhibition of root growth.

  12. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance.

    Science.gov (United States)

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response. PMID:25333723

  13. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance.

    Directory of Open Access Journals (Sweden)

    Vokkaliga Thammegowda Harshavardhan

    Full Text Available Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.

  14. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2015-08-01

    Full Text Available Allene oxide cyclase (AOC, E 5.3.99.6 is an essential enzyme in the jasmonic acid (JA biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5 were cloned from upland cotton (Gossypium hirsutum L., sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  15. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange Wang; Huaihua Liu; Qingguo Xin

    2015-01-01

    Allene oxide cyclase (AOC, E 5.3.99.6) is an essential enzyme in the jasmonic acid (JA) biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5) were cloned from upland cotton (Gossypium hirsutum L.), sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA) and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  16. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Richa; Grover, Anil

    2016-09-01

    Caseinolytic proteases (Clps) perform the important role of removing protein aggregates from cells, which can otherwise prove to be highly toxic. ClpD system is a two-component protease complex composed of a regulatory ATPase module ClpD and a proteolytic component ClpP. Under desiccation stress condition, rice ClpD1 (OsClpD1) gene encoding for the regulatory subunit, was represented by four variant transcripts differing mainly in the expanse of their N-terminal amino acids. These transcripts were expressed in a differential manner in response to salt, mannitol and polyethylene glycol stresses in rice. Purified OsClpD1.3 protein exhibited intrinsic chaperone activity, shown using citrate synthase as substrate. Arabidopsis (Col-0) plants over-expressing OsClpD1.3 open reading frame downstream to CaMV35S promoter (ClpD1.3 plants) showed higher tolerance to salt and desiccation stresses as compared to wild type plants. ClpD1.3 seedlings also showed enhanced growth during the early stages of seed germination under unstressed, control conditions. The free proline levels and starch breakdown activities were higher in the ClpD1.3 seedlings as compared to the wild type Arabidopsis seedlings. It thus emerges that increasing the potential of ClpD1 chaperoning activity may be of advantage in protection against abiotic stresses. PMID:27457985

  17. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  18. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Eunsook Chung

    Full Text Available The ubiquitin conjugating enzyme E2 (UBC E2 mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1. RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA, but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana. The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1, a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  19. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kang, Jee-Sook; Chung, Young Soo; Lee, Jai-Heon

    2013-01-01

    The ubiquitin conjugating enzyme E2 (UBC E2) mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1). RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA), but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana). The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1), a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  20. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  1. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  2. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  3. HsfA1d, a Protein Identified via FOX Hunting Using Thellungiella salsuginea cDNAs Improves Heat Tolerance by Regulating Heat-Stress-Responsive Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Yukari Higashi; Naohiko Ohama; Tomoko Ishikawa; Taku Katori; Ayaka Shimura; Kazuya Kusakabe; Kazuko Yamaguchi-Shinozaki

    2013-01-01

    Theilungiella salsuginea (formerly T.halophila),a species closely related to Arabidopsis (Arabidopsis thaliana),is tolerant not only to high salt levels,but also to chilling,freezing,and ozone.Here,we report that T.salsuginea also shows greater heat tolerance than Arabidopsis.We identified T.salsuginea HsfAld (TsHsfAld) as a gene that can confer marked heat tolerance on Arabidopsis.TsHsfAld was identified via Full-length cDNA Over-eXpressing gene (FOX) hunting from among a collection of heat-stress-related T.salsuginea cDNAs.Transgenic Arabidopsis overexpressing TsHsfAld showed constitutive up-regulation of many genes in the Arabidopsis AtHsfA1 regulon under normal growth temperature.In Arabidopsis mesophyll protoplasts,TsHsfAld was localized in both the nucleus and the cytoplasm.TsHsfAld also interacted with AtHSP90,which negatively regulates AtHsfAls by forming HsfA1-HSP90 complexes in the cytoplasm.It is likely that the partial nuclear localization of TsHsfAld induced the expression of the AtHsfAld regulon in the transgenic plants at normal temperature.We also discovered that transgenic Arabidopsis plants overexpressing AtHsfAld were more heat-tolerant than wild-type plants and up-regulated the expression of the HsfAld regulon,as was observed in TsHsfAld-overexpressing plants.We propose that the products of both TsHsfAld and AtHsfAld function as positive regulators of Arabidopsis heat-stress response and would be useful for the improvement of heat-stress tolerance in other plants.

  4. JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana.

    Science.gov (United States)

    Liang, Jing; Zhou, Mingqi; Zhou, Xin; Jin, Yuanjie; Xu, Ming; Lin, Juan

    2013-01-01

    Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification. PMID:24391737

  5. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chunhui Xu

    Full Text Available Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s.

  6. JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jing Liang

    Full Text Available Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA, dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.

  7. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. PMID:25545296

  8. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  9. Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis.

    Science.gov (United States)

    Peng, Xue-Cong; Qiu, De-Wen; Zeng, Hong-Mei; Guo, Li-Hua; Yang, Xiu-Fen; Liu, Zheng

    2015-02-01

    Hrip1 is a novel hypersensitive response-inducing protein secreted by Alternaria tenuissima that activates defense responses and systemic acquired resistance in tobacco. This study investigates the role that Hrip1 plays in responses to abiotic and biotic stress using transgenic Arabidopsis thaliana expressing the Hrip1 gene under the control of the stress-inducible rd29A promoter or constitutive cauliflower mosaic virus 35S promoter. Bioassays showed that inducible Hrip1 expression in rd29A∷Hrip1 transgenic lines had a significantly higher effect on plant height, silique length, plant dry weight, seed germination and root length under salt and drought stress compared to expression in 35S∷Hrip1 lines and wild type plants. The level of enhancement of resistance to Botrytis cinerea by the 35S∷Hrip1 lines was higher than in the rd29A∷Hrip1 lines. Moreover, stress-related gene expression in the transgenic Arabidopsis lines was significantly increased by 200 mM NaCl and 200 mM mannitol treatments, and defense genes in the jasmonic acid and ethylene signaling pathway were significantly up-regulated after Botrytis inoculation in the Hrip1 transgenic plants. Furthermore, the activity of some antioxidant enzymes, such as peroxidase and catalase increased after salt and drought stress and Botrytis infection. These results suggested that the Hrip1 protein contributes to abiotic and biotic resistance in transgenic Arabidopsis and may be used as a useful gene for resistance breeding in crops. Although the constitutive expression of Hrip1 is suitable for biotic resistance, inducible Hrip1 expression is more responsive for abiotic resistance. PMID:25120219

  10. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    Science.gov (United States)

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  11. Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli

    Science.gov (United States)

    Jain, Muskan; Batth, Rituraj; Kumari, Sumita; Mustafiz, Ananda

    2016-01-01

    The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG), which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI). It is a metalloenzyme which requires divalent metal ions for its activity. This divalent metal ion can be either Zn2+ as found in most of eukaryotes or Ni2+ as seen in prokaryotes. In the present study, we have found three active GLYI enzymes (AtGLYI2, AtGLYI3 and AtGLYI6) belonging to different metal activation classes coexisting in Arabidopsis thaliana. These enzymes have been found to efficiently complement the GLYI yeast mutants. These three enzymes have been characterized in terms of their activity, metal dependency, kinetic parameters and their role in conferring tolerance to multiple abiotic stresses in E. coli and yeast. AtGLYI2 was found to be Zn2+ dependent whereas AtGLYI3 and AtGLYI6 were Ni2+ dependent. Enzyme activity of Zn2+ dependent enzyme, AtGLYI2, was observed to be exceptionally high (~250–670 fold) as compared to Ni2+ dependent enzymes, AtGLYI3 and AtGLYI6. The activity of these GLYI enzymes correlated well to their role in stress tolerance. Heterologous expression of these enzymes in E. coli led to better tolerance against various stress conditions. This is the first report of a higher eukaryotic species having multiple active GLYI enzymes belonging to different metal activation classes. PMID:27415831

  12. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis.

    Science.gov (United States)

    Shanmugam, Varanavasiappan; Wang, Yi-Wen; Tsednee, Munkhtsetseg; Karunakaran, Krithika; Yeh, Kuo-Chen

    2015-11-01

    Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione-deficient mutants also showed various degrees of sensitivity to Fe-limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe-limited conditions, glutathione-deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split-root experiment suggested that the systemic signals that govern the expression of Fe uptake-related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S-nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake-related genes during Fe deficiency, the NO-mediated induction of Fe-uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe-deficiency tolerance and NO-mediated Fe-deficiency signaling in Arabidopsis.

  13. Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli.

    Directory of Open Access Journals (Sweden)

    Muskan Jain

    Full Text Available The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG, which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI. It is a metalloenzyme which requires divalent metal ions for its activity. This divalent metal ion can be either Zn2+ as found in most of eukaryotes or Ni2+ as seen in prokaryotes. In the present study, we have found three active GLYI enzymes (AtGLYI2, AtGLYI3 and AtGLYI6 belonging to different metal activation classes coexisting in Arabidopsis thaliana. These enzymes have been found to efficiently complement the GLYI yeast mutants. These three enzymes have been characterized in terms of their activity, metal dependency, kinetic parameters and their role in conferring tolerance to multiple abiotic stresses in E. coli and yeast. AtGLYI2 was found to be Zn2+ dependent whereas AtGLYI3 and AtGLYI6 were Ni2+ dependent. Enzyme activity of Zn2+ dependent enzyme, AtGLYI2, was observed to be exceptionally high (~250-670 fold as compared to Ni2+ dependent enzymes, AtGLYI3 and AtGLYI6. The activity of these GLYI enzymes correlated well to their role in stress tolerance. Heterologous expression of these enzymes in E. coli led to better tolerance against various stress conditions. This is the first report of a higher eukaryotic species having multiple active GLYI enzymes belonging to different metal activation classes.

  14. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Gui-Zhi; Jin, Shang-Hui; Jiang, Xiao-Yi; Dong, Rui-Rui; Li, Pan; Li, Yan-Jie; Hou, Bing-Kai

    2016-01-01

    The formation of auxin glucose conjugate is proposed to be one of the molecular modifications controlling auxin homeostasis. However, the involved mechanisms and relevant physiological significances are largely unknown or poorly understood. In this study, Arabidopsis UGT75D1 was at the first time identified to be an indole-3-butyric acid (IBA) preferring glycosyltransferase. Assessment of enzyme activity and IBA conjugates in transgenic plants ectopically expressing UGT75D1 indicated that the UGT75D1 catalytic specificity was maintained in planta. It was found that the expression pattern of UGT75D1 was specific in germinating seeds. Consistently, we found that transgenic seedlings with over-produced UGT75D1 exhibited smaller cotyledons and cotyledon epidermal cells than the wild type. In addition, UGT75D1 was found to be up-regulated under mannitol, salt and ABA treatments and the over-expression lines were tolerant to osmotic and salt stresses during germination, resulting in an increased germination rate. Quantitative RT-PCR analysis revealed that the mRNA levels of ABA INSENSITIVE 3 (ABI3) and ABI5 gene in ABA signaling were substantially down-regulated in the transgenic lines under stress treatments. Interestingly, AUXIN RESPONSE FACTOR 16 (ARF16) gene of transgenic lines was also dramatically down-regulated under the same stress conditions. Since ARF16 functions as an activator of ABI3 transcription, we supposed that UGT75D1 might play a role in stress tolerance during germination through modulating ARF16-ABI3 signaling. Taken together, our work indicated that, serving as the IBA preferring glycosyltransferase but distinct from other auxin glycosyltransferases identified so far, UGT75D1 might be a very important player mediating a crosstalk between cotyledon development and stress tolerance of germination at the early stage of plant growth.

  15. Role of Arabidopsis RAP2.4 in Regulating Light-and Ethylene-Mediated Developmental Processes and Drought Stress Tolerance

    Institute of Scientific and Technical Information of China (English)

    Rong-Cheng Lin; Hee-Jin Park; Hai-Yang Wang

    2008-01-01

    Light and the plant hormone ethylene regulate many aspects of plant growth and development in an overlapping and interdependent fashion. Little is known regarding how their signal transduction pathways cross-talk to regulate plant development in a coordinated manner. Here, we report functional characterization of an AP2/DREB-type transcription factor, Arabidopsis RAP2.4, in mediating light and ethylene signaling. Expression of the RAP2.4 gene is down-regulated by light but up-regulated by salt and drought stresses. RAP2.4 protein is constitutively targeted to the nucleus and it can bind to both the ethylene-responsive GCC-box and the dehydration-responsive element (DRE).We show that RAP2.4 protein possesses an intrinsic transcriptional activation activity in yeast cells and that it can activate a reporter gene driven by the DRE cis-element in Arabidopsis protoplasts. Overexpression of RAP2.4 or mutation in RAP2.4 cause altered expression of representative light-, ethylene-, and drought-responsive genes. Although no salient phenotype was observed with a rap2.4 loss-of-function mutant, constitutive overexpression of RAP2.4 results in defects in multiple developmental processes regulated by light and ethylene, including hypocotyl elongation and gravitropism, apical hook formation and cotyledon expansion, flowering time, root elongation, root hair formation, and drought tolerance.Based on these observations, we propose that RAP2.4 acts at or downstream of a converging point of light and ethylene signaling pathways to coordinately regulate multiple developmental processes and stress responses.

  16. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Changjun Mu

    Full Text Available Small heat shock proteins (smHSPs play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson Raffill var. Willmottiae, which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.

  17. Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Yanyan Lv; Sanxiong Fu; Song Chen; Wei Zhang; Cunkou Qi

    2016-01-01

    Ethylene response factor proteins play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not well understood. In this study, we isolated BnERF2.4 from Brassica napus L. to study its function in submergence tolerance. The expression of the BnERF2.4 gene in B. napus and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by quantitative RT-PCR. The expression of BnERF2.4 was induced by submergence in B. napus and the overexpression of BnERF2.4 in Arabidopsis increased the level of tolerance to submergence and oxidative stress. A histochemical method detected lower levels of H2O2, O2•− and malondialdehyde (MDA) in transgenic Arabidopsis. Compared to the wild type, transgenic lines also had higher soluble sugar content and higher activity of antioxidant enzymes, which helped to protect plants against the oxidative damage caused by submergence. It was concluded that BnERF2.4 increased the tolerance of plants to submergence stress and may be involved in regulating soluble sugar content and the antioxidant system in defense against submergence stress.

  18. Overexpression of Rice Glutaredoxin OsGrx_C7 and OsGrx_C2.1 Reduces Intracellular Arsenic Accumulation and Increases Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Pankaj K; Verma, Shikha; Pande, Veena; Mallick, Shekhar; Deo Tripathi, Rudra; Dhankher, Om P; Chakrabarty, Debasis

    2016-01-01

    Glutaredoxins (Grxs) are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice), the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As) tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops. PMID:27313586

  19. Overexpression of Rice Glutaredoxin OsGrx_C7 and OsGrx_C2.1 Reduces Intracellular Arsenic Accumulation and Increases Tolerance in Arabidopsis thaliana

    Science.gov (United States)

    Verma, Pankaj K.; Verma, Shikha; Pande, Veena; Mallick, Shekhar; Deo Tripathi, Rudra; Dhankher, Om P.; Chakrabarty, Debasis

    2016-01-01

    Glutaredoxins (Grxs) are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice), the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As) tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops. PMID:27313586

  20. Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tomo eTsuzuki

    2013-10-01

    Full Text Available The Mg-chelatase H subunit (CHLH has been shown to mediate chlorophyll biosynthesis, as well as plastid-to-nucleus and abscisic acid (ABA-mediated signaling. A recent study using a novel CHLH mutant, rtl1, indicated that CHLH specifically affects ABA-induced stomatal closure, but also that CHLH did not serve as an ABA receptor in Arabidopsis thaliana. However, the molecular mechanism by which CHLH engages in ABA-mediated signaling in guard cells remains largely unknown. In the present study, we examined CHLH function in guard cells and explored whether CHLH expression might influence stomatal aperture. Incubation of rtl1 guard cell protoplasts with ABA induced expression of the ABA-responsive genes RAB18 and RD29B, as also observed in wild-type (WT cells, indicating that CHLH did not affect the expression of ABA-responsive genes. Earlier, ABA was reported to inhibit blue light (BL-mediated stomatal opening, at least in part through dephosphorylating/inhibiting guard cell H+-ATPase (which drives opening. Therefore, we immunohistochemically examined the phosphorylation status of guard cell H+-ATPase. Notably, ABA inhibition of BL-induced phosphorylation of H+-ATPase was impaired in rtl1 cells, suggesting that CHLH influences not only ABA-induced stomatal closure but also inhibition of BL-mediated stomatal opening by ABA. Next, we generated CHLH-GFP-overexpressing plants using CER6 promoter, which induces gene expression in the epidermis including guard cells. CHLH-transgenic plants exhibited a closed stomata phenotype even when brightly illuminated. Moreover, plant growth experiments conducted under water-deficient conditions showed that CHLH transgenic plants were more tolerant of drought than WT plants. In summary, we show that CHLH is involved in the regulation of stomatal aperture in response to ABA, but not in ABA-induced gene expression, and that manipulation of stomatal aperture via overexpression of CHLH in guard cells improves plant

  1. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Directory of Open Access Journals (Sweden)

    Yanli Zhou

    2016-06-01

    Full Text Available Stipa purpurea (S. purpurea is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26 was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm, as well as lower levels of reactive oxygen species (ROS following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2 and a ROS-scavenger gene (CAT1 were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling.

  2. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling.

    Science.gov (United States)

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  3. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2.

  4. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Verma

    2016-06-01

    Full Text Available Glutaredoxins (Grxs are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice, the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops.

  5. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  6. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Science.gov (United States)

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  7. The Phosphate Transporter PHT4;6 Is a Determinant of Salt Tolerance that Is Localized to the Golgi Apparatus of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Beatriz Cubero; Yuko Nakagawa; Xing-Yu jiang; Ken-Ji Miura; Fang Li; Kashchandra G.Raghothama; Ray A.Bressan; Paul M.Hasegawa; Jose M.Pardo

    2009-01-01

    Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidop-sis seedlings that is characterized by reduced growth of the primary root,enhanced lateral branching,and swelling of root tips.Mutant phenotypes were exacerbated by sucrose,but not by equiosmolar concentrations of mannitol,and atten-uated by low inorganic phosphate in the medium.Protein PHT4;6 belongs to the Major Facilitator Superfamily of per-meases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters,and is a member of the PHT4 family of putative intracellular phosphate transporters of plants.PHT4;6 local-izes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions.Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis,which are essential for salt tolerance.Together,our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.

  8. Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses.

    Science.gov (United States)

    Kang, Chang Ho; Lee, Young Mee; Park, Joung Hun; Nawkar, Ganesh M; Oh, Hun Taek; Kim, Min Gab; Lee, Soo In; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2016-07-01

    The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery. PMID:27004478

  9. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  10. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    Science.gov (United States)

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced.

  11. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Khan, Kasim; Agarwal, Pallavi; Shanware, Arti; Sane, Vidhu Aniruddha

    2015-01-01

    Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils. PMID:26067295

  12. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kasim Khan

    Full Text Available Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs, with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7 and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.

  13. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana.

    Science.gov (United States)

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Li, Zhaodi; Wu, Jiang; Josine, Tchouopou Lontchi; Wang, Yurong

    2016-01-15

    Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase gene (Lcε-LYC) from Lycium chinense (L. chinense), a deciduous woody perennial halophyte growing in various environmental conditions. The Lcε-LYC gene has an ORF of 1569bp encoding a protein of 522 aa. The deduced amino acid sequence of Lcε-LYC gene has higher homology with LycEs in other plants, such as Nicotiana tabacum and Solanum tuberosum. When L. chinense was exposed to chilling stress, relative expression of Lcε-LYC increased. To study the protective role of Lcε-LYC against chilling stress, we overexpressed the Lcε-LYC gene in Arabidopsis thaliana. Lcε-LYC overexpression led to an increase of lutein accumulation in transgenic A. thaliana, and the content of lutein decreased when transgenics were under cold conditions. In addition, the transgenic plants under chilling stress displayed higher activities of superoxide dismutase (SOD) and peroxidase (POD) and less H2O2 and malondialdehyde (MDA) than the control. Moreover, the photosynthesis rate, photosystem II activity (Fv/fm), and Non-photochemical quenching (NPQ) also increased in the transgenetic plants. On the whole, overexpression of Lcε-LYC ameliorates photoinhibition and photooxidation, and decreases the sensitivity of photosynthesis to chilling stress in transgenic plants. PMID:26526130

  14. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo: chilling, freezing, ice cover, heat, and high light.

    Science.gov (United States)

    Smillie, R M; Hetherington, S E

    1983-08-01

    The proposition is examined that measurements of chlorophyll fluorescence in vivo can be used to monitor cellular injury caused by environmental stresses rapidly and nondestructively and to determine the relative stress tolerances of different species. Stress responses of leaf tissue were measured by F(R), the maximal rate of the induced rise in chlorophyll fluorescence. The time taken for F(R) to decrease by 50% in leaves at 0 degrees C was used as a measure of chilling tolerance. This value was 4.3 hours for chilling-sensitive cucumber. In contrast, F(R) decreased very slowly in cucumber leaves at 10 degrees C or in chilling-tolerant cabbage leaves at 0 degrees C. Long-term changes in F(R) of barley, wheat, and rye leaves kept at 0 degrees C were different in frost-hardened and unhardened material and in the latter appeared to be correlated to plant frost tolerance. To simulate damage caused by a thick ice cover, wheat leaves were placed at 0 degrees C under N(2). Kharkov wheat, a variety tolerant of ice encapsulation, showed a slower decrease in F(R) than Gatcher, a spring wheat. Relative heat tolerance was also indicated by the decrease in F(R) in heated leaves while changes in vivo resulting from photoinhibition, ultraviolet radiation, and photobleaching can also be measured. PMID:16663118

  15. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  16. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    Full Text Available Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2 plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2, ABA signaling (ABI3, ABI4, ABI5, stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B and three ABA-independent genes (CBF1, CBF2, CBF3, were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways.

  17. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast.

    Science.gov (United States)

    Hernández, Agustín; Herrera-Palau, Rosana; Madroñal, Juan M; Albi, Tomás; López-Lluch, Guillermo; Perez-Castiñeira, José R; Navas, Plácido; Valverde, Federico; Serrano, Aurelio

    2016-01-01

    Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

  18. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery.

    Science.gov (United States)

    Baba, Shoib Ahmad; Jain, Deepti; Abbas, Nazia; Ashraf, Nasheeman

    2015-09-15

    Apocarotenoids modulate vital physiological and developmental processes in plants. These molecules are formed by the cleavage of carotenoids, a reaction catalyzed by a family of enzymes called carotenoid cleavage dioxygenases (CCDs). Apocarotenoids like β-ionone and β-cyclocitral have been reported to act as stress signal molecules during high light stress in many plant species. In Crocus sativus, these two apocarotenoids are formed by enzymatic cleavage of β-carotene at 9, 10 and 7, 8 bonds by CsCCD4 enzymes. In the present study three isoforms of CsCCD4 were subjected to molecular modeling and docking analysis to determine their substrate specificity and all the three isoforms displayed high substrate specificity for β-carotene. Further, expression of these three CsCCD4 isoforms investigated in response to various stresses revealed that CsCCD4a and CsCCD4b exhibit enhanced expression in response to dehydration, salt and methylviologen, providing a clue towards their role in mediating plant defense response. This was confirmed by overexpressing CsCCD4b in Arabidopsis. The transgenic plants developed longer roots and possessed higher number of lateral roots. Further, overexpression of CsCCD4b imparted enhanced tolerance to salt, dehydration and oxidative stresses as was evidenced by higher survival rate, increased relative root length and biomass in transgenic plants as compared to wild type. Transgenic plants also displayed higher activity and expression of reactive oxygen species (ROS) metabolizing enzymes. This indicates that β-ionone and β-cyclocitral which are enzymatic products of CsCCD4b may act as stress signals and mediate reprogramming of stress responsive genes which ultimately leads to plant defense.

  19. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel;

    2008-01-01

    Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant......'s improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis...

  20. Freezing and Food Safety

    Science.gov (United States)

    ... freeze well. Examples are mayonnaise, cream sauce and lettuce. Raw meat and poultry maintain their quality longer ... illness. [ Top of Page ] Does Freezing Destroy Bacteria & Parasites? Freezing to 0 °F inactivates any microbes — bacteria, ...

  1. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  2. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    Science.gov (United States)

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  3. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ya-Fen Lin

    Full Text Available Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.

  4. Effects of Endogenous and/or Exogenous Trehalose on Freezing-tolerance of Baker's Yeast%内源与(或)外源海藻糖对面包酵母耐冷冻性的影响研究

    Institute of Scientific and Technical Information of China (English)

    王碧莹; 孙溪; 肖冬光

    2015-01-01

    通过测定胞内海藻糖降解、冷冻前后细胞存活率以及发酵力的变化,研究内源与(或)外源海藻糖对面包酵母耐冷冻性的影响。结果表明,含有较高内源海藻糖的BY14α+Tps1菌株具有更高的冷冻后细胞生存率与发酵力。外源添加5%海藻糖仅能改善较低胞内基本海藻糖含量(<10%)菌株的耐冷冻性,并且预发酵过程中海藻糖的稳定性较差(尤其前15 min)。因此,使用内源法提高胞内海藻糖含量对提升面包酵母的耐冷冻性更具可行性。%The effects of endogenous and/or exogenous trehalose on freezing-tolerance of baker's yeast were investigated through the measure-ment of cell viability and fermenting power before and after intracellular trehalose hydrolysis and freezing. The experimental results showed that BY14α+Tps1 strain with higher content of endogenous trehalose had higher cell viability and fermenting power after the freezing, and the added exogenous trehalose at the concentration of 5%could only improve the freezing-tolerance of cells with low trehalose content (<10%) but the added exogenous trehalose was apparently unstable in the prefermentation process (especially at the first 15 min after inoculation). Therefore, the method of improving endogenous trehalose in cells were feasible to strengthen freezing tolerance of baker's yeast.

  5. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature

    OpenAIRE

    WEN, Xin; Wang, Sen; Duman, John G.; Arifin, Josh Fnu; Juwita, Vonny; Goddard, William A.; Rios, Alejandra; Liu, Fan; Kim, Soo-Kyung; Abrol, Ravinder; DeVries, Arthur L.; Henling, Lawrence M.

    2016-01-01

    The remarkable adaptive strategies of insects to extreme environments are linked to the biochemical compounds in their body fluids. Trehalose, a versatile sugar molecule, can accumulate to high levels in freeze-tolerant and freeze-avoiding insects, functioning as a cryoprotectant and a supercooling agent. Antifreeze proteins (AFPs), known to protect organisms from freezing by lowering the freezing temperature and deferring the growth of ice, are present at high levels in some freeze-avoiding ...

  6. Expression of the Znt1 zinc transporter from the metal hyperaccumulator noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to arabidopsis thaliana

    NARCIS (Netherlands)

    Lin, Ya Fen; Hassan, Zeshan; Talukdar, S.; Schat, Henk; Aarts, Mark G.M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis.

  7. OsDREB1 Gene from Rice Enhances Cold Tolerance in Tobacco

    Institute of Scientific and Technical Information of China (English)

    LI Ping; CHEN Feng; QUAN Chao; ZHANG Guiyou

    2005-01-01

    The OsDREB1 gene from rice encodes a transcription factor belonging to the DREBP transcription factor subfamily. Many DREBP transcription factors regulate gene expression in response to drought, high-salt, and cold stresses by binding specifically to the dehydration-responsive element (DRE). DRE-binding proteins, such as CBF1, DREB1A, and DREB2A, have been cloned from Arabidopsis thaliana and have been proved to play an important role in stress response of Arabidopsis and several other plants. In this study, the OsDREB1 gene was transferred to tobacco plants by the Agrobacterium-mediated transfer method, and 16 transgenic plants were identified. PCR analysis demonstrates that the foreign genes have been integrated into the tobacco genome. Results of freezing stress experiments indicate that the transgenic plants have enhanced cold tolerance.

  8. Understanding freeze stress in biological tissues: thermodynamics of interfacial water

    Science.gov (United States)

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biolo...

  9. Chloroplast Membrane Remodeling during Freezing Stress Is Accompanied by Cytoplasmic Acidification Activating SENSITIVE TO FREEZING21[OPEN

    Science.gov (United States)

    Barnes, Allison C.

    2016-01-01

    Low temperature is a seasonal abiotic stress that restricts native plant ranges and crop distributions. Two types of low-temperature stress can be distinguished: chilling and freezing. Much work has been done on the mechanisms by which chilling is sensed, but relatively little is known about how plants sense freezing. Recently, Arabidopsis (Arabidopsis thaliana) SENSITIVE TO FREEZING2 (SFR2) was identified as a protein that responds in a nontranscriptional manner to freezing. Here, we investigate the cellular conditions that allow SFR2 activation. Using a combination of isolated organelle, whole-tissue, and whole-plant assays, we provide evidence that SFR2 is activated by changes in cytosolic pH and Mg2+. Manipulation of pH and Mg2+ in cold-acclimated plants is shown to cause changes similar to those of freezing. We conclude that pH and Mg2+ are perceived as intracellular cues as part of the sensing mechanism for freezing conditions. This evidence provides a specific molecular mechanism to combat freezing. PMID:27233750

  10. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    OpenAIRE

    WANG, YANPING; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2015-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 m...

  11. AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance

    OpenAIRE

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) me...

  12. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress

    Indian Academy of Sciences (India)

    D. W. Xie; X. N. Wang; L. S. Fu; J. Sun; W. Zheng; Z. F. Li

    2015-03-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are potentially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag sequence information from NCBI and two wheat genome databases, we identified 12 wheat TPS genes and performed a comprehensive study on their structural, evolutionary and functional properties. The estimated divergence time of wheat TPS gene pairs and wheat–rice orthologues suggested that wheat and rice have a common ancestor. The number of TPS genes in the wheat genome was estimated to be at least 12, which is close to the number found in rice, Arabidopsis and soybean. Moreover, it has been reported earlier in other plants that TPS genes respond to abiotic stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways. Taken together, the current study represents the first comprehensive study of TPS genes in winter wheat and provides a foundation for future functional studies of this important gene family in Triticeae.

  13. Expression of Caenorhabditis elegans PCS in the AtPCS1-deficient Arabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases.

    Science.gov (United States)

    Kühnlenz, Tanja; Westphal, Lore; Schmidt, Holger; Scheel, Dierk; Clemens, Stephan

    2015-11-01

    Phytochelatin synthases (PCS) play key roles in plant metal tolerance. They synthesize small metal-binding peptides, phytochelatins, under conditions of metal excess. Respective mutants are strongly cadmium and arsenic hypersensitive. However, their ubiquitous presence and constitutive expression had long suggested a more general function of PCS besides metal detoxification. Indeed, phytochelatin synthase1 from Arabidopsis thaliana (AtPCS1) was later implicated in non-host resistance. The two different physiological functions may be attributable to the two distinct catalytic activities demonstrated for AtPCS1, that is the dipeptidyl transfer onto an acceptor molecule in phytochelatin synthesis, and the proteolytic deglycylation of glutathione conjugates. In order to test this hypothesis and to possibly separate the two biological roles, we expressed a phylogenetically distant PCS from Caenorhabditis elegans in an AtPCS1 mutant. We confirmed the involvement of AtPCS1 in non-host resistance by showing that plants lacking the functional gene develop a strong cell death phenotype when inoculated with the potato pathogen Phytophthora infestans. Furthermore, we found that the C. elegans gene rescues phytochelatin synthesis and cadmium tolerance, but not the defect in non-host resistance. This strongly suggests that the second enzymatic function of AtPCS1, which remains to be defined in detail, is underlying the plant immunity function.

  14. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis.

    Science.gov (United States)

    Ding, Z T; Li, C; Shi, H; Wang, H; Wang, Y

    2015-01-01

    CsICE1 is thought to be involved in hardiness resistance of tea plants. Using seedling cuttings of biennial Wuniuzao in this study, the pattern of CsICE1 expression under cold temperature (4°, -5°C), drought [20% polyethylene glycol 6000 (PEG-6000)], and plant hormone [200 mg/L abscisic acid (ABA), 1 mg/L brassinolide (BR)] treatment was studied by real-time quantitative PCR. Additionally, stress resistance, such as the freezing resistance of CsICE1, was studied using Arabidopsis lines transformed with sense or anti-sense CsICE1 via Agrobacterium tumefaciens infection. Our results showed that CsICE1 mRNA could be induced under -5°C, PEG, ABA, or BR treatment, although the pattern of expression differed for all treatments. Compared to wild type (WT) and anti-sense ICE1 transgenic lines, sense lines displayed higher relative germination rates under salt and drought stress. After freezing treatment, the sense transgenic lines over-expressing CsICE1 showed a higher survival rate, increased levels of proline, and decreased levels of malonaldehyde. Conversely, compared with WT, anti-sense ICE1 transgenic lines had lower proline levels and higher malonaldehyde levels under freezing conditions. Our study indicates that CsICE1 is an important anti-freezing gene and that over-expression of CsICE1 can improve cold resistance and enhance salt and drought tolerance of transgenic lines. PMID:26400357

  15. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H (+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum).

    Science.gov (United States)

    Chen, Li-Hong; Zhang, Bo; Xu, Zi-Qin

    2008-02-01

    Agriculture productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. In the present work, transgenic buckwheat plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiporter gene from Arabidopsis thaliana, were regenerated after transformation with Agrobacterium tumefaciens. These plants were able to grow, flower and accumulate more rutin in the presence of 200 mmol/l sodium chloride. Moreover, the content of important nutrients in buckwheat was not affected by the high salinity of the soil. These results demonstrated the potential value of these transgenic plants for agriculture use in saline soil.

  16. Hatchling turtles survive freezing during winter hibernation.

    OpenAIRE

    Storey, K. B.; Storey, J M; Brooks, S. P.; Churchill, T A; Brooks, R. J.

    1988-01-01

    Hatchlings of the painted turtle (Chrysemys picta marginata) are unique as the only reptile and highest vertebrate life form known to tolerate the natural freezing of extracellular body fluids during winter hibernation. Turtles survived frequent exposures to temperatures as low as -6 degrees C to -8 degrees C in their shallow terrestrial nests over the 1987-1988 winter. Hatchlings collected in April 1988 had a mean supercooling point of -3.28 +/- 0.24 degrees C and survived 24 hr of freezing ...

  17. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    Science.gov (United States)

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation.

  18. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant.

    Science.gov (United States)

    Zhang, Huirong; Du, Chao; Wang, Yan; Wang, Jia; Zheng, Linlin; Wang, Yingchun

    2016-09-01

    Reaumuria trigyna is a typical, native desert halophyte that grows under extreme conditions in Inner Mongolia. In a previous transcriptomic profiling analysis, flavonoid pathway-related genes in R. trigyna showed significant differences in transcript abundance under salt stress. Leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19) is one of three dioxygenases in the flavonoid pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. In this study, we cloned the full-length cDNA of R. trigyna LDOX (RtLDOX), and found RtLDOX recombinant protein was able to replace flavanone-3-hydroxylase (F3H, EC 1.14.11.9), another dioxygenase in the flavonoid pathway, to convert naringenin to dihydrokaempferol in vitro. R. trigyna LDOX can complement the Arabidopsis LDOX mutant transparent testa11 (tt11-11), which has reduced proanthocyanin (PA) and anthocyanin levels in seeds, to accumulate these two compounds. Thus, RtLDOX acts as a multifunctional dioxygenase to effect the synthesis of PA and anthocyanins and can perform F3H dioxygenase activities in the flavonoid biosynthesis pathway. The RtLDOX promoter harbored many cis-acting elements that might be recognized and bound by transcription factors related to stress response. RtLDOX expression was strongly increased under salt stress, and RtLDOX transgenic Arabidopsis mutant under NaCl stress accumulated the content of flavonoids leading to an increased antioxidant activities and plant biomass. These results suggest that RtLDOX as a multifunctional dioxygenase in flavonoid biosynthesis involves in enhancing plant response to NaCl stress. PMID:27219053

  19. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  20. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress

    Directory of Open Access Journals (Sweden)

    Houde Mario

    2008-07-01

    Full Text Available Abstract Background Lipocalins are a large and diverse family of small, mostly extracellular proteins implicated in many important functions. This family has been studied in bacteria, invertebrate and vertebrate animals but little is known about these proteins in plants. We recently reported the identification and molecular characterization of the first true lipocalins from plants, including the Apolipoprotein D ortholog AtTIL identified in the plant model Arabidopsis thaliana. This study aimed to determine its physiological role in planta. Results Our results demonstrate that the AtTIL lipocalin is involved in modulating tolerance to oxidative stress. AtTIL knock-out plants are very sensitive to sudden drops in temperature and paraquat treatment, and dark-grown plants die shortly after transfer to light. These plants accumulate a high level of hydrogen peroxide and other ROS, which causes an oxidative stress that is associated with a reduction in hypocotyl growth and sensitivity to light. Complementation of the knock-out plants with the AtTIL cDNA restores the normal phenotype. On the other hand, overexpression enhances tolerance to stress caused by freezing, paraquat and light. Moreover, this overexpression delays flowering and maintains leaf greenness. Microarray analyses identified several differentially-regulated genes encoding components of oxidative stress and energy balance. Conclusion This study provides the first functional evidence that a plant lipocalin is involved in modulating tolerance to oxidative stress. These findings are in agreement with recently published data showing that overexpression of ApoD enhances tolerance to oxidative stress and increases life span in mice and Drosophila. Together, the three papers strongly support a similar function of lipocalins in these evolutionary-distant species.

  1. Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing.

    Directory of Open Access Journals (Sweden)

    Brent J Sinclair

    Full Text Available Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3(rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae, which survive freezing if it occurs above -14 degrees C, and non-diapausing 3(rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae, neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP, and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects.

  2. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided. PMID:27330895

  3. Freeze drying apparatus

    Science.gov (United States)

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  4. Freeze drying method

    Science.gov (United States)

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fan; CHEN Xun-ji; WANG Jian-hua; ZHENG Jun

    2015-01-01

    Sucrose non-fermenting-1 related protein kinase 2 (SnRK2) is a unique family of protein kinases associated with abiotic stress signal transduction in plants. In this study, a maize SnRK2 gene ZmSnRK2.11 was cloned and characterized. The results showed that ZmSnRK2.11 is up-regulated by high-salinity and dehydration treatment, and it is expressed mainly in maize mature leaf. A transient expression assay using onion epidermal cel s revealed that ZmSnRK2.11-GFP fusion proteins are localized to both the nucleus and cytoplasm. Overexpressing-ZmSnRK2.11 in Arabidopsis resulted in salt and drought sensitivity phenotypes that exhibited an increased rate of water loss, reduced relative water content, delayed stoma closure, accumulated less free proline content and increased malondialdehyde (MDA) content relative to the phenotypes observed in wild-type (WT) control. Furthermore, overexpression of ZmSnRK2.11 up-regulated the expression of the genes ABI1 and ABI2 and decreased the expression of DREB2A and P5CS1. Taken together, our results suggest that ZmSnRK2.11 is a possible negative regulator involved in the salt and drought stress signal transduction pathways in plants.

  6. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization.

    Directory of Open Access Journals (Sweden)

    Alexandra Steffens

    2015-07-01

    Full Text Available Members of the highly conserved class of BEACH domain containing proteins (BDCPs have been established as broad facilitators of protein-protein interactions and membrane dynamics in the context of human diseases like albinism, bleeding diathesis, impaired cellular immunity, cancer predisposition, and neurological dysfunctions. Also, the Arabidopsis thaliana BDCP SPIRRIG (SPI is important for membrane integrity, as spi mutants exhibit split vacuoles. In this work, we report a novel molecular function of the BDCP SPI in ribonucleoprotein particle formation. We show that SPI interacts with the P-body core component DECAPPING PROTEIN 1 (DCP1, associates to mRNA processing bodies (P-bodies, and regulates their assembly upon salt stress. The finding that spi mutants exhibit salt hypersensitivity suggests that the local function of SPI at P-bodies is of biological relevance. Transcriptome-wide analysis revealed qualitative differences in the salt stress-regulated transcriptional response of Col-0 and spi. We show that SPI regulates the salt stress-dependent post-transcriptional stabilization, cytoplasmic agglomeration, and localization to P-bodies of a subset of salt stress-regulated mRNAs. Finally, we show that the PH-BEACH domains of SPI and its human homolog FAN (Factor Associated with Neutral sphingomyelinase activation interact with DCP1 isoforms from plants, mammals, and yeast, suggesting the evolutionary conservation of an association of BDCPs and P-bodies.

  7. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    Science.gov (United States)

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  8. Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1

    Directory of Open Access Journals (Sweden)

    Shimpei eUraguchi

    2014-04-01

    Full Text Available Nutrient deficiency in soil poses a widespread agricultural problem. Boron (B is an essential micronutrient in plants, and its deficiency causes defects in both vegetative and reproductive growth in various crops in the field. In Arabidopsis thaliana, increased expression of a major borate transporter gene AtBOR1 or boric acid channel gene AtNIP5;1 improves plant growth under B-deficient conditions. In this study, we examined whether high expression of a borate transporter gene increases B accumulation in shoots and improves the growth of tomato plant, a model of fruit-bearing crops, under B-deficient conditions. We established three independent transgenic tomato plants lines expressing AtBOR1 using Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L. cv. Micro-Tom. Reverse transcription-polymerase chain reaction (RT-PCR analysis confirmed that two lines (Line 1 and Line 2 more strongly expressed AtBOR1 than Line 3. Wild-type plants and the transgenic plants were grown hydroponically under B-sufficient and B-deficient conditions. Wild-type and Line 3 (weakly expressing transgenic line showed a defect in shoot growth under B-deficient conditions, especially in the development of new leaves. However, seedlings of Line 1 and Line 2, the transgenic lines showing strong AtBOR1 expression, did not show the B-deficiency phenotype in newly developing leaves. In agreement with this phenotype, shoot biomass under low-B conditions was higher in the strongly expressing AtBOR1 line. B concentrations in leaves or fruits were also higher in Line 2 and Line 1. The present study demonstrates that strong expression of AtBOR1 improved growth in tomato under B-deficient conditions.

  9. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri

    OpenAIRE

    Sarret, Geraldine; Saumitou-Laprade, Pierre; Bert, Valerie; Proux, Olivier; Hazemann, Jean-Louis; Traverse, Agnes; Marcus, Matthew,; Manceau, Alain

    2002-01-01

    The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and micro--EXAFS. Plants weree grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collec...

  10. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing

    DEFF Research Database (Denmark)

    Park, J I; Grant, C M; Davies, Michael Jonathan;

    1998-01-01

    the sod1 mutant could be made more resistant by treatment with the superoxide anion scavenger MnCl2, or by freezing in the absence of oxygen, or by the generation of a rho0 petite. Increased expression of SOD2 conferred freeze-thaw tolerance on the sod1 mutant indicating the ability of the mitochondrial...

  11. Understanding freeze stress in biological tissues: Thermodynamics of interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Olien, C. Robert [USDA-ARS (retired), Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325 (United States); Livingston, David P. [USDA and North Carolina State University, Crop Science, 840 Method Road, Unit 3, Raleigh, NC 27502 (United States)]. E-mail: dpl@unity.ncsu.edu

    2006-12-01

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biological systems depends on identification of a specific form of stress, just as control of a disease depends on identification of the pathogen causing the disease. The forms of energy that stress hydrated systems as temperature decreases begin with disruption of biological function from chill injury that occurs above freezing. Initiation of non-equilibrium freezing with sufficient free energy to drive disruptive effects can occur in a supercooled system. As the temperature continues to decrease and freezing occurs in an equilibrium manner, adhesion at hydrated interfaces contributes to disruptive effects as protoplasts contract by freeze-dehydration. If protective systems are able to prevent injury from direct interactions with ice, passive effects of freeze-dehydration may cause injury at lower temperatures. The temperature range in which an injury occurs is an indicator of the form of energy causing stress. The form of energy is thus a primary guide for selection of a protective mechanism. An interatomic force model whose response to temperature change corresponds with the enthalpy pattern might help define freeze stress from a unique perspective.

  12. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl- accumulation and salt tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Qiu, Jiaen; Henderson, Sam W; Tester, Mark; Roy, Stuart J; Gilliham, Mathew

    2016-08-01

    Salinity tolerance is correlated with shoot chloride (Cl(-)) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl(-) transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl(-) into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl(-) accumulation when grown under low Cl(-), whereas shoot Cl(-) increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl(-) In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl(-) supply, but not low Cl(-) supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl(-) transport. PMID:27340232

  13. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl − accumulation and salt tolerance in Arabidopsis thaliana

    KAUST Repository

    Qiu, Jiaen

    2016-06-23

    Salinity tolerance is correlated with shoot chloride (Cl–) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl– transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl–, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl– supply, but not low Cl– supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl– transport.

  14. Freezing in the Antarctic limpet, Nacella concinna.

    Science.gov (United States)

    Hawes, T C; Worland, M R; Bale, J S

    2010-08-01

    The process of organismal freezing in the Antarctic limpet, Nacella concinna, is complicated by molluscan biology. Internal ice formation is, in particular, mediated by two factors: (a) the provision of an inoculative target for ice formation in the exposed mucus-secreting foot; and (b) osmoconformity to the marine environment. With regard to the first, direct observations of the independent freezing of pedal mucus support the hypothesis that internal ice formation is delayed by the mucal film. As to the second, ice nucleation parametrics of organismal tissue (head, midgut, gonad, foot) and mucus in both inter- and subtidal populations were characterized by high melting points (range=-4.61 to -6.29 degrees C), with only c.50% of a given sample osmotically active. At this stage it would be premature to ascribe a cryo-adaptive function to the mucus as the protective effects are more readily attributed to the physical properties of the secretion (i.e. viscosity) and their corresponding effects on the rate of heat transfer. As it is difficult to thermally distinguish between the freezing of mucus and the rest of the animal, the question as to whether it is tolerant of internal as well as external ice formation remains problematic, although it may be well suited to the osmotic stresses of organismal freezing. PMID:20599885

  15. Ultrasound-Assisted Freezing

    Science.gov (United States)

    Delgado, A. E.; Sun, Da-Wen

    Freezing is a well-known preservation method widely used in the food industry. The advantages of freezing are to a certain degree counterbalanced by the risk of damage caused by the formation and size of ice crystals. Over recent years new approaches have been developed to improve and control the crystallization process, and among these approaches sonocrystallization has proved to be very useful, since it can enhance both the nucleation rate and the crystal growth rate. Although ultrasound has been successfully used for many years in the evaluation of various aspects of foods and in medical applications, the use of power ultrasound to directly improve processes and products is less popular in food manufacturing. Foodstuffs are very complex materials, and research is needed in order to define the specific sound parameters that aid the freezing process and that can later be used for the scale-up and production of commercial frozen food products.

  16. Metabolic changes in Avena sativa crowns recovering from freezing.

    Directory of Open Access Journals (Sweden)

    Cynthia A Henson

    Full Text Available Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L. during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants.

  17. Metabolic changes in Avena sativa crowns recovering from freezing.

    Science.gov (United States)

    Henson, Cynthia A; Duke, Stanley H; Livingston, David P

    2014-01-01

    Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L.) during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants.

  18. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.

    Science.gov (United States)

    Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Zhang, Xiaoyan; Gong, Zhizhong; Yang, Shuhua

    2016-10-01

    In Arabidopsis, the C-repeat binding factors (CBFs) have been extensively studied as key transcription factors in the cold stress response. However, their exact functions in the cold response remains unclear due to the lack of a null cbf triple mutant. In this study, we used CRISPR/Cas9 technology to mutate CBF1 or CBF1/CBF2 in a cbf3 T-DNA insertion mutant to generate cbf1,3 double and cbf1 cbf2 cbf3 (cbfs) triple mutants. The response of the cbfs triple mutants to chilling stress is impaired. Furthermore, no significant difference in freezing tolerance was observed between the wild-type and the cbf1,3 and cbfs mutants without cold acclimation. However, the cbfs mutants were extremely sensitive to freezing stress after cold acclimation, and freezing sensitivity ranking was cbfs > cbf1,3 > cbf3. RNA-Seq analysis showed that 134 genes were CBF regulated, of which 112 were regulated positively and 22 negatively by CBFs. Our study reveals the essential functions of CBFs in chilling stress response and cold acclimation, as well as defines a set of genes as CBF regulon. It also provides materials for the genetic dissection of components in CBF-dependent cold signaling. PMID:27353960

  19. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证%Cloning of Zoysiagrass CBF Gene and Validation of Cold Tolerance in Trans-genic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    冯勋伟; 才宏伟

    2014-01-01

    结缕草是优良的暖季型草坪草之一,主要用于亚热带和热带地区的草坪种植。抗冷性是结缕草栽培范围的限制因子。本研究以日本最北部原产的结缕草品系为材料,根据其他植物的已知的抗寒基因 CBF 序列,通过同源克隆的方法获得结缕草中相对应的同源基因ZjCBF;根据和其他已报告的CBF序列的比对结果,确定ZjCBF基因属于CBF转录因子家族基因中CBF1型基因。利用半定量PCR和实时定量PCR分析该基因在寒冷条件下的表达情况,发现ZjCBF基因受冷胁迫的诱导,在4℃处理6 h时表达量最高。在此基础上,本研究构建了该基因的过表达载体,并将其转化到拟南芥中,通过低温冷处理实验发现,不论是否经过冷驯化,转 ZjCBF 基因植株由于 ZjCBF 的过量表达均比野生型植株抗寒性强。%Zoysiagrass is recognized as an excellent warm-season turfgrass and mainly used in subtropical and tropical regions. Cold stress is a major constraint factor for the cultivation of zoysiagrass. In this study, according to the sequences of cold tolerance gene CBF had been reported in other plant species, we cloned the corresponding homologous of the ZjCBF gene by homology cloning method in Zoysia japonica using a material originated from the most northern area of Japan. Based on the alignment re-sults compared with other reported CBF genes, we found the ZjCBF gene belongs to the CBF1 familiy. By semi-quantitative PCR and real-time quantitative PCR, we analyzed the expression level of the ZjCBF gene in the cold condition and found that ZjCBF was induced by cold stress, and the ZjCBF expression reached peak at six hours post 4°C treatment. In addition, we also con-structed ZjCBF over expression vector and generated transgenic Arabidopsis plants, with better cold tolerance than the wild-type, whether through cold acclimation or not.

  20. Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses.

    Science.gov (United States)

    Liu, Mei-Zhen; Osborne, Colin P

    2013-05-01

    Globally, C4 plants dominate hot, open environments, but this general pattern is underpinned by important differences in the biogeography of C4 lineages. In particular, the species richness of C4 Poaceae (grasses) increases strongly with increasing temperature, whereas that of the major C4 eudicot group Chenopodiaceae correlates positively with aridity. Freezing tolerance is a crucial determinant of biogeographical relationships with temperature and is mediated by photodamage and cellular disruption by desiccation, but little is known about differences between C4 families. This study hypothesized that there is a greater risk of freezing damage via these mechanisms in C4 Poaceae than Chenopodiaceae, that freezing protection differs between the taxonomic groups, and that freezing tolerance of species is linked to arid habitat preference. Chlorophyll fluorescence, water relations, and freezing injury were compared in four C3 and six C4 species of Poaceae and Chenopodiaceae from the same Mongolian flora. Contrary to expectations, freezing-induced leaf mortality and photodamage were lower in Poaceae than Chenopodiaceae species, and unrelated to photosynthetic pathway. The freezing resistance of Poaceae species resulted from constitutive protection and cold acclimation and an ability to protect the photosynthetic apparatus from photodamage. Freezing protection was associated with low osmotic potential and low tissue elasticity, and freezing damage was accompanied by electrolyte leakage, consistent with cell-membrane disruption by ice. Both Chenopodiaceae and Poaceae had the potential to develop cold acclimation and withstand freezing during the growing season, which conflicted with the hypothesis. Instead, freezing tolerance was more closely associated with life history and ecological preference in these Mongolian species. PMID:23599273

  1. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Science.gov (United States)

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A Lane; Voigt, Thomas; Lee, D K

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  2. 转玉米 ZmABI3-L 基因增加拟南芥的抗旱和耐盐性%A maize abscisic acid insensitive 3 gene confers drought and salt stress tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    袁进成; 宋晋辉; 马海莲; 瓮巧云; 王凌云; 赵艳; 刘颖慧

    2016-01-01

    ABI3(abscisic acid insensitive 3)是编码 ABA 信号转导途径中的重要调控因子,广泛地存在于玉米、小麦、水稻等谷类作物中。本研究从玉米中获得一个新的 ABI3-like 基因,命名为 ZmABI3-L ,该基因全长1735 bp,开放阅读框1212 bp,编码蛋白含404个氨基酸。同源比对表明 ZmABI3-L 和谷子、高粱的同源蛋白相似性高,分别为64%和58%。基因的表达分析表明该基因是组成型表达,在幼胚、穗子和花丝中表达量较高,同时基因的转录水平可以为盐、ABA、干旱和冷所诱导。将 ZmABI3-L 基因转化到拟南芥中,对 T3代转 ZmABI3-L 基因拟南芥进行抗逆性分析,结果显示 ZmABI3-L 基因可以增强拟南芥的耐盐和抗旱能力。在150 mmol/L 高盐培养基中转基因拟南芥的根和茎长度分别为对照的8.6和1.4倍,在50 mmol/L 甘露醇的渗透培养基中转基因植株的发芽率是74.5%,而对照仅为33.6%。研究表明 ZmABI3-L 是一个对干旱和盐损伤均有响应而显著上调的基因,同时该基因可以增加拟南芥的抗旱和耐盐性。%The abscisic acid insensitive 3 gene (ABI 3)has been widely studied in cereals such as wheat,maize and rice however,the functions of ABI3 have not been fully described.In this paper,a novel maize ABI 3 like gene was cloned and named ZmABI 3-L .This gene was predicted to encode a transcription factor with a dis-tinct DNA-binding B3 domain.The full length of the gene was 1735 bp and with an opening read frame of 1212 bp and encoded 404 amino acids.Alignment of the ZmABI3-L proteins with other plants revealed similarities with ABI3 protein from other species.RT-PCR analysis showed ZmABI 3-L was up-regulated in maize by de-hydration,salt,cold and ABA stress.Over-expression of ZmABI 3-L in Arabidopsis plants could enhance salt and drought stress tolerance compared to the wild type.The results suggest that ZmABI 3-L may be involved in salt

  3. Tolerating Zero Tolerance?

    Science.gov (United States)

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  4. Performance Characteristics of an Isothermal Freeze Valve

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  5. Surviving freezing in plant tissues by oomycetous snow molds.

    Science.gov (United States)

    Murakami, Ryo; Yajima, Yuka; Kida, Ken-ichi; Tokura, Katsuyuki; Tojo, Motoaki; Hoshino, Tamotsu

    2015-04-01

    Oomyceteous snow molds, Pythium species, were reported to be less tolerant to chilling and freezing temperatures than other snow mold taxa. However, Pythium species are often found to be pathogenic on mosses in Polar Regions. We investigated the frost resistance of Pythium species from Temperate (Hokkaido, Japan) and Subantarctic Regions. Free mycelia and hyphal swellings, structures for survival, of Pythium iwayamai and Pythium paddicum lost viability within freeze-thaw 3 cycles; however, mycelia in host plants survived the treatment. It was reported that fungi in permafrost are characterized both by the presence of natural cryoprotectants in these ecotopes and by the ability to utilize their inherent mechanisms of protection. It is conceivable that plant substrates or derivatives thereof are natural cryoprotectants, enabling them to provide advantageous conditions to microorganisms under freezing conditions. Our results are the first to experimentally support this hypothesis.

  6. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-arctic soil

    DEFF Research Database (Denmark)

    Sjursen, Heidi; Michelsen, Anders; Holmstrup, Martin

    2005-01-01

    . The Collembola were unaffected by the temperature treatments, but increased in abundance over time. The microbial C:N ratio increased after 40 days at -2 °C, indicating a higher degree of fungal dominance and lower tolerance of bacteria to constant freezing, but not to freeze-thaw. The decline in inorganic...

  7. Generalized structural theory of freezing

    International Nuclear Information System (INIS)

    The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)

  8. Understanding Slag Freeze Linings

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2014-09-01

    Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T liquidus and T solidus depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors.

  9. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  10. Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa

    OpenAIRE

    Jiang, Yanjuan; Qiu, Yuping; Hu, Yanru; Yu, Diqiu

    2016-01-01

    Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Recently, we have found that overexpressing AtWRKY57 enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance to transgenic rice (Oryza sativa) plants. The enhanced drought tolerance of transgenic rice was resulted from the lower water loss rates, cell death, malondiald...

  11. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance.

    Directory of Open Access Journals (Sweden)

    Jianli Duan

    Full Text Available Late embryogenesis abundant (LEA proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa using the Rapid Amplification of cDNA Ends (RACE method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.

  12. Genome-Wide Investigation of MicroRNAs and Their Targets in Response to Freezing Stress in Medicago sativa L., Based on High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Yongjun Shu

    2016-03-01

    Full Text Available Winter damage, especially in northern climates, is a major limitation of the utilization of perennial forages such as alfalfa. Therefore, improving freezing tolerance is imperative in alfalfa genetic breeding. However, freezing tolerance is a complex trait that is determined by many genes. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed small RNA sequencing analysis under cold (4° and freezing (−8° stress. The sequencing results revealed that 173 known, and 24 novel miRNAs were expressed, and that the expression of 35 miRNAs was affected by cold and/or freezing stress. Meanwhile, 105 target genes cleaved by these miRNAs were characterized by degradome sequencing. These targets were associated with biological regulation, cellular processes, metabolic processes, and response to stress. Interestingly, most of them were characterized as transcription factors (TFs, including auxin response factors, SBP, NAC, AP2/ERF, and GRF, which play important roles in plant abiotic responses. In addition, important miRNAs and mRNAs involved in nodulation were also identified, for example, the relationship between miR169 and the TF CCAAT (also named as NF-YA/HAP2, which suggested that nodulation has an important function in freezing tolerance in alfalfa. Our results provide valuable information to help determine the molecular mechanisms of freezing tolerance in alfalfa, which will aid the application of these miRNAs and their targets in the improvement of freezing tolerance in alfalfa and related plants.

  13. Simulation of in situ freezing damage of the photosynthetic apparatus by freezing in vitro of thylakoids suspended in complex media.

    Science.gov (United States)

    Grafflage, S; Krause, G H

    1986-05-01

    Chloroplast thylakoid membranes were isolated from leaves of unhardened and cold-acclimated spinach (Spinacia oleracea L.). For freezethaw treatment, the membranes were suspended in complex media composed to simulate the solute concentrations in the chloroplast stroma in the unhardened and hardened states of the leaves. In particular, high concentrations of amino acids were applied for simulating the hardened state. After frost treatment, photosynthetic activities and chlorophyll fluorescence parameters of the thylakoids were tested to determine the degree of freezing damage. The results revealed a pattern of freezing injury similar to that observed upon frost treatment of thylakoids in situ. A major manifestation of damage was the inhibition of photosynthetic electron transport. Uncoupling of photophosphorylation, which is the dominating effect of freezing of thylakoids suspended in binary solutions (e.g., containing one sugar and one inorganic salt), was also visible but less pronounced in the complex media. Thylakoids obtained from cold-acclimated leaves did not exhibit an increased frost tolerance in vitro, as compared with thylakoids from unhardened plants. The results, furthermore, indicated a strong protective effect of free amino acids at the concentrations and composition found in chloroplasts of hardened leaves. The presence of inorganic salts in the complex media slightly stabilized rather than damaged the membranes during freezing. It is concluded that inactivation of thylakoids in situ may be understood as the destabilizing action of the combined solutes surrounding the thylakoids, occurring when solute concentration is raised due to freezing of water. PMID:24233737

  14. Freezing injury in potato leaves.

    Science.gov (United States)

    Sukumaran, N P; Weiser, C J

    1972-11-01

    Time-temperature profiles of freezing leaves from frost-resistant (Solanum acaule Bitt.) and frost-susceptible (Solanum tuberosum L. subsp. tuberosum Hawkes) types of potatoes did not reveal any major differences. The pattern of change in resistance of leaves to low voltage, low frequency current during freezing was different in the frost-resistant and susceptible leaves. In tissue sections from both types of leaves, cells freeze extracellularly at cooling velocities lower than 5 C per minute. Cells from leaves of resistant plants showed a higher osmotic pressure but not a higher water permeability than those from susceptible plants. The extent of injury caused by even very slow freezing was greater than that caused by equivalent isopiestic desiccation, particularly in susceptible leaves. The higher osmotic pressure in cells of leaves from resistant plants can account for the greater desiccation resistance but not for the frost resistance observed. PMID:16658217

  15. Comparison of cell components in low sugar adaptation and freeze-tolerance baker's yeast with common yeast%低糖适应性耐冻酵母菌与普通酵母菌细胞构成成分的比较

    Institute of Scientific and Technical Information of China (English)

    宋振玉; 李楠; 张姝; 王雷; 居勇

    2009-01-01

    采用气相、液相色谱法和分光光度比色法,对筛选出的低糖适应性耐冻面包酵母BY-03和FY-03与普通高糖面包酵母(PT)细胞构成成分,即胞内海藻糖含量,脂肪酸组成,麦角固醇,磷脂和氨基酸组成进行了分析与比较,进而了解其对酵母耐冻性的影响.结果表明,FY-03海藻糖含量是PT含量的1.40倍,BY-03的海藻糖含量与PT含量基本持平.从3种酵母中皆检出18种氨基酸,其中有助于提高酵母耐冻性的3种带电荷氨基酸即精氨酸,脯氨酸和谷氨酸的含量,BY-03和FY-03均高于PT.从3种酵母中检出了8种饱和与不饱和的脂肪酸,其中BY-03、FY-03的不饱和脂肪酸比例分别为79.82%和78.62%,明显高于PT 64.96%,其中棕榈油酸C16∶ 1和油酸C18∶ 1的含量相差较大.麦角固醇的含量BY-03和FY-03分别为4.99mg/g和4.77mg/g显著高于PT的2.56mg/g,而三者的磷脂含量没有明显差别.%The cell components, including trehalose, fatty acid component, ergosterol, phospholipid and amino acid in the BY-03 and FY-03 were qualitatively and quantitatively determined and compared with the common baker's yeast (PT) by GC, HPLC and UV-spectrophotometer in order to find out the effects of these index on freeze-tolerance of yeast.The results suggest that the content of the trehalose in FY-03 was 1.4 times more than that in PT, while the one in BY-03 was similar to PT.Meanwhile, eighteen kinds of known amino acid were detected from three kinds of yeast.The content of the arginine, proline and glutamate, which were helpful for enhancing the ability of freeze-tolerance, in BY-03 and FY-03 were more than those in PT.Eight kinds of known saturated and unsaturated fatty acid components were detected in three kinds of yeasts. The unsaturated fatty acid in BY-03 and FY-03 were 79.82% and 78.62%, 4.99 mg/g and 4.77 mg/g, but 2.57 mg/g in PT, while the phospholipid contents were similar in all samples.

  16. Fundamentals of freeze-drying.

    Science.gov (United States)

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  17. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  18. Antifreeze proteins enable plants to survive in freezing conditions

    Indian Academy of Sciences (India)

    Ravi Gupta; Renu Deswal

    2014-12-01

    Overwintering plants secrete antifreeze proteins (AFPs) to provide freezing tolerance. These proteins bind to and inhibit the growth of ice crystals that are formed in the apoplast during subzero temperatures. Antifreeze activity has been detected in more than 60 plants and AFPs have been purified from 15 of these, including gymnosperms, dicots and monocots. Biochemical characterization of plant antifreeze activity, as determined by the high ice recrystallization inhibition (IRI) activities and low thermal hysteresis (TH) of AFPs, showed that their main function is inhibition of ice crystal growth rather than the lowering of freezing temperatures. However, recent studies showed that antifreeze activity with higher TH also exists in plants. Calcium and hormones like ethylene and jasmonic acid have been shown to regulate plant antifreeze activity. Recent studies have shown that plant AFPs bind to both prism planes and basal planes of ice crystals by means of two flat ice binding sites. Plant AFPs have been postulated to evolve from the OsLRR-PSR gene nearly 36 million years ago. In this review, we present the current scenario of plant AFP research in order to understand the possible potential of plant AFPs in generation of freezing-tolerant crops.

  19. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.

    Science.gov (United States)

    Takahashi, Shunsuke; Ando, Akira; Takagi, Hiroshi; Shima, Jun

    2009-11-01

    Saccharomyces cerevisiae is exposed to freeze-thaw stress in commercial processes, including frozen dough baking. Cell viability and fermentation activity after a freeze-thaw cycle were dramatically decreased due to freeze-thaw injury. Because this type of injury involves complex phenomena, the injury mechanisms are not fully understood. We examined freeze-thaw injury by indirect gene expression analysis during postthaw incubation after freeze-thaw treatment using DNA microarray profiling. The results showed that genes involved in the homeostasis of metal ions were frequently contained in genes that were upregulated, depending on the freezing period. We assessed the phenotype of deletion mutants of the metal ion homeostasis genes that exhibited freezing period-dependent upregulation and found that the strains with deletion of the MAC1 and CTR1 genes involved in copper ion homeostasis exhibited freeze-thaw sensitivity, suggesting that copper ion homeostasis is required for freeze-thaw tolerance. We found that supplementation with copper ions during postthaw incubation increased intracellular superoxide dismutase activity and intracellular levels of reactive oxygen species were decreased. Moreover, cell viability was increased by supplementation with copper ions. These results suggest that insufficiency of copper ion homeostasis may be one of the causes of freeze-thaw injury. PMID:19749072

  20. Freeze-in through portals

    CERN Document Server

    Blennow, Mattias; Zaldivar, Bryan

    2014-01-01

    The popular freeze-out paradigm for Dark Matter (DM) production, relies on DM-baryon couplings of the order of the weak interactions. However, different search strategies for DM have failed to provide a conclusive evidence of such (non-gravitational) interactions, while greatly reducing the parameter space of many representative models. This motivates the study of alternative mechanisms for DM genesis. In the freeze-in framework, the DM is slowly populated from the thermal bath while never reaching equilibrium. In this work, we analyse in detail the possibility of producing a frozen-in DM via a mediator particle which acts as a portal. We give analytical estimates of different freeze-in regimes and support them with full numerical analyses, taking into account the proper distribution functions of bath particles. Finally, we constrain the parameter space of generic models by requiring agreement with DM relic abundance observations.

  1. Freeze Protection in Gas Holders

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Duursma, Gail

    In cold weather, the water seals of gasholders need protection from freez- ing to avoid compromising the seal. These holders have a large reservoir of “tank water” at the base which is below ground. At present freeze- protection is achieved by external heating of the seal water which...... is in a slotted channel called a cup. Electrical heating or circulation of heated tank water to the cup are examples of systems presently used. The tank water has a large thermal capacity and National Grid wishes to inves- tigate whether circulation of the tank water without external heating could provide...... sufficient energy input to avoid freezing. Only tanks in which the tank water is below ground are investigated in the report. The soil temperature under the reservoir at depth of 10m and lower is almost constant....

  2. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    Science.gov (United States)

    Zhu, Jian-Kang; Quintero-Toscano, Francisco Javier; Pardo-Prieto, Jose Manuel; Qiu, Quansheng; Schumaker, Karen Sue; Ohta, Masaru; Zhang, Changqing; Guo, Yan

    2007-09-04

    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  3. Meat Freezing Theories and Novel Freezing Technologies%肉类冷冻理论与冷冻新技术

    Institute of Scientific and Technical Information of China (English)

    金文刚

    2008-01-01

    Main meat freezing theories,including transition theory,glass transformation theory and ice crystallization theory,were introduced.Some novel freezing technologies such as high pressure freezing,ultrasonic freezing,ice nucleus bacteria freezing protein,cell alive system freezing and decompression freezing were also generally reviewed.

  4. Time dependence of immersion freezing

    Directory of Open Access Journals (Sweden)

    A. Welti

    2012-05-01

    Full Text Available The time dependence of immersion freezing was studied for temperatures between 236 K and 243 K. Droplets with single immersed, size-selected 400 nm and 800 nm kaolinite particles were produced at 300 K, cooled down to supercooled temperatures typical for mixed-phase cloud conditions, and the fraction of frozen droplets with increasing residence time was detected. To simulate the conditions of immersion freezing in mixed-phase clouds we used the Zurich Ice Nucleation Chamber (ZINC and its vertical extension, the Immersion Mode Cooling chAmber (IMCA. We observed that the frozen fraction of droplets increased with increasing residence time in the chamber. This suggests that there is a time dependence of immersion freezing and supports the importance of a stochastic component in the ice nucleation process. The rate at which droplets freeze was observed to decrease towards higher temperatures and smaller particle sizes. Comparison of the laboratory data with four different ice nucleation models, three based on classical nucleation theory with different representations of the particle surface properties and one singular, suggest that the classical, stochastic approach combined with a distribution of contact angles is able to reproduce the ice nucleation observed in these experiments most accurately. Using the models to calculate the increase in frozen fraction at typical mixed-phase cloud temperatures over an extended period of time, yields an equivalent effect of −1 K temperature shift and an increase in time scale by a factor of ~10.

  5. Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing.

    Science.gov (United States)

    Yamada, Tomoyoshi; Kuroda, Katsushi; Jitsuyama, Yutaka; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2002-09-01

    In an effort to clarify the responses of a wide range of plant cells to freezing, we examined the responses to freezing of the cells of chilling-sensitive and chilling-resistant tropical and subtropical plants. Among the cells of the plants that we examined, those of African violet ( Saintpaulia grotei Engl.) leaves were most chilling-sensitive, those of hypocotyls in mungbean [ Vigna radiata (L.) R. Wilcz.] seedlings were moderately chilling-sensitive, and those of orchid [ Paphiopedilum insigne (Wallich ex Lindl.) Pfitz.] leaves were chilling-resistant, when all were chilled at -2 degrees C. By contrast, all these plant cells were freezing-sensitive and suffered extensive damage when they were frozen at -2 degrees C. Cryo-scanning electron microscopy (Cryo-SEM) confirmed that, upon chilling at -2 degrees C, both chilling-sensitive and chilling-resistant plant cells were supercooled. Upon freezing at -2 degrees C, by contrast, intracellular freezing occurred in Saintpaulia leaf cells, frost plasmolysis followed by intracellular freezing occurred in mungbean seedling cells, and extracellular freezing (cytorrhysis) occurred in orchid leaf cells. We postulate that chilling-related destabilization of membranes might result in the loss of the ability of the plasma membrane to act as a barrier against the propagation of extracellular ice in chilling-sensitive plant cells. We also examined the role of cell walls in the response to freezing using cells in which the plasma membrane had been disrupted by repeated freezing and thawing. In chilling-sensitive Saintpaulia and mungbean cells, the cells with a disrupted plasma membrane responded to freezing at -2 degrees C by intracellular freezing. By contrast, in chilling-resistant orchid cells, as well as in other cells of chilling-resistant and freezing-resistant plant tissues, including leaves of orchard grass ( Dactylis glomerata L.), leaves of Arabidopsis thaliana (L.) Heynh. and cortical tissues of mulberry ( Morus

  6. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    Science.gov (United States)

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.

  7. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    Science.gov (United States)

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa. PMID:27272950

  8. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature.

    Science.gov (United States)

    Wen, Xin; Wang, Sen; Duman, John G; Arifin, Josh Fnu; Juwita, Vonny; Goddard, William A; Rios, Alejandra; Liu, Fan; Kim, Soo-Kyung; Abrol, Ravinder; DeVries, Arthur L; Henling, Lawrence M

    2016-06-14

    The remarkable adaptive strategies of insects to extreme environments are linked to the biochemical compounds in their body fluids. Trehalose, a versatile sugar molecule, can accumulate to high levels in freeze-tolerant and freeze-avoiding insects, functioning as a cryoprotectant and a supercooling agent. Antifreeze proteins (AFPs), known to protect organisms from freezing by lowering the freezing temperature and deferring the growth of ice, are present at high levels in some freeze-avoiding insects in winter, and yet, paradoxically are found in some freeze-tolerant insects. Here, we report a previously unidentified role for AFPs in effectively inhibiting trehalose precipitation in the hemolymph (or blood) of overwintering beetle larvae. We determine the trehalose level (29.6 ± 0.6 mg/mL) in the larval hemolymph of a beetle, Dendroides canadensis, and demonstrate that the hemolymph AFPs are crucial for inhibiting trehalose crystallization, whereas the presence of trehalose also enhances the antifreeze activity of AFPs. To dissect the molecular mechanism, we examine the molecular recognition between AFP and trehalose crystal interfaces using molecular dynamics simulations. The theory corroborates the experiments and shows preferential strong binding of the AFP to the fast growing surfaces of the sugar crystal. This newly uncovered role for AFPs may help explain the long-speculated role of AFPs in freeze-tolerant species. We propose that the presence of high levels of molecules important for survival but prone to precipitation in poikilotherms (their body temperature can vary considerably) needs a companion mechanism to prevent the precipitation and here present, to our knowledge, the first example. Such a combination of trehalose and AFPs also provides a novel approach for cold protection and for trehalose crystallization inhibition in industrial applications. PMID:27226297

  9. Freezing resistance in Patagonian woody shrubs: the role of cell wall elasticity and stem vessel size.

    Science.gov (United States)

    Zhang, Yong-Jiang; Bucci, Sandra J; Arias, Nadia S; Scholz, Fabian G; Hao, Guang-You; Cao, Kun-Fang; Goldstein, Guillermo

    2016-08-01

    Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation. PMID:27217529

  10. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

    Directory of Open Access Journals (Sweden)

    Fernando eAleman

    2014-09-01

    Full Text Available Potassium (K+ is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K+ acquisition by plant roots at low external K+ concentrations. Certain abiotic stress conditions such as salinity or Cs+-polluted soils may jeopardize plant K+ nutrition because HAK5-mediated K+ transport is inhibited by Na+ and Cs+. Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na+ tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs+ tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K+ and reduces the Ki values for Na+ and Cs+, suggesting that the F130 residue may contribute to the structure of the pore region involved in K+ binding. In addition, this mutation increases the Vmax for K+. All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter.

  11. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  12. AtHSPR may function in salt-induced cell death and ER stress in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Peng; Wang, Chongying

    2016-07-01

    Salt stress is a harmful and global abiotic stress to plants and has an adverse effect on all physiological processes of plants. Recently, we cloned and identified a novel AtHSPR (Arabidopsis thaliana Heat Shock Protein Related), which encodes a nuclear-localized protein with ATPase activity, participates in salt and drought tolerance in Arabidopsis. Transcript profiling analysis revealed a differential expression of genes involved in accumulation of reactive oxygen species (ROS), abscisic acid (ABA) signaling, stress response and photosynthesis between athspr mutant and WT under salt stress. Here, we provide further analysis of the data showing the regulation of salt-induced cell death and endoplasmic reticulum (ER) stress response in Arabidopsis and propose a hypothetical model for the role of AtHSPR in the regulation of the salt tolerance in Arabidopsis. PMID:27302034

  13. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature

    Directory of Open Access Journals (Sweden)

    Parkin Isobel AP

    2008-09-01

    Full Text Available Abstract Background Abiotic stress, including low temperature, limits the productivity and geographical distribution of plants, which has led to significant interest in understanding the complex processes that allow plants to adapt to such stresses. The wide range of physiological, biochemical and molecular changes that occur in plants exposed to low temperature require a robust global approach to studying the response. We have employed Serial Analysis of Gene Expression (SAGE to uncover changes in the transcriptome of Arabidopsis thaliana over a time course of low temperature stress. Results Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C. Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Interpretation of these data was facilitated by representing the SAGE data by gene identifier, allowing more robust statistical analysis, cross-platform comparisons and the identification of genes sharing common expression profiles. Simultaneous statistical calculations across all five libraries identified 920 low temperature responsive genes, only 24% of which overlapped with previous global expression analysis performed using microarrays, although similar functional categories were affected. Clustering of the differentially regulated genes facilitated the identification of novel loci correlated with the development of freezing tolerance. Analysis of their promoter sequences revealed subsets of genes that were independent of CBF and ABA regulation and could provide a mechanism for elucidating complementary signalling pathways. The SAGE data emphasised the complexity of the plant response, with alternate pre-mRNA processing events increasing at low temperatures

  14. A Mathematical Model for Freeze-Drying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the experiments on freeze-drying carrot and potato slabs, the effects of some parameters, such as heating temperature and pressure on the freeze-drying process are examined. A simple model of freeze-drying is established to predict drying time and the mass variations of materials during the drying. The experimental results agree well with those calculated by the model.

  15. Asymmetric Melting and Freezing Kinetics in Silicon.

    OpenAIRE

    Aziz, Michael; Tsao, Jeff Y.; Thompson, Michael O.; Peercy, Paul S.

    1986-01-01

    We report measurements of the melting velocity of amorphous Si relative to that of (100) crystalline Si. These measurements permit the first severe experimental test of theories describing highly nonequilibrium freezing and melting. The results indicate that freezing in Si is inherently slower than melting; this asymmetry can be interpreted in terms of an entropy-related reduction in the freezing rate.

  16. 9 CFR 590.534 - Freezing facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section 590.534 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off...

  17. 9 CFR 590.536 - Freezing operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing operations. 590.536 Section 590.536 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean...

  18. Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold Stress Signaling

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Bethany K. Zolman; Bonnie Bartel; Byeong-ha Lee; Becky Stevenson; Manu Agarwal; Jian-Kang Zhu

    2009-01-01

    To study cold signaling, we screened for Arabidopsis mutants with altered cold-induced transcription of a firefly luciferase reporter gene driven by the CBF3 promoter (CBF3-LUC). One mutant, chyl-10, displayed reduced cold-induction of CBF3-LUC luminescence. RNA gel blot analysis revealed that expression of endogenous CBFs also was reduced in the chy1 mutant, chyl-10 mutant plants are more sensitive to freezing treatment than wild-type after cold acclimation. Both the wild-type and chy1 mutant plants are sensitive to darkness-induced starvation at warm temperatures, although chy1 plants are slightly more sensitive. This dark-sensitivity is suppressed by cold temperature in the wildtype but not in chy1. Constitutive CBF3 expression partially rescues the sensitivity of chy1-10 plants to dark treatment in the cold. The chy1 mutant accumulates higher levels of reactive oxygen species, and application of hydrogen peroxide can reduce cold-induction of CBF3-LUC in wild-type. Map-based cloning of the gene defective in the mutant revealed a nonsense mutation in CHY1, which encodes a peroxisomal β-hydroxyisobutyryl (HIBYL)-CoA hydrolase needed for valine catabolism and fatty acid β-oxidation. Our results suggest a role for peroxisomal metabolism in cold stress signaling, and plant tolerance to cold stress and darkness-induced starvation.

  19. Freeze Technology for Nuclear Applications - 13590

    Energy Technology Data Exchange (ETDEWEB)

    Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  20. Adaptation to seasonality and the winter freeze

    Directory of Open Access Journals (Sweden)

    Jill Christine Preston

    2013-06-01

    Full Text Available Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve.

  1. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    Science.gov (United States)

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  2. Contact freezing: a review of experimental studies

    Directory of Open Access Journals (Sweden)

    L. A. Ladino Moreno

    2013-10-01

    Full Text Available This manuscript compiles both theoretical and experimental information on contact freezing with the aim to better understand this potentially important but still not well quantified heterogeneous freezing mode. There is no complete theory that describes contact freezing and how the energy barrier has to be overcome to nucleate an ice crystal by contact freezing. Experiments on contact freezing conducted using the cold plate technique indicate that it can initiate ice formation at warmer temperatures than immersion freezing. Additionally, a qualitative difference in the freezing temperatures between contact and immersion freezing has been found using different instrumentation and different ice nuclei. There is a lack of data on collision rates in most of the reported data, which inhibits a quantitative calculation of the freezing efficiencies. Thus, new or modified instrumentation to study contact nucleation in the laboratory and in the field are needed to identify the conditions at which contact nucleation could occur in the atmosphere. Important questions concerning contact freezing and its potential role for ice cloud formation and climate are also summarized.

  3. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress.

    Science.gov (United States)

    Parvanova, Daniela; Ivanov, Sergei; Konstantinova, Tatyana; Karanov, Emanuil; Atanassov, Atanas; Tsvetkov, Tsvetan; Alexieva, Vera; Djilianov, Dimitar

    2004-01-01

    We studied the reaction to the oxidative component of freezing in several tobacco lines, transformed with genes coding for enzymes involved in the synthesis of osmoprotectants (proline, fructan or glycine betaine) along with their wild type. The levels of some oxidative stress markers (leakage of electrolytes, hydrogen peroxide and malondialdehyde) as well as the activity of antioxidative enzymes catalase (EC 1.11.1.6.) and guaiacol peroxidase (EC 1.11.1.7.) have been followed at acclimation, 12 and 24 h freezing and at recovery. Freezing for 24 h resulted in severe damages for the wild type. A corresponding increase of electrolyte leakage, hydrogen peroxide and malondialdehyde contents, a rise of peroxidase activity and inhibition of catalase activity occurred in the non-transformants. Similar, but significantly lower trend of the same parameters has been found for the transgenic lines. Moreover, the oxidative markers returned to their normal levels when the transformants were able to recover from freezing. It could be speculated that transfer of genes, coding for accumulation of osmoprotectants, is related to reduced intensity of freezing-induced oxidative processes. Our lines and model system could serve as a good prerequisite for additional studies to gain further insights into the complex role of osmoprotectants in freezing tolerance.

  4. Suppressor Screens in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  5. Atmospheric freeze drying assisted by power ultrasound

    OpenAIRE

    Santacatalina Bonet, Juan Vicente; Carcel Carrión, Juan Andrés; García Pérez, José Vicente; Mulet Pons, Antonio; Simal, S.

    2012-01-01

    [EN] Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that pur...

  6. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  7. Issues in Freeze Drying of Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王维; 陈墨; 陈国华

    2012-01-01

    Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.

  8. When hot water freezes before cold

    CERN Document Server

    Katz, J I

    2006-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. They are concentrated ahead of the freezing front by zone refining in water that has not been heated, reduce the temperature of the freezing front, and thereby reduce the temperature gradient and heat flux, slowing the progress of the front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.

  9. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation.

    Science.gov (United States)

    Ali, Farman; Wharton, David A

    2015-01-01

    Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.

  10. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport.

    Directory of Open Access Journals (Sweden)

    Valérie Lefebvre

    Full Text Available Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE, i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1 gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components.

  11. Improvement of parameters of freezing medium and freezing protocol for bull sperm using two osmotic supports.

    NARCIS (Netherlands)

    Chaveiro, A.; Machado, A.L.; Frijters, A.; Engel, B.; Woelders, H.

    2006-01-01

    The aim of this study was to improve the freezing protocol of bull sperm, by investigating the influence on sperm viability after freeze/thawing of different freezing medium components, as well as the effect of cooling rates in the different stages of the cooling protocol, in single factor experimen

  12. Mechanisms of deterioration of nutrients. [of freeze dried foods

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  13. Freeze conditioning agents ease winter railcar unloading

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.E.

    1982-02-01

    A US midwest utility's freeze control programme is described. All coal is treated with a glycol-based freeze control agent. Some rail wagons were treated with a side release agent which stops coal sticking to the metal wagon. The use of calcium chloride or heat to thaw frozen coal is also discussed.

  14. Updating freeze: Aligning animal and human research

    NARCIS (Netherlands)

    Hagenaars, M.A.; Oitzl, M.S.; Roelofs, K.

    2014-01-01

    Freezing is widely used as the main outcome measure for fear in animal studies. Freezing is also getting attention more frequently in human stress research, as it is considered to play an important role in the development of psychopathology. Human models on defense behavior are largely based on anim

  15. Repeatability and randomness in heterogeneous freezing nucleation

    Directory of Open Access Journals (Sweden)

    G. Vali

    2008-08-01

    Full Text Available This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from −6°C to −24°C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1°C for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5°C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

  16. Repeatability and randomness in heterogeneous freezing nucleation

    Directory of Open Access Journals (Sweden)

    G. Vali

    2008-02-01

    Full Text Available This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from −6°C to −24°C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1°C for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5°C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

  17. Bioinspired Design: Magnetic Freeze Casting

    Science.gov (United States)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  18. Thermodynamics of freezing and melting.

    Science.gov (United States)

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  19. Freeze concentration of lime juice

    Directory of Open Access Journals (Sweden)

    Ampawan Tansakul

    2008-11-01

    Full Text Available The main objective of this research was to study the effects of processing conditions, i.e. cooling medium temperature (-6, -12 and -18C and scraper blade rotational speed (50, 100 and 150 rpm on the freeze concentration of lime juice. The initial soluble solid content of lime juice was 7.6 Brix. Results showed that soluble solid content of lime juice increased as cooling medium temperature decreased while scraper blade rotational speed increased. It was also found that the processing condition with -18˚C cooling medium temperature and 150 rpm rotational speed of the scraper blade was the best among all studied conditions, although the loss of the soluble solids with ice crystals during ice separation was relatively high at 35%.

  20. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida;

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... and the leather samples were treated in one of four ways: pre-treatment with Na2EDTA, impregnation with PEG 400, pre-treatment with Na2EDTA followed by impregnation with PEG 400 as well as no treatment. After the treatments, the leather samples were freeze-dried either by the conventional or by the alternative...

  1. Food freezing with simultaneous surface dehydration: approximate prediction of freezing time

    Energy Technology Data Exchange (ETDEWEB)

    Campanone, Laura A.; Salvadori, Viviana O.; Mascheroni, Rodolfo H. [Centro de Investigacion Desarollo en Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, La Plata (Argentina); MODIAL, Facultad de Ingenieria, La Plata (Argentina)

    2005-03-01

    Freezing of unpackaged foods induces mass transfer in the form of surface ice sublimation, which in turn modifies heat transfer conditions. At present there are no simplified methods for predicting freezing times when surface dehydration occurs. This paper uses a previously developed model for the simulation of simultaneous heat and mass transfer during food freezing and storage to generate a complete set of predicted freezing times when dehydration occurs. Based on these data a simplified analytical method for the prediction of freezing time during freezing of unpackaged frozen foods was developed. The method accounts for product characteristics (shape, size and composition) and operating conditions (initial and refrigerant temperature, heat transfer coefficient, relative humidity). The prediction equation is very simple and results of its use - simulating usual freezing conditions for different products - shows very good accuracy when tested against the previously cited numerical model and all the available experimental data. (Author)

  2. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  3. Stress promotes Arabidopsis - Piriformospora indica interaction.

    Science.gov (United States)

    Vahabi, Khabat; Dorcheh, Sedigheh Karimi; Monajembashi, Shamci; Westermann, Martin; Reichelt, Michael; Falkenberg, Daniela; Hemmerich, Peter; Sherameti, Irena; Oelmüller, Ralf

    2016-05-01

    The endophytic fungus Piriformospora indica colonizes Arabidopsis thaliana roots and promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. Here we demonstrate that the benefits for the plant increase when the two partners are co-cultivated under stress (limited access to nutrient, exposure to heavy metals and salt, light and osmotic stress, pathogen infection). Moreover, physical contact between P. indica and Arabidopsis roots is necessary for optimal growth promotion, and chemical communication cannot replace the physical contact. Lower nutrient availability down-regulates and higher nutrient availability up-regulates the plant defense system including the expression of pathogenesis-related genes in roots. High light, osmotic and salt stresses support the beneficial interaction between the plant and the fungus. P. indica reduces stomata closure and H2O2 production after Alternaria brassicae infection in leaves and suppresses the defense-related accumulation of the phytohormone jasmonic acid. Thus, shifting the growth conditions toward a stress promotes the mutualistic interaction, while optimal supply with nutrients or low stress diminishes the benefits for the plant in the symbiosis. PMID:27167761

  4. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  5. Exploring the Nature of Contact Freezing

    Science.gov (United States)

    Kiselev, A. A.; Hoffmann, N.; Duft, D.; Leisner, T.

    2012-12-01

    The freezing of supercooled water droplets upon contact with aerosol particles (contact nucleation of ice) is the least understood mechanism of ice formation in atmospheric clouds. Although experimental evidences suggest that some aerosols can be better IN in the contact than in the immersion mode (that is, triggering ice nucleation at higher temperature), no final explanation of this phenomena currently exists. On the other hand, the contact freezing is believed to be responsible for the enhanced rate of secondary ice formation occasionally observed in LIDAR measurements in the cold mixed phase clouds. Recently we have been able to show that the freezing of supercooled droplets electrodynamically levitated in the laminar flow containing mineral dust particles (kaolinite) is a process solely governed by a rate of collisions between the supercooled droplet and the aerosol particles. We have shown that the probability of droplet freezing on a single contact with aerosol particle may differ over an order of magnitude for kaolinite particles having different genesis and morphology. In this presentation we extend the study of contact nucleation of ice and compare the IN efficiency measured for DMA-selected kaolinite, illite and hematite particles. We show that the freezing probability increases towards unity as the temperature decreases and discuss the functional form of this temperature dependence. We explore the size dependence of the contact freezing probability and show that it scales with the surface area of the particles, thus resembling the immersion freezing behavior. However, for all minerals investigated so far, the contact freezing has been shown to dominate over immersion freezing on the short experimental time scales. Finally, based on the combined ESEM and electron microprobe analysis, we discuss the significance of particle morphology and variability of chemical composition on its IN efficiency in contact mode.

  6. Ice encapsulation protects rather than disturbs the freezing lichen.

    Science.gov (United States)

    Bjerke, J W

    2009-03-01

    Arctic and alpine terricolous lichens are adapted to harsh environments and are tolerant to extremely low temperatures when metabolically inactive. However, there are reports indicating that freezing can be lethal to metabolically active lichens. With a projected warmer and more unstable climate, winter precipitation at high latitudes will fall more frequently as rain, causing snowmelt and encapsulating terricolous lichens in ice or exposing them to large temperature fluctuations. Lichens are a major winter food source for reindeer in most parts of the circumpolar region. A laboratory experiment tested how three hydrated reindeer forage lichen species covered by snow, encapsulated in ice, or uncovered responded to storage at freezing temperatures and subsequent warming. Photosynthetic performance (maximal fluorescence of dark-adapted samples and net photosynthetic rates) was significantly lower in lichens not insulated by snow or ice, whereas there were few differences between the snow and ice treatments. It is suggested that snow and ice provide sufficiently moist environments to improve extracellular and reduce intracellular ice nucleation activity. Ice encapsulation, which is often lethal to vascular plants, did not have any negative effects on the studied lichens. The results indicate that complete snow and ice melt followed by refreezing can be detrimental to terricolous lichen ecosystems. Reduced lichen biomass will have a negative effect both on reindeer winter survival and the indigenous peoples who herd reindeer. PMID:19228329

  7. Towards Tolerance

    NARCIS (Netherlands)

    Lisette Kuyper; Jurjen Iedema; Saskia Keuzenkamp

    2013-01-01

    Across Europe, public attitudes towards lesbian, gay and bisexual (LGB) individuals range from broad tolerance to widespread rejection. Attitudes towards homosexuality are more than mere individual opinions, but form part of the social and political structures which foster or hinder the equality and

  8. Harnessing the energy accompanying freezing

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M., E-mail: makyurt@kau.edu.s [Departments of Mechanical Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Tuerkmen, N. [Departments of Mechanical Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2011-05-15

    Research highlights: {yields} Ice pressurization allows the burst and leak testing of practically all tubular materials. {yields} The assembly can be made fully portable for maintenance operations without the use of liquid CO{sub 2} and N{sub 2}. {yields} Ice pressurization can work where conventional interference fitting, axial pressing and heat treatment fail. {yields} Uniform pressures can be developed in ice pressurization as opposed to Herzian distributions under plungers. -- Abstract: The progression of freezing of water inside a pipe is reviewed, with special emphasis on bursting. The process of pressure rise in confined bodies of water is discussed. The development of a method utilizing liquid carbon dioxide and liquid nitrogen, for the development of pressures inside closed containers is summarized. Then a novel method, utilizing mechanical refrigeration, is explained for the generation of high pressures. An experimental setup for the latter technique is described and results of experiments are summarized. A number of ways of utilizing the ice-pressurization technique are presented. Certain characteristics and advantages of ice-pressurization are enumerated as regards to burst and leak testing. It is noted that a number of other techniques such as shrink fitting, embossing and compaction of powders also seem to be particularly suitable. It is concluded that, with the advent of the portable and novel chilling apparatus, new vistas are approachable for undertaking maintenance operations in hospitals, power plants, nuclear facilities, and other systems that require uninterrupted operation.

  9. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  10. Freezing mammalian cells for production of biopharmaceuticals.

    Science.gov (United States)

    Seth, Gargi

    2012-03-01

    Cryopreservation techniques utilize very low temperatures to preserve the structure and function of living cells. Various strategies have been developed for freezing mammalian cells of biological and medical significance. This paper highlights the importance and application of cryopreservation for recombinant mammalian cells used in the biopharmaceutical industry to produce high-value protein therapeutics. It is a primer that aims to give insight into the basic principles of cell freezing for the benefit of biopharmaceutical researchers with limited or no prior experience in cryobiology. For the more familiar researchers, key cell banking parameters such as the cell density and hold conditions have been reviewed to possibly help optimize their specific cell freezing protocols. It is important to understand the mechanisms underlying the freezing of complex and sensitive cellular entities as we implement best practices around the techniques and strategies used for cryopreservation. PMID:22226818

  11. Freezing phenomena in ice-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Zaki, G.; Habeebullah, B. [Fakieh Center for Applied Research, Makkah Al-Mukarramah (Saudi Arabia); King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2002-09-01

    The characteristics of solidification and melting are reviewed. The properties of water and ice and the phase diagram of water are discussed with special emphasis on ice density. A concise account of the freezing process and the Stefan problem is presented. To this end, the four stages of freezing are identified, supercooling, nucleation and the formation of dendritic ice, the growth of concentric rings of solid ice at 0{sup o}C and the final cooling of the solid ice are treated in some detail. The subject of bursting of pipes is given particular emphasis. Attention is drawn to a common misconception on pipe bursting and to misleading relationships for the computation of freezing time for ice blockage. Several current applications of melting and freezing systems are outlined. (author)

  12. The Influence of Freezing Drizzle on Wire Icing during Freezing Fog Events

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yue; NIU Shengjie; L(U) Jingjing

    2013-01-01

    Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness,fog,and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (30°17′N,109°16′E),Hubei Province,China.The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period,while the rate was only 0.4 mm h-1 without sleet and freezing drizzle.The rain intensity,liquid water content (LWC),and diameter of freezing drizzle stayed at low values.The development of microphysical properties of fog was suppressed in the freezing drizzle period.A threshold diameter (Dc) was proposed to estimate the influence of freezing drizzle on different size ranges of fog droplets.Fog droplets with a diameter less than Dc would be affected slightly by freezing drizzle,while larger fog droplets would be affected significantly.Dc had a correlation with the average rain intensity,with a correlation coefficient of 0.78.The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak,while they became poor positive correlations,or even negative correlations during freezing drizzle period.The direct contribution of freezing drizzle to ice thickness was about 14.5%.Considering both the direct and indirect effects,we suggest that freezing drizzle could act as a “catalyst” causing serious icing conditions.

  13. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells.

    Science.gov (United States)

    Izawa, Shingo; Sato, Machiko; Yokoigawa, Kumio; Inoue, Yoshiharu

    2004-11-01

    Glycerol is well known as a cryoprotectant similar to trehalose. However, there is little information about the effects of intracellular glycerol on the freeze-thaw stress tolerance of yeast. Through analysis of a quadruple-knockout mutant of glycerol dehydrogenase genes (ara1 Delta gcy1 Delta gre3 Delta ypr1 Delta) in Saccharomyces cerevisiae, we revealed that the decrease in glycerol dehydrogenase activity led to increased levels of intracellular glycerol. We also found that this mutant showed higher tolerance to freeze stress than wild type strain W303-1A. Furthermore, we demonstrated that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability in dough even after frozen storage for 7 days. These results suggest the possibility of using intracellular-glycerol-enriched cells to develop better frozen dough. PMID:15127164

  14. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.

    Science.gov (United States)

    Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui

    2015-05-22

    Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺.

  15. Temperatura letal de diferentes plantas frutíferas tropicais Freezing points of various tropical fruits

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Sentelhas

    1996-01-01

    Full Text Available Com o objetivo de conhecer melhor o efeito das baixas temperaturas sobre as frutíferas de clima tropical e possibilitar o desenvolvimento de novas variedades, mais tolerantes, simularam-se geadas em câmaras frigoríficas para a determinação da temperatura letal de diferentes plantas frutíferas tropicais. Os resultados permitiram classificar as espécies em três grupos: Grupo I - moderada tolerância (-4°C: condessa (Annona reticulata; goiaba (Psidium guajava; acerola (Malpighia glabra e abacate (Persea americana var. Geada; Grupo II - média tolerância (-5°C: conde (A. squamosa; araticum-mirim (Rollinea spp.; anona-do-brejo (A. glabra; falsa-gravioleira (A. montana; araticum-de-folha-miúda (R. ermaginata e maracujá-amarelo (Passiflora edulis f. flavicarpa; Grupo III - acentuada tolerância (-6°C: cherimóia (A. cherimola.The effect of low temperature on tropical fruits was studied in order to guide future developments of frost resistant varieties. Simulations of frost were done in a freezing chamber to determine the freezing points of various fruit plants. On the basis of the results the studied species can be classified into three groups according to their tolerance to low temperatures: Group I - little tolerance (-4°C: Annona reticulata; Psidium guajava; Malpighia glabra and Persea americana (var. Geada; Group II - medium tolerance (-5°C: A. squamosa; Rollinea spp.; A. glabra; A. montana; R. ermaginata and Passiflora edulis f. flavicarpa; Group III - high tolerance (-6°C: A. cherimola.

  16. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations

    Directory of Open Access Journals (Sweden)

    R. M. Nagare

    2012-02-01

    Full Text Available There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost. Soil water movement towards the freezing front (from warmer to colder regions was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost.

  17. The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings

    Institute of Scientific and Technical Information of China (English)

    Luo Lei; Lin Shan-zhi; Zheng Hui-quan; Lei Yang; Zhang Qian; Zhang Zhi-yi

    2007-01-01

    We investigated the changes in the contents of H2O2, malonaldehyde (MDA) and endogenous antioxidants, the activities of protective enzymes and some critical enzymes involved in the ascorbate-glutathione (ASA-GSH) cycle as well as freezing resistance(expressed as LT50) and correlations mentioned above, in detail using Populus suaveolens cuttings. The purpose was to explore the physiological mechanism of the enhancement of freezing resistance induced by freezing acclimation at -20℃, and to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). And it increased the contents of reduced ascorbate(ASA), reduced glutathione (GSH), dehydroascorbate (DHA) and oxidized glutathione (GSSG). However, H2O2 and MDA contents and LT50 of cuttings were decreased. LT50 in cuttings was found to be closely correlated to the levels of SOD, POD, CAT, APX,DHAR, MDAR, GR, H2O2, MDA, ASA, GSH, DHA and GSSG during freezing acclimation. This suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation may relate to the distinct increase for the levels of SOD, POD, CAT,APX, DHAR, MDAR,GR,ASA, GSH, DHA, and GSSG. In addition, the observed levels of APX, DHAR, MDAR, GR, ASA, DHA,GSH and GSSG were higher than those of SOD, POD and CAT during freezing acclimation. It indicated that a higher capacity of the ASA-GSH cycle is required for H2O2 detoxification, and growth and development of cuttings. Based on the obtained results, it can be concluded that the ASA-GSH cycle plays an important role in enhancement of freezing resistance of P. suaveolens cuttings during freezing acclimation.

  18. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark.

    Science.gov (United States)

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S; Ishikawa, Masaya

    2014-01-01

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (-1 to -4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142

  19. Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson’s Disease with Freezing of Gait

    OpenAIRE

    Elke Heremans; Evelien Nackaerts; Griet Vervoort; Sarah Vercruysse; Sanne Broeder; Carolien Strouwen; Stephan P Swinnen; Alice Nieuwboer

    2015-01-01

    Background Recent studies show that besides freezing of gait (FOG), many people with Parkinson's disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing. Objective To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait. Metho...

  20. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  1. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    Directory of Open Access Journals (Sweden)

    Ferreira Célia

    2010-11-01

    Full Text Available Abstract Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry.

  2. An Investigation of Freezing of Supercooled Water on Anti-Freeze Protein Modified Surfaces

    Institute of Scientific and Technical Information of China (English)

    Thibaut V J Charpentier; Anne Neville; Paul Millner; Rob Hewson; Ardian Morina

    2013-01-01

    This work investigates how functionalization ofaluminium surfaces with natural type Ⅲ Anti-Freeze Protein (AFP) affects the mechanism of heterogeneous ice nucleation.First the bulk ice nucleation properties of distilled water and aqueous solution of AFP were evaluated by differential scanning calorimetry.Then the modified surface was characterized by Secondary Ions Mass Spectroscopy (SIMS),Fourier Transform InfraRed (FTIR) spectroscopy and contact angle measurement.Freezing experiments were then conducted in which water droplets underwent a slow controlled cooling.This study shows that compared to uncoated aluminium,the anti-freeze proteins functionalized surfaces exhibit a higher and narrower range of freezing temperature.It was found that these proteins that keep living organisms from freezing in cold environment act in the opposite way once immobilized on surfaces by promoting ice nucleation.Some suggestions regarding the mechanism of action of the observed phenomena were proposed based on the Classical Nucleation Theory (CNT).

  3. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  4. Female Fertility: Is it Safe to "Freeze?"

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-01-01

    Full Text Available Objective: To evaluate the safety and risk of cryopreservation in female fertility preservation. Data sources: The data analyzed in this review were the English articles from 1980 to 2013 from journal databases, primarily PubMed and Google scholar. The criteria used in the literature search show as following: (1 human; embryo; cryopreservation/freezing/vitrification, (2 human; oocyte/immature oocyte; cryopreservation/ freezing/vitrification, (3 human; ovarian tissue transplantation; cryopreservation/freezing/vitrification, (4 human; aneuploidy/DNA damage/epigenetic; cryopreservation/freezing/vitrification, and (5 human; fertility preservation; maternal age. Study selection: The risk ratios based on survival rate, maturation rate, fertilization rate, cleavage rate, implantation rate, pregnancy rate, and clinical risk rate were acquired from relevant meta-analysis studies. These studies included randomized controlled trials or studies with one of the primary outcome measures covering cryopreservation of human mature oocytes, embryos, and ovarian tissues within the last 7 years (from 2006 to 2013, since the pregnancy rates of oocyte vitrification were significantly increased due to the improved techniques. The data involving immature oocyte cryopreservation obtained from individual studies was also reviewed by the authors. Results: Vitrifications of mature oocytes and embryos obtained better clinical outcomes and did not increase the risks of DNA damage, spindle configuration, embryonic aneuploidy, and genomic imprinting as compared with fresh and slow-freezing procedures, respectively. Conclusions: Both embryo and oocyte vitrifications are safe applications in female fertility preservation.

  5. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defense pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds...... of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin......, camalexin, and increased expression of defense-related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence. The prominent headspace...

  6. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  7. Freezing precipitation in Russia and the Ukraine

    Directory of Open Access Journals (Sweden)

    A. A. Zavyalova

    2007-04-01

    Full Text Available Conditions for freezing precipitation (FP, including freezing rain (FR and freezing drizzle (FZ for 8 airports in Russia and 4 in the Ukraine are studied on the basis of 10 to 20-year series of surface observations, radiosonde and objective analysis data. Statistical characteristics are presented of the FP episode durations and of occurrence frequency dependences on surface air temperature, wind direction and speed and cloud base height. From the radiosonde data, it is found that the "classical mechanism" of FP generation (for which, stratification of "warm nose" type in the cloud layer is necessary is not frequent: most of FP cases are associated with "all cold" conditions in the lower 3-km layer, that is, with negative temperatures in and below the clouds.

  8. Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics

    OpenAIRE

    du Toit, Elloise; Vesterlund, Satu; Gueimonde Fernández, Miguel; Salminen, Seppo

    2013-01-01

    The production of viable functional probiotics presupposes stability of strain features in the final product. We evaluated the impact of acquisition of heat-tolerance and subsequent freeze-drying on the adhesion properties of Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium lactis Bb-12 and Bifidobacterium animalis IF20/1 and on their ability to inhibit the adhesion of pathogens in a mucus model. Both fresh and freeze-dried cultures were evaluated. Significant differen...

  9. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    Science.gov (United States)

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  10. Reproducing Black's experiments: freezing point depression and supercooling of water

    International Nuclear Information System (INIS)

    We carried out two historical experiments referred to by Joseph Black, one on freezing mixtures of salted water with ice and another on freezing supercooled pure water by a small disturbance. The results confirm thermodynamical predictions for the depression of the freezing point of salted water and for the latent heat of freezing of supercooled water respectively, which came after Black. The depression of the freezing point can hardly be fitted in the framework of the caloric theory of heat, which was taken for granted by Black, and the instantaneous freezing of supercooled water also poses some difficulties for that theory. (author)

  11. Cold tolerance and cold hardening strategy of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae)

    Institute of Scientific and Technical Information of China (English)

    Jing Tian; Shu-Guang Hao; Wei-Na Kong; Rui-Yan Ma; Le Kang

    2008-01-01

    The Japanese pine sawyer, Monochamus alternatus, is an important pine forest pest and vector transmitting the pine wilt nematode that causes pine wilt disease. Low temperatures in autumn, winter and spring often differentially affect mortality of M.alternatus larvae. In this paper, we mainly compared the differences of mortality and cold hardening of larvae from different seasons, based on supercooling point (SCP) and cumulative probability of individuals freezing (CPIF). The cold hardening of the larvae from autumn, winter and spring seasons were largely different. Correlations between mortality and CPIF of autumn and spring larvae were highest on day 1/4, and gradually decreased with prolonged exposure duration. This beetle's death mainly resulted from freezing in short exposure duration. However, the correlation between mortality and CPIF of winter larvae increased gradually with the prolonged exposure duration. Death did not mainly result from freezing in long exposure duration. Autumn larvae are more susceptible and adaptable than winter and spring larvae. Winter larvae have a slight freeze-tolerance trend. Our research showed that M. alternatus came into complex cold-hardening strategies under natural selection. Freeze avoidance is the primary strategy; with prolonged exposure duration to above SCP or < 0℃, chill tolerance is more important; this is followed by freeze tolerance during harsh winters.

  12. Building the Method to Determine the Rate of Freezing Water in Penaeus monodon of the Freezing Process

    Directory of Open Access Journals (Sweden)

    Nguyen Tan Dzung

    2012-10-01

    Full Text Available The method of determination the rate of freezing water in Penaeus monodon of freezing process was established on base the equation of energy balance in warming up process Penaeus monodon after freezing to determine specific heat of Penaeus monodon. The result obtained was built the mathematical model (19 to determine the rate of freezing water according to the freezing temperature of Penaeus monodon. The results indicated that when water was completely frozen (ω = 1 or 100%, the optimal freezing temperature of Penaeus monodon was-22.00°C.

  13. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1

    OpenAIRE

    Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart Roy; Neil Shirley; Andrew Jacobs; Alexander Johnson; Mark Tester

    2010-01-01

    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na(+)) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na(+) exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored...

  14. Freeze-thaw induced gelation of alginates.

    Science.gov (United States)

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry.

  15. Scaling-Up Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids) an

  16. Theoretical prediction of 'optimal' freezing programmes

    NARCIS (Netherlands)

    Woelders, H.; Chaveiro, A.

    2004-01-01

    We have developed a quantitative description of the osmotic behaviour of cells during freezing without a presupposed value of the cooling rate. Instead, at all times the intracellular supercooling is maximised provided that it does not exceed a predetermined value 'p' (e.g., 2°C). This should preclu

  17. Freeze-thaw induced gelation of alginates.

    Science.gov (United States)

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry. PMID:27185114

  18. Liquid carbon: structure near the freezing line

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Los, J.H.; Meijer, E.J.; Fasolino, A.; Frenkel, D.

    2005-01-01

    We present a detailed analysis of the structure of liquid carbon near the freezing line. The results are obtained by molecular simulation using a recently developed state-of-the-art bond order potential. We find that along the melting line the liquid is predominantly threefold coordinated up to pres

  19. Anomalous freezing behavior of nanoscale liposomes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Kumar, P. B. S.; Laradji, M.

    2012-01-01

    The effect of the finite size of one-component liposomes on their phase behavior is investigated via simulations of an implicit-solvent model of self-assembled lipid bilayers. We found that the high curvature of nanoscale liposomes has a significant effect on their freezing behavior. While...

  20. Freezing characteristics and texture variation after freezing and thawing of four fruit types

    Directory of Open Access Journals (Sweden)

    Arpassorn Sirijariyawat

    2012-11-01

    Full Text Available One major problem with frozen fruits is a loss of texture. Therefore this study investigated the effects of the freezingprocess on the freezing profiles, texture, and drip loss of apple, mango, cantaloupe, and pineapple fruit samples. All frozenthawedfruits varied in these three properties because of diversity in the fresh fruits. Mango had the highest total solublesolids content and the lowest freezing point, whereas pineapple showed the highest freezing rate. The highest firmness andcrunchy texture were found in fresh apple, and these properties were absent in the other fresh fruits. The firmness of allfrozen fruits significantly decreased by different percentages as compared to those of the fresh fruits. The drip loss of eachfruit type was also significantly different with apple samples having the highest firmness decrease and drip loss. This studyshows that freezing characteristics and frozen fruit properties depend on type of fruit.

  1. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L;

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  2. Female Fertility: Is it Safe to "Freeze?"

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Li-Ying Yan; Xu Zhi; Jie Yan; Jie Qiao

    2015-01-01

    Objective:To evaluate the safety and risk of cryopreservation in female fertility preservation.Data sources:The data analyzed in this review were the English articles from 1980 to 2013 from journal databases,primarily PubMed and Google scholar.The criteria used in the literature search show as following:(1) human; embryo; cryopreservation/freezing/vitrification,(2) human; oocyte/immature oocyte; cryopreservation/freezing/vitrification,(3) human; ovarian tissue transplantation; cryopreservation/ freezing/vitrification,(4) human; aneuploidy/DNA damage/epigenetic; cryopreservation/freezing/vitrification,and (5) human; fertility preservation; maternal age.Study selection:The risk ratios based on survival rate,maturation rate,fertilization rate,cleavage rate,implantation rate,pregnancy rate,and clinical risk rate were acquired from relevant meta-analysis studies.These studies included randomized controlled trials or studies with one of the primary outcome measures covering cryopreservation of human mature oocytes,embryos,and ovarian tissues within the last 7 years (from 2006 to 2013,since the pregnancy rates of oocyte vitrification were significantly increased due to the improved techniques).The data involving immature oocyte cryopreservation obtained from individual studies was also reviewed by the authors.Results:Vitrifications of mature oocytes and embryos obtained better clinical outcomes and did not increase the risks of DNA damage,spindle configuration,embryonic aneuploidy,and genomic imprinting as compared with fresh and slow-freezing procedures,respectively.Conclusions:Both embryo and oocyte vitrifications are safe applications in female fertility preservation.

  3. HAL1 mediate salt adaptation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter.Thirty-three individual kanamycin resistant plants were obtained from 75,000 seeds.Southern blotting analysis indicated that HAL1 gene had been integrated into all of the transgenic plants' genomes.The copy number of HAL1 gene in transgenic plants was mostly 1 to 3 by Southern analysis.Phenotypes of transgenic plants have no differences with wild type plants.Several samples of transformants were self-pollinated,and progenies from transformed and non-transformed plants(controls)were evaluated for salt tolerance and gene expression.Measurement of concentrations of intracellular K+ and Na+ showed that transgenic lines were able to retain less Na+ than that of the control under salt stress.Results from different tests indicated the expression of HAL1 gene promotes a higher level of salt tolerance in vivo in the transgenic Arabidopsis plants.

  4. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soowhan; Mench, M.M. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea); Ahn, Byung Ki [Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea)

    2008-04-15

    In this work, the effects of properties of diffusion media (DM) (stiffness, thickness and micro-porous layer (MPL)) on the physical damage of membrane electrode assembly (MEA) subjected to freeze/thaw cycling were studied. Pressure uniformity of the diffusion media onto the catalyst layer (CL) was determined to be a key parameter to mitigate freeze-induced physical damage. Stiffer diffusion media, enabling more uniform compression under the channels and lands, can mitigate surface cracks, but flexible cloth diffusion media experienced severe catalyst layer surface damage. The thickness of the diffusion media and existence of a micro-porous layer were not observed to be major factors to mitigate freeze-damage when the catalyst layer is in contact with liquid. Interfacial delamination between diffusion media and catalyst layers, but not between the catalyst layer and membrane, was observed. This permanent deformation of the stiff diffusion media in the channel locations as well as fractures of carbon fibers increased electrical resistance, and may increase water flooding, resulting in reduced longevity and operational losses. Although use of a freeze-tolerable MEA design (negligible virgin cracked catalyst layers with thinner reinforced membrane) [S. Kim, M.M. Mench, J. Power Sources, in press] with stiff diffusion media can reduce the freeze-damage in the worst case scenario test condition of direct liquid contact, extensive irreversible damage (diffusion media/catalyst layer interfacial delamination) was not completely prevented. In addition to proper material selection, liquid water contact with the catalyst layer should be removed prior to shutdown to a frozen state to permit long-term cycling damage and facilitate frozen start. (author)

  5. Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions

    Directory of Open Access Journals (Sweden)

    Kalaji Hazem M.

    2016-06-01

    Full Text Available Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Salinity is one of the main abiotic stressors which affects plant growth through various physiological processes such as photosynthesis. The aim of this work is to study the impact of salinity stress on Arabidopsis plants by evaluating plant growth rate and photosynthetic activity, while investigating the influence of effective microorganisms (EMs with the objective to determine if EMs could alleviate the induced stress affiliated with salinity. Results showed that salinity negatively affects photosynthesis efficiency in Arabidopsis plants based on the data obtained from the measured chlorophyll fluorescence parameters. Additionally, application of EMs enhanced plant tolerance to counteract the induced stress. Effective microorganisms concentration of 10 mL/L suggested to bring about the best results. This work advocates, that quantum efficiency of photosystem II (PSII is a reliable indicator for tolerance in Arabidopsis plants to salinity stress, the impact of which may be softened by the EMs.

  6. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus.

    Science.gov (United States)

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F; Moon, Jae Sun

    2011-11-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways. PMID:22057987

  7. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  8. 7 CFR 58.620 - Freezing and packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  9. COMPREHENSIVE DESIGN METHOD OF FREEZE WALL AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    CHENXiangsheng

    1995-01-01

    Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domke(1915) formula based on frozen soil strength has widely been used for designing freeze wall thickness. However, it can not ensure the stability of freeze wall, nor guarantee the safety of shaft construction as frozen depth increase in unstable water bearing strata. F.A.Auld (1985, 1988) presented a design method of freeze wall, which is on the basis of strength and stability, together with deformation of freeze wall.He combined deformation of freeze wall, lining and deformation of freeze tube to set up a comprehensive design method for freeze wall. This paper, according to the practice in China, describes a comprehensive design method for deep freeze wall, considering influence of excavation rate of advance, unsupported length of freeze wall and the sump state on inward deformation of freeze wall, and the allowable pipe deformation caused by inward deformation of freeze wall. Finally, successful application of this method to the large scale coal mine-Jining No.2 Mine in Shandong Province of China, is presented.It saved much investment compared with F.A.Auld's design for the same mine on behalf of Shell Coal International.

  10. Genetics of winter wheat response to two freezing treatments

    Science.gov (United States)

    The inheritance of the ability of winter wheat plants to survive two kinds of freezing stress was investigated in a five-parent diallel cross. Plants were acclimated at +4°C for 5 wks and frozen with or without a –3°C, 16-hour pre-freezing (PF) period prior to freezing to damaging temperatures. The ...

  11. Comparing contact and immersion freezing from continuous flow diffusion chambers

    Science.gov (United States)

    Nagare, Baban; Marcolli, Claudia; Welti, André; Stetzer, Olaf; Lohmann, Ulrike

    2016-07-01

    Ice nucleating particles (INPs) in the atmosphere are responsible for glaciating cloud droplets between 237 and 273 K. Different mechanisms of heterogeneous ice nucleation can compete under mixed-phase cloud conditions. Contact freezing is considered relevant because higher ice nucleation temperatures than for immersion freezing for the same INPs were observed. It has limitations because its efficiency depends on the number of collisions between cloud droplets and INPs. To date, direct comparisons of contact and immersion freezing with the same INP, for similar residence times and concentrations, are lacking. This study compares immersion and contact freezing efficiencies of three different INPs. The contact freezing data were obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH) using 80 µm diameter droplets, which can interact with INPs for residence times of 2 and 4 s in the chamber. The contact freezing efficiency was calculated by estimating the number of collisions between droplets and particles. Theoretical formulations of collision efficiencies gave too high freezing efficiencies for all investigated INPs, namely AgI particles with 200 nm electrical mobility diameter, 400 and 800 nm diameter Arizona Test Dust (ATD) and kaolinite particles. Comparison of freezing efficiencies by contact and immersion freezing is therefore limited by the accuracy of collision efficiencies. The concentration of particles was 1000 cm-3 for ATD and kaolinite and 500, 1000, 2000 and 5000 cm-3 for AgI. For concentrations nucleation process that is enhanced compared to immersion freezing due to the position of the INP on the droplet, and we discriminate it from collisional contact freezing, which assumes an enhancement due to the collision of the particle with the droplet. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber Immersion Mode Cooling chAmber-Zurich Ice

  12. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  13. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    OpenAIRE

    Francesco Dovana; Marco Mucciarelli; Maurizio Mascarello; Anna Fusconi

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 i...

  14. Genome wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis

    OpenAIRE

    Bac-Molenaar, Johanna A.; Granier, Christine; Keurentjes, Joost J.B.; Vreugdenhil, Dick

    2016-01-01

    Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory n...

  15. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  16. Momilactone sensitive proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kitajima, Shinya

    2015-05-01

    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  17. Ground freezing for containment of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  18. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  19. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  20. Freezing enhancement around a horizontal tube using copper foil disks

    Science.gov (United States)

    Sugawara, M.; Komatsu, Y.; Takahashi, Y.; Beer, H.

    2011-12-01

    Freezing of water saturated in circumferentially arranged copper foils around a cooling tube is studied experimentally and numerically. The copper foils need not to be welded to the cooling tube but are merely placed around the tube so that the freezing system is easily arranged. Copper foils greatly enhance freezing compared with that of a bare tube, even with a small copper volume fraction in the freezing system. Numerical calculations by means of a continuum model predict well freezing enhancement. The effect of the copper foils is also considered numerically for the melting process in order to compare with freezing. It is seen that copper foils contribute more to the melting enhancement than to the increase of the freezing rate.

  1. Scaling-Up Eutectic Freeze Crystallization

    OpenAIRE

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids) and water from a wide variety of aqueous process streams. Using EFC, processes producing large quantities of saline solutions could be carried out in an ecologically and economically attractive way. ...

  2. Atmospheric freeze drying assisted by power ultrasound

    Science.gov (United States)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  3. The influence of freezing rates on bovine pericardium tissue Freeze-drying

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Borgognoni

    2009-12-01

    Full Text Available The bovine pericardium has been used as biomaterial in developing bioprostheses. Freeze-drying is a drying process that could be used for heart valve's preservation. The maintenance of the characteristics of the biomaterial is important for a good heart valve performance. This paper describes the initial step in the development of a bovine pericardium tissue freeze-drying to be used in heart valves. Freeze-drying involves three steps: freezing, primary drying and secondary drying. The freezing step influences the ice crystal size and, consequently, the primary and secondary drying stages. The aim of this work was to investigate the influence of freezing rates on the bovine pericardium tissue freeze-drying parameters. The glass transition temperature and the structural behaviour of the lyophilized tissues were determined as also primary and secondary drying time. The slow freezing with thermal treatment presented better results than the other freeze-drying protocols.O pericárdio bovino é um material utilizado na fabricação de biopróteses. A liofilização é um método de secagem que vem sendo estudado para a conservação de válvulas cardíacas. A preservação das características do biomaterial é de fundamental importância no bom funcionamento das válvulas. Este artigo é a primeira etapa do desenvolvimento do ciclo de liofilização do pericárdio bovino. Liofilização é o processo de secagem no qual a água é removida do material congelado por sublimação e desorção da água incongelável, sob pressão reduzida. O congelamento influencia o tamanho do cristal de gelo e, consequentemente, a secagem primária e secundária. O objetivo deste estudo foi verificar a influência das taxas de congelamento nos parâmetros de liofilização do pericárdio bovino. Determinou-se a temperatura de transição vítrea e o comportamento estrutural do pericárdio bovino liofilizado. Determinou-se o tempo da secagem primária e secundária. O

  4. Food freezing with simultaneous surface dehydration: approximate prediction of weight loss during freezing and storage

    Energy Technology Data Exchange (ETDEWEB)

    Campanone, Laura A.; Salvadori, Viviana O.; Mascheroni, Rodolfo H. [Centro de Investigacion Desarollo en Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, La Plata (Argentina); MODIAL, Facultad de Ingenieria, La Plata (Argentina)

    2005-03-01

    Weight loss of unpackaged foods during freezing and later storage is an important quality and economic issue. It is originated on surface ice sublimation due to differences in water activity between food surface and the refrigerating air. Weight loss rate is determined by refrigerating conditions and product characteristics. The modelling of this phenomenon has merited very little attention; at present there are no simplified methods to predict weight losses during the freezing and the storage of unpackaged foods. In previous studies we developed a detailed model for the simultaneous heat and mass transfer during food freezing and storage with ice sublimation. Based on the information of this numerical model, simplified analytical methods for the prediction of weight loss during the freezing and the storage of unpackaged frozen foods were developed. The methods account for product characteristics and storage conditions. The prediction equations are very simple and results of their use - simulating usual freezing and storage conditions for different products - give very good accuracy when tested against the previously cited numerical model and experimental data. (Author)

  5. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques.

    Science.gov (United States)

    Isaure, Marie-Pierre; Huguet, Stéphanie; Meyer, Claire-Lise; Castillo-Michel, Hiram; Testemale, Denis; Vantelon, Delphine; Saumitou-Laprade, Pierre; Verbruggen, Nathalie; Sarret, Géraldine

    2015-06-01

    Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant. PMID:25873676

  6. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica.

    Science.gov (United States)

    Worland, M Roger

    2005-08-01

    Effects of 12 biotic and abiotic factors on the freezing point of the sub-Antarctic springtail, Tullbergia antarctica, were investigated. Repeated cooling of individual springtails five times resulted in very similar freezing points suggesting that ice nucleation in this freeze-susceptible species is likely to be initiated by intrinsic factors rather than being a stochastic event. Mean supercooling point (SCP) was influenced by cooling protocol, showing a linear increase in mean SCP with cooling rates from 8 to 0.1 degrees Cmin(-1). However, the opposite effect (decreasing SCP) was seen with slower cooling. Slower rates may be ecologically realistic and allow time for appropriate physiological and biochemical changes. Feeding and food presence in the gut had no effect on SCP, and there was no correlation between the ice nucleating activity of bacteria isolated from the guts and the whole springtail SCP. Habitat altitude and diurnal light and temperature regimes also had no effect on SCP. There was no correlation between the cryoprotectant concentration of fresh animals and their SCP, but experimental desiccation resulted in increased osmolality and decreased SCP, although with considerable individual variation. The most significant influence on SCP was associated with ecdysis. As springtails cease feeding for a period either side of ecdysis, shedding the entire gut lining, moulting may be an efficient mechanism of clearing the gut of all ice nucleating material. This previously unrecognised relationship between ecdysis, cold tolerance and seasonal survival tactics may play an important role in over-winter survival of some arthropods. PMID:15936029

  7. Cold tolerance of the Antarctic nematodes Plectus murrayi and Scottnema lindsayae.

    Science.gov (United States)

    Wharton, David A; Raymond, Mélianie R

    2015-04-01

    The cold tolerance of the Antarctic nematodes Scottnema lindsayae and Plectus murrayi was determined using material freshly isolated from the field. Both species could survive low temperatures but the survival of S. lindsayae was greater than that of P. murrayi. Field soil temperatures in late spring-early summer indicated a minimum temperature of -19.5 °C and a maximum cooling rate of 0.71 °C min(-1). In P. murrayi grown in culture, there was no significant effect of acclimation, nor of the two culture media used, on survival after freezing but survival was greater if freezing was seeded at -1 °C than at lower temperatures. The freezing survival ability of P. murrayi is much less than that of Panagrolaimus davidi CB1, another Antarctic nematode. Cryomicroscopy indicates that P. murrayi can survive low temperatures by either cryoprotective dehydration or freezing tolerance, but that freezing tolerance is the dominant strategy. Measurable thermal hysteresis was detected only in highly concentrated extracts of the nematodes, indicating the presence of an antifreeze protein, but at the concentrations likely to be found in vivo, the major function of the ice active protein involved is probably recrystallization inhibition.

  8. Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics.

    Science.gov (United States)

    du Toit, Elloise; Vesterlund, Satu; Gueimonde, Miguel; Salminen, Seppo

    2013-07-01

    The production of viable functional probiotics presupposes stability of strain features in the final product. We evaluated the impact of acquisition of heat-tolerance and subsequent freeze-drying on the adhesion properties of Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium lactis Bb-12 and Bifidobacterium animalis IF20/1 and on their ability to inhibit the adhesion of pathogens in a mucus model. Both fresh and freeze-dried cultures were evaluated. Significant differences were observed between fresh, freeze dried, fresh heat-tolerant and freeze dried heat-tolerant strains, especially in the ability of the freeze dried probiotics to exclude, displace or outcompete pathogens. Based on our study characterizing probiotic properties such as adhesion and competitive exclusion, it seems possible to adapt probiotics to processing stresses, such as heat, without significantly changing the probiotic properties of the strains assessed. This may provide new options for future probiotic production technology. However, our results also emphasize that the properties of the stress-adapted strains, as well as the effect of the production processes should always be assessed as these are strain-specific. PMID:23688551

  9. Temperature-induced fluorescence changes : a screening method for frost tolerance of potato (solanum sp.).

    Science.gov (United States)

    Sundbom, E; Strand, M; Hällgren, J E

    1982-11-01

    Field-grown tuber-bearing potatoes were screened for frost tolerance in a late stage of development. Three different clones of Solanum tuberosum L. and two interspecific crosses between clones of S. tuberosum and the wild potato species S. demissum Lindl. were studied. Two different methods were used. (a) Temperature-induced fluorescence changes of intact leaves were measured in freeze-thaw cycles between 20 degrees C and -10 degrees C. The variable fluorescence pattern was characterized in relation to frost tolerance. (b) Controlled freezings of plants in a climate chamber with successively increased low temperature stress, of 1 to 2 hours duration during the dark period. Freezing damages were classified visually.The short-term frost during the fluorescence measurement was compared with the long-term frost treatments in the climate chamber. The results of the two were identical to ranking of the different clones for frost tolerance. The temperature-induced fluorescence changes also monitored progressive damages to the chloroplast membranes when plants were exposed to successively lower temperatures in a controlled climate chamber freezing test. It was deduced from the fluorescence measurements that the freezing injury of potato occurs on the water splitting side of photosystem II. PMID:16662670

  10. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    Science.gov (United States)

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  11. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice

    Directory of Open Access Journals (Sweden)

    Jia Yulin

    2007-06-01

    Full Text Available Abstract Background Plants respond to low temperature through an intricately coordinated transcriptional network. The CBF/DREB-regulated network of genes has been shown to play a prominent role in freeze-tolerance of Arabidopsis through the process of cold acclimation (CA. Recent evidence also showed that the CBF/DREB regulon is not unique to CA but evolutionarily conserved between chilling-insensitive (temperate and chilling-sensitive (warm-season plants. In this study, the wide contrast in chilling sensitivity between indica and japonica rice was used as model to identify other regulatory clusters by integrative analysis of promoter architecture (ab initio and gene expression profiles. Results Transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' genes that were upregulated during the initial 24 hours at 10°C. Among this group were four transcription factors including ROS-bZIP1 and another larger sub-group with a common feature of having as1/ocs-like elements in their promoters. Cold-induction of ROS-bZIP1 preceded the induction of as1/ocs-like element-containing genes and they were also induced by exogenous H2O2 at ambient temperature. Coordinated expression patterns and similar promoter architectures among the 'early response' genes suggest that they belong to a potential regulon (ROS-bZIP – as1/ocs regulatory module that responds to elevated levels of ROS during chilling stress. Cultivar-specific expression signatures of the candidate genes indicate a positive correlation between the activity of the putative regulon and genotypic variation in chilling tolerance. Conclusion A hypothetical model of an ROS-mediated regulon (ROS-bZIP – as1/ocs triggered by chilling stress was assembled in rice. Based on the current results, it appears that this regulon is independent of ABA and CBF/DREB, and that its activation has an important contribution in configuring the rapid responses of rice seedlings

  12. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    Science.gov (United States)

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress.

  13. [Studies of viability and vitality after freezing of the probiotic yeast Saccharomyces boulardii: physiological preconditioning effect].

    Science.gov (United States)

    Pardo, Silvina; Galvagno, Miguel Angel; Cerrutti, Patricia

    2009-06-30

    The aim of this study was to evaluate the vitality and viability of the probiotic yeast Saccharomyces boulardii after freezing/thawing and the physiological preconditioning effect on these properties. The results indicate that the specific growth rate (0.3/h(-1)) and biomass (2-3 x10(8)cells/ml) of S. boulardii obtained in flasks shaken at 28 degrees C and at 37 degrees C were similar. Batch cultures of the yeast in bioreactors using glucose or sugar-cane molasses as carbon sources, reached yields of 0.28 g biomass/g sugar consumed, after 10h incubation at 28 degrees C; the same results were obtained in fed batch fermentations. On the other hand, in batch cultures, the vitality of cells recovered during the exponential growth phase was greater than the vitality of cells from the stationary phase of growth. Vitality of cells from fed-batch fermentations was similar to that of stationary growing cells from batch fermentations. Survival to freezing at -20 degrees C and subsequent thawing of cells from batch cultures was 0.31% for cells in exponential phase of growth and 11.5% for cells in stationary phase. Pre-treatment of this yeast in media with water activity (a(w)) 0.98 increased the survival to freezing of S. boulardii cells stored at -20 degrees C for 2 months by 10 fold. Exposure of the yeast to media of reduced a(w) and/or freezing/thawing process negatively affected cell vitality. It was concluded that stress conditions studied herein decrease vitality of S. boulardii. Besides, the yeast strain studied presented good tolerance to bile salts even at low pH values. PMID:19631167

  14. Asparagine Metabolic Pathways in Arabidopsis.

    Science.gov (United States)

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  15. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis

    OpenAIRE

    Pan, Ya-Jie; Liu, Ling; Lin, Ying-Chao; Zu, Yuan-Gang; Li, Lei-Peng; Tang, Zhong-Hua

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly...

  16. Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis

    OpenAIRE

    YaJie ePan; Ling eLiu; YingChao eLin; YuanGang eZu; Zhonghua eTang; LeiPeng eLi

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan’s blue detection were measured by compared to the control or salt-stressed seedlings. Secondly...

  17. Dynamical freeze-out in event-by-event hydrodynamics

    CERN Document Server

    Holopainen, Hannu

    2012-01-01

    In hydrodynamical modeling of the ultrarelativistic heavy-ion collisions the freeze-out is typically performed at a constant temperature or density. In this work we apply a dynamical freeze-out criterion, which compares the hydrodynamical expansion rate with the pion scattering rate. Recently many calculations have been done using event-by-event hydrodynamics where the initial density profile fluctuates from event to event. In these event-by-event calculations the expansion rate fluctuates strongly as well, and thus it is interesting to check how the dynamical freeze-out changes hadron distributions with respect to the constant temperature freeze-out. We present hadron spectra and elliptic flow calculated using (2+1)-dimensional ideal hydrodynamics, and show the differences between constant temperature and dynamical freeze-out criteria. We find that the differences caused by different freeze-out criteria are small in all studied cases.

  18. Well-plate freeze-drying

    DEFF Research Database (Denmark)

    Trnka, Hjalte; Rantanen, Jukka; Grohganz, Holger

    2015-01-01

    , cake collapse and reconstitution time. Results: Samples freeze-dried in well-plates had an acceptable visual cake appearance. Solid form analysis by high throughput X-ray powder diffraction indicated comparable polymorphic outcome independent of the container. The expected increase in moisture level...... due to increasing amount of amorphous matter in the samples was observed in both vials and well plates. Cake collapse was found to be representative in well plates and could be effectively quantified using image analysis. Reconstitution time was also found to be equal in all three platforms. Finally...

  19. Freeze-fracture study of Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Marlene Benchimol

    1990-12-01

    Full Text Available The freeze-fracture technique was used to analyse the organization of the plasma membrane, as well as membranes of cytoplasmic organelles, of the pathogenic protozoan Trichomonas vaginalis. Rosettes formed by 4 to 14 intramembranous particles were seen on the fracture faces of the membrane lining the anterior flagella as well as in fracture faces of the plasma membrane enclosing the anterior region of the protozoan and in cytoplasmic organelles. Special organization of the membrane particles were also seen in the region of association of the recurrent flagellum to the cell body.

  20. Mechano-freezing of the ambient water

    CERN Document Server

    Zhang, Xi; Zou, Bo; Sun, Chang Q

    2013-01-01

    Raman spectroscopy examination of the 25 deg-C water freezing under compression revealed transition from 1.35 GPa to 0.86 GPa upon ice being formed at continued volume change. The transition is associated with a slight blue shift of the high-frequency phonon (omiga_H ~ 3120 cm-1) and creation of the low-frequency phonons (Omiga_L ~ 200 cm-1). In the liquid and in the solid phase, the increased pressure softens the Omiga_H and stiffens the Omida_L, which indicates the presence of the inter-electron-pair repulsion in both liquid and solid water.

  1. Arabidopsis thaliana—Aphid Interaction

    OpenAIRE

    Louis, Joe; Singh, Vijay,; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide impor...

  2. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  3. Freeze-Thaw Durability of Air-Entrained Concrete

    OpenAIRE

    Huai-Shuai Shang; Ting-Hua Yi

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. T...

  4. FEM Simulation on Artificial Freezing of Seepage Ground

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-min

    2005-01-01

    The coupling mechanism in freezing process of seepage ground was studied and a simplified coupling math model was proposed. The nonlinear and coupling problems of PDEs were well solved using the exponential function, error function and normal distribution function, and a series of FEM equations of coupled fields of temperature and seepage were deduced and put forward. With the example of shaft ground freezing, the formation of freezing wall in seepage ground was simulated.

  5. SOME STUDIES ABOUT CEREALS BEHAVIOR DURING FREEZE DRYING PROCESS

    OpenAIRE

    GABRIELA-VICTORIA MNERIE; D. MNERIE; D. ŢUCU

    2013-01-01

    The paper presents some special method and equipment and the principal advantages of freeze-dried food. The freeze drying is a good method of freeze-drying for make some experiments with many kind of cereals, for the improvement that in food production. It is necessary and is possible to study the corn oil extract, wheat flour, the maltodextrin from corn, modified cornstarch, spice extracts, soy sauce, hydrolyzed wheat gluten, partially hydrogenated soybean and cottonseed oil etc. That is ver...

  6. Identifying freezing of gait in Parkinson's disease during freezing provoking tasks using waist-mounted accelerometry

    NARCIS (Netherlands)

    Zach, H.; Janssen, A.M.; Snijders, A.H.; Delval, A.; Ferraye, M.U.; Auff, E.; Weerdesteyn, V.G.; Bloem, B.R.; Nonnekes, J.H.

    2015-01-01

    BACKGROUND: Freezing of gait (FOG) is a common and debilitating phenomenon in Parkinson's disease (PD). Wearable accelerometers might help to assess FOG in the research setting. Here, we evaluate whether accelerometry can detect FOG while executing rapid full turns and while walking with rapid short

  7. Experimental quantification of contact freezing in an electrodynamic balance

    Directory of Open Access Journals (Sweden)

    N. Hoffmann

    2013-04-01

    Full Text Available Heterogeneous nucleation of ice in a supercooled water droplet induced by an external contact with a dry aerosol particle has long been known to be more effective than freezing induced by the same nucleus immersed in the droplet. However, the experimental quantification of contact freezing is challenging. Here we report an experimental method allowing to determine the temperature dependent ice nucleation probability of size selected aerosol particles. The method uses supercooled charged water droplets suspended in a laminar flow of air containing aerosol particles as contact freezing nuclei. The rate of droplet–particle collisions is calculated numerically with account for Coulomb attraction, drag force and induced dipole interaction between charged droplet and aerosol particles. The calculation is verified by direct counting of aerosol particles collected by a levitated droplet. By repeating the experiment on individual droplets for a sufficient number of times, we are able to reproduce the statistical freezing behavior of a large ensemble of supercooled droplets and measure the average rate of freezing events. The freezing rate is equal to the product of the droplet–particle collision rate and the probability of freezing on a single contact, the latter being a function of temperature, size and composition of the contact ice nuclei. Based on these observations, we show that for the types of particles investigated so far, contact freezing is the dominating freezing mechanism on the time scale of our experiment.

  8. Experimental quantification of contact freezing in an electrodynamic balance

    Directory of Open Access Journals (Sweden)

    N. Hoffmann

    2013-09-01

    Full Text Available Heterogeneous nucleation of ice in a supercooled water droplet induced by external contact with a dry aerosol particle has long been known to be more effective than freezing induced by the same nucleus immersed in the droplet. However, the experimental quantification of contact freezing is challenging. Here we report an experimental method to determine the temperature-dependent ice nucleation probability of size-selected aerosol particles. The method is based on the suspension of supercooled charged water droplets in a laminar flow of air containing aerosol particles as contact freezing nuclei. The rate of droplet–particle collisions is calculated numerically with account for Coulomb attraction, drag force and induced dipole interaction between charged droplet and aerosol particles. The calculation is verified by direct counting of aerosol particles collected by a levitated droplet. By repeating the experiment on individual droplets for a sufficient number of times, we are able to reproduce the statistical freezing behavior of a large ensemble of supercooled droplets and measure the average rate of freezing events. The freezing rate is equal to the product of the droplet–particle collision rate and the probability of freezing on a single contact, the latter being a function of temperature, size and composition of the contact ice nuclei. Based on these observations, we show that for the types of particles investigated so far, contact freezing is the dominating freezing mechanism on the timescale of our experiment.

  9. A molecular dynamics study of freezing in a confined geometry

    Science.gov (United States)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  10. Study on Freeze-drying Process of Dumpling Wrappers

    OpenAIRE

    Wanren Chen; Hua Li; Xingli Jiao; Xiang Gui

    2015-01-01

    The freeze-drying process of frozen dumpling wrappers is studied in this study. And the effects of drying time, drying temperature and the capacity of unit area in the freezing process on the drying rate and rehydration rate of freeze-drying dumpling wrappers are investigated. The result shows that, in the process of freeze-drying dumpling wrappers, the optimal condition is: drying time is 3 h, drying temperature is 45°C and the loadage of per unit area is 4.0 kg/m2.

  11. A“TIME-SPACE” RELATED DESIGNMETHOD OF FREEZING WALL

    Institute of Scientific and Technical Information of China (English)

    陈湘生

    1996-01-01

    Artificially ground freezing (AGF) is one of the main methods to establish tempo