WorldWideScience

Sample records for arabidopsis freezing tolerance

  1. Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions

    Directory of Open Access Journals (Sweden)

    Lee Yang

    2012-08-01

    Full Text Available Abstract Background Thellungiella has been proposed as an extremophile alternative to Arabidopsis to investigate environmental stress tolerance. However, Arabidopsis accessions show large natural variation in their freezing tolerance and here the tolerance ranges of collections of accessions in the two species were compared. Results Leaf freezing tolerance of 16 Thellungiella accessions was assessed with an electrolyte leakage assay before and after 14 days of cold acclimation at 4°C. Soluble sugars (glucose, fructose, sucrose, raffinose and free polyamines (putrescine, spermidine, spermine were quantified by HPLC, proline photometrically. The ranges in nonacclimated freezing tolerance completely overlapped between Arabidopsis and Thellungiella. After cold acclimation, some Thellungiella accessions were more freezing tolerant than any Arabidopsis accessions. Acclimated freezing tolerance was correlated with sucrose levels in both species, but raffinose accumulation was lower in Thellungiella and only correlated with freezing tolerance in Arabidopsis. The reverse was true for leaf proline contents. Polyamine levels were generally similar between the species. Only spermine content was higher in nonacclimated Thellungiella plants, but decreased during acclimation and was negatively correlated with freezing tolerance. Conclusion Thellungiella is not an extremophile with regard to freezing tolerance, but some accessions significantly expand the range present in Arabidopsis. The metabolite data indicate different metabolic adaptation strategies between the species.

  2. Cold Shock Domain Protein 3 Regulates Freezing Tolerance in Arabidopsis thaliana*

    OpenAIRE

    Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo

    2009-01-01

    In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also fu...

  3. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Lili Zhuang

    Full Text Available Dehydration-Responsive Element Binding proteins (DREB/C-repeat (CRT Binding Factors (CBF have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L., which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000] or salt stress (150 mM NaCl. Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

  4. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    OpenAIRE

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C.; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro; Ruiz, Oscar A.

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes m...

  5. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature.

    Science.gov (United States)

    Cuevas, Juan C; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F; Ferrando, Alejandro

    2008-10-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  6. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jeong Chan [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Lee, Sangmin [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Shin, Su Young [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Chae, Ho Byoung; Jung, Young Jun [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Jung, Hyun Suk [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Kyun Oh [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Jung Ro, E-mail: leejr73@nie.re.kr [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Department of Biochemistry and Biophysics, Texas A& M University, College Station, TX (United States); Lee, Sang Yeol, E-mail: sylee@gnu.ac.kr [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-08-07

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.

  7. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    International Nuclear Information System (INIS)

    Overexpression of AtNTRC (AtNTRCOE) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro

  8. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis.

    OpenAIRE

    Wathugala, D.L.; Richards, S.A.; Knight, H; Knight, M.R.

    2011-01-01

    The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabido...

  9. 磷脂酶D对拟南芥抗冻性的影响%Study on the Effect of Phospholipase D on the Freezing Tolerance of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    赵鹏; 王道龙

    2011-01-01

    为了探索磷脂酶D(PLD)在调控植物抗冻性中的作用,进一步揭示植物抗冻机理和磷脂低温信号转导机制的研究.笔者应用人工气候霜箱,对PLDγ1、PLDγ3基因分别被敲除的拟南芥突变体及野生型材料,进行低温驯化和冻害胁迫处理.试验发现,这2个基因的敲除型无论是经过还是未经过低温驯化冻害处理的离子渗漏率都与相同处理野生型拟南芥的离子渗漏率无显著差异.试验结果表明,PLDT,1和PLDy3这2个基因既未参与组成型调控植物的抗冻性,也未参与低温信号转导过程.%The experiment was purposely to research the effect of phospholipase D on the freezing tolerance of Arabidopsis thaliana, reveal the mechanism of plants freezing tolerance and phospholipid signal transduction.Arabidopsis thaliana mutant PLDγ1 or PLDγ3 was deficient and wild-type was used as materials.The two mutants and wild-type were cold acclimated and freezing stressed using a climate chamber.There were no significant differences between the ion leakage of the mutants and wild-type whether cold acclimation freeze or non-acclimation freeze.The results showed that PLDγ1 and PLDγ3 neither mediate regulation of constitutive freezing tolerance nor low temperature signaling.

  10. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis.

    Science.gov (United States)

    Wathugala, Deepthi L; Richards, Shane A; Knight, Heather; Knight, Marc R

    2011-09-01

    The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabidopsis. OsSFR6 was identified by homology searches, and a full-length coding region isolated using reverse transcription polymerase chain reaction (RT-PCR) from Oryza sativa cDNA. To test for orthology, OsSFR6 was expressed in an Arabidopsis sfr6 loss-of-function mutant background, and restoration of wild-type phenotypes was assessed. Searching the rice genome revealed a single homologue of AtSFR6. Cloning and sequencing the OsSFR6 coding region showed OsSFR6 to have 61.7% identity and 71.1% similarity to AtSFR6 at the predicted protein sequence level. Expression of OsSFR6 in the atsfr6 mutant background restored the wild-type visible phenotype, as well as restoring wild-type levels of COR gene expression and tolerance of osmotic and freezing stresses. OsSFR6 is an orthologue of AtSFR6, and thus a target for future manipulation to improve tolerance to osmotic and other abiotic stresses. PMID:21585388

  11. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    Science.gov (United States)

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  12. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available The C-repeat (CRT/dehydration-responsive element (DRE binding factor (CBF/DREB1 transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1 was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193-228 (SsCBF1(193-228. The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions.

  13. Characterization of three Arabidopsis AP2/EREBP family transcription factors involved in ABA sensitivity,freeze and salt tolerance

    Institute of Scientific and Technical Information of China (English)

    MEI WenQian; LEI Juan; Xu Yu; WEI Gang; ZHU YuXian

    2007-01-01

    AP2/EREBP transcription factors (TFs) play very important roles in plant development,hormonal regulation and stress response. Upon genome-wide cDNA cloning,phylogenetic and expression pattern analyses of this plant specific TF family,we found that three of the members including At1g71450,At1g50680 and At5g13910,were likely involved in responses to ABA,cold and salt. Complementary DNAs containing putative full-length ORFs of these three TFs were obtained and fused individually to the GAL4 DNA-binding domains. All the 3 genes functioned effectively as trans-activators using yeast one-hybrid assays. RT-PCR experiments showed that the At1g71450 gene was induced by ABA and low temperature; the At1g50680 gene was responsive to quite a few stress conditions,but especially to freezing temperature; and the At5g13910 gene was induced by high salt treatment,drought and ethylene. By searching the ABRC T-DNA insertion mutant stocks,we obtained knockout lines for these TFs. Homozygous ko1 (At1g71450) plants showed a hypersensitive response to ABA during seed germination and also in stomata movement. Homozygous ko2 (At1g50680) plants showed a significant reduction in plant freezing tolerance compared to the wild type after chilling treatment. Homozygous ko3 (At5g13910) were less tolerant to high salinity than wild type plants. Our data suggest that At1g71450 is a negative regulator in ABA signaling,while At1g50680 and At5g13910 are positive regulators in cold and salt stress responses,respectively.

  14. Anhydrobiosis and Freezing-Tolerance

    DEFF Research Database (Denmark)

    McGill, Lorraine; Shannon, Adam; Pisani, Davide; Felix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David; Burnell, Ann

    2015-01-01

    Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth...... an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent “ecological fitting” of freezing-tolerant anhydrobiotic propagules to the respective abiotic conditions in Ross Island and Surtsey...

  15. Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Tang, Mingjuan; Liu, Xiaofei; Deng, Huaping; Shen, Shihua

    2011-12-01

    Jatropha curcas L. is an all-purpose biodiesel plant and is widely distributed in tropical and subtropical climates. It can grow well on poor quality soil which is not qualified for crop cultivation. This is very important for relieving land, food and energy crises. However, tropical and subtropical distribution limits the production of J. curcas seed. So it is valuable to know the molecular mechanism of J. curcas response to adverse abiotic environmental factors, especially freezing stress, in order to change the plant's characteristics. Until now there are just a few reports about J. curcas molecular biology. In this paper, we cloned and characterized a DNA binding protein from this plant, designated as JcDREB. Sequence analysis and yeast one-hybrid assays show that JcDREB can effectively function as a transcription factor of DREB protein family belonging to A-6 subgroup member. Expression patterns of JcDREB showed that it was induced by cold, salt and drought stresses, not by ABA. Over-expression of JcDREB in transgenic Arabidopsis exhibited enhanced salt and freezing stresses. Understanding the molecular mechanisms of J. curcas responses to environmental stresses, for example, high salinity, drought and low temperature, is crucial for improving their stress tolerance and productivity. This work provides more information about A-6 subgroup members of DREB subfamily. PMID:21958703

  16. Freeze tolerance of soil chytrids from temperate climates in Australia.

    Science.gov (United States)

    Gleason, Frank H; Letcher, Peter M; McGee, Peter A

    2008-08-01

    Very little is known about the capacity of soil chytrids to withstand freezing in the field. Tolerance to freezing was tested in 21 chytrids isolated from cropping and undisturbed soils in temperate Australia. Samples of thalli grown on peptone-yeast-glucose (PYG) agar were incubated for seven days at -15 degrees C. Recovery of growth after thawing and transferring to fresh medium at 20 degrees C indicated survival. All isolates in the Blastocladiales and Spizellomycetales survived freezing in all tests. All isolates in the Chytridiales also survived freezing in some tests. None of the isolates in the Rhizophydiales survived freezing in any of the tests. However, some isolates in the Rhizophydiales recovered growth after freezing if they were grown on PYG agar supplemented with either 1% sodium chloride or 1% glycerol prior to freezing. After freezing, the morphology of the thalli of all isolates was observed under LM. In those isolates that recovered growth after transfer to fresh media, mature zoosporangia were observed in the monocentric isolates and resistant sporangia or resting spores in the polycentric isolates. Encysted zoospores in some monocentric isolates also survived freezing. In some of the experiments the freezing and thawing process caused visible structural damage to the thalli. The production of zoospores after freezing and thawing was also used as an indicator of freeze tolerance. The chytrids in this study responded differently to freezing. These data add significantly to our limited knowledge of freeze tolerance in chytrids but leave many questions unanswered. PMID:18550351

  17. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis

    OpenAIRE

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H.

    2013-01-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fu...

  18. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events.

    Science.gov (United States)

    O'Keefe, Kimberly; Nippert, Jesse B; Swemmer, Anthony M

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  19. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    Science.gov (United States)

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  20. Burkholderia phytofirmans PsJN reduces damages to freezing temperature in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fan eSU

    2015-10-01

    Full Text Available Several plant growth-promoting rhizobacteria (PGPR are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN, on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers.Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyllImpact of inoculation modes (either on seeds or by soil irrigation and their effects overnight at 0, -1 or -3°C, were investigated by following photosystem II (PSII activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A

  1. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  2. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    Science.gov (United States)

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  3. Freezing tolerance-associated QTL in the Brundage × Coda wheat recombinant inbred line population

    Science.gov (United States)

    Freezing tolerance is an essential trait for winter wheat (Triticum aestivum L.) cultivars. A genetic analysis of a Brundage × Coda winter wheat recombinant inbred line (RIL) mapping population was undertaken to identify quantitative trait loci (QTL) associated with freezing tolerance. Five- to six...

  4. Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs

    DEFF Research Database (Denmark)

    Slotsbo, Stine; Hansen, Lars Monrad; Jordaens, Kurt;

    2012-01-01

    Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in....... Glucose increased from about 6 to 22 µg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates....

  5. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. PMID:27489218

  6. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    Science.gov (United States)

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature. PMID:25809016

  7. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level

    KAUST Repository

    Fanucchi, Francesca

    2012-06-01

    This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at - 10 °C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries. © 2012 Elsevier B.V. All rights reserved.

  8. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa.

    Science.gov (United States)

    Baduel, Pierre; Arnold, Brian; Weisman, Cara M; Hunter, Ben; Bomblies, Kirsten

    2016-05-01

    Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa. PMID:26941193

  9. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  10. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    Science.gov (United States)

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  11. Hepatocyte responses to in vitro freezing and β-adrenergic stimulation: Insights into the extreme freeze tolerance of subarctic Rana sylvatica.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2015-02-01

    The wood frog, Rana sylvatica LeConte 1825, is a freeze-tolerant amphibian widely distributed in North America. Subarctic populations of this species can survive experimental freezing to temperatures below -16 °C, whereas temperate populations tolerate freezing only at temperatures above -6 °C. We investigated whether hepatocytes isolated from frogs indigenous to Interior Alaska (subarctic) or southern Ohio (temperate) had distinct characteristics that could contribute to this variation in freeze tolerance capacity. Following in vitro freezing, cell damage, as assessed from lactate dehydrogenase leakage, was similar between samples from Alaskan and Ohioan frogs. Preincubation of cells in media containing glucose or urea, the two primary cryoprotectants used by R. sylvatica, markedly reduced freezing damage to hepatocytes; however, results suggested that cells of the northern phenotype were comparatively more amenable to cryoprotection by urea. Stimulation of isolated hepatocytes with β-adrenergic agonists, which simulates the freezing-induced cryoprotectant mobilization response, gave rates of glucose production from endogenous glycogen reserves that were similar between the populations. Our findings suggest that extreme freeze tolerance in subarctic R. sylvatica does not require an enhanced ability of the liver to resist freezing stress or rapidly mobilize cryoprotectant. PMID:25581737

  12. Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yanjuan Jiang; Gang Liang; Diqiu Yu

    2012-01-01

    Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide.However,the mechanism underlying drought tolerance in plants is unclear.WRKY transcription factors are known to function in adaptation to abiotic stresses.By screening a pool of WRKY-associated T-DNA insertion mutants,we isolated a gain-of-function mutant,acquired drought tolerance (adt),showing improved drought tolerance.Under drought stress conditions,adt accumulated higher levels of ABA than wild-type plants.Stomatal aperture analysis indicated that adt was more sensitive to ABA than wild-type plants.Molecular genetic analysis revealed that a T-DNA insertion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein.Constitutive expression of WRKY57 also conferred similar drought tolerance.Consistently with the high ABA content and enhanced drought tolerance,three stress-responsive genes (RD29A,NCED3,and ABA3) were up-regulated in adt.ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences.In addition,during ABA treatment,seed germination and early seedling growth of adt were inhibited,whereas,under high osmotic conditions,adt showed a higher seed germination frequency.In summary,our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels.Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches.

  13. The interaction between freezing tolerance and phenology in temperate deciduous trees

    Directory of Open Access Journals (Sweden)

    Yann eVitasse

    2014-10-01

    Full Text Available Temperate climates are defined by a distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees, and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues.

  14. Freeze-tolerance of Trichinella muscle larvae in experimentally infected wild boars

    DEFF Research Database (Denmark)

    Lacour, Sandrine A.; Heckmann, Aurelie; Mace, Pauline;

    2013-01-01

    Freeze-tolerance of encapsulated Trichinella muscle larvae (ML) is mainly determined by Trichinella species, but is also influenced by host species, the age of the infection and the storage time and temperature of the infected meat. Moreover, the freeze-tolerance of the encapsulated species appears...... Trichinella spiralis and Trichinella britovi ML in wild boar meat 24 weeks post inoculation (wpi). Three groups of four wild boars were infected with 200, 2000 or 20,000 ML of T. britovi (ISS 1575), respectively. Additionally, three wild boars were inoculated with 20,000 ML of T. spiralis (ISS 004) and two...

  15. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog.

    Science.gov (United States)

    Costanzo, Jon P; Reynolds, Alice M; do Amaral, M Clara F; Rosendale, Andrew J; Lee, Richard E

    2015-01-01

    Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to -8°C, either directly or following three cycles of freezing/thawing between -4 and 0°C, or -16°C increased the liver's synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica. PMID:25688861

  16. AN ASSESSMENT OF COLD/FREEZE TOLERANCE IN SUGARCANE

    Science.gov (United States)

    The complexity of tolerance mechanisms of crops to environmental stresses requires a multipronged approach to decipher the genetics of and breed for stress resistance. Field tests and a proteomics analysis were carried out on sugarcane genotypes to assess the time-course deterioration of sucrose in ...

  17. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Zhao, F J; Jiang, R F; Dunham, S J; McGrath, S P

    2006-01-01

    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively. PMID:17096791

  18. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  19. The Influence of Light Quality, Circadian Rhythm, and Photoperiod on the CBF-Mediated Freezing Tolerance

    Directory of Open Access Journals (Sweden)

    Chang Ho Kang

    2013-05-01

    Full Text Available Low temperature adversely affects crop yields by restraining plant growth and productivity. Most temperate plants have the potential to increase their freezing tolerance upon exposure to low but nonfreezing temperatures, a process known as cold acclimation. Various physiological, molecular, and metabolic changes occur during cold acclimation, which suggests that the plant cold stress response is a complex, vital phenomenon that involves more than one pathway. The C-Repeat Binding Factor (CBF pathway is the most important and well-studied cold regulatory pathway that imparts freezing tolerance to plants. The regulation of freezing tolerance involves the action of phytochromes, which play an important role in light-mediated signalling to activate cold-induced gene expression through the CBF pathway. Under normal temperature conditions, CBF expression is regulated by the circadian clock through the action of a central oscillator and also day length (photoperiod. The phytochrome and phytochrome interacting factor are involved in the repression of the CBF expression under long day (LD conditions. Apart from the CBF regulon, a novel pathway involving the Z-box element also mediates the cold acclimation response in a light-dependent manner. This review provides insights into the progress of cold acclimation in relation to light quality, circadian regulation, and photoperiodic regulation and also explains the underlying molecular mechanisms of cold acclimation for introducing the engineering of economically important, cold-tolerant plants.

  20. Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Zhou, Yanli; Cheng, Ying; Yang, Yunqiang; Li, Xiong; Supriyo, Basak; Sun, Xudong; Yang, Yongping

    2016-09-01

    The purpose of the present study was to characterize SpCBL6 (GenBank accession number: KT780442) from Stipa purpurea and elucidate the function of this protein in abiotic stress. The full-length cDNA of SpCBL6 was isolated from S. purpurea by rapid amplification of cDNA ends methods. Laser confocal microscopy was used to analyze the subcellular localization of SpCBL6. The constructs of 35S:GFP-SpCBL6 was used to transform wild-type (WT) Arabidopsis plants (ecotype Columbia-0) with the floral dip method. Quantitative reverse-transcription PCR (qRT-PCR), water potential, photosynthetic efficiency (F v/F m), and ion leakage was performed to investigate the role of SpCBL6 in abiotic stress. The open reading frame of SpCBL6 contains 681 bp nucleotides and encodes a 227-amino acid polypeptide. Phylogenetic analysis indicated that SpCBL6 showed the highest similarity with rice OsCBL6. SpCBL6 transcripts were induced by freezing and drought treatments. Subcellular localization analysis showed that SpCBL6 was located in membrane of protoplast. Overexpression of SpCBL6 in Arabidopsis thaliana demonstrated that the transgenic plants were more tolerant to cold treatment, but less tolerant to drought, compared with the plants. qRT-PCR analysis showed that the drought stress marker genes were inhibited in transgenic plants, whereas the cold stress marker genes were enhanced. Further analysis showed that SpCBL6-overexpressing plants showed enhanced water potential, photosynthetic efficiency (F v/F m), and reduced ion leakage compared with the wild-type after cold treatment. Collectively, these results indicate that SpCBL6, a new member of the CBL gene family isolated from S. purpurea, enhances cold tolerance and reduces drought tolerance in plants. PMID:27393148

  1. A new application of the SFDA-staining method to assessment of the freezing tolerance in leaves of alpine plants

    OpenAIRE

    Yamori,Wataru/Kogami,Hiroyuki/Masuzawa,Takehiro

    2006-01-01

    For the first time, this study used 5- (6-) sulfofluorescein diacetate (SFDA), a fluorescent product in plant cells converted by esterase activity to fluorescein-5- (and 6-) sulfonic acid (FSA), to assess the freezing tolerance of leaf cells. We were able to readily distinguish living and dead cells, and detect differences in freezing tolerance among five alpine plants using the SFDA-staining method. We also compared this method with two conventional methods, the electrolyte leakage test and ...

  2. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    OpenAIRE

    Mishra, Anamika; Mishra, Kumud B; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well establ...

  3. Recrystallization in a Freezing Tolerant Antarctic Nematode, Panagrolaimus davidi, and a Alpine Weta, Hemideina maori (Orthoptera; Stenopelmatidae)

    DEFF Research Database (Denmark)

    Ramløv, Hans; Wharton, David A.; Wilson, Peter W.

    1996-01-01

    The ability of haemolymph from the freezing tolerant weta,Hemideina maori,and supernatant from homogenates of the freezing tolerant nematodePanagrolaimus davidito inhibit the recrystallization of ice was examined using the “splat freezing” technique and annealing on a cryomicroscope stage. There...... was no recrystallization inhibition in weta haemolymph or in insect ringer controls. Recrystallization inhibition was present in the nematode supernatant but this was destroyed by heating and was absent in controls.P. davidisurvives intracellular freezing and recrystallization inhibition may be...

  4. Identification and characterization of a salt tolerance-responsive gene( AtGRP9) of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Soil salinity is one of the important limiting factors for plant growth and development. A cDNA clone encoding a glycine-rich protein (designated AtGRP9) was identified from Arabidopsis by functional expression of the plant cDNA library in the fission yeast S. pombe. Yeast cells overexpressing AtGRP9 displayed significantly enhanced salt tolerance. Northern analysis showed that expression of AtGRP9 in Arabidopsis was induced by NaCl and plant hormone abscisic acid (ABA). These results suggest that AtGRP9 may be involved in the salt stress response in Arabidopsis.

  5. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae

    Science.gov (United States)

    Ali, Farman; Wharton, David A.

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  6. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) activated root malate and citrate exudation play an important role in Al tolerance in many plant species. AtALMT1, an Al-activated malate transporter, is a major contributor to Arabidopsis Al tolerance. Here, we demonstrate that a second, unrelated gene, AtMATE, encodes an Arabidopsi...

  7. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism

    DEFF Research Database (Denmark)

    Calderon, Sofia; Holmstrup, Martin; Westh, Peter; Overgaard, Johannes

    2009-01-01

    Ectothermic animals inhabiting the subarctic and temperate regions have evolved strategies to deal with periods of continuous frost during winter. The earthworm Dendrobaena octaedra is freeze tolerant and accumulates large concentrations of glucose upon freezing. The present study investigates th...

  8. Natural variation of submergence tolerance among Arabidopsis thaliana accessions

    DEFF Research Database (Denmark)

    Vashisht, D.; Hesselink, A.; Pierik, R.; Ammerlaan, J.M.H.; Bailey-Serres, J.; Visser, E.J.W.; Pedersen, Ole; van Zanten, M.; Vreugdenhil, D.; Jamar, D.C.L.; Voesenek, L.A.C.J.; Sasidharan, R.

    2011-01-01

    the dark. Survival curves were plotted to estimate median lethal times as a measure of tolerance. Flooding-associated survival parameters, such as root and shoot oxygen content, initial carbohydrate content and petiole elongation under water, were also measured. • There was a significant variation in...... submergence tolerance among Arabidopsis accessions. However, the order of tolerance did not correlate with root and shoot oxygen content or initial amounts of shoot starch and total soluble sugars. A negative correlation was observed between submergence tolerance and underwater petiole elongation...

  9. Seasonal Variation in the Hepatoproteome of the Dehydration- and Freeze-Tolerant Wood Frog, Rana sylvatica

    Directory of Open Access Journals (Sweden)

    Jon P. Costanzo

    2011-11-01

    Full Text Available Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC in combination with tandem mass spectrometry (MS/MS quantitative isobaric (iTRAQ™ peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica, a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. They also exhibited altered levels of certain metabolic enzymes that participate in the biochemical reorganization associated with aphagia and reliance on energy reserves, as well as the freezing mobilization and post-thaw recovery of glucose, an important cryoprotective solute in freezing adaptation.

  10. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves.

    Science.gov (United States)

    Houde, Mario; Dallaire, Sylvain; N'Dong, Daniel; Sarhan, Fathey

    2004-09-01

    Progress in freezing tolerance (FT) improvement through plant breeding approaches has met with little success in the last 50 years. Engineering plants for greater FT through plant transformation is one possible way to reduce the damage caused by freezing. Here, we report an improvement of the selection procedure and the transfer of the wheat Wcor410a acidic dehydrin gene in strawberry. The encoded protein has previously been shown to be associated with the plasma membrane, and its level of accumulation has been correlated with the degree of FT in different wheat genotypes. The WCOR410 protein was expressed in transgenic strawberry at a level comparable with that in cold-acclimated wheat. Freezing tests showed that cold-acclimated transgenic strawberry leaves had a 5 degrees C improvement of FT over wild-type or transformed leaves not expressing the WCOR410 protein. However, no difference in FT was found between the different plants under non-acclimated conditions, suggesting that the WCOR410 protein needs to be activated by another factor induced during cold acclimation. These data demonstrate that the WCOR410 protein prevents membrane injury and greatly improves FT in leaves of transgenic strawberry. A better understanding of the limiting factors allowing its activation may open up the way for engineering FT in different plant organs, and may find applications for the cryopreservation of human tissues and organs. PMID:17168885

  11. Water Relations and Low-Temperature Acclimation for Cactus Species Varying in Freezing Tolerance.

    Science.gov (United States)

    Goldstein, G.; Nobel, P. S.

    1994-02-01

    Opuntia ficus-indica and Opuntia streptacantha are widely cultivated cacti that can tolerate temperatures no lower than -10[deg]C, whereas Opuntia humifusa, which is native to southern Canada and the eastern United States, can tolerate -24[deg]C. As day/night air temperatures were decreased from 30/20 to 10/0[deg]C, the osmotic pressure increased 0.10 MPa for O. ficus-indica and O. streptacantha but 0.38 MPa for O. humifusa. The increases in osmotic pressures were due mostly to the synthesis of fructose, glucose, and sucrose. In addition, O. humifusa produced a substantial amount of mannitol during exposure to low temperatures. Substantial accumulation of sugars and mannitol in cells of O. humifusa may help prevent intracellular freeze dehydration and ice formation as well as provide noncolligative protection to its membranes. Mucilage was slightly higher in all three species at the lower temperatures. Extracellular nucleation of ice occurred closer to the equilibrium freezing temperature for plants at 10/0[deg]C compared with 30/20[deg]C, which could make the cellular dehydration more gradual and, thus, less damaging. Results from nuclear magnetic resonance indicated a restricted mobility of intracellular water at the lower temperatures, especially for O. humifusa, which is consistent with its lower water content and higher levels of low molecular weight solutes. PMID:12232118

  12. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat.

    Science.gov (United States)

    Kang, Guozhang; Ma, Hongzhen; Liu, Guoqin; Han, Qiaoxia; Li, Chengwei; Guo, Tiancai

    2013-11-01

    Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (-8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants. PMID:23942841

  13. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    Science.gov (United States)

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). PMID:26049089

  14. Enzymatic regulation of glycogenolysis in a subarctic population of the wood frog: implications for extreme freeze tolerance.

    Directory of Open Access Journals (Sweden)

    M Clara F do Amaral

    Full Text Available The wood frog, Rana sylvatica, from Interior Alaska survives freezing at -16°C, a temperature 10-13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA. In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype's exceptional freeze tolerance, which is necessary for their survival in a subarctic climate.

  15. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    Science.gov (United States)

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper. PMID:26965428

  16. Effect of freeze-thaw cycles and 4-nonylphenol on cellular energy allocation in the freeze-tolerant enchytraeid Enchytraeus albidus.

    Science.gov (United States)

    Patrício-Silva, Ana L; Amorim, Mónica J B

    2016-02-01

    Due to climate change and intense anthropogenic activity, organisms from cold regions are often exposed to combined effects of temperature fluctuations and contaminants. In this investigation, we assessed the lipid, protein, and carbohydrate energy budgets; the energy available (Ea); consumed (Ec); and cellular energy allocation (CEA) of the freeze-tolerant Enchytraeus albidus, when exposed to sublethal concentrations of 4-nonylphenol (a lipophilic contaminant) for 7 days, followed by exposure to different temperature regimes (continuous 2 °C, continuous -4 °C, and daily freeze-thaw cycles (FTC) (2 to -4 °C) for additional 10 days. Results showed that a pre-exposure to 4-nonylphenol (4-NP) induced important changes in the worms' energy budgets and CEA and increased mortality with most severe effects observed for the FTC events. For FTC, lipids were the most accumulated energy source, whereas during freezing (-4 °C), proteins were the most used. FTC caused the highest Ec, indicating the higher energy requirements for organisms when shifting between freezing and thawing events. This is also in line with the higher mortality observed in FTC compared to continuous -4 °C or 2 °C. Worms exposed to continuous freezing presented relatively stable and positive levels of Ea and low levels of Ec, possibly related with the decrease in metabolism. PMID:26490934

  17. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene.

    Science.gov (United States)

    Kim, Min-Jung; Lim, Gah-Hyun; Kim, Eun-Seon; Ko, Chang-Beom; Yang, Kwang-Yeol; Jeong, Jin-An; Lee, Myung-Chul; Kim, Cheol Soo

    2007-03-01

    We conducted a genetic yeast screen to identify salt tolerance (SAT) genes in a maize kernel cDNA library. During the screening, we identified a maize clone (SAT41) that seemed to confer elevated salt tolerance in comparison to control cells. SAT41 cDNA encodes a 16-kDa protein which is 82.4% identical to the Arabidopsis Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. To further examine salinity tolerance in Arabidopsis, we functionally characterized the MBF1a gene and found that dehydration as well as heightened glucose (Glc) induced MBF1a expression. Constitutive expression of MBF1a in Arabidopsis led to elevated salt tolerance in transgenic lines. Interestingly, plants overexpressing MBF1a exhibited insensitivity to Glc and resistance to fungal disease. Our results suggest that MBF1a is involved in stress tolerance as well as in ethylene and Glc signaling in Arabidopsis. PMID:17234157

  18. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  19. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    Science.gov (United States)

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  20. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  1. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Amarjeet Singh

    Full Text Available Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108, which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

  2. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  3. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications

    Directory of Open Access Journals (Sweden)

    Jean Abboud

    2013-02-01

    Full Text Available Lactate dehydrogenase (LDH, the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in Vmax, Km and I50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in Km values for pyruvate, lactate, and NAD, I50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme.

  4. Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; Proia, Alessandra; De Paolis, Angelo; Falasca, Giuseppina; Altamura, Maria Maddalena; Sanità di Toppi, Luigi; Costantino, Paolo; Cardarelli, Maura

    2011-01-01

    Previous studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type. At higher Cd concentrations, Arabidopsis AtPCSox seedlings are more tolerant to Cd than the wild type, while tobacco AtPCS1 seedlings are as sensitive as the wild type. Exogenous GSH, in contrast to what was observed in tobacco, did not increase the Cd tolerance of AtPCSox lines. The PC content in wild-type Arabidopsis at low Cd concentrations is more than three times higher than in tobacco and substantial differences were also found in the PC chain lengths. These data indicate that the differences in Cd tolerance and in its dependence on exogenous GSH between Arabidopsis and tobacco are due to species-specific differences in the endogenous content of PCs and GSH and may be in the relative abundance of PCs of different length. PMID:21841172

  5. Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1.

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; Proia, Alessandra; De Paolis, Angelo; Falasca, Giuseppina; Altamura, Maria Maddalena; Sanità di Toppi, Luigi; Costantino, Paolo; Cardarelli, Maura

    2011-11-01

    Previous studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type. At higher Cd concentrations, Arabidopsis AtPCSox seedlings are more tolerant to Cd than the wild type, while tobacco AtPCS1 seedlings are as sensitive as the wild type. Exogenous GSH, in contrast to what was observed in tobacco, did not increase the Cd tolerance of AtPCSox lines. The PC content in wild-type Arabidopsis at low Cd concentrations is more than three times higher than in tobacco and substantial differences were also found in the PC chain lengths. These data indicate that the differences in Cd tolerance and in its dependence on exogenous GSH between Arabidopsis and tobacco are due to species-specific differences in the endogenous content of PCs and GSH and may be in the relative abundance of PCs of different length. PMID:21841172

  6. A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6

    OpenAIRE

    Tayeh, Nadim; Bahrman, Nasser; Sellier, Hélène; Bluteau, Aurélie; Blassiau, Christelle; Fourment, Joelle; Bellec, Arnaud; Debellé, Frederic; Lejeune-Henaut, Isabelle; Delbreil, Bruno

    2013-01-01

    Background Freezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped...

  7. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong

    2009-01-01

    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  8. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  9. Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.

    Science.gov (United States)

    Zhang, Lihong; Ackley, Ashley R; Pilon-Smits, Elizabeth A H

    2007-03-01

    Selenium (Se) is an essential element for many organisms but also toxic at higher levels. The objective of this study was to identify accessions from the model species Arabidopsis thaliana that differ in Se tolerance and accumulation. Nineteen Arabidopsis accessions were grown from seed on agar medium with or without selenate (50 microM) or selenite (20 microM), followed by analysis of Se tolerance and accumulation. Tissue sulfur levels were also compared. The Se Tolerance Index (root length+Se/root length control) varied among the accessions from 0.11 to 0.44 for selenite and from 0.05 to 0.24 for selenate. When treated with selenite, the accessions differed by two-fold in shoot Se concentration (up to 250 mgkg(-1)) and three-fold in root Se concentration (up to 1000 mgkg(-1)). Selenium accumulation from selenate varied 1.7-fold in shoot (up to 1000 mgkg(-1)) and two-fold in root (up to 650 mgkg(-1)). Across all accessions, a strong correlation was observed between Se and S concentration in both shoot and root under selenate treatment, and in roots of selenite-treated plants. Shoot Se accumulation from selenate and selenite were also correlated. There was no correlation between Se tolerance and accumulation, either for selenate or selenite. The F(1) offspring from a cross between the extreme selenate-sensitive Dijon G and the extreme selenate-tolerant Estland accessions showed intermediate selenate tolerance. In contrast, the F(1) offspring from a cross between selenite-sensitive and -tolerant accessions (Dijon GxCol-PRL) were selenite tolerant. The results from this study give new insight into the mechanisms of plant selenium (Se) tolerance and accumulation, which may help develop better plants for selenium phytoremediation or as fortified foods. PMID:16513208

  10. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Mishra, Anamika; Heyer, A. G.; Mishra, Kumud

    2014-01-01

    Roč. 10, č. 38 (2014). ISSN 1746-4811 R&D Projects: GA MŠk EE2.3.20.0246; GA MŠk 7E12047 Institutional support: RVO:67179843 Keywords : high-throughput screening * chlorophyll a fluorescence transients * cold tolerance * cold acclimation * whole plant * Arabidopsis thaliana Subject RIV: EH - Ecology, Behaviour Impact factor: 3.102, year: 2014

  11. Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Václavík, L.; Mishra, Anamika; Mishra, Kumud; Hajslova, J.

    2013-01-01

    Roč. 405, č. 8 (2013), s. 2671-2683. ISSN 1618-2642 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC08055 Institutional support: RVO:67179843 Keywords : cold tolerance * Arabidopsis thaliana * metabolomic fingerprinting * LC-MS * DART-MS * chemometric analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.578, year: 2013

  12. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  13. Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions.

    Directory of Open Access Journals (Sweden)

    Yanling Sun

    Full Text Available Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K(+ content and a lower Na(+/K(+ ratio when exposed to salinity stress, but its Na(+ content was the same as that of Col-0. The K(+ transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K(+ retention.

  14. RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses.

    Science.gov (United States)

    Zhang, Xuan; Lu, Songchong; Jiang, Changhua; Wang, Yaofeng; Lv, Bo; Shen, Jiabin; Ming, Feng

    2014-07-01

    The late embryogenesis abundant (LEA) protein family is a large protein family that is closely associated with resistance to abiotic stresses in many organisms, such as plants, bacteria and animals. In this study, we isolated a LEA gene, RcLEA, which was cytoplasm-localized, from Rosa chinensis. RcLEA was found to be induced by high temperature through RT-PCR. Overexpression of RcLEA in Escherichia coli improved its growth performance compared with the control under high temperature, low temperature, NaCl and oxidative stress conditions. RcLEA was also overexpressed in Arabidopsis thaliana. The transgenic Arabidopsis showed better growth after high and low temperature treatment and exhibited less peroxide according to 3, 3-diaminobenzidine staining. However, RcLEA did not improve the tolerance to NaCl or osmotic stress in Arabidopsis. In vitro analysis showed that RcLEA was able to prevent the freeze-thaw-induced inactivation or heat-induced aggregation of various substrates, such as lactate dehydrogenase and citrate synthase. It also protected the proteome of E. coli from denaturation when the proteins were heat-shocked or subjected to acidic conditions. Furthermore, bimolecular fluorescence complementation assays suggested that RcLEA proteins function in a complex manner by making the form of homodimers. PMID:24760474

  15. Regulation of 5'-adenosine monophosphate deaminase in the freeze tolerant wood frog, Rana sylvatica

    Directory of Open Access Journals (Sweden)

    Storey Kenneth B

    2008-04-01

    Full Text Available Abstract Background The wood frog, Rana sylvatica, is one of a few vertebrate species that have developed natural freeze tolerance, surviving days or weeks with 65–70% of its total body water frozen in extracellular ice masses. Frozen frogs exhibit no vital signs and their organs must endure multiple stresses, particularly long term anoxia and ischemia. Maintenance of cellular energy supply is critical to viability in the frozen state and in skeletal muscle, AMP deaminase (AMPD plays a key role in stabilizing cellular energetics. The present study investigated AMPD control in wood frog muscle. Results Wood frog AMPD was subject to multiple regulatory controls: binding to subcellular structures, protein phosphorylation, and effects of allosteric effectors, cryoprotectants and temperature. The percentage of bound AMPD activity increased from 20 to 35% with the transition to the frozen state. Bound AMPD showed altered kinetic parameters compared with the free enzyme (S0.5 AMP was reduced, Hill coefficient fell to ~1.0 and the transition to the frozen state led to a 3-fold increase in S0.5 AMP of the bound enzyme. AMPD was a target of protein phosphorylation. Bound AMPD from control frogs proved to be a low phosphate form with a low S0.5 AMP and was phosphorylated in incubations that stimulated PKA, PKC, CaMK, or AMPK. Bound AMPD from frozen frogs was a high phosphate form with a high S0.5 AMP that was reduced under incubation conditions that stimulated protein phosphatases. Frog muscle AMPD was activated by Mg·ATP and Mg·ADP and inhibited by Mg·GTP, KCl, NaCl and NH4Cl. The enzyme product, IMP, uniquely inhibited only the bound (phosphorylated enzyme from muscle of frozen frogs. Activators and inhibitors differentially affected the free versus bound enzyme. S0.5 AMP of bound AMPD was also differentially affected by high versus low assay temperature (25 vs 5°C and by the presence/absence of the natural cryoprotectant (250 mM glucose that

  16. Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines.

    Science.gov (United States)

    Saibi, Walid; Zouari, Nabil; Masmoudi, Khaled; Brini, Faiçal

    2016-04-01

    Dehydrins are claimed to stabilize macromolecules against freezing damage, dehydration, ionic or osmotic stresses, thermal stress and re-folding yield. However, their precise function remains unknown. In this context, we report the behavior of protease activities in dehydrin transgenic Arabidopsis lines against the wild type plant under salt stress (100mM NaCl). Indeed, proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. We proved that durum wheat DHN-5 modulates the activity of some proteases, summarized on the promotion of the Cysteinyl protease and the decrease of the Aspartyl protease activity. This fact is also upgraded in salt stress conditions. We conclude that the dehydrin transgenic context encodes salinity tolerance in transgenic lines through the modulation of the interaction not only at transcriptional level but also at protein level and also with the impact of salt stress as an endogenous and exogenous effector on some biocatalysts like proteases. PMID:26751399

  17. Increased STM expression is associated with drought tolerance in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Choi, Yee-Ram; Seo, Pil Joon

    2016-08-20

    In higher plants, shoot apical meristem (SAM) maintains cell division activity in order to give rise to aerial plant organs. Several lines of evidence have suggested that plants ensure stem cell proliferation activity in response to various external stimuli, thereby contributing to plant adaptation and fitness. Here, we report that the abscisic acid (ABA)-inducible R2R3-type MYB96 transcription factor regulates transcript accumulation of SHOOT MERISTEMLESS (STM) possibly to contribute to plant adaptation to environmental stress. STM was up-regulated in MYB96-overexpressing activation-tagging myb96-ox plants, but down-regulated in MYB96-deficient myb96-1 mutant plants, even in the presence of ABA. Notably, the MYB96 transcription factor bound directly to the STM promoter. In addition, consistent with the role of MYB96 in drought tolerance, transgenic plants overexpressing STM (35S:STM-MYC) were more tolerant to drought stress. These observations suggest that the MYB96-STM module contributes to enhancing plant tolerance to drought stress. PMID:27448723

  18. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. PMID:26945467

  19. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause.

    Science.gov (United States)

    Toxopeus, Jantina; Warner, Alden H; MacRae, Thomas H

    2014-11-01

    Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications. PMID:24846336

  20. Incorporation of [14C]-palmitate into lipids of Brassica cells during the induction of freezing tolerance

    International Nuclear Information System (INIS)

    Changes in plasma membrane lipid composition have been causally related to increased freezing tolerance. Studies of lipid metabolism during ABA induction of freezing tolerance in Brassica napus suspension cultures were undertaken. Cells were labeled with [14C]-palmitate four days after transfer to fresh medium (control) or medium containing ABA (which increases freezing tolerance). At times between one and 20 hrs after labeling, ABA-treated cells incorporated almost twice the amount of label as controls cells. Approximately 80% of the radioactivity was associated with neutral lipids in ABA-treated cells and controls. Incorporation of label into total cellular polar lipids was 4.9 x 105 dpm/mg protein for control cells and 1 x 106 dpm/mg protein for cells transferred to medium containing ABA. Analysis of lipids following alkaline hydrolysis indicated that incorporation of [14C]-palmitate into glucosylceramide of ABA-treated cells was less than 60% of control values when expressed relative to that of the total polar lipids. Incorporation into ceramides was also depressed in ABA-treated cells

  1. Anatomical Structure Comparison Between Leaves of Two Winter Wheat Cultivars with Different Cold/Freezing Tolerance Under Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    YU Jing; CANG Jing; ZHOU Zishan; LIU Lijie

    2011-01-01

    Winter wheat (Triticum aestivum) cultivars Dongnongdongmai 1 with strong cold/freezing tolerance and Jimai 22 with weak cold/freezing tolerance were used for investigating the difference of microstructure and ultrastructure between leaves of two cultivars under low temperature stress (5℃ and -15 ℃) using optical and electron microscope. The results showed that there was no obvious difference between leaves of Dongnongdongmai 1 and Jimai 22 in microstructure. However, the difference between those leaves was distinct in ultrastructure. The grana lamella and stroma lamella were stacked regularly and arranged parallelly along the long axis of chloroplasts in cv. Dongnongdongmai 1, while the arrangement directions of thylakoids in Jimai 22's leaves were so irregular as to form various angles with the long axis of chloroplasts. At -15℃, the mitochondrias were swelled to be round and the structure of cristaes became blurry in both cultivars' leaves, while some cristaes of Jimai 22 disappeared. These results would provide theoretical evidence for selecting cold/freezing tolerant winter wheat germplasm resources

  2. Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis.

    Science.gov (United States)

    Carvalho, Fabricio E L; Ware, Maxwell A; Ruban, Alexander V

    2015-12-01

    The amount of light plants can tolerate during different phases of ontogenesis remains largely unknown. This was addressed here employing a novel methodology that uses the coefficient of photochemical quenching (qP) to assess the intactness of photosystem II reaction centres. Fluorescence quenching coefficients, total chlorophyll content and concentration of anthocyanins were determined weekly during the juvenile, adult, reproductive and senescent phases of plant ontogenesis. This enabled quantification of the protective effectiveness of non-photochemical fluorescence quenching (NPQ) and determination of light tolerance. The light intensity that caused photoinhibition in 50% of leaf population increased from ∼70 μmol m(-2)  s(-1) , for 1-week-old seedlings, to a maximum of 1385 μmol m(-2)  s(-1) for 8-week-old plants. After 8 weeks, the tolerated light intensity started to gradually decline, becoming only 332 μmol m(-2)  s(-1) for 13-week-old plants. The dependency of light tolerance on plant age was well-related to the amplitude of protective NPQ (pNPQ) and the electron transport rates (ETRs). Light tolerance did not, however, show a similar trend to chlorophyll a/b ratios and content of anthocyanins. Our data suggest that pNPQ is crucial in defining the capability of high light tolerance by Arabidopsis plants during ontogenesis. PMID:26012511

  3. Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux

    OpenAIRE

    Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; RENGEL, ZED

    2010-01-01

    Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H+ and K+ fluxes, rhizosphere pH, and plasma membrane potential, E m). Based on biomass accumulation, als5 and...

  4. The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

    OpenAIRE

    Shahzad, Zaigham; Gosti, Françoise; Frérot, Hélène; Lacombe, Eric; Roosens, Nancy; Saumitou-Laprade, Pierre; Berthomieu, Pierre

    2010-01-01

    Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1) is one of these genes. It encodes a Zn2+/H+ an...

  5. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    OpenAIRE

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2004-01-01

    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  6. Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance.

    Science.gov (United States)

    Ramiro, Daniel Alves; Melotto-Passarin, Danila Montewka; Barbosa, Mariana de Almeida; Santos, Flavio Dos; Gomez, Sergio Gregorio Perez; Massola Júnior, Nelson Sidnei; Lam, Eric; Carrer, Helaine

    2016-09-01

    The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor-1 from Arabidopsis thaliana (AtBI-1), can confer increased tolerance of sugarcane plants to long-term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long-term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world. PMID:26872943

  7. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance.

    Science.gov (United States)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-11-28

    Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis. PMID:25450686

  8. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Zhao, Xun; Yang, Xuanwen; Pei, Shengqiang; He, Guo; Wang, Xiaoyu; Tang, Qi; Jia, Chunlin; Lu, Ying; Hu, Ruibo; Zhou, Gongke

    2016-07-15

    NAC (NAM, ATAF1/2, and CUC2) transcription factors are known to play important roles in responses to abiotic stresses in plants. Currently, little information regarding the functional roles of NAC genes in stress tolerance is available in Miscanthus lutarioriparius, a promising bioenergy plant for cellulosic ethanol production. In this study, we carried out the functional characterization of MlNAC9 in abiotic stresses. MlNAC9 was shown to act as a nuclear localized transcription activator with the activation domain in its C-terminus. The overexpression of MlNAC9 in Arabidopsis conferred hypersensitivity to abscisic acid (ABA) at seed germination and root elongation stages. In addition, the overexpression of MlNAC9 led to increased seed germination rate and root growth under salt (NaCl) treatment. Meanwhile, the transgenic Arabidopsis overexpressing MlNAC9 showed enhanced tolerance to drought and cold stresses. The expression of stress-responsive marker genes was significantly increased in MlNAC9 overexpression lines compared to that of WT under ABA, drought, salt, and cold stresses. Correspondingly, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased and the malondialdehyde (MDA) content was lower accumulated in MlNAC9 overexpression lines under drought and salt treatments. These results indicated that the overexpression of MlNAC9 improved the tolerance to abiotic stresses via an ABA-dependent pathway, and the enhanced tolerance of transgenic plants was mainly attributed to the increased expression of stress-responsive genes and the enhanced scavenging capability of reactive oxygen species (ROS). PMID:27085481

  9. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    Science.gov (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  10. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    Science.gov (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.

  11. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea.

    Science.gov (United States)

    Craciun, Adrian Radu; Courbot, Mikael; Bourgis, Fabienne; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2006-01-01

    Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri. In order to identify genes potentially implicated in Cd tolerance, a backcross (BC1) segregating population was produced from crosses between A. halleri ssp. halleri and its closest non-tolerant relative A. lyrata ssp. petraea. The most sensitive and tolerant genotypes of the BC1 were analysed on a transcriptome-wide scale by cDNA-amplified fragment length polymorphism (AFLP). A hundred and thirty-four genes expressed more in the root of tolerant genotypes than in sensitive genotypes were identified. Most of the identified genes showed no regulation in their expression when exposed to Cd in a hydroponic culture medium and belonged to diverse functional classes, including reactive oxygen species (ROS) detoxification, cellular repair, metal sequestration, water transport, signal transduction, transcription regulation, and protein degradation, which are discussed. PMID:16916885

  12. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  13. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  14. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  15. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms.

    Science.gov (United States)

    Guo, Bin; Liu, Chen; Li, Hua; Yi, Keke; Ding, Nengfei; Li, Ningyu; Lin, Yicheng; Fu, Qinglin

    2016-10-01

    A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed. PMID:27209521

  16. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sako, Kaori; Kim, Jong-Myong; Matsui, Akihiro; Nakamura, Kotaro; Tanaka, Maho; Kobayashi, Makoto; Saito, Kazuki; Nishino, Norikazu; Kusano, Miyako; Taji, Teruaki; Yoshida, Minoru; Seki, Motoaki

    2016-04-01

    Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient inAtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 atAtSOS1was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment. PMID:26657894

  17. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available BACKGROUND: Soybean [Glycine max (L. Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.

  18. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  19. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis

    OpenAIRE

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfam...

  20. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves

    OpenAIRE

    Phoon, Pui Yeu; Gómez Galindo, Federico; Vicente, A.A.; Dejmek, Petr

    2008-01-01

    Pulsed electric fields in combination with vacuum infusion have been utilized to impregnate cells with trehalose, aiming at substantially improving the freezing tolerance of spinach leaves. Spinach samples were first treated with ten trains of bi-polar, rectangular electric field pulses with a nominal electric field strength of 580 V/cm and immediately immersed in a 40% (w/w) solution of trehalose under vacuum for 20 min. The samples were kept in the trehalose solution for 2.5 h at a...

  1. Increased Drought Tolerance through the Suppression of ESKMO1 Gene and Overexpression of CBF-Related Genes in Arabidopsis

    OpenAIRE

    Fuhui Xu; Zhixue Liu; Hongyan Xie; Jian Zhu; Juren Zhang; Josef Kraus; Tasja Blaschnig; Reinhard Nehls; Hong Wang

    2014-01-01

    Improved drought tolerance is always a highly desired trait for agricultural plants. Significantly increased drought tolerance in Arabidopsis thaliana (Columbia-0) has been achieved in our work through the suppression of ESKMO1 (ESK1) gene expression with small-interfering RNA (siRNA) and overexpression of CBF genes with constitutive gene expression. ESK1 has been identified as a gene linked to normal development of the plant vascular system, which is assumed directly related to plant drought...

  2. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

    OpenAIRE

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-01-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform i...

  3. Over-Expression of ScMnSOD, a SOD Gene Derived from Jojoba, Improve Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-fei; ZHANG Gen-fa; SUN Wei-min; LI Ze-qin; BAI Rui-xue; LI Jing-xiao; SHI Zi-han; GENG Hong-wei; ZHENG Ying; ZHANG Jun

    2013-01-01

    Jojoba (Simmondsia chinensis) is mainly distributed in desert, and the molecular mechanisms of jojoba in response to abiotic stress still remain elusive. In this paper, we cloned and characterized a SOD gene from jojoba named as ScMnSOD, and introduced into Arabidopsis to investigate its functions of responding to drought stress. The transgenic Arabidopsis showed an improvement in drought tolerance. Moreover, under a water deifcit condition, the accumulation of reactive oxygen species (ROS) was remarkably decreased in the transgenic lines compared to the WT. Furthermore, the ScMnSOD promoter was cloned to the 5´-upstream of GUS coding region in a binary vector, and introduced into Arabidopsis. And results showed that ScMnSOD expression can be induced by drought, salt, ABA, and low temperature. In conclusion, ScMnSOD plays an important role in drought tolerance which is, at least partially, attributed to its role in ROS detoxiifcation.

  4. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    Science.gov (United States)

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance. PMID:26904981

  5. Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux.

    Science.gov (United States)

    Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Rengel, Zed

    2010-06-01

    Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H(+) and K(+) fluxes, rhizosphere pH, and plasma membrane potential, E(m)). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H(+) influx at the distal elongation zone (DEZ) and Al-induced H(+) efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around -60 mV became hyperpolarization at -110 mV after 20 min. At the DEZ, the E(m) changes corresponded to the changes in K(+) flux: K(+) efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with E(m) depolarization, higher K(+) efflux, and higher H(+) influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H(+) uptake under low-pH stress, which was abolished by Al exposure. PMID:20497972

  6. Mechanisms of Salt Tolerance in Transgenic Arabidopsis thaliana Carrying a Peroxisomal Ascorbate Peroxidase Gene from Barley

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Feng; SHI Wei-Ming; A. UEDA; T. TAKABE

    2008-01-01

    Ascorbate peroxidases (APX), localized in the cytosol, peroxisome, mitochondria, and chloroplasts of plant cells,catalyze the reduction of H2O2 to water by using ascorbic acid as the specific electron donor. To determine the role of peroxisomal type ascorbate peroxidasc (pAPX), an antioxidant enzyme, in protection against salt-induced oxidative stress, transgenic Arabidopsis thaliana plant carrying a pAPX gene (HvAPX1) from barley (Hordeum vulgare L.) was analyzed. The transgenic line pAPX3 was found to be more tolerant to salt stress than the wild type. Irrespective of salt stress, there were no significant differences in Na+, K+, Ca2+, and Mg2+ contents and the ratio of K+ to Na+ between pAPX3 and the wild type. Clearly, the salt tolerance in pAPX3 was not due to the maintenance and reestablishment of cellular ion homeostasis. However, the degree of H2O2 and lipid peroxidation (measured as the levels of malondialdehyde)accumulation under salt stress was higher in the wild type than in pAPX3. The mechanism of salt tolerance in transgenic pAPX3 can thus be explained by reduction of oxidative stress injury. Under all conditions tested, activities of superoxide,glutathionc reductase, and catalase were not significantly different between pAPX3 and the wild type. In contrast, the activity of APX was significantly higher in the transgcnic plant than in wild type under salt stress. These results suggested that in higher plants, HvAPX1 played an important role in salt tolerance and was a candidate gene for developing salt-tolerant crop plants.

  7. Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco.

    Directory of Open Access Journals (Sweden)

    Yan-Guo Sun

    Full Text Available Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stress tolerance in the transgenic plants. There were higher seed germination rates, better plant growth and less chlorophyll loss in transgenic lines compared to wild type plants under salt stress. This enhanced tolerance of salt stress was correlated with increased accumulations of proline and soluble sugars, but with decreases in malondialdehyde accumulation and Na(+/K(+ ratio in UGT85A5-expressing tobacco. Furthermore, during salt stress, expression of several carbohydrate metabolism-related genes including those for sucrose synthase, sucrose-phosphate synthase, hexose transporter and a group2 LEA protein were obviously upregulated in UGT85A5-expressing transgenic plants compared with wild type controls. Thus, these findings suggest a specific protective role of this glycosyltransferase against salt stress and provide a genetic engineering strategy to improve salt tolerance of crops.

  8. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  9. Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica)

    Science.gov (United States)

    Gerber, Victoria E.M.; Wijenayake, Sanoji

    2016-01-01

    The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65–70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP) response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46), and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70), Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog. PMID:27042393

  10. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  11. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  12. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.

    Science.gov (United States)

    Eroglu, Seckin; Meier, Bastian; von Wirén, Nicolaus; Peiter, Edgar

    2016-02-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  13. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  14. Freezing tolerance and the histology of recovering nodes in St. Augustinegrass

    Science.gov (United States)

    St. Augustinegrass [Stenataphrum secundatum (Walt.) Kuntze] is a coarse-textured turfgrass commonly utilized for its excellent shade tolerance. However, inferior cold tolerance in comparison to other warm-season grasses limits its range primarily to the southeastern U. S., The objectives of this stu...

  15. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs

    OpenAIRE

    Almeida, M. J.; Pais, Célia

    1996-01-01

    Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, the...

  16. Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles

    Czech Academy of Sciences Publication Activity Database

    Knaupp, M.; Mishra, Kumud; Nedbal, Ladislav; Heyer, A. G.

    2011-01-01

    Roč. 234, č. 3 (2011), s. 477-486. ISSN 0032-0935 R&D Projects: GA MŠk 2B06068; GA MŠk OC08055 Institutional research plan: CEZ:AV0Z60870520 Keywords : arabidopsis * cold tolerance * freezing damage * raffinose * chlorophyll fluorescence Subject RIV: EH - Ecology, Behaviour Impact factor: 3.000, year: 2011

  17. Host responses in life-history traits and tolerance to virus infection in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    Full Text Available Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host-parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV. Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues.

  18. Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Song-Mi Cho

    2013-06-01

    Full Text Available Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

  19. Prefoldins 3 and 5 Play an Essential Role in Arabidopsis Tolerance to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Miguel A.Rodriguez-Milla; Julio Salinas

    2009-01-01

    During the last years,our understanding of the mechanisms that control plant response to salt stress has been steadily progressing.Pharmacological studies have allowed the suggestion that the cytoskeleton may be involved in reg-ulating such a response.Nevertheless,genetic evidence establishing that the cytoskeleton has a role in plant tolerance to salt stress has not been reported yet.Here,we have characterized Arabidopsis T-DNA mutants for genes encoding proteins orthologous to prefoldin (PFD) subunits 3 and 5 from yeast and mammals.In these organisms,PFD subunits,also known as Genes Involved in Microtubule biogenesis (GIM),form a heterohexameric PFD complex implicated in tubulin and actin folding.We show that,indeed,PFD3 and PFD5 can substitute for the loss of their yeast orthologs,as they are able to complement yeast gim2△ and gim5△ mutants,respectively.Our results indicate thatpfd3 and pfd5 mutants have reduced levels of α- and β-tubulin compared to the wild-type plants when growing under both control and salt-stress conditions.In addition,pfd3 and pfd5 mutants display alterations in their developmental patterns and microtubule organization,and,more importantly,are hypersensitive to high concentrations of NaCI but not of LiCI or mannitol.These results demonstrate that the cytoskeleton plays an essential role in plant tolerance to salt stress.

  20. Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth.

    Science.gov (United States)

    Wei, Tao; Deng, Kejun; Gao, Yonghong; Liu, Yu; Yang, Meiling; Zhang, Lipeng; Zheng, Xuelian; Wang, Chunguo; Song, Wenqin; Chen, Chengbin; Zhang, Yong

    2016-07-01

    Multiple stress response genes are controlled by transcription factors in a coordinated manner; therefore, these factors can be used for molecular plant breeding. CBF1/DREB1B, a known stress-inducible gene, was isolated from Arabidopsis thaliana and introduced into Salvia miltiorrhiza under the control of the CaMV35S or RD29A promoter. Under drought stress, relative water content, chlorophyll content, and the net photosynthetic rate were observed to be higher in the transgenic lines than in the wild type (WT). Moreover, O2(-) and H2O2 accumulation was observed to be lower in the transgenic lines. Additional analyses revealed that the AtDREB1B transgenic plants generally displayed lesser malondialdehyde (MDA) but higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities than the WT under drought stress. Quantitative real-time polymerase chain reaction of a subset of genes involved in photosynthesis, stress response, carbohydrate metabolism, and cell protection further verified that AtDREB1B could enhance tolerance to drought by activating different downstream DREB/CBF genes in the transgenic plants. Furthermore, no growth inhibition was detected in transgenic S. miltiorrhiza plants that expressed AtDREB1B driven by either the constitutive CaMV35S promoter or the stress-inducible RD29A promoter. Together, these results suggest that AtDREB1B is a good candidate gene for increasing drought tolerance in transgenic S. miltiorrhiza. PMID:27002402

  1. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  2. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene

    OpenAIRE

    Karaba, A.; Dixit, S.A.; Greco, Raffaella; Aharoni, A.; Trijatmiko, K.R.; Marsch-Martinez, N.; Krishnan, A; Nataraja, K.N.; Udayakumar, M.; A.B. Pereira

    2007-01-01

    Freshwater is a limited and dwindling global resource; therefore, efficient water use is required for food crops that have high water demands, such as rice, or for the production of sustainable energy biomass. We show here that expression of the Arabidopsis HARDY (HRD) gene in rice improves water use efficiency, the ratio of biomass produced to the water used, by enhancing photosynthetic assimilation and reducing transpiration. These drought-tolerant, low-water-consuming rice plants exhibit i...

  3. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  4. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  5. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis

    OpenAIRE

    Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-01-01

    Background NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. Methods TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and ...

  6. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance.

    Science.gov (United States)

    Bipfubusa, Marie; Rocher, Solen; Bertrand, Annick; Castonguay, Yves; Renaut, Jenny

    2016-09-01

    The data provide an overview of proteomic changes in red clover (Trifolium pratense L.) in response to cold acclimation and recurrent selection for superior freezing tolerance. Proteins were extracted from crowns of two red clover cultivars grown under non-acclimated or cold-acclimated conditions, and plants obtained from the initial genetic background (TF0) and from populations obtained after three (TF3) and four cycles (TF4) of recurrent selection for superior freezing tolerance. Proteins were analyzed using a two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled to mass spectroscopy (MS and MS/MS). Differentially regulated proteins were subsequently identified using MALDI TOF/TOF analysis. The data are related to a recently published research article describing proteome composition changes associated with freezing tolerance in red clover, "A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.)" (Bertrand et al., 2016 [1]). They are available in the ProteomeXchange Consortium database via the PRIDE partner repository under the dataset identifier PRIDE: PXD003689. PMID:27408927

  7. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wencai [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China); Zhang, Liang [College of Life Science, Henan Normal University, Xinxiang 453007 (China); Xu, Hangbo; Wang, Lin [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China); Jiao, Zhen, E-mail: jiaozhen@zzu.edu.cn [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  8. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  9. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism

    Czech Academy of Sciences Publication Activity Database

    Košťál, Vladimír; Šimek, Petr; Zahradníčková, Helena; Cimlová, Jana; Štětina, T.

    2012-01-01

    Roč. 109, č. 9 (2012), s. 3270-3274. ISSN 0027-8424 R&D Projects: GA ČR GA206/07/0269; GA ČR GA203/09/2014 Institutional research plan: CEZ:AV0Z50070508 Keywords : insect cold tolerance * long-term storage * metabolomics Subject RIV: ED - Physiology Impact factor: 9.737, year: 2012 http://www.pnas.org/content/early/2012/02/06/1119986109.full.pdf+html

  10. SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shengchun Zhang; Yanli Qi; Ming Liu; ChengweiYang

    2013-01-01

    Post-translational modifications of proteins by small ubiquitin-like modifiers (SUMOs) play crucial roles in plant growth and development,and in stress responses.The MMS21 is a newly-identified Arabidopsis thaliana L.SUMO E3 ligase gene aside from the SIZ1,and its function requires further elucidation.Here,we show that MMS21 deficient plants display improved drought tolerance,and constitutive expression of MMS21 reduces drought tolerance.The expression of MMS21 was reduced by abscisic acid (ABA),polyethylene glycol (PEG) or drought stress.Under drought conditions,mms21 mutants showed the highest survival rate and the slowest water loss,and accumulated a higher level of free proline compared to wild-type (WT) and MMS21 over-expression plants.Stomatal aperture,seed germination and cotyledon greening analysis indicated that mms21 was hypersensitive to ABA.Molecular genetic analysis revealed that MMS21 deficiency led to elevated expression of a series of ABA-mediated stress-responsive genes,including COR15A,RD22,and P5CS1 The ABA and drought-induced stress-responsive genes,including RAB18,RD29A and RD29B,were inhibited by constitutive expression of MMS21.Moreover,ABA-induced accumulation of SUMO-protein conjugates was blocked in the mms21 mutant.We thus conclude that MMS21 plays a role in the drought stress response,likely through regulation of gene expression in an ABA-dependent pathway.

  11. SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis.

    Science.gov (United States)

    Yang, Chenglong; Zhou, Yang; Fan, Jie; Fu, Yuhua; Shen, Longbin; Yao, Yuan; Li, Ruimei; Fu, Shaoping; Duan, Ruijun; Hu, Xinwen; Guo, Jianchun

    2015-11-01

    Glycine betaine (GB) accumulation is involved in abiotic stress. However, it is not known whether BADH, the key enzyme of GB synthesis, utilizes the antioxidant system to confer drought stress tolerance. In this study, a novel member of the ALDH10 gene family, SpBADH, was isolated from Sesuvium portulacastrum. The expression of this gene was up-regulated by NaCl, PEG6000, H2O2, ABA and high temperature in S. portulacastrum. SpBADH overexpression in Arabidopsis resulted in higher BADH activity and GB content and might increase tolerance to drought/osmotic stresses, specifically strong tolerance to drought stress. Transgenic lines exhibited lower MDA and H2O2 contents but higher proline, POD, SOD and CAT contents than the wild type under drought and osmotic stresses. SpBADH overexpression in Arabidopsis also enhanced the expression of ROS-related genes including AtSOD, AtPOD, AtCAT, AtAPX and Atpsb under drought and osmotic stresses. Thus, SpBADH increases plant tolerance to drought or osmotic stresses by reducing H2O2, increasing proline, and activating antioxidative enzymes to improve ROS scavenging. PMID:26368017

  12. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  13. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. PMID:26876611

  14. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaolian Zhang

    Full Text Available Ariadne (ARI subfamily of RBR (Ring Between Ring fingers proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L. Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.

  15. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance

    DEFF Research Database (Denmark)

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso;

    2014-01-01

    and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a...... combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed...... in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant...

  16. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    Science.gov (United States)

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  17. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana

    OpenAIRE

    Ahammed, Golam Jalal; LI, XIN; Yu, Jingquan; Kai SHI

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol−1) conditions, HS (42°C, 24 h) drastically decrea...

  18. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  19. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    Science.gov (United States)

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts. PMID:7986027

  20. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    OpenAIRE

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and t...

  1. Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance

    OpenAIRE

    Bent, Andrew F.; Kunkel, Barbara N.; Innes, Roger W.; Staskawicz, Brian J.

    1993-01-01

    The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognit...

  2. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice.

    Science.gov (United States)

    Sato, Hikaru; Todaka, Daisuke; Kudo, Madoka; Mizoi, Junya; Kidokoro, Satoshi; Zhao, Yu; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-08-01

    The enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3-1 (DPB3-1)/nuclear factor Y subunit C10 (NF-YC10) has been reported as a positive regulator of Dehydration-responsive element binding protein 2A (DREB2A), and the overexpression of DPB3-1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3-1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3-1 and its rice homologue OsDPB3-2 function as positive regulators of DREB2A homologues. Overexpression of DPB3-1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3-1-overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress-inducible genes were up-regulated in DPB3-1-overexpressing rice under heat stress conditions. However, the overexpression of DPB3-1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3-1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3-1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth. PMID:26841113

  3. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene.

    Science.gov (United States)

    Alcázar, Rubén; Planas, Joan; Saxena, Triambak; Zarza, Xavier; Bortolotti, Cristina; Cuevas, Juan; Bitrián, Marta; Tiburcio, Antonio F; Altabella, Teresa

    2010-07-01

    In Arabidopsis, a model genus missing a functional ornithine decarboxylase pathway, most of the key genes involved in polyamine biosynthesis are duplicated. This gene redundancy has been related to the involvement of certain gene isoforms in the response to specific environmental stimuli. We have previously shown that drought stress induces Arginine decarboxlase 2 expression, while transcript levels for Arginine decarboxlase 1 remain constant. Accumulation of putrescine and increased arginine decarboxlase activity (EC 4.1.1.19) levels in response to different abiotic stresses have been reported in many different plant systems, but the biological meaning of this increase remains unclear. To get a new insight into these questions, we have studied the response to drought of transgenic Arabidopsis thaliana lines constitutively expressing the homologous Arginine decarboxlase 2 gene. These lines contain high levels of putrescine with no changes in spermidine and spermine content even under drought stress. Drought tolerance experiments indicate that the different degree of resistance to dehydration correlates with Put content. Although no significant differences were observed in the number of stomata between wild-type and transgenic plants, a reduction in transpiration rate and stomata conductance was observed in the ADC2 over-expressor lines. These results indicate that one of the mechanisms involved in the drought tolerance of transgenic plants over-producing Put is related to a reduction of water loss by transpiration. PMID:20206537

  4. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

    Science.gov (United States)

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  5. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Meyer, Claire-Lise; Juraniec, Michal; Huguet, Stéphanie; Chaves-Rodriguez, Elena; Salis, Pietro; Isaure, Marie-Pierre; Goormaghtigh, Erik; Verbruggen, Nathalie

    2015-06-01

    Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration. PMID:25873677

  6. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  7. Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus.

    Science.gov (United States)

    Lee, J M; Hartman, G L; Domier, L L; Bent, A F

    1996-11-01

    The interaction between Arabidopsis and the nepovirus tobacco ringspot virus (TRSV) was characterized. Of 97 Arabidopsis lines tested, all were susceptible when inoculated with TRSV grape strain. Even though there was systemic spread of the virs, there was a large degree of variation in symptoms as the most sensitive lines died 10 days after inoculation, while the most tolerant lines either were symptomless or developed only mild symptoms. Four lines were selected for further study based on their differential reactions to TRSV. Infected plants of line Col-0 and Col-0 gl1 flowered and produced seeds like noninfected plants, while those of lines Estland and H55 died before producing seeds. Symptoms appeared on sensitive plants approximately 5 to 6 days after inoculation. Serological studies indicated that in mechanically inoculated seedlings, the virus, as measured by coat protein accumulation, developed at essentially the same rates and to the same levels in each of the four lines, demonstrating that differences in symptom development were not due to a suppression of virus accumulation. Two additional TRSV strains gave similar results when inoculated on the four lines. Genetic studies with these four Arabidopsis lines revealed segregation of a single incompletely dominant locus controlling tolerance to TRSV grape strain. We have designated this locus TTR1. By using SSLP and CAPS markers, TTR1 was mapped to chromosome V near the nga129 marker. Seed transmission frequency of TRSV for Col-0 and Col-0 gl1 was over 95% and their progeny from crosses all had seed transmission frequencies of over 83%, which made it possible to evaluate the segregation of TTR1 in F2 progeny from infected F1 plants without inoculating F2 plants. Seed transmission of TRSV will be further exploited to streamline selection of individuals for fine mapping the TTR1 gene. The identification of tolerant and sensitive interactions between TRSV and A. thaliana lines provides a model system for

  8. Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana

    OpenAIRE

    Cho, Song-Mi; Kim, Yong Hwan; Anderson, Anne J.; Kim, Young Cheol

    2013-01-01

    2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced ...

  9. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    Science.gov (United States)

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  10. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis.

    Science.gov (United States)

    Liu, Pei; Xu, Zhao-Shi; Pan-Pan, Lu; Hu, Di; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-07-01

    Phosphoinositides are involved in regulation of recruitment and activity of signalling proteins in cell membranes. Phosphatidylinositol (PI) 4-kinases (PI4Ks) generate PI4-phosphate the precursor of regulatory phosphoinositides. No type II PI4K research on the abiotic stress response has previously been reported in plants. A stress-inducible type II PI4K gene, named TaPI4KIIγ, was obtained by de novo transcriptome sequencing of drought-treated wheat (Triticum aestivum). TaPI4KIIγ, localized on the plasma membrane, underwent threonine autophosphorylation, but had no detectable lipid kinase activity. Interaction of TaPI4KIIγ with wheat ubiquitin fusion degradation protein (TaUDF1) indicated that it might be hydrolysed by the proteinase system. Overexpression of TaPI4KIIγ revealed that it could enhance drought and salt stress tolerance during seed germination and seedling growth. A ubdkγ7 mutant, identified as an orthologue of TaPI4KIIγ in Arabidopsis, was sensitive to salt, polyethylene glycol (PEG), and abscisic acid (ABA), and overexpression of TaPI4KIIγ in the ubdkγ7 mutant compensated stress sensitivity. TaPI4KIIγ promoted root growth in Arabidopsis, suggesting that TaPI4KIIγ might enhance stress resistance by improving root growth. Overexpression of TaPI4KIIγ led to an altered expression level of stress-related genes and changes in several physiological traits that made the plants more tolerant to stress. The results provided evidence that overexpression of TaPI4KIIγ could improve drought and salt tolerance. PMID:23682116

  11. Transferases and transporters mediate the detoxification and capacity to tolerate trinitrotoluene in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Štorchová, Helena; Hodek, J.; Vaňková, Radomíra; Podlipná, Radka; Maršík, Petr; Ovesná, J.; Vaněk, Tomáš

    2010-01-01

    Roč. 10, č. 4 (2010), s. 547-559. ISSN 1438-793X R&D Projects: GA MŠk 2B06187; GA MŠk 2B08058 Institutional research plan: CEZ:AV0Z50380511 Keywords : Microarrays * Arabidopsis thaliana * TNT Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.397, year: 2010

  12. Study of natural variation for Zn deficiency tolerance in Arabidopsis thaliana

    NARCIS (Netherlands)

    Campos, A.C.A.L.

    2015-01-01

    English summary Zinc is an important structural component and co-factor of proteins in all living organisms. The model plant species for genetic and molecular studies, Arabidopsis thaliana, expresses more than 2,000 proteins with one or more Zn binding domains. Low Zn availability i

  13. Comparison of the pharmacokinetics, safety and tolerability of two concentrations of a new liquid recombinant human growth hormone formulation versus the freeze-dried formulation

    OpenAIRE

    Liedert, Bernd; Forssmann, Ulf; Wolna, Peter; Golob, Michaela; Kovar, Andreas

    2010-01-01

    Background Somatropin is recombinant human growth hormone (GH) used for the treatment of growth failure in children and GH deficiency in adults. Two concentrations of a liquid formulation have been developed: 5.83 and 8.0 mg/mL. This trial compared the pharmacokinetics (PK), safety and tolerability of these two liquid concentrations against the freeze-dried (FD) formulation in healthy volunteers. Methods In an open-label, single-centre, three-way crossover study, volunteers (aged 18-45 years)...

  14. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Liu, Huaying; Yang, Wenlong; Liu, Dongcheng; Han, Yuepeng; Zhang, Aimin; Li, Shaohua

    2011-01-01

    Plant WRKY transcriptional factors play an important role in response to biotic and abiotic stresses. In this study, a WRKY transcription factor was isolated from grapevine. This transcription factor showed 66% and 58% identity at the DNA and amino acid sequence levels, respectively, with Arabidopsis AtWRKY11 genes, and was therefore designated VvWRKY11. Phylogenetic analysis and structure comparison indicated that VvWRKY11 protein belongs to group IIc. The VvWRKY11 protein was shown to be located in the nucleus based on green fluorescent protein analysis. Yeast one-hybrid analysis further indicated that VvWRKY11 protein binds specifically to the W-box element. The expression profile of VvWRKY11 in response to treatment with phytohormone salicylic acid or pathogen Plasmopara viticola is rapid and transient. Transgenic Arabidopsis seedlings overexpressing VvWRKY11 showed higher tolerance to water stress induced by mannitol than wild-type plants. These results clearly demonstrated that the VvWRKY11 gene is involved in the response to dehydration stress. In addition, the role of VvWRKY11 protein in regulating the expression of two stress response genes, AtRD29A and AtRD29B, is also discussed. PMID:20354906

  15. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis

    Science.gov (United States)

    Freezing temperatures during winter generally do not injure floral buds of horticulturally important crops. Entry into dormancy coupled with cold acclimation provides adequate protection unless the temperatures are exceptionally low. This measure of protection is lost in spring when the floral bud...

  16. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  17. Estimating Broad Sense Heritability and Investigating the Mechanism of Genetic Transmission of Cold Tolerance Using Mannitol as a Measure of Post-freeze Juice Degradation in Sugarcane and Energycane (Saccharum spp.).

    Science.gov (United States)

    Hale, Anna L; Viator, Ryan P; Eggleston, Gillian; Hodnett, George; Stelly, David M; Boykin, Debbie; Miller, Donnie K

    2016-03-01

    In approximately 25% of the sugarcane-producing countries worldwide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. A study was conducted during the 2009 and 2010 harvest seasons to compare late-season freeze tolerance among three groups: commercial Louisiana sugarcane genotypes, early generation genotypes selected for cold tolerance in the U.S. Department of Agriculture sugarcane breeding programs at Houma, LA, and Canal Point, FL, and potential energycane genotypes selected for high total biomass per acre. Mannitol concentrations in cane juice following freezing temperatures were determined to evaluate levels of cold tolerance. Genotypes selected for cold tolerance in Houma, LA, had significantly more late-season freeze tolerance than commercial sugarcane genotypes and genotypes selected in Canal Point, FL. Genotypes showing the most cold tolerance were Ho02-146 and Ho02-152, and those that were most highly susceptible were US87-1006 and US87-1003 (early-generation breeding genotypes) and L99-233 (commercial genotype). Broad-sense heritability for late-season cold tolerance in the two-year study was estimated at g(2) = 0.78. The enzymatic mannitol analysis successfully differentiated high-fiber energycane genotypes from those from other sources. PMID:26885566

  18. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis.

    Science.gov (United States)

    Fang, Huihui; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Liu, Danmei; Pei, Yanxi

    2016-06-01

    Increasing attention has been focused on the health of vegetables and grains grown in the contaminated agricultural soil, it is thus meaningful to find ways to reduce the heavy metals (HMs) accumulation in plants. As sulfur is considered to be an essential macronutrient for plant stress defenses, the important role of sulfur assimilation in plants responding to HMs stress has been followed. However, the potential mechanism of the only sulfur-containing gasotransmitter hydrogen sulfide (H2S) and its main endogenously generated substrate, cysteine (Cys), in plant defense is poorly understood. The physiological and biochemical methods together with qRT-PCR were used to explore the response pattern of H2S-Cys cycle in plants resisting to chromium (Cr(6+)) stress. Our results suggested that Cr(6+) stress inhibited Arabidopsis root elongation, increased the H2S and Cys contents time-dependently, and H2S production was activated earlier than Cys. Furthermore, H2S increased Cys accumulation more quickly than Cr(6+) stress. The qRT-PCR results revealed that H2S up-regulated the Cys generation-related genes OASTLa, SAT1 and SAT5 expression levels, and that SAT1 and SAT5 expression was elevated for a longer duration. Data suggested that H2S might regulate Cys metabolism-related genes expression to participate in Cr(6+)-mediated Cys accumulation. H2S and Cys relieved the root elongation inhibition caused by Cr(6+) in Arabidopsis. Both H2S and Cys enhanced glutathione generation and activated phytochelatins (PCs) synthesis by up-regulating PCS1 and PCS2 expression levels to fight against Cr(6+) stress. Besides regulating the expression of PCs synthase encoding genes, H2S might promote metallothioneins accumulation by significantly increasing the MT2A gene expression. Overall, H2S and H2S-induced Cys accumulation (H2S-Cys system) was critical in imparting Cr(6+) tolerance in Arabidopsis. This paper is the first to indicate that gasotransmitter H2S induced Cys accumulation in

  19. Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants

    OpenAIRE

    Lee, Kyounghee; Seo, Pil Joon

    2014-01-01

    Plants have evolved sophisticated defense mechanisms to overcome their sessile nature. One remarkable strategy is the inter-plant communication mediated by volatile organic compounds (VOCs). Quantity and quality of plant VOCs are intricately regulated by biotic and abiotic stresses, and the alterations facilitate plant community to optimize their growth, development, and endogenous physiology to environmental fluctuations. Here, we report that Arabidopsis thaliana plants that experience high ...

  20. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  1. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  2. Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Gu, Chun-Sun; Liu, Liang-qin; Zhao, Yan-Hai; Deng, Yan-ming; Zhu, Xu-dong; Huang, Su-Zhen

    2014-07-01

    Metallothioneins (MTs) are cysteine-rich, low molecular weight, heavy metal-binding protein molecules. Here, a full-length cDNA homologue of MT2a (type 2 metallothionein) was isolated from the cadmium-tolerant species Iris. lactea var. chinensis (I. lactea var. chinensis). Expression of IlMT2a in I. lactea var. chinensis roots and leaves was up-regulated in response to cadmium stress. When the gene was constitutively expressed in Arabidopsis thaliana (A. thaliana), root length of transgenic lines was longer than that of wild-type under 50μM or 100μM cadmium stress. However, there was no difference of cadmium absorption between wild-type and trangenic lines. Histochemical staining by 3,3-diaminobenzidine (DAB) and nitroblue tetrazoliu (NBT) clearly demonstrated that transgenic lines accumulated remarkably less H2O2 and O2(-) than wild-type. Together, IlMT2a may be a promising gene for the cadmium tolerance improvement. PMID:24780229

  3. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  4. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-03-01

    Full Text Available The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.

  5. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Science.gov (United States)

    Park, Hyun Ji; Lee, Sang Sook; You, Young Nim; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding. PMID:23485991

  6. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells.

    Science.gov (United States)

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-09-01

    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants. PMID:26139825

  7. Screening Arabidopsis Activation Tagged Lines Based on Tolerance to Low Zn in Hydroponics

    OpenAIRE

    Hacisalihoglu, Gokhan; Hoekenga, Owen; Kochian, Leon

    2009-01-01

    Zinc (Zn) is an essential nutrient for all living organisms. Understanding how plants respond to low Zn is important, as Zn deficiency is a major contributing factor in reducing crop yield and productivity throughout the world. Zn efficiency (ZE) is the ability of plants to maintain high yield under low-Zn conditions. The objective of this study was to conduct a large-scale screening of 30,000 T-DNA activation tagged Arabidopsis lines to identify mutants with superior ZE. Our hypothesis w...

  8. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Shen-Jie; Peng, Yi-Shu; Liu, Rui-Na; Chen, Xi; Zhao, Ping; Xu, Ping; Zhu, Jian-Bo; Jiao, Gai-Li; Pei, Yan; Xiang, Cheng-Bin

    2016-01-01

    Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants. PMID:25879154

  9. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress. PMID:26106823

  10. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis

    Indian Academy of Sciences (India)

    Ji Bao Chen; Jian Wei Yang; Zhao Yuan Zhang; Xiao Fan Feng; Shu Min Wang

    2013-12-01

    Many plants accumulate proline in response to salt stress. -pyrroline-5-carboxylate synthetase (P5CS) is the rate-limiting enzyme in proline biosynthesis in plants. Plasmid DNA (pCHF3-PvP5CS1 and pCHF3-PvP5CS2) containing the selectable neomycin phosphotransferase gene for kanamycin resistance and Phaseolus vulgaris P5CS (PvP5CS1 and PvP5CS2) cDNA was introduced into Arabidopsis plants using Agrobacterium-mediated gene transfer. Southern blot, northern blot and RT-PCR analyses demonstrated that the foreign genes were integrated into Arabidopsis chromosomal DNA and expressed. Single-gene transformants were analysed in this study. Transgenic plants expressed higher levels of PvP5CS1 and PvP5CS2 transcripts under salt stress conditions than under normal conditions. When treated with 0, 100 and 200 mM NaCl, the average proline content in leaves of transgenic plants was significantly higher $(P \\lt 0.01)$ than control plants. The average relative electrical conductivity (REC) of transgenic lines was significantly lower $(P \\lt 0.01)$ than control plants under salt stress condition. Biomass production of transgenic lines was significantly higher $(P \\lt 0.05)$ than control plants under 200 mM NaCl stress treatment. These results indicated that introducing PvP5CS1 and PvP5CS2 cDNA into transgenic Arabidopsis caused proline overproduction, increasing salt tolerance. Although the expression of PvP5CS1 in L4 lines and PvP5CS2 in S4 lines was the same under salt stress condition, the S4 lines accumulated 1.6 and 1.9 times more proline than the L4 lines under 100 and 200 mM NaCl treatments, respectively. The REC of S4 plants was 0.5 (100 mM NaCl) and 0.6 times (200 mM NaCl) that of L4 plants. The biomass production of S4 plants was 1.6 times (200 mM NaCl) more than in L4 plants. Total P5CS enzyme activity of S4 was significantly higher than that of L4. These results implied that the PvP5CS2 protein had stronger capacity to catalyze proline synthesis than PvP5CS1 under salt

  11. A Novel Non-coding RNA Regulates Drought Stress Tolerance in Arabidopsis thaliana

    KAUST Repository

    Albesher, Nour H.

    2014-05-01

    Drought (soil water deficit) as a major adverse environmental condition can result in serious reduction in plant growth and crop production. Plants respond and adapt to drought stresses by triggering various signalling pathways leading to physiological, metabolic and developmental changes that may ultimately contribute to enhanced tolerance to the stress. Here, a novel non-coding RNA (ncRNA) involved in plant drought stress tolerance was identified. We showed that increasing the expression of this ncRNA led to enhanced sensitivity during seed germination and seedling growth to the phytohormone abscisic acid. The mutant seedlings are also more sensitive to osmotic stress inhibition of lateral root growth. Consistently, seedlings with enhanced expression of this ncRNA exhibited reduced transiprational water loss and were more drought-tolerant than the wild type. Future analyses of the mechanism for its role in drought tolerance may help us to understand how plant drought tolerance could be further regulated by this novel ncRNA.

  12. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance

    OpenAIRE

    Xie, Yanjie; Mao, Yu; Lai, Diwen; Zhang, Wei; Zheng, Tianqing; Shen, Wenbiao

    2013-01-01

    Despite substantial evidence on the separate roles of Arabidopsis nitric oxide-associated 1 (NOA1)-associated nitric oxide (NO) production and haem oxygenase 1 (HY1) expression in salt tolerance, their integrative signalling pathway remains largely unknown. To fill this knowledge gap, the interaction network among nitrate reductase (NIA/NR)- and NOA1-dependent NO production and HY1 expression was studied at the genetic and molecular levels. Upon salinity stress, the majority of NO production ...

  13. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize. PMID:24974327

  14. The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Juan Francisco Jiménez-Bremont

    2012-08-01

    Full Text Available Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18 from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl and osmotic (glucose and mannitol stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl and osmotic (274 mM mannitol stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively with respect to the WT (18.75 and 53.75%, respectively. Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  15. H(+)-pyrophosphatase from Salicornia europaea enhances tolerance to low phosphate under salinity in Arabidopsis.

    Science.gov (United States)

    Lv, Sulian; Jiang, Ping; Wang, Duoliya; Li, Yinxin

    2016-01-01

    Increasing soil salinity threatens crop productivity worldwide. High soil salinity is usually accompanied by the low availability of many mineral nutrients. Here, we investigated the potential role that the H(+)- PPase could play in optimizing P use efficiency under salinity in plants. Transgenic Arabidopsis plants overexpressing either SeVP1 or SeVP2 from Salicornia europaea outperformed the wild-types under low phosphate (Pi) as well as low Pi plus salt conditions. Our results suggested that H(+)-PPase could increase external Pi acquisition through promoting root development and upregulating phosphate transporters, thus to protect plants from Pi limiting stress. This study provides a potential strategy for improving crop yields challenged by the co-occurrence of abiotic stresses. PMID:26669625

  16. Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica.

    Science.gov (United States)

    Rider, Mark H; Hussain, Nusrat; Horman, Sandrine; Dilworth, Stephen M; Storey, Kenneth B

    2006-12-01

    Survival in the frozen state depends on biochemical adaptations that deal with multiple stresses on cells including long-term ischaemia and tissue dehydration. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the metabolic re-sculpting that occurs during freezing. AMPK activity and the phosphorylation state of translation factors were measured in liver and skeletal muscle of wood frogs (Rana sylvatica) subjected to anoxia, dehydration, freezing, and thawing after freezing. AMPK activity was increased 2-fold in livers of frozen frogs compared with the controls whereas in skeletal muscle, AMPK activity increased 2.5-, 4.5- and 3-fold in dehydrated, frozen and frozen/thawed animals, respectively. Immunoblotting with phospho-specific antibodies revealed an increase in the phosphorylation state of eukaryotic elongation factor-2 at the inactivating Thr56 site in livers from frozen frogs and in skeletal muscles of anoxic frogs. No change in phosphorylation state of eukaryotic initiation factor-2alpha at the inactivating Ser51 site was seen in the tissues under any of the stress conditions. Surprisingly, ribosomal protein S6 phosphorylation was increased 2-fold in livers from frozen frogs and 10-fold in skeletal muscle from frozen/thawed animals. However, no change in translation capacity was detected in cell-free translation assays with skeletal muscle extracts under any of the experimental conditions. The changes in phosphorylation state of translation factors are discussed in relation to the control of protein synthesis and stress-induced AMPK activation. PMID:16973146

  17. The importance of glucose for the freezing tolerance/intolerance of the anuran amphibians Rana catesbeiana and Bufo paracnemis

    Directory of Open Access Journals (Sweden)

    STEINER A. A.

    2000-01-01

    Full Text Available Several species of terrestrially hibernating frogs, turtles and insects have developed mechanisms, such as increased plasma glucose, anti-freeze proteins and antioxidant enzymes that resist to freezing, for survival at subzero temperatures. In the present study, we assessed the importance of glucose to cryoresistance of two anuran amphibians: the frog Rana catesbeiana and the toad Bufo paracnemis. Both animals were exposed to -2ºC for measurements of plasma glucose levels, liver and muscle glycogen content, haematocrit and red blood cell volume. Frogs survived cold exposure but toads did not. Blood glucose concentration increased from 40.35 ± 7.25 to 131.87 ± 20.72 mg/dl (P < 0.01 when the frogs were transferred from 20 to -2ºC. Glucose accumulation in response to cold exposition in the frogs was accompanied by a decrease (P < 0.05 in liver glycogen content from 3.94 ± 0.42 to 1.33 ± 0.36 mg/100 mg tissue, indicating that liver carbohydrate reserves were probably the primary carbon source of glucose synthesis whereas muscle carbohydrate seems unimportant. In the toads, the cold-induced hyperglycaemia was less (P < 0.05 pronounced (from 27.25 ± 1.14 to 73.72 ± 13.50 mg/dl and no significant change could be measured in liver or muscle glycogen. Cold exposition had no effect on the haematocrit of the frogs but significantly reduced (P < 0.01 the haematocrit of toads from 20.0 ± 2.1% to 5.8 ± 1.7% due to a decreased red blood cell volume (from 1532 ± 63 to 728 ± 87 mm³. When toads were injected with glucose, blood glucose increased to levels similar to those of frogs and haematocrit did not change, but this failed to make them cryoresistent. In conclusion, the lack of cold-induced glucose catabolism may not be the only mechanism responsible for the freeze intolerance of Bufo paracnemis, a freeze-intolerant species.

  18. Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice

    Institute of Scientific and Technical Information of China (English)

    WU Liangqi; FAN Zhanmin; GUO Lei; LI Yongqing; ZHANG Wenjing; QU Li-Jia; CHEN Zhangliang

    2003-01-01

    δ-OAT, ornithine-δ-aminotransferase, is the key enzyme involved in proline biosynthesis. In this study the Arabidopsisδ-OAT gene was transferred into rice (Oryza sativa L. ssp japonica cv. Zhongzuo 321), whose successful integration was demonstrated by PCR and Southern blot analysis. The over-expression of the gene in transgenic rice was also confirmed. Biochemical analysis showed that, under salt or drought stress conditions, proline contents in the leaves and roots in transgenic rice plants were 5- to 15-fold of those in non-transgenic controls. Under stress conditions, germinating rate of transgenic lines is higher than that of controls. Although the growth of rice plants tested were more and more retarded with the increasing of NaCl concentration, the transgenic plants grow faster compared to the controls under the same stress condition. Meanwhile, the resistance to KCl and MgSO4 stresses was also found enhanced in transgenic rice. Furthermore, the over-expression ofδ-OAT also improved the yield of transgenic plants under stress conditions. The average yield per plant of transgenic lines increases about 12%-41% more than that of control lines under 0.1 mol/L NaCl stress. These data indicated that the over-expression of δ-OAT, with the accumulation of proline, resulted in the enhancement of salt and drought tolerance and an increase of rice yield, which is of significance in agriculture.

  19. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  20. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS, named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG. Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD in transgenic seedlings. In addition, the level of malondialdehyde (MDA was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.

  1. Does acute led (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland?

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Juhl, Bodil Klein; Holmstrup, Martin; Blicher, Martin; Sejr, Mikael Kristian

    2015-01-01

    In their natural habitats, organisms are exposed to multiple stressors. Heavy metal contamination stresses the cell membrane due to increased peroxidation of lipids. Likewise, sub-zero air temperatures potentially reduce membrane functionality in ectothermal animals. We tested if acute lead (Pb...... tolerance and does not induce membrane damage in terms of persistent lipid peroxidation....

  2. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LI Chunguang; CHEN Qijun; GAO Xinqi; QI Bishu; CHEN Naizhi; XU Shouming; CHEN Jia; WANG Xuechen

    2005-01-01

    There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H2O2 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.

  3. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  4. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm.

    Science.gov (United States)

    Waterhouse, K E; Hofmo, P O; Tverdal, A; Miller, R R

    2006-05-01

    The response of sperm to cryopreservation and the fertility of frozen-thawed semen varies between species. Besides species differences in sperm physiology, structure and biochemistry, factors such as sperm transport and female reproductive tract anatomy will affect fertility of frozen-thawed semen. Therefore, studying differences in sperm cryotolerance between breeds and individuals instead of between species may reveal sources of variability in sperm cryotolerance. In the present study, the effect of cooling, re-warming and freezing and thawing on plasma membrane and acrosome integrity of sperm within and between Norwegian Landrace and Duroc breeds was studied. Furthermore, the relation between post-thaw survival rate and fatty acid composition of the sperm plasma membranes was investigated. Flow cytometry assessments of plasma membrane and acrosome integrity revealed no significant differences between breeds; however there were significant male-to-male variations within breeds in post-thaw percentages of live sperm (plasma membrane intact). The most abundant fatty acids in the plasma membranes from both breeds were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1, n-9), docosapentaenoic acid (22:5, n-6) and docosahexaenoic acid (22:6, n-3). The ratio of sigma operator 22:5, n-6 and 22:6, n-3/ sigma operator all other membrane fatty acids was significantly related to survival rate (plasma membrane integrity) of sperm for both Norwegian Landrace (correlation coefficient (r(s)) = 0.64, P boars. In conclusion, male-to-male differences in sperm survival rate after freezing and thawing may be partly related to the amount of long-chain polyunsaturated fatty acids in the sperm plasma membranes. PMID:16672353

  5. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis1[OPEN

    Science.gov (United States)

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-01-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  6. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.

    Science.gov (United States)

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-11-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  7. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress.

    Directory of Open Access Journals (Sweden)

    Anirudha R Dixit

    Full Text Available We describe here the functional characterization of a novel AtSAP10, a member of the Stress Associated Protein (SAP gene family, from Arabidopsis thaliana ecotype Columbia. AtSAP10 contains an A20 and AN1 zinc-finger domain at the N- and C-terminal, respectively. Arabidopsis SAP10 showed differential regulation by various abiotic stresses such as heavy metals and metalloids (Ni, Cd, Mn, Zn, and As, high and low temperatures, cold, and ABA. Overexpression of AtSAP10 in Arabidopsis conferred strong tolerance to heavy metals such as Ni, Mn, and Zn and to high temperature stress. AtSAP10 transgenic plants under these stress conditions grew green and healthy, attained several-fold more biomass, and had longer roots as compared to wild type plants. Further, while these transgenic plants accumulated significantly greater amounts of Ni and Mn in both shoots and root tissues, there was no significant difference in the accumulation of Zn. AtSAP10 promoter-GUS fusion studies revealed a root and floral organ-specific expression of AtSAP10. Overexpression of AtSAP10-GFP fusion protein showed the localization in both nucleus and cytoplasm. Taken together, these results showed that AtSAP10 is a potentially useful candidate gene for engineering tolerance to heavy metals and to abiotic stress in cultivated plants.

  8. Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24.

    Directory of Open Access Journals (Sweden)

    Sharmin Islam

    Full Text Available Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT. Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.

  9. Effects of salt stress on wild type and vte4 mutant Arabidopsis thaliana: Model plant to engineer tolerance towards salinity

    Directory of Open Access Journals (Sweden)

    Khalatbari Amir Ali

    2013-01-01

    Full Text Available One of the major environmental constraints impairing plant distribution and yield is believed to be salt stress. Additionally, engineered abiotic stress resistance or/and tolerance is considered as an indispensable target in order to enhance plant productivity. In this study, the effects of salinity on physiological and morphological of wild type (Columbia-0 and vte4 mutant Arabidopsis thaliana were investigated under different NaCl concentrations. These salt treatments, including control condition, 50mM and 100mM NaCl were imposed on the plants. Each salt treatment was replicated three times in a complete randomized design with factorial arrangement. Wild type and mutant A.thaliana plants were subjected to the abiotic stress (salinity for up to 11 days to evaluate the parameters of growth, development and water relations. As a result, the performance of wild type plants was stronger than vte4 mutant under different salt treatments. Under control condition, rosette dry weight, maximum quantum efficiency (PSII and specific leaf area obtained the highest values of 13.85 mg, considered, wild type A.thaliana recorded higher value of 0.82 gW/gFW for relative water content (RWC under 50mM NaCl whereas mutant plants gained the value of 0.78 gW/gFW under the same condition. However, root mass fraction indicated an increase for both wild type and vte4 mutant plants after 11 days of salt stress onset. The reduction of water potential was observed for wild type and mutant A.thaliana where it scored -1.3 MPa and -1.4, respectively. As a conclusion, these findings implied that under different salt treatments morphological and physiological responses of wild type and vte4 mutant were affected in which wild type plants showed more tolerance. Lack of γ-tocopherol methyltransferase (γ -TMT gene in vte4 seemed to impair defence mechanism of this mutant against salinity.

  10. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Highlights: ► Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. ► Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. ► Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. ► A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2–10 folds cadmium/arsenite and 2–3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  11. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  12. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  13. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs.

    Science.gov (United States)

    Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi

    2016-05-01

    Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. PMID:27012548

  14. Cloning and Sequence Analysis of a Glucose-6-Phosphate Dehydrogenase Gene PsG6PDH from Freezing-tolerant Populus suaveolens

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan-zhen; Lin Shan-zhi; Zhang Wei; Zhang Qian; Zhang Zhi-yi; Guo Huan

    2005-01-01

    A 1207 hp cDNA fragment (PsG6PDH) was amplified by PT-PCR from cold-induced total Pna of the freexing-tolerant P. Suaveolens, using primers based on the highly comserved region of published plant glucose-6-phosphate dehydrogenase (G6PDH)genes. The sepuence analysis showed that PsG6PDH coding region had 1 101 bp and encoded 367 predicted aminoacid residues. Moreover, the nucleotide sequence of psG6PDH showed 83%,82%,79%,79% and 78% identity, and the derived amino acid sequence shared 44.2%,44.7%,42.0%,40.5% and 43.9% identity with those of the Solanum tuberosum, Nicotiana tabacum, Triticum aestivum, Oryxa sativa and Arabidopsis thaliana, respectively. The results show that PsG6PDH is a new member of G6PDH gene family and belongs to cytosolic G6PDH gene. This is the first report on clonign of the G6PDH gene from woody plants.

  15. Overexpression of a Chloroplast-located Peroxiredoxin Q Gene, SsPrxQ, Increases the Salt and Low-temperature Tolerance of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Li-Wen Jing; Shi-Hua Chen; Xiao-Li Guo; Hui Zhang; Yan-Xiu Zhao

    2006-01-01

    Abiotic stress, such as salt, drought and extreme temperature,can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging systems. The major ROS-scavenging enzymes of plants include superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxins (Prxs). In the present work, we identified a gene encoding chloroplast-located peroxiredoxin Q, SsPrxQ, from Suaeda salsa L. Located at chloroplast. Overexpression of SsPrxQ in Arabidopsis leads to an increase in salt and low-temperature tolerance.

  16. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.

    Science.gov (United States)

    Chiang, Huai-Chih; Lo, Jing-Chi; Yeh, Kuo-Chen

    2006-11-01

    To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation. PMID:17144312

  17. ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis.

    Science.gov (United States)

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2009-09-01

    A forward-genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 was the strongest arsenate- and arsenite-resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knock-out mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by the overexpression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild-type (WT) Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces the enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in the WT, and this arsenic induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5, compared with WT, suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  18. STOP2 Activates Transcription of Several Genesfor AI- and Low pH-Tolerance that Are Regulatedby STOP1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    The zinc-finger protein STOP1 (sensitive to proton rhizotoxicity 1) regulates transcription of multiple genescritical for tolerance to aluminum (AI) and low pH in Arabidopsis. We evaluated the contributions of genes that are sup-pressed in the stop1 mutant to AI- and low pH-tolerance using T-DNA-inserted disruptants, and transgenic stop1 mutantsexpressing each of the suppressed genes. STOP2, a STOP1 homolog, partially recovered AI- and low pH-tolerance byrecovering the expression of genes regulated by STOP1. Growth and root tip viability under proton stress were partiallyrescued in the STOP2-complemented line. STOP2 localized in the nucleus and regulated transcription of two genes (PGIP1and PGIP2) associated with cell wall stabilization at low pH. GUS assays revealed that STOP1 and STOP2 showed similarcellular expression in the root. However, the expression level of STOP2 was much lower than that of STOP1. In a STOP1promoter::STOP2-complemented line, AI tolerance was slightly recovered, concomitant with the recovery of expressionof ALS3 (aluminum sensitive 3) and AtMATE (Arabidopsis thaliana multidrug and toxic compound extrusion), while theexpression of AtALMT1 (aluminum-activated malate transporter 1) was not recovered. These analyses indicated thatSTOP2 is a physiologically minor isoform of STOP1, but it can activate expression of some genes regulated by STOP1.

  19. Universal Stress Protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress

    Directory of Open Access Journals (Sweden)

    Jung eYoung Jun

    2015-12-01

    Full Text Available Although a wide range of physiological information on Universal Stress Proteins (USPs is available from many organisms, their biochemical and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990 from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW species to high molecular weight (HMW complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

  20. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  1. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis.

    Science.gov (United States)

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  2. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  3. Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression.

    Science.gov (United States)

    Sagor, G H M; Zhang, Siyuan; Kojima, Seiji; Simm, Stefan; Berberich, Thomas; Kusano, Tomonobu

    2016-01-01

    The link between polyamine oxidases (PAOs), which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT) showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5) or the peroxisomal PAO pathway (pao2 pao3 pao4) silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5) decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS) such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81 and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA)-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions. PMID:26973665

  4. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Honglin; Liu, Liping; Wang, Lixia; Wang, Suhua; Cheng, Xuzhen

    2016-03-01

    Mung bean (Vigna radiata L.) is commonly grown in Asia as an important nutritional dry grain legume, as it can survive better in arid conditions than other crops. Abiotic stresses, such as drought and high-salt contents, negatively impact its growth and production. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors play a significant role in the response to these stress stimuli via transcriptional regulation of downstream genes containing the cis-element dehydration-responsive element (DRE). However, the molecular mechanisms involved in the drought tolerance of this species remain elusive, with very few reported candidate genes. No DREB2 ortholog has been reported for mung bean, and the function of mung bean DREB2 is not clear. In this study, a novel VrDREB2A gene with conserved AP2 domains and transactivation ability was isolated from mung bean. A modified VrDREB2A protein lacking the putative negative regulatory domain encoded by nucleotides 394-543 was shown to be localized in the nucleus. Expression of the VrDREB2A gene was induced by drought, high salt concentrations and abscisic acid treatment. Furthermore, comparing with the wild type Arabidopsis, the overexpression of VrDREB2A activated the expression of downstream genes in transgenic Arabidopsis, resulting in enhanced tolerance to drought and high-salt stresses and no growth retardation. The results from this study indicate that VrDREB2A functions as an important transcriptional activator and may help increase the abiotic stress tolerance of the mung bean plant. PMID:26646381

  5. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses.

    Science.gov (United States)

    Kumar, Smita; Asif, Mehar Hasan; Chakrabarty, Debasis; Tripathi, Rudra Deo; Dubey, Rama Shanker; Trivedi, Prabodh Kumar

    2013-03-15

    Global industrial growth has contaminated the soil and water with many hazardous compounds, including heavy metals. These heavy metals are not only toxic to plants but also cause severe human health hazards when leach out into food chain. One of the approaches employed for the decontamination of environment includes identification and overexpression of genes involved in the detoxification mechanism of plants. Glutathione S-transferases (GSTs) are a superfamily of enzymes, principally known for their role in detoxification reactions. Different classes of GSTs have been used to develop plants with improved detoxification mechanism, but not much information is available for Lambda class of GSTs. Here, we studied expression of OsGSTLs in different rice genotypes under arsenic stress. The study suggests differential expression of these genes in arsenic sensitive and tolerant genotypes. Further, the role of one member of Lambda class OsGSTL2 was studied by expressing in heterologous system, Arabidopsis. Transgenic lines developed were analysed for their response to different abiotic stresses including heavy metals. Analysis suggests that OsGSTL2 provides tolerance for heavy metals and other abiotic stresses like cold, osmotic stress and salt. We conclude that OsGSTLs can be utilized for developing plant varieties tolerant to different abiotic stresses including heavy metals. PMID:23380449

  6. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance.

    Directory of Open Access Journals (Sweden)

    Vokkaliga Thammegowda Harshavardhan

    Full Text Available Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.

  7. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance.

    Science.gov (United States)

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response. PMID:25333723

  8. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange Wang; Huaihua Liu; Qingguo Xin

    2015-01-01

    Allene oxide cyclase (AOC, E 5.3.99.6) is an essential enzyme in the jasmonic acid (JA) biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5) were cloned from upland cotton (Gossypium hirsutum L.), sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA) and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  9. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2015-08-01

    Full Text Available Allene oxide cyclase (AOC, E 5.3.99.6 is an essential enzyme in the jasmonic acid (JA biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5 were cloned from upland cotton (Gossypium hirsutum L., sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  10. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Li, X W; Wang, Y; Yan, F; Li, J W; Zhao, Y; Zhao, X; Zhai, Y; Wang, Q Y

    2016-01-01

    MYB, v-myb avian myeloblastosis viral oncogene homolog, proteins play central roles in plant stress response. Previously, we identified a novel R2R3-MYB transcription factor, GmMYB12B2, which affected the expression levels of some key enzyme genes involved in flavonoid biosynthesis in transgenic Arabidopsis. In the present study, we analyzed the expression levels of GmMYB12B2 under salt, low temperature, drought, abscisic acid (ABA), and ultraviolet (UV) radiation treatments in soybean using semi-quantitative reverse transcription polymerase chain reaction. The expression of GmMYB12B2 was drastically induced by UV irradiation and salt treatment, but no response was detected under low temperature, drought, and ABA stresses. A detailed characterization of the GmMYB12B2 overexpression lines revealed that GmMYB12B2 might be involved in response of plants to UV radiation and salt stresses. Transgenic Arabidopsis lines constitutively expressing GmMYB12B2 showed an increased tolerance to salt and UV radiation treatment compared with wild-type plants. The expression levels of certain salt stress-responsive genes, such as DREB2A and RD17, were found to be elevated in the transgenic plants. These results indicate that GmMYB12B2 acts as a regulator in the plant stress response. PMID:27323089

  11. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Richa; Grover, Anil

    2016-09-01

    Caseinolytic proteases (Clps) perform the important role of removing protein aggregates from cells, which can otherwise prove to be highly toxic. ClpD system is a two-component protease complex composed of a regulatory ATPase module ClpD and a proteolytic component ClpP. Under desiccation stress condition, rice ClpD1 (OsClpD1) gene encoding for the regulatory subunit, was represented by four variant transcripts differing mainly in the expanse of their N-terminal amino acids. These transcripts were expressed in a differential manner in response to salt, mannitol and polyethylene glycol stresses in rice. Purified OsClpD1.3 protein exhibited intrinsic chaperone activity, shown using citrate synthase as substrate. Arabidopsis (Col-0) plants over-expressing OsClpD1.3 open reading frame downstream to CaMV35S promoter (ClpD1.3 plants) showed higher tolerance to salt and desiccation stresses as compared to wild type plants. ClpD1.3 seedlings also showed enhanced growth during the early stages of seed germination under unstressed, control conditions. The free proline levels and starch breakdown activities were higher in the ClpD1.3 seedlings as compared to the wild type Arabidopsis seedlings. It thus emerges that increasing the potential of ClpD1 chaperoning activity may be of advantage in protection against abiotic stresses. PMID:27457985

  12. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis.

    Science.gov (United States)

    Foresi, Noelia; Mayta, Martín L; Lodeyro, Anabella F; Scuffi, Denise; Correa-Aragunde, Natalia; García-Mata, Carlos; Casalongué, Claudia; Carrillo, Néstor; Lamattina, Lorenzo

    2015-06-01

    Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants. NO plays a crucial role in growth and development, from germination to senescence, and is also involved in plant responses to biotic and abiotic stresses. In animals, NO is synthesized by well-described nitric oxide synthase (NOS) enzymes. NOS activity has also been detected in higher plants, but no gene encoding an NOS protein, or the enzymes required for synthesis of tetrahydrobiopterin, an essential cofactor of mammalian NOS activity, have been identified so far. Recently, an NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) has been discovered and characterized. Arabidopsis thaliana plants were transformed with OtNOS under the control of the inducible short promoter fragment (SPF) of the sunflower (Helianthus annuus) Hahb-4 gene, which responds to abiotic stresses and abscisic acid. Transgenic plants expressing OtNOS accumulated higher NO concentrations compared with siblings transformed with the empty vector, and displayed enhanced salt, drought and oxidative stress tolerance. Moreover, transgenic OtNOS lines exhibited increased stomatal development compared with plants transformed with the empty vector. Both in vitro and in vivo experiments indicate that OtNOS, unlike mammalian NOS, efficiently uses tetrahydrofolate as a cofactor in Arabidopsis plants. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool to improve plant fitness under adverse growth conditions. PMID:25880454

  13. Expression of Rice CYP450-Like Gene (Os08g01480 in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Arti Rai

    Full Text Available Heavy metal (HM toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encoded by Os08g01480 locus in rice that helps the plant to combat HM and other abiotic stresses. To functionally characterize CYP-like gene, cDNA and promoter were isolated from rice to develop Arabidopsis transgenic lines. Heterologous expression of Os08g01480 in Arabidopsis provided significant tolerance towards abiotic stresses. In silico analysis reveals that Os08g01480 might help plants to combat environmental stress via modulating auxin metabolism. Transgenic lines expressing reporter gene under control of Os08g01480 promoter demonstrated differential promoter activity in different tissues during environmental stresses. These studies indicated that differential expression of Os08g01480 might be modulating response of plants towards environmental stresses as well as in different developmental stages.

  14. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  15. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  16. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance

    OpenAIRE

    Manmathan, Harish; Shaner, Dale; Snelling, Jacob; Tisserat, Ned; Lapitan, Nora

    2013-01-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways i...

  17. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  18. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  19. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) activated root malate and citrate exudation plays an important role in Al tolerance in many plant species. Here, we report on the identification and characterization of AtMATE, a homolog of the recently discovered sorghum and barley Al tolerance genes, here shown to encode an Al-activ...

  20. JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana.

    Science.gov (United States)

    Liang, Jing; Zhou, Mingqi; Zhou, Xin; Jin, Yuanjie; Xu, Ming; Lin, Juan

    2013-01-01

    Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification. PMID:24391737

  1. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. PMID:25545296

  2. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  3. Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis.

    Science.gov (United States)

    Peng, Xue-Cong; Qiu, De-Wen; Zeng, Hong-Mei; Guo, Li-Hua; Yang, Xiu-Fen; Liu, Zheng

    2015-02-01

    Hrip1 is a novel hypersensitive response-inducing protein secreted by Alternaria tenuissima that activates defense responses and systemic acquired resistance in tobacco. This study investigates the role that Hrip1 plays in responses to abiotic and biotic stress using transgenic Arabidopsis thaliana expressing the Hrip1 gene under the control of the stress-inducible rd29A promoter or constitutive cauliflower mosaic virus 35S promoter. Bioassays showed that inducible Hrip1 expression in rd29A∷Hrip1 transgenic lines had a significantly higher effect on plant height, silique length, plant dry weight, seed germination and root length under salt and drought stress compared to expression in 35S∷Hrip1 lines and wild type plants. The level of enhancement of resistance to Botrytis cinerea by the 35S∷Hrip1 lines was higher than in the rd29A∷Hrip1 lines. Moreover, stress-related gene expression in the transgenic Arabidopsis lines was significantly increased by 200 mM NaCl and 200 mM mannitol treatments, and defense genes in the jasmonic acid and ethylene signaling pathway were significantly up-regulated after Botrytis inoculation in the Hrip1 transgenic plants. Furthermore, the activity of some antioxidant enzymes, such as peroxidase and catalase increased after salt and drought stress and Botrytis infection. These results suggested that the Hrip1 protein contributes to abiotic and biotic resistance in transgenic Arabidopsis and may be used as a useful gene for resistance breeding in crops. Although the constitutive expression of Hrip1 is suitable for biotic resistance, inducible Hrip1 expression is more responsive for abiotic resistance. PMID:25120219

  4. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells

    OpenAIRE

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-01-01

    Highlight bam1 mutant plants impaired in stomatal starch degradation showed an improved drought tolerance associated with a down-regulation of guard cell-specific gene expression involved in water uptake and cell expansion.

  5. Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana

    OpenAIRE

    Migocka, Magdalena; Papierniak, Anna; Maciaszczyk-Dziubińska, Ewa; Poździk, Piotr; Posyniak, Ewelina; Garbiec, Arnold; Filleur, Sophie

    2014-01-01

    The family of genes encoding metal tolerance proteins (MTPs) in cucumber is identified and described. The cucumber Mn transporter CsMTP8 is biochemically and functionally characterized in yeast and A. thaliana.

  6. Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli.

    Directory of Open Access Journals (Sweden)

    Muskan Jain

    Full Text Available The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG, which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI. It is a metalloenzyme which requires divalent metal ions for its activity. This divalent metal ion can be either Zn2+ as found in most of eukaryotes or Ni2+ as seen in prokaryotes. In the present study, we have found three active GLYI enzymes (AtGLYI2, AtGLYI3 and AtGLYI6 belonging to different metal activation classes coexisting in Arabidopsis thaliana. These enzymes have been found to efficiently complement the GLYI yeast mutants. These three enzymes have been characterized in terms of their activity, metal dependency, kinetic parameters and their role in conferring tolerance to multiple abiotic stresses in E. coli and yeast. AtGLYI2 was found to be Zn2+ dependent whereas AtGLYI3 and AtGLYI6 were Ni2+ dependent. Enzyme activity of Zn2+ dependent enzyme, AtGLYI2, was observed to be exceptionally high (~250-670 fold as compared to Ni2+ dependent enzymes, AtGLYI3 and AtGLYI6. The activity of these GLYI enzymes correlated well to their role in stress tolerance. Heterologous expression of these enzymes in E. coli led to better tolerance against various stress conditions. This is the first report of a higher eukaryotic species having multiple active GLYI enzymes belonging to different metal activation classes.

  7. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  8. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  9. H(+) -pyrophosphatase from Salicornia europaea confers tolerance to simultaneously occurring salt stress and nitrogen deficiency in Arabidopsis and wheat.

    Science.gov (United States)

    Lv, Sulian; Jiang, Ping; Nie, Lingling; Chen, Xianyang; Tai, Fang; Wang, Duoliya; Fan, Pengxiang; Feng, Juanjuan; Bao, Hexigeduleng; Wang, Jinhui; Li, Yinxin

    2015-11-01

    High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H(+) -PPase is involved in salt-stimulated NO3 (-) uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H(+) -PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K(+) /Na(+) ratio in leaves and exhibited increased NO3 (-) uptake, inorganic pyrophosphate-dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up-regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up-regulation of H(+) -PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland. PMID:25920512

  10. Role of Arabidopsis RAP2.4 in Regulating Light-and Ethylene-Mediated Developmental Processes and Drought Stress Tolerance

    Institute of Scientific and Technical Information of China (English)

    Rong-Cheng Lin; Hee-Jin Park; Hai-Yang Wang

    2008-01-01

    Light and the plant hormone ethylene regulate many aspects of plant growth and development in an overlapping and interdependent fashion. Little is known regarding how their signal transduction pathways cross-talk to regulate plant development in a coordinated manner. Here, we report functional characterization of an AP2/DREB-type transcription factor, Arabidopsis RAP2.4, in mediating light and ethylene signaling. Expression of the RAP2.4 gene is down-regulated by light but up-regulated by salt and drought stresses. RAP2.4 protein is constitutively targeted to the nucleus and it can bind to both the ethylene-responsive GCC-box and the dehydration-responsive element (DRE).We show that RAP2.4 protein possesses an intrinsic transcriptional activation activity in yeast cells and that it can activate a reporter gene driven by the DRE cis-element in Arabidopsis protoplasts. Overexpression of RAP2.4 or mutation in RAP2.4 cause altered expression of representative light-, ethylene-, and drought-responsive genes. Although no salient phenotype was observed with a rap2.4 loss-of-function mutant, constitutive overexpression of RAP2.4 results in defects in multiple developmental processes regulated by light and ethylene, including hypocotyl elongation and gravitropism, apical hook formation and cotyledon expansion, flowering time, root elongation, root hair formation, and drought tolerance.Based on these observations, we propose that RAP2.4 acts at or downstream of a converging point of light and ethylene signaling pathways to coordinately regulate multiple developmental processes and stress responses.

  11. Aluminum-activated citrate and malate transporters encoded by distinct Al tolerance genes function independently in Arabidopsis

    Science.gov (United States)

    Aluminum (Al) -activated malate and citrate exudation from roots plays an important role in conferring Al tolerance to many plant species. Here, we report on the identification and characterization of AtMATE, the gene encoding an Al-activated root citrate efflux transporter that functions in Arabid...

  12. Overexpression of Rice Glutaredoxin OsGrx_C7 and OsGrx_C2.1 Reduces Intracellular Arsenic Accumulation and Increases Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Pankaj K; Verma, Shikha; Pande, Veena; Mallick, Shekhar; Deo Tripathi, Rudra; Dhankher, Om P; Chakrabarty, Debasis

    2016-01-01

    Glutaredoxins (Grxs) are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice), the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As) tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops. PMID:27313586

  13. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Science.gov (United States)

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  14. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Verma

    2016-06-01

    Full Text Available Glutaredoxins (Grxs are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice, the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops.

  15. The Phosphate Transporter PHT4;6 Is a Determinant of Salt Tolerance that Is Localized to the Golgi Apparatus of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Beatriz Cubero; Yuko Nakagawa; Xing-Yu jiang; Ken-Ji Miura; Fang Li; Kashchandra G.Raghothama; Ray A.Bressan; Paul M.Hasegawa; Jose M.Pardo

    2009-01-01

    Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidop-sis seedlings that is characterized by reduced growth of the primary root,enhanced lateral branching,and swelling of root tips.Mutant phenotypes were exacerbated by sucrose,but not by equiosmolar concentrations of mannitol,and atten-uated by low inorganic phosphate in the medium.Protein PHT4;6 belongs to the Major Facilitator Superfamily of per-meases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters,and is a member of the PHT4 family of putative intracellular phosphate transporters of plants.PHT4;6 local-izes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions.Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis,which are essential for salt tolerance.Together,our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.

  16. Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses.

    Science.gov (United States)

    Kang, Chang Ho; Lee, Young Mee; Park, Joung Hun; Nawkar, Ganesh M; Oh, Hun Taek; Kim, Min Gab; Lee, Soo In; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2016-07-01

    The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery. PMID:27004478

  17. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kasim Khan

    Full Text Available Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs, with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7 and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.

  18. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana.

    Science.gov (United States)

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Li, Zhaodi; Wu, Jiang; Josine, Tchouopou Lontchi; Wang, Yurong

    2016-01-15

    Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase gene (Lcε-LYC) from Lycium chinense (L. chinense), a deciduous woody perennial halophyte growing in various environmental conditions. The Lcε-LYC gene has an ORF of 1569bp encoding a protein of 522 aa. The deduced amino acid sequence of Lcε-LYC gene has higher homology with LycEs in other plants, such as Nicotiana tabacum and Solanum tuberosum. When L. chinense was exposed to chilling stress, relative expression of Lcε-LYC increased. To study the protective role of Lcε-LYC against chilling stress, we overexpressed the Lcε-LYC gene in Arabidopsis thaliana. Lcε-LYC overexpression led to an increase of lutein accumulation in transgenic A. thaliana, and the content of lutein decreased when transgenics were under cold conditions. In addition, the transgenic plants under chilling stress displayed higher activities of superoxide dismutase (SOD) and peroxidase (POD) and less H2O2 and malondialdehyde (MDA) than the control. Moreover, the photosynthesis rate, photosystem II activity (Fv/fm), and Non-photochemical quenching (NPQ) also increased in the transgenetic plants. On the whole, overexpression of Lcε-LYC ameliorates photoinhibition and photooxidation, and decreases the sensitivity of photosynthesis to chilling stress in transgenic plants. PMID:26526130

  19. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Khan, Kasim; Agarwal, Pallavi; Shanware, Arti; Sane, Vidhu Aniruddha

    2015-01-01

    Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils. PMID:26067295

  20. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon;

    2013-01-01

    available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about......BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking....... RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes...

  1. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

    Science.gov (United States)

    Aharoni, Asaph; Dixit, Shital; Jetter, Reinhard; Thoenes, Eveline; van Arkel, Gert; Pereira, Andy

    2004-09-01

    The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these

  2. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel;

    2008-01-01

    Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant......'s improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis...

  3. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-01-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC–Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC–Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2. PMID:25900618

  4. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    Science.gov (United States)

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2. PMID:25900618

  5. Freezing and Food Safety

    Science.gov (United States)

    ... freeze well. Examples are mayonnaise, cream sauce and lettuce. Raw meat and poultry maintain their quality longer ... illness. [ Top of Page ] Does Freezing Destroy Bacteria & Parasites? Freezing to 0 °F inactivates any microbes — bacteria, ...

  6. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  7. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    Science.gov (United States)

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  8. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ya-Fen Lin

    Full Text Available Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.

  9. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature

    OpenAIRE

    WEN, Xin; Wang, Sen; Duman, John G.; Arifin, Josh Fnu; Juwita, Vonny; Goddard, William A.; Rios, Alejandra; Liu, Fan; Kim, Soo-Kyung; Abrol, Ravinder; DeVries, Arthur L.; Henling, Lawrence M.

    2016-01-01

    The remarkable adaptive strategies of insects to extreme environments are linked to the biochemical compounds in their body fluids. Trehalose, a versatile sugar molecule, can accumulate to high levels in freeze-tolerant and freeze-avoiding insects, functioning as a cryoprotectant and a supercooling agent. Antifreeze proteins (AFPs), known to protect organisms from freezing by lowering the freezing temperature and deferring the growth of ice, are present at high levels in some freeze-avoiding ...

  10. OsDREB1 Gene from Rice Enhances Cold Tolerance in Tobacco

    Institute of Scientific and Technical Information of China (English)

    LI Ping; CHEN Feng; QUAN Chao; ZHANG Guiyou

    2005-01-01

    The OsDREB1 gene from rice encodes a transcription factor belonging to the DREBP transcription factor subfamily. Many DREBP transcription factors regulate gene expression in response to drought, high-salt, and cold stresses by binding specifically to the dehydration-responsive element (DRE). DRE-binding proteins, such as CBF1, DREB1A, and DREB2A, have been cloned from Arabidopsis thaliana and have been proved to play an important role in stress response of Arabidopsis and several other plants. In this study, the OsDREB1 gene was transferred to tobacco plants by the Agrobacterium-mediated transfer method, and 16 transgenic plants were identified. PCR analysis demonstrates that the foreign genes have been integrated into the tobacco genome. Results of freezing stress experiments indicate that the transgenic plants have enhanced cold tolerance.

  11. Chloroplast Membrane Remodeling during Freezing Stress Is Accompanied by Cytoplasmic Acidification Activating SENSITIVE TO FREEZING21[OPEN

    Science.gov (United States)

    Barnes, Allison C.

    2016-01-01

    Low temperature is a seasonal abiotic stress that restricts native plant ranges and crop distributions. Two types of low-temperature stress can be distinguished: chilling and freezing. Much work has been done on the mechanisms by which chilling is sensed, but relatively little is known about how plants sense freezing. Recently, Arabidopsis (Arabidopsis thaliana) SENSITIVE TO FREEZING2 (SFR2) was identified as a protein that responds in a nontranscriptional manner to freezing. Here, we investigate the cellular conditions that allow SFR2 activation. Using a combination of isolated organelle, whole-tissue, and whole-plant assays, we provide evidence that SFR2 is activated by changes in cytosolic pH and Mg2+. Manipulation of pH and Mg2+ in cold-acclimated plants is shown to cause changes similar to those of freezing. We conclude that pH and Mg2+ are perceived as intracellular cues as part of the sensing mechanism for freezing conditions. This evidence provides a specific molecular mechanism to combat freezing. PMID:27233750

  12. Expression of the Znt1 zinc transporter from the metal hyperaccumulator noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to arabidopsis thaliana

    NARCIS (Netherlands)

    Lin, Ya Fen; Hassan, Zeshan; Talukdar, S.; Schat, Henk; Aarts, Mark G.M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis.

  13. SIDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Hichri, I.; Muhovski, Y.; Clippe, A.; Žižková, Eva; Dobrev, Petre; Motyka, Václav; Lutts, S.

    2016-01-01

    Roč. 39, č. 1 (2016), s. 62-79. ISSN 0140-7791 R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Solanum lycopersicum * DREB2 Subject RIV: EF - Botanics Impact factor: 6.960, year: 2014

  14. Understanding freeze stress in biological tissues: thermodynamics of interfacial water

    Science.gov (United States)

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biolo...

  15. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress

    Indian Academy of Sciences (India)

    D. W. Xie; X. N. Wang; L. S. Fu; J. Sun; W. Zheng; Z. F. Li

    2015-03-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are potentially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag sequence information from NCBI and two wheat genome databases, we identified 12 wheat TPS genes and performed a comprehensive study on their structural, evolutionary and functional properties. The estimated divergence time of wheat TPS gene pairs and wheat–rice orthologues suggested that wheat and rice have a common ancestor. The number of TPS genes in the wheat genome was estimated to be at least 12, which is close to the number found in rice, Arabidopsis and soybean. Moreover, it has been reported earlier in other plants that TPS genes respond to abiotic stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways. Taken together, the current study represents the first comprehensive study of TPS genes in winter wheat and provides a foundation for future functional studies of this important gene family in Triticeae.

  16. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    OpenAIRE

    WANG, YANPING; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2015-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 m...

  17. Simultaneous Over-Expression of PaSOD and RaAPX in Transgenic Arabidopsis thaliana Confers Cold Stress Tolerance through Increase in Vascular Lignifications

    OpenAIRE

    Shafi, Amrina; Dogra, Vivek; Gill, Tejpal; Ahuja, Paramvir Singh; Sreenivasulu, Yelam

    2014-01-01

    Antioxidant enzymes play a significant role in eliminating toxic levels of reactive oxygen species (ROS), generated during stress from living cells. In the present study, two different antioxidant enzymes namely copper-zinc superoxide dismutase derived from Potentilla astrisanguinea (PaSOD) and ascorbate peroxidase (RaAPX) from Rheum austral both of which are high altitude cold niche area plants of Himalaya were cloned and simultaneously over-expressed in Arabidopsis thaliana to alleviate col...

  18. AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance

    OpenAIRE

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) me...

  19. Hatchling turtles survive freezing during winter hibernation.

    OpenAIRE

    Storey, K. B.; Storey, J M; Brooks, S. P.; Churchill, T A; Brooks, R. J.

    1988-01-01

    Hatchlings of the painted turtle (Chrysemys picta marginata) are unique as the only reptile and highest vertebrate life form known to tolerate the natural freezing of extracellular body fluids during winter hibernation. Turtles survived frequent exposures to temperatures as low as -6 degrees C to -8 degrees C in their shallow terrestrial nests over the 1987-1988 winter. Hatchlings collected in April 1988 had a mean supercooling point of -3.28 +/- 0.24 degrees C and survived 24 hr of freezing ...

  20. Effect of freeze drying process on some properties of Streptococcus thermophilus isolated from dairy products

    OpenAIRE

    Selwal, Krishan K.; Selwal, Manjit K.; D.N. Gandhi

    2011-01-01

    The present investigation represents the effect of freeze drying on some properties as acid and bile tolerance of Streptococcus thermophilus MTCC 1938 culture isolated from dairy products. The cell paste obtained from milk based medium was freeze dried with a pressure of 50-100 mtorr for 24h at -40ºC. Acid and bile tolerance test exhibited 3.8-4.9 and 3.2-3.8 log counts reduction after freeze drying respectively.

  1. Effect of freeze drying process on some properties of Streptococcus thermophilus isolated from dairy products

    OpenAIRE

    Selwal, Krishan K.; Selwal, Manjit K.; D.N. Gandhi

    2011-01-01

    The present investigation represents the effect of freeze drying on some properties as acid and bile tolerance of Streptococcus thermophilus MTCC 1938 culture isolated from dairy products. The cell paste obtained from milk based medium was freeze dried with a pressure of 50–100 mtorr for 24h at -40°C. Acid and bile tolerance test exhibited 3.8–4.9 and 3.2–3.8 log counts reduction after freeze drying respectively.

  2. Freeze drying method

    International Nuclear Information System (INIS)

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser

  3. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant.

    Science.gov (United States)

    Zhang, Huirong; Du, Chao; Wang, Yan; Wang, Jia; Zheng, Linlin; Wang, Yingchun

    2016-09-01

    Reaumuria trigyna is a typical, native desert halophyte that grows under extreme conditions in Inner Mongolia. In a previous transcriptomic profiling analysis, flavonoid pathway-related genes in R. trigyna showed significant differences in transcript abundance under salt stress. Leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19) is one of three dioxygenases in the flavonoid pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. In this study, we cloned the full-length cDNA of R. trigyna LDOX (RtLDOX), and found RtLDOX recombinant protein was able to replace flavanone-3-hydroxylase (F3H, EC 1.14.11.9), another dioxygenase in the flavonoid pathway, to convert naringenin to dihydrokaempferol in vitro. R. trigyna LDOX can complement the Arabidopsis LDOX mutant transparent testa11 (tt11-11), which has reduced proanthocyanin (PA) and anthocyanin levels in seeds, to accumulate these two compounds. Thus, RtLDOX acts as a multifunctional dioxygenase to effect the synthesis of PA and anthocyanins and can perform F3H dioxygenase activities in the flavonoid biosynthesis pathway. The RtLDOX promoter harbored many cis-acting elements that might be recognized and bound by transcription factors related to stress response. RtLDOX expression was strongly increased under salt stress, and RtLDOX transgenic Arabidopsis mutant under NaCl stress accumulated the content of flavonoids leading to an increased antioxidant activities and plant biomass. These results suggest that RtLDOX as a multifunctional dioxygenase in flavonoid biosynthesis involves in enhancing plant response to NaCl stress. PMID:27219053

  4. Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing.

    Directory of Open Access Journals (Sweden)

    Brent J Sinclair

    Full Text Available Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3(rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae, which survive freezing if it occurs above -14 degrees C, and non-diapausing 3(rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae, neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP, and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects.

  5. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  6. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa.

    Science.gov (United States)

    Roy Choudhury, Swarup; Riesselman, Adam J; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins consisting of Gα, Gβ and Gγ subunits play an integral role in mediating multiple signalling pathways in plants. A novel, recently identified plant-specific Gγ protein, AGG3, has been proposed to be an important regulator of organ size and mediator of stress responses in Arabidopsis, whereas its potential homologs in rice are major quantitative trait loci for seed size and panicle branching. To evaluate the role of AGG3 towards seed and oil yield improvement, the gene was overexpressed in Camelina sativa, an oilseed crop of the Brassicaceae family. Analysis of multiple homozygous T4 transgenic Camelina lines showed that constitutive overexpression of AGG3 resulted in faster vegetative as well as reproductive growth accompanied by an increase in photosynthetic efficiency. Moreover, when expressed constitutively or specifically in seed tissue, AGG3 was found to increase seed size, seed mass and seed number per plant by 15%-40%, effectively resulting in significantly higher oil yield per plant. AGG3 overexpressing Camelina plants also exhibited improved stress tolerance. These observations draw a strong link between the roles of AGG3 in regulating two critical yield parameters, seed traits and plant stress responses, and reveal an effective biotechnological tool to dramatically increase yield in agricultural crops. PMID:24102738

  7. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization.

    Directory of Open Access Journals (Sweden)

    Alexandra Steffens

    2015-07-01

    Full Text Available Members of the highly conserved class of BEACH domain containing proteins (BDCPs have been established as broad facilitators of protein-protein interactions and membrane dynamics in the context of human diseases like albinism, bleeding diathesis, impaired cellular immunity, cancer predisposition, and neurological dysfunctions. Also, the Arabidopsis thaliana BDCP SPIRRIG (SPI is important for membrane integrity, as spi mutants exhibit split vacuoles. In this work, we report a novel molecular function of the BDCP SPI in ribonucleoprotein particle formation. We show that SPI interacts with the P-body core component DECAPPING PROTEIN 1 (DCP1, associates to mRNA processing bodies (P-bodies, and regulates their assembly upon salt stress. The finding that spi mutants exhibit salt hypersensitivity suggests that the local function of SPI at P-bodies is of biological relevance. Transcriptome-wide analysis revealed qualitative differences in the salt stress-regulated transcriptional response of Col-0 and spi. We show that SPI regulates the salt stress-dependent post-transcriptional stabilization, cytoplasmic agglomeration, and localization to P-bodies of a subset of salt stress-regulated mRNAs. Finally, we show that the PH-BEACH domains of SPI and its human homolog FAN (Factor Associated with Neutral sphingomyelinase activation interact with DCP1 isoforms from plants, mammals, and yeast, suggesting the evolutionary conservation of an association of BDCPs and P-bodies.

  8. Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fan; CHEN Xun-ji; WANG Jian-hua; ZHENG Jun

    2015-01-01

    Sucrose non-fermenting-1 related protein kinase 2 (SnRK2) is a unique family of protein kinases associated with abiotic stress signal transduction in plants. In this study, a maize SnRK2 gene ZmSnRK2.11 was cloned and characterized. The results showed that ZmSnRK2.11 is up-regulated by high-salinity and dehydration treatment, and it is expressed mainly in maize mature leaf. A transient expression assay using onion epidermal cel s revealed that ZmSnRK2.11-GFP fusion proteins are localized to both the nucleus and cytoplasm. Overexpressing-ZmSnRK2.11 in Arabidopsis resulted in salt and drought sensitivity phenotypes that exhibited an increased rate of water loss, reduced relative water content, delayed stoma closure, accumulated less free proline content and increased malondialdehyde (MDA) content relative to the phenotypes observed in wild-type (WT) control. Furthermore, overexpression of ZmSnRK2.11 up-regulated the expression of the genes ABI1 and ABI2 and decreased the expression of DREB2A and P5CS1. Taken together, our results suggest that ZmSnRK2.11 is a possible negative regulator involved in the salt and drought stress signal transduction pathways in plants.

  9. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization.

    Science.gov (United States)

    Steffens, Alexandra; Bräutigam, Andrea; Jakoby, Marc; Hülskamp, Martin

    2015-07-01

    Members of the highly conserved class of BEACH domain containing proteins (BDCPs) have been established as broad facilitators of protein-protein interactions and membrane dynamics in the context of human diseases like albinism, bleeding diathesis, impaired cellular immunity, cancer predisposition, and neurological dysfunctions. Also, the Arabidopsis thaliana BDCP SPIRRIG (SPI) is important for membrane integrity, as spi mutants exhibit split vacuoles. In this work, we report a novel molecular function of the BDCP SPI in ribonucleoprotein particle formation. We show that SPI interacts with the P-body core component DECAPPING PROTEIN 1 (DCP1), associates to mRNA processing bodies (P-bodies), and regulates their assembly upon salt stress. The finding that spi mutants exhibit salt hypersensitivity suggests that the local function of SPI at P-bodies is of biological relevance. Transcriptome-wide analysis revealed qualitative differences in the salt stress-regulated transcriptional response of Col-0 and spi. We show that SPI regulates the salt stress-dependent post-transcriptional stabilization, cytoplasmic agglomeration, and localization to P-bodies of a subset of salt stress-regulated mRNAs. Finally, we show that the PH-BEACH domains of SPI and its human homolog FAN (Factor Associated with Neutral sphingomyelinase activation) interact with DCP1 isoforms from plants, mammals, and yeast, suggesting the evolutionary conservation of an association of BDCPs and P-bodies. PMID:26133670

  10. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri

    OpenAIRE

    Sarret, Geraldine; Saumitou-Laprade, Pierre; Bert, Valerie; Proux, Olivier; Hazemann, Jean-Louis; Traverse, Agnes; Marcus, Matthew,; Manceau, Alain

    2002-01-01

    The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and micro--EXAFS. Plants weree grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collec...

  11. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl − accumulation and salt tolerance in Arabidopsis thaliana

    KAUST Repository

    Qiu, Jiaen

    2016-06-23

    Salinity tolerance is correlated with shoot chloride (Cl–) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl– transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl–, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl– supply, but not low Cl– supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl– transport.

  12. Phenome data - Freeze-thaw stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available clarify the genes required for freeze-thaw tolerance, genome-wide screening was ...performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae . The screening

  13. Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus

    Czech Academy of Sciences Publication Activity Database

    Patrício Silva, A. L.; Holmstrup, M.; Košťál, Vladimír; Amorim, M. J. B.

    2013-01-01

    Roč. 216, č. 14 (2013), s. 2732-2740. ISSN 0022-0949 Institutional support: RVO:60077344 Keywords : ice content * freeze tolerance * osmolality Subject RIV: ED - Physiology Impact factor: 3.002, year: 2013

  14. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证%Cloning of Zoysiagrass CBF Gene and Validation of Cold Tolerance in Trans-genic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    冯勋伟; 才宏伟

    2014-01-01

    结缕草是优良的暖季型草坪草之一,主要用于亚热带和热带地区的草坪种植。抗冷性是结缕草栽培范围的限制因子。本研究以日本最北部原产的结缕草品系为材料,根据其他植物的已知的抗寒基因 CBF 序列,通过同源克隆的方法获得结缕草中相对应的同源基因ZjCBF;根据和其他已报告的CBF序列的比对结果,确定ZjCBF基因属于CBF转录因子家族基因中CBF1型基因。利用半定量PCR和实时定量PCR分析该基因在寒冷条件下的表达情况,发现ZjCBF基因受冷胁迫的诱导,在4℃处理6 h时表达量最高。在此基础上,本研究构建了该基因的过表达载体,并将其转化到拟南芥中,通过低温冷处理实验发现,不论是否经过冷驯化,转 ZjCBF 基因植株由于 ZjCBF 的过量表达均比野生型植株抗寒性强。%Zoysiagrass is recognized as an excellent warm-season turfgrass and mainly used in subtropical and tropical regions. Cold stress is a major constraint factor for the cultivation of zoysiagrass. In this study, according to the sequences of cold tolerance gene CBF had been reported in other plant species, we cloned the corresponding homologous of the ZjCBF gene by homology cloning method in Zoysia japonica using a material originated from the most northern area of Japan. Based on the alignment re-sults compared with other reported CBF genes, we found the ZjCBF gene belongs to the CBF1 familiy. By semi-quantitative PCR and real-time quantitative PCR, we analyzed the expression level of the ZjCBF gene in the cold condition and found that ZjCBF was induced by cold stress, and the ZjCBF expression reached peak at six hours post 4°C treatment. In addition, we also con-structed ZjCBF over expression vector and generated transgenic Arabidopsis plants, with better cold tolerance than the wild-type, whether through cold acclimation or not.

  15. Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses.

    Science.gov (United States)

    Liu, Mei-Zhen; Osborne, Colin P

    2013-05-01

    Globally, C4 plants dominate hot, open environments, but this general pattern is underpinned by important differences in the biogeography of C4 lineages. In particular, the species richness of C4 Poaceae (grasses) increases strongly with increasing temperature, whereas that of the major C4 eudicot group Chenopodiaceae correlates positively with aridity. Freezing tolerance is a crucial determinant of biogeographical relationships with temperature and is mediated by photodamage and cellular disruption by desiccation, but little is known about differences between C4 families. This study hypothesized that there is a greater risk of freezing damage via these mechanisms in C4 Poaceae than Chenopodiaceae, that freezing protection differs between the taxonomic groups, and that freezing tolerance of species is linked to arid habitat preference. Chlorophyll fluorescence, water relations, and freezing injury were compared in four C3 and six C4 species of Poaceae and Chenopodiaceae from the same Mongolian flora. Contrary to expectations, freezing-induced leaf mortality and photodamage were lower in Poaceae than Chenopodiaceae species, and unrelated to photosynthetic pathway. The freezing resistance of Poaceae species resulted from constitutive protection and cold acclimation and an ability to protect the photosynthetic apparatus from photodamage. Freezing protection was associated with low osmotic potential and low tissue elasticity, and freezing damage was accompanied by electrolyte leakage, consistent with cell-membrane disruption by ice. Both Chenopodiaceae and Poaceae had the potential to develop cold acclimation and withstand freezing during the growing season, which conflicted with the hypothesis. Instead, freezing tolerance was more closely associated with life history and ecological preference in these Mongolian species. PMID:23599273

  16. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Science.gov (United States)

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A Lane; Voigt, Thomas; Lee, D K

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  17. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    Science.gov (United States)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  18. Performance Characteristics of an Isothermal Freeze Valve

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  19. Generalized structural theory of freezing

    International Nuclear Information System (INIS)

    The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)

  20. Tolerating Zero Tolerance?

    Science.gov (United States)

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  1. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance.

    Directory of Open Access Journals (Sweden)

    Jianli Duan

    Full Text Available Late embryogenesis abundant (LEA proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa using the Rapid Amplification of cDNA Ends (RACE method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.

  2. Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa

    OpenAIRE

    Jiang, Yanjuan; Qiu, Yuping; Hu, Yanru; Yu, Diqiu

    2016-01-01

    Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Recently, we have found that overexpressing AtWRKY57 enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance to transgenic rice (Oryza sativa) plants. The enhanced drought tolerance of transgenic rice was resulted from the lower water loss rates, cell death, malondiald...

  3. Survival and Growth of Epidemically Successful and Nonsuccessful Salmonella enterica Clones after Freezing and Dehydration

    DEFF Research Database (Denmark)

    Müller, Karoline; Aabo, Søren; Birk, Tina;

    2012-01-01

    Salmonella isolates were characterized as successful or nonsuccessful. We studied the survival and growth of stationary- and exponential-phase cells of these isolates after freezing for up to 336 days in minced meat. We also investigated survival and growth after dehydration at 10°C and 82% relative humidity...... temperature were less harmful to Salmonella than were low humidity and high temperature. Tolerance to adverse conditions was highest for Salmonella Infantis and one Salmonella Typhimurium U292 isolate and lowest for Salmonella Derby and one Salmonella Typhimurium DT170 isolate. Dehydration, in contrast to...... freezing, was differently tolerated by the Salmonella strains in this study, but tolerance to freezing and dehydration does not appear to contribute to the emergence of successful Salmonella clones....

  4. Facing freeze: social threat induces bodily freeze in humans.

    Science.gov (United States)

    Roelofs, Karin; Hagenaars, Muriel A; Stins, John

    2010-11-01

    Freezing is a common defensive response in animals threatened by predators. It is characterized by reduced body motion and decreased heart rate (bradycardia). However, despite the relevance of animal defense models in human stress research, studies have not shown whether social threat cues elicit similar freeze-like responses in humans. We investigated body sway and heart rate in 50 female participants while they were standing on a stabilometric force platform and viewing cues that were socially threatening, socially neutral, and socially affiliative (angry, neutral, and happy faces, respectively). Posturographic analyses showed that angry faces (compared with neutral faces and happy faces) induced significant reductions in body sway. In addition, the reduced body sway for angry faces was accompanied by bradycardia and correlated significantly with subjective anxiety. Together, these findings indicate that spontaneous body responses to social threat cues involve freeze-like behavior in humans that mimics animal freeze responses. These findings open avenues for studying human freeze responses in relation to various sociobiological markers and social-affective disorders. PMID:20876881

  5. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  6. Freeze Protection in Gas Holders

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Duursma, Gail

    In cold weather, the water seals of gasholders need protection from freez- ing to avoid compromising the seal. These holders have a large reservoir of “tank water” at the base which is below ground. At present freeze- protection is achieved by external heating of the seal water which...... is in a slotted channel called a cup. Electrical heating or circulation of heated tank water to the cup are examples of systems presently used. The tank water has a large thermal capacity and National Grid wishes to inves- tigate whether circulation of the tank water without external heating could provide...... sufficient energy input to avoid freezing. Only tanks in which the tank water is below ground are investigated in the report. The soil temperature under the reservoir at depth of 10m and lower is almost constant....

  7. Antifreeze proteins enable plants to survive in freezing conditions

    Indian Academy of Sciences (India)

    Ravi Gupta; Renu Deswal

    2014-12-01

    Overwintering plants secrete antifreeze proteins (AFPs) to provide freezing tolerance. These proteins bind to and inhibit the growth of ice crystals that are formed in the apoplast during subzero temperatures. Antifreeze activity has been detected in more than 60 plants and AFPs have been purified from 15 of these, including gymnosperms, dicots and monocots. Biochemical characterization of plant antifreeze activity, as determined by the high ice recrystallization inhibition (IRI) activities and low thermal hysteresis (TH) of AFPs, showed that their main function is inhibition of ice crystal growth rather than the lowering of freezing temperatures. However, recent studies showed that antifreeze activity with higher TH also exists in plants. Calcium and hormones like ethylene and jasmonic acid have been shown to regulate plant antifreeze activity. Recent studies have shown that plant AFPs bind to both prism planes and basal planes of ice crystals by means of two flat ice binding sites. Plant AFPs have been postulated to evolve from the OsLRR-PSR gene nearly 36 million years ago. In this review, we present the current scenario of plant AFP research in order to understand the possible potential of plant AFPs in generation of freezing-tolerant crops.

  8. Freeze-dried microarterial allografts

    International Nuclear Information System (INIS)

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic

  9. Meat Freezing Theories and Novel Freezing Technologies%肉类冷冻理论与冷冻新技术

    Institute of Scientific and Technical Information of China (English)

    金文刚

    2008-01-01

    Main meat freezing theories,including transition theory,glass transformation theory and ice crystallization theory,were introduced.Some novel freezing technologies such as high pressure freezing,ultrasonic freezing,ice nucleus bacteria freezing protein,cell alive system freezing and decompression freezing were also generally reviewed.

  10. [Arabidopsis thaliana accessions - a tool for biochemical and phylogentical studies].

    Science.gov (United States)

    Szymańska, Renata; Gabruk, Michał; Kruk, Jerzy

    2015-01-01

    Arabidopsis thaliana since a few decades is used as a model for biological and plant genetic research. Natural variation of this species is related to its geographical range which covers different climate zones and habitats. The ability to occupy such a wide area by Arabidopsis is possible due to its stress tolerance and adaptability. Arabidopsis accessions exhibit phenotypic and genotypic variation, which is a result of adaptation to local environmental conditions. During development, plants are subjected to various stress factors. Plants show a spectrum of reactions, processes and phenomena that determine their survival in these adverse conditions. The response of plants to stress involves signal detection and transmission. These reactions are different and depend on the stressor, its intensity, plant species and life strategy. It is assumed that the populations of the same species from different geographical regions acclimated to the stress conditions develop a set of alleles, which allow them to grow and reproduce. Therefore, the study of natural variation in response to abiotic stress among Arabidopsis thaliana accessions allows to find key genes or alleles, and thus the mechanisms by which plants cope with adverse physical and chemical conditions. This paper presents an overview of recent findings, tools and research directions used in the study of natural variation in Arabidopsis thaliana accessions. Additionally, we explain why accessions can be used in the phylogenetic analyses and to study demography and migration of Arabidopsis thaliana. PMID:26281359

  11. Time dependence of immersion freezing

    Directory of Open Access Journals (Sweden)

    A. Welti

    2012-05-01

    Full Text Available The time dependence of immersion freezing was studied for temperatures between 236 K and 243 K. Droplets with single immersed, size-selected 400 nm and 800 nm kaolinite particles were produced at 300 K, cooled down to supercooled temperatures typical for mixed-phase cloud conditions, and the fraction of frozen droplets with increasing residence time was detected. To simulate the conditions of immersion freezing in mixed-phase clouds we used the Zurich Ice Nucleation Chamber (ZINC and its vertical extension, the Immersion Mode Cooling chAmber (IMCA. We observed that the frozen fraction of droplets increased with increasing residence time in the chamber. This suggests that there is a time dependence of immersion freezing and supports the importance of a stochastic component in the ice nucleation process. The rate at which droplets freeze was observed to decrease towards higher temperatures and smaller particle sizes. Comparison of the laboratory data with four different ice nucleation models, three based on classical nucleation theory with different representations of the particle surface properties and one singular, suggest that the classical, stochastic approach combined with a distribution of contact angles is able to reproduce the ice nucleation observed in these experiments most accurately. Using the models to calculate the increase in frozen fraction at typical mixed-phase cloud temperatures over an extended period of time, yields an equivalent effect of −1 K temperature shift and an increase in time scale by a factor of ~10.

  12. Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing.

    Science.gov (United States)

    Yamada, Tomoyoshi; Kuroda, Katsushi; Jitsuyama, Yutaka; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2002-09-01

    In an effort to clarify the responses of a wide range of plant cells to freezing, we examined the responses to freezing of the cells of chilling-sensitive and chilling-resistant tropical and subtropical plants. Among the cells of the plants that we examined, those of African violet ( Saintpaulia grotei Engl.) leaves were most chilling-sensitive, those of hypocotyls in mungbean [ Vigna radiata (L.) R. Wilcz.] seedlings were moderately chilling-sensitive, and those of orchid [ Paphiopedilum insigne (Wallich ex Lindl.) Pfitz.] leaves were chilling-resistant, when all were chilled at -2 degrees C. By contrast, all these plant cells were freezing-sensitive and suffered extensive damage when they were frozen at -2 degrees C. Cryo-scanning electron microscopy (Cryo-SEM) confirmed that, upon chilling at -2 degrees C, both chilling-sensitive and chilling-resistant plant cells were supercooled. Upon freezing at -2 degrees C, by contrast, intracellular freezing occurred in Saintpaulia leaf cells, frost plasmolysis followed by intracellular freezing occurred in mungbean seedling cells, and extracellular freezing (cytorrhysis) occurred in orchid leaf cells. We postulate that chilling-related destabilization of membranes might result in the loss of the ability of the plasma membrane to act as a barrier against the propagation of extracellular ice in chilling-sensitive plant cells. We also examined the role of cell walls in the response to freezing using cells in which the plasma membrane had been disrupted by repeated freezing and thawing. In chilling-sensitive Saintpaulia and mungbean cells, the cells with a disrupted plasma membrane responded to freezing at -2 degrees C by intracellular freezing. By contrast, in chilling-resistant orchid cells, as well as in other cells of chilling-resistant and freezing-resistant plant tissues, including leaves of orchard grass ( Dactylis glomerata L.), leaves of Arabidopsis thaliana (L.) Heynh. and cortical tissues of mulberry ( Morus

  13. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    Science.gov (United States)

    Zhu, Jian-Kang; Quintero-Toscano, Francisco Javier; Pardo-Prieto, Jose Manuel; Qiu, Quansheng; Schumaker, Karen Sue; Ohta, Masaru; Zhang, Changqing; Guo, Yan

    2007-09-04

    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  14. Freeze out in heavy ion reactions

    International Nuclear Information System (INIS)

    In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity. Generally the conservation laws lead to a change of temperature, baryon density and flow velocity at freeze out. (author)

  15. When hot water freezes before cold

    OpenAIRE

    Katz, J. I.

    2006-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. They are concentrated ahead of the freezing front by zone refining in water that has not been heated, reduce the temperature of the freezing front, and thereby reduce the temperature gradient and heat flux, slowing the progress of the front. ...

  16. A Mathematical Model for Freeze-Drying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the experiments on freeze-drying carrot and potato slabs, the effects of some parameters, such as heating temperature and pressure on the freeze-drying process are examined. A simple model of freeze-drying is established to predict drying time and the mass variations of materials during the drying. The experimental results agree well with those calculated by the model.

  17. Combined infrared and freeze-drying.

    Science.gov (United States)

    The drying of the combined infrared (IR) and freeze-drying of food materials has been shown to be very rapid compared to regular freeze drying (FD). The resulting tissue structure of products processed with sequential infrared and freeze drying (SIRFD) tends to have higher crispness than those proce...

  18. Asymmetric Melting and Freezing Kinetics in Silicon.

    OpenAIRE

    Aziz, Michael; Tsao, Jeff Y.; Thompson, Michael O.; Peercy, Paul S.

    1986-01-01

    We report measurements of the melting velocity of amorphous Si relative to that of (100) crystalline Si. These measurements permit the first severe experimental test of theories describing highly nonequilibrium freezing and melting. The results indicate that freezing in Si is inherently slower than melting; this asymmetry can be interpreted in terms of an entropy-related reduction in the freezing rate.

  19. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature.

    Science.gov (United States)

    Wen, Xin; Wang, Sen; Duman, John G; Arifin, Josh Fnu; Juwita, Vonny; Goddard, William A; Rios, Alejandra; Liu, Fan; Kim, Soo-Kyung; Abrol, Ravinder; DeVries, Arthur L; Henling, Lawrence M

    2016-06-14

    The remarkable adaptive strategies of insects to extreme environments are linked to the biochemical compounds in their body fluids. Trehalose, a versatile sugar molecule, can accumulate to high levels in freeze-tolerant and freeze-avoiding insects, functioning as a cryoprotectant and a supercooling agent. Antifreeze proteins (AFPs), known to protect organisms from freezing by lowering the freezing temperature and deferring the growth of ice, are present at high levels in some freeze-avoiding insects in winter, and yet, paradoxically are found in some freeze-tolerant insects. Here, we report a previously unidentified role for AFPs in effectively inhibiting trehalose precipitation in the hemolymph (or blood) of overwintering beetle larvae. We determine the trehalose level (29.6 ± 0.6 mg/mL) in the larval hemolymph of a beetle, Dendroides canadensis, and demonstrate that the hemolymph AFPs are crucial for inhibiting trehalose crystallization, whereas the presence of trehalose also enhances the antifreeze activity of AFPs. To dissect the molecular mechanism, we examine the molecular recognition between AFP and trehalose crystal interfaces using molecular dynamics simulations. The theory corroborates the experiments and shows preferential strong binding of the AFP to the fast growing surfaces of the sugar crystal. This newly uncovered role for AFPs may help explain the long-speculated role of AFPs in freeze-tolerant species. We propose that the presence of high levels of molecules important for survival but prone to precipitation in poikilotherms (their body temperature can vary considerably) needs a companion mechanism to prevent the precipitation and here present, to our knowledge, the first example. Such a combination of trehalose and AFPs also provides a novel approach for cold protection and for trehalose crystallization inhibition in industrial applications. PMID:27226297

  20. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    Science.gov (United States)

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa. PMID:27272950

  1. AtHSPR may function in salt-induced cell death and ER stress in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Peng; Wang, Chongying

    2016-07-01

    Salt stress is a harmful and global abiotic stress to plants and has an adverse effect on all physiological processes of plants. Recently, we cloned and identified a novel AtHSPR (Arabidopsis thaliana Heat Shock Protein Related), which encodes a nuclear-localized protein with ATPase activity, participates in salt and drought tolerance in Arabidopsis. Transcript profiling analysis revealed a differential expression of genes involved in accumulation of reactive oxygen species (ROS), abscisic acid (ABA) signaling, stress response and photosynthesis between athspr mutant and WT under salt stress. Here, we provide further analysis of the data showing the regulation of salt-induced cell death and endoplasmic reticulum (ER) stress response in Arabidopsis and propose a hypothetical model for the role of AtHSPR in the regulation of the salt tolerance in Arabidopsis. PMID:27302034

  2. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  3. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

    Directory of Open Access Journals (Sweden)

    Fernando eAleman

    2014-09-01

    Full Text Available Potassium (K+ is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K+ acquisition by plant roots at low external K+ concentrations. Certain abiotic stress conditions such as salinity or Cs+-polluted soils may jeopardize plant K+ nutrition because HAK5-mediated K+ transport is inhibited by Na+ and Cs+. Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na+ tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs+ tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K+ and reduces the Ki values for Na+ and Cs+, suggesting that the F130 residue may contribute to the structure of the pore region involved in K+ binding. In addition, this mutation increases the Vmax for K+. All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter.

  4. Plant-microbes interactions : Implication of Phyllobacterium brassicacearum in Arabidopsis responses to water deficit

    OpenAIRE

    Bresson, Justine

    2013-01-01

    Plant growth promoting rhizobacteria (PGPR) can enhance plant performance and plant tolerance to environmental stresses. Arabidopsis thaliana is a useful organism to study the mechanisms involved in plant-PGPR interactions. We analyzed multiple plant traits related to growth dynamics, development and physiology in order to assess the effects of Phyllobacterium brassicacearum STM196 strain, isolated from the rhizosphere of oilseed rape, on Arabidopsis responses to well-defined soil water avail...

  5. Freeze Technology for Nuclear Applications - 13590

    Energy Technology Data Exchange (ETDEWEB)

    Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  6. Freezing resistance varies within the growing season and with elevation in high-Andean species of central Chile.

    Science.gov (United States)

    Sierra-Almeida, Angela; Cavieres, Lohengrin A; Bravo, León A

    2009-01-01

    Predicted increases in the length of the growing season as a result of climate change may more frequently expose high-elevation plants to severe frosts. Understanding the ability of these species to resist frosts during the growing season is essential for predicting how species may respond to changes in temperature regimes. Here, we assessed the freezing resistance of 24 species from the central Chilean Andes by determining their low temperature damage (LT(50)), ice nucleation temperature (NT), freezing point (FP) and freezing resistance mechanism (i.e. avoidance or tolerance). The Andean species were found to resist frosts from -8.2 to -19.5 degrees C during the growing season, and freezing tolerance was the most common resistance mechanism. Freezing resistance (LT(50)) varied within the growing season, decreasing towards the end of this period in most of the studied species. However, the FP showed the opposite trend. LT(50) increased with elevation, whilst FP was lower in plants from lower elevations, especially late in the growing season. Andean species have the potential to withstand severe freezing conditions during the growing season, and the aridity of this high-elevation environment seems to play an important role in determining this high freezing resistance. PMID:19210722

  7. Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Growth in the presence of sucrose was shown to confer to Arabidopsis thaliana (thale cress or mustard weed) seedlings, under conditions of in vitro culture, a high level of tolerance to the herbicide atrazine and to other photosynthesis inhibitors. This tolerance was associated with root-to-shoot transfer and accumulation of atrazine in shoots, which resulted in significant decrease of herbicide levels in the growth medium. In soil microcosms, application of exogenous sucrose was found to confer tolerance and capacity to accumulate atrazine in Arabidopsis thaliana plants grown on atrazine-contaminated soil, and resulted in enhanced decontamination of the soil. Application of sucrose to plants grown on herbicide-polluted soil, which increases plant tolerance and xenobiotic absorption, thus appears to be potentially useful for phytoremediation. - Exogenous sucrose treatment induces plant tolerance to photosystem-targeted herbicides and enhances phytoremediation of herbicide-polluted soil

  8. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    Science.gov (United States)

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  9. Atmospheric freeze drying assisted by power ultrasound

    OpenAIRE

    Santacatalina Bonet, Juan Vicente; Carcel Carrión, Juan Andrés; García Pérez, José Vicente; Mulet Pons, Antonio; Simal, S.

    2012-01-01

    [EN] Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that pur...

  10. Function test of radiopharmaceutical freeze dryer

    International Nuclear Information System (INIS)

    Freeze Dryer is the main tool for radiopharmaceutical production process such as drying of radiopharmaceutical kits. To increase research and development activity of radiopharmaceutical product needs new freeze dryer type of 7948030 Freezone-Stoppering Tray Dryer to obtain high quality radiopharmaceutical dry kit. The aim of this research is ensuring freeze dryer machine can be operated well and fulfilling quality assurance programme. The working principle of freeze dryer is freeze drying process. Liquid material that originally frozen then dried with a heating process at low temperature in the vacuum freeze dryer chamber and will result phorous lyophilized product. Therefore, there are some parameters on freeze dryer operation, such as temperature, pressure, and time. They will effect on quality of radiopharmaceutical kit products. This research try for dry DTPA kit with manual or auto method for ± 31 hours following the procedure of drying DTPA kit. The results showed that freeze dryer can function properly in accordance with the specifications that with manual methods, freezing process reached -40°C and -34 °C in the auto, the drying process at 15°C and 0.050 mbar on each method, and obtain dry product of DTPA kit powder (lyophilized). (author)

  11. Freeze dehydration of milk using microwave energy

    International Nuclear Information System (INIS)

    This paper presents the results of experimental studies on heat and mass transfer during a microwave freeze dehydration process. An experimental system and procedure was developed to freeze dry milk. A 2500-W microwave system with an appropriate wave guide was set up and instrumented, and a procedure was experimentally developed to obtain milk powder first by freezing milk and then dehydrating it at low pressure using microwave energy. An unsteady-state analysis was used to derive a one-dimensional mathematical model of the freeze dehydration process in a microwave electromagnetic field

  12. Issues in Freeze Drying of Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王维; 陈墨; 陈国华

    2012-01-01

    Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.

  13. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  14. The Recovery of Plastid Function Is Required for Optimal Response to Low Temperatures in Arabidopsis

    OpenAIRE

    Kindgren, Peter; Dubreuil, Carole; Strand, Åsa

    2015-01-01

    Cold acclimation is an essential response in higher plants to survive freezing temperatures. Here, we report that two independent mutant alleles of the H-subunit of Mg-chelatase, CHLH, gun5-1 and cch in Arabidopsis are sensitive to low temperatures. Plants were grown in photoperiodic conditions and exposed to low temperatures for short-and long-term periods. Tetrapyrrole biosynthesis was initially significantly inhibited in response to low temperature but recovered in wild type (Col-0), altho...

  15. Freezing and thawing of processed meat in an industrial freezing tunnel

    Directory of Open Access Journals (Sweden)

    Glaucio Antonio Marini

    2014-04-01

    Full Text Available Freezing is a commonly used preservation method in the meat industry. The understanding of the product behavior during the freezing process can assist in a better process management and quality control. This work reports the study of freezing and thawing of three types of processed meat in order to determine process parameters in an industrial forced‑air freezing tunnel at ‑30oC. Chicken sausages (frankfurter type, mortadela (bologna type and mechanically deboned chicken meat (MDCM were studied. Products were placed in several layers in corrugated cardboard boxes (CCB for sausages and mortadela. MDCM was placed in a nylon box. Temperature sensors were inserted in the products and the freezing and thawing curves were obtained. Freezing curves were used to determine the freezing time (tf, initial freezing point (Tf and final freezing point (T’m. Products placed in different layers in the CCB had significantly different freezing times, being the higher rates for products placed in more external layers than internal ones. The external layers of product were subjected to heat transfer by convection showing its importance to decrease freezing time. The results strongly suggest that products placed in different layers could have distinct quality properties and also play a key role in the freezing process efficiency.

  16. Mechanisms of deterioration of nutrients. [of freeze dried foods

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  17. Reprint of: The ins and outs of water dynamics in cold tolerant soil invertebrates.

    Science.gov (United States)

    Holmstrup, Martin

    2015-12-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. PMID:26615724

  18. Bioinspired Design: Magnetic Freeze Casting

    Science.gov (United States)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  19. Thermodynamics of freezing and melting.

    Science.gov (United States)

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  20. Freeze concentration of lime juice

    Directory of Open Access Journals (Sweden)

    Ampawan Tansakul

    2008-11-01

    Full Text Available The main objective of this research was to study the effects of processing conditions, i.e. cooling medium temperature (-6, -12 and -18C and scraper blade rotational speed (50, 100 and 150 rpm on the freeze concentration of lime juice. The initial soluble solid content of lime juice was 7.6 Brix. Results showed that soluble solid content of lime juice increased as cooling medium temperature decreased while scraper blade rotational speed increased. It was also found that the processing condition with -18˚C cooling medium temperature and 150 rpm rotational speed of the scraper blade was the best among all studied conditions, although the loss of the soluble solids with ice crystals during ice separation was relatively high at 35%.

  1. Influence of the freezing process on the properties of freeze-dried powders

    International Nuclear Information System (INIS)

    Freeze-drying is a favoured technique to prepare fine-grained ceramic precursor materials. Not only the comosition of starting solutions or of precipitated wet products but also the freezing process influence the properties of freeze-dried powders. The influence of the freezing rate is demonstrated for the granulometric properties and for the sinterability of tetragonal ZrO2. The effect of the freezing rate on the homogenity is shown for two multicomponent systems (doped zinc oxide and Bi2CaSr2Cu2Ox). (orig./MM)

  2. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida;

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study and the...... leather samples were treated in one of four ways: pre-treatment with Na2EDTA, impregnation with PEG 400, pre-treatment with Na2EDTA followed by impregnation with PEG 400 as well as no treatment. After the treatments, the leather samples were freeze-dried either by the conventional or by the alternative...

  3. Well-plate freeze-drying

    DEFF Research Database (Denmark)

    Trnka, Hjalte; Rantanen, Jukka; Grohganz, Holger

    2015-01-01

    Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well-plates as a...... high throughput platform for formulation screening of freeze-dried products. Methods: Model formulations consisting of mannitol, sucrose and bovine serum albumin were freeze-dried in brass well plates, plastic well plates and vials. Physical properties investigated were solid form, residual moisture......, cake collapse and reconstitution time. Results: Samples freeze-dried in well-plates had an acceptable visual cake appearance. Solid form analysis by high throughput X-ray powder diffraction indicated comparable polymorphic outcome independent of the container. The expected increase in moisture level...

  4. Food freezing with simultaneous surface dehydration: approximate prediction of freezing time

    Energy Technology Data Exchange (ETDEWEB)

    Campanone, Laura A.; Salvadori, Viviana O.; Mascheroni, Rodolfo H. [Centro de Investigacion Desarollo en Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, La Plata (Argentina); MODIAL, Facultad de Ingenieria, La Plata (Argentina)

    2005-03-01

    Freezing of unpackaged foods induces mass transfer in the form of surface ice sublimation, which in turn modifies heat transfer conditions. At present there are no simplified methods for predicting freezing times when surface dehydration occurs. This paper uses a previously developed model for the simulation of simultaneous heat and mass transfer during food freezing and storage to generate a complete set of predicted freezing times when dehydration occurs. Based on these data a simplified analytical method for the prediction of freezing time during freezing of unpackaged frozen foods was developed. The method accounts for product characteristics (shape, size and composition) and operating conditions (initial and refrigerant temperature, heat transfer coefficient, relative humidity). The prediction equation is very simple and results of its use - simulating usual freezing conditions for different products - shows very good accuracy when tested against the previously cited numerical model and all the available experimental data. (Author)

  5. Water balance in the sugarbeet root maggot, Tetanops myopaeformis, during long-term low-temperature storage and after freezing

    Science.gov (United States)

    The sugarbeet root maggot, Tetanops myopaeformis (Röder), can be stored in moist sand at 4 - 6°C for up to five years and is freeze tolerant. The majority of the stored larvae are in post-diapause quiescence and the rest of the larvae are in a multi-year diapause. The percent body mass of water and ...

  6. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  7. Exploring the Nature of Contact Freezing

    Science.gov (United States)

    Kiselev, A. A.; Hoffmann, N.; Duft, D.; Leisner, T.

    2012-12-01

    The freezing of supercooled water droplets upon contact with aerosol particles (contact nucleation of ice) is the least understood mechanism of ice formation in atmospheric clouds. Although experimental evidences suggest that some aerosols can be better IN in the contact than in the immersion mode (that is, triggering ice nucleation at higher temperature), no final explanation of this phenomena currently exists. On the other hand, the contact freezing is believed to be responsible for the enhanced rate of secondary ice formation occasionally observed in LIDAR measurements in the cold mixed phase clouds. Recently we have been able to show that the freezing of supercooled droplets electrodynamically levitated in the laminar flow containing mineral dust particles (kaolinite) is a process solely governed by a rate of collisions between the supercooled droplet and the aerosol particles. We have shown that the probability of droplet freezing on a single contact with aerosol particle may differ over an order of magnitude for kaolinite particles having different genesis and morphology. In this presentation we extend the study of contact nucleation of ice and compare the IN efficiency measured for DMA-selected kaolinite, illite and hematite particles. We show that the freezing probability increases towards unity as the temperature decreases and discuss the functional form of this temperature dependence. We explore the size dependence of the contact freezing probability and show that it scales with the surface area of the particles, thus resembling the immersion freezing behavior. However, for all minerals investigated so far, the contact freezing has been shown to dominate over immersion freezing on the short experimental time scales. Finally, based on the combined ESEM and electron microprobe analysis, we discuss the significance of particle morphology and variability of chemical composition on its IN efficiency in contact mode.

  8. Innovation in monitoring food freeze drying

    OpenAIRE

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello

    2011-01-01

    This paper aims to extend the field of application of the pressure rise test technique, from freeze drying of pharmaceutical or biological products in vials to freeze drying of liquids or foodstuff in trays. The proposed method, which is based on DPE+ algorithm, has been adapted to monitor the drying of liquids in trays and of individually quick frozen products. Examples of results obtained in a small-scale plant wherein such a method was used for monitoring the freeze drying of spinach sampl...

  9. Stress promotes Arabidopsis - Piriformospora indica interaction.

    Science.gov (United States)

    Vahabi, Khabat; Dorcheh, Sedigheh Karimi; Monajembashi, Shamci; Westermann, Martin; Reichelt, Michael; Falkenberg, Daniela; Hemmerich, Peter; Sherameti, Irena; Oelmüller, Ralf

    2016-05-01

    The endophytic fungus Piriformospora indica colonizes Arabidopsis thaliana roots and promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. Here we demonstrate that the benefits for the plant increase when the two partners are co-cultivated under stress (limited access to nutrient, exposure to heavy metals and salt, light and osmotic stress, pathogen infection). Moreover, physical contact between P. indica and Arabidopsis roots is necessary for optimal growth promotion, and chemical communication cannot replace the physical contact. Lower nutrient availability down-regulates and higher nutrient availability up-regulates the plant defense system including the expression of pathogenesis-related genes in roots. High light, osmotic and salt stresses support the beneficial interaction between the plant and the fungus. P. indica reduces stomata closure and H2O2 production after Alternaria brassicae infection in leaves and suppresses the defense-related accumulation of the phytohormone jasmonic acid. Thus, shifting the growth conditions toward a stress promotes the mutualistic interaction, while optimal supply with nutrients or low stress diminishes the benefits for the plant in the symbiosis. PMID:27167761

  10. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  11. Freezing mammalian cells for production of biopharmaceuticals.

    Science.gov (United States)

    Seth, Gargi

    2012-03-01

    Cryopreservation techniques utilize very low temperatures to preserve the structure and function of living cells. Various strategies have been developed for freezing mammalian cells of biological and medical significance. This paper highlights the importance and application of cryopreservation for recombinant mammalian cells used in the biopharmaceutical industry to produce high-value protein therapeutics. It is a primer that aims to give insight into the basic principles of cell freezing for the benefit of biopharmaceutical researchers with limited or no prior experience in cryobiology. For the more familiar researchers, key cell banking parameters such as the cell density and hold conditions have been reviewed to possibly help optimize their specific cell freezing protocols. It is important to understand the mechanisms underlying the freezing of complex and sensitive cellular entities as we implement best practices around the techniques and strategies used for cryopreservation. PMID:22226818

  12. Snow Melting and Freezing on Older Townhouses

    DEFF Research Database (Denmark)

    Nielsen, Anker; Claesson, Johan

    2011-01-01

    The snowy winter of 2009/2010 in Scandinavia prompted many newspaper articles on icicles falling from buildings and the risk this presented for people walking below. The problem starts with snow melting on the roof due to heat loss from the building. Melt water runs down the roof and some...... of it will freeze on the overhang. The rest of the water will either run off or freeze in gutters and downpipes or turn into icicles. This paper describes use of a model for the melting and freezing of snow on roofs. Important parameters are roof length, overhang length, heat resistance of roof and overhang......, outdoor and indoor temperature, snow thickness and thermal conductivity. If the snow thickness is above a specific limit value – the snow melting limit- some of the snow will melt. Another interesting limit value is the dripping limit. All the melt water will freeze on the overhang, if the snow thickness...

  13. The Influence of Freezing Drizzle on Wire Icing during Freezing Fog Events

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yue; NIU Shengjie; L(U) Jingjing

    2013-01-01

    Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness,fog,and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (30°17′N,109°16′E),Hubei Province,China.The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period,while the rate was only 0.4 mm h-1 without sleet and freezing drizzle.The rain intensity,liquid water content (LWC),and diameter of freezing drizzle stayed at low values.The development of microphysical properties of fog was suppressed in the freezing drizzle period.A threshold diameter (Dc) was proposed to estimate the influence of freezing drizzle on different size ranges of fog droplets.Fog droplets with a diameter less than Dc would be affected slightly by freezing drizzle,while larger fog droplets would be affected significantly.Dc had a correlation with the average rain intensity,with a correlation coefficient of 0.78.The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak,while they became poor positive correlations,or even negative correlations during freezing drizzle period.The direct contribution of freezing drizzle to ice thickness was about 14.5%.Considering both the direct and indirect effects,we suggest that freezing drizzle could act as a “catalyst” causing serious icing conditions.

  14. Recombination of vesicles during freeze-drying

    OpenAIRE

    Cabane, Bernard; Blanchon, Sylvène; Neves, Carole

    2006-01-01

    Concentrated dispersions of nanometric lipid vesicles (mean diameter 20 nm) in water/maltose solutions have been freeze-dried, and then redispersed in water, yielding again dispersions of lipid vesicles. At each stage of the freeze-drying process, the organization of the vesicles in the dispersion and their size distribution were examined through Small Angle Neutron Scattering and Gel Permeation Chromatography. It was found that the osmotic deswelling of the vesicles caused them to recombine ...

  15. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism are coordina...... of these amino acids for targeted stress-tolerant enzyme bioengineering.......Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...

  16. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...

  17. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations

    Directory of Open Access Journals (Sweden)

    R. M. Nagare

    2012-02-01

    Full Text Available There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost. Soil water movement towards the freezing front (from warmer to colder regions was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost.

  18. The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings

    Institute of Scientific and Technical Information of China (English)

    Luo Lei; Lin Shan-zhi; Zheng Hui-quan; Lei Yang; Zhang Qian; Zhang Zhi-yi

    2007-01-01

    We investigated the changes in the contents of H2O2, malonaldehyde (MDA) and endogenous antioxidants, the activities of protective enzymes and some critical enzymes involved in the ascorbate-glutathione (ASA-GSH) cycle as well as freezing resistance(expressed as LT50) and correlations mentioned above, in detail using Populus suaveolens cuttings. The purpose was to explore the physiological mechanism of the enhancement of freezing resistance induced by freezing acclimation at -20℃, and to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). And it increased the contents of reduced ascorbate(ASA), reduced glutathione (GSH), dehydroascorbate (DHA) and oxidized glutathione (GSSG). However, H2O2 and MDA contents and LT50 of cuttings were decreased. LT50 in cuttings was found to be closely correlated to the levels of SOD, POD, CAT, APX,DHAR, MDAR, GR, H2O2, MDA, ASA, GSH, DHA and GSSG during freezing acclimation. This suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation may relate to the distinct increase for the levels of SOD, POD, CAT,APX, DHAR, MDAR,GR,ASA, GSH, DHA, and GSSG. In addition, the observed levels of APX, DHAR, MDAR, GR, ASA, DHA,GSH and GSSG were higher than those of SOD, POD and CAT during freezing acclimation. It indicated that a higher capacity of the ASA-GSH cycle is required for H2O2 detoxification, and growth and development of cuttings. Based on the obtained results, it can be concluded that the ASA-GSH cycle plays an important role in enhancement of freezing resistance of P. suaveolens cuttings during freezing acclimation.

  19. Study on Freeze-drying Process of Frozen Poached Meatballs

    OpenAIRE

    Wanren Chen; Hua Li; Xiang Gui

    2015-01-01

    In this study, the technology of freeze-drying of poached meatballs was studied. Also, the effect of the pre-freezing time, drying temperature and the loadage of per unit on drying rate and rehydration ratio was investigated. the technological conditions of freeze-drying of poached meatballs and the parameters of the industrial process have been optimized by orthogonal tests. The results shows that the optimical conditions of freeze-drying poached meatballs are: pre-freezing temperature is -6...

  20. Temperatura letal de diferentes plantas frutíferas tropicais Freezing points of various tropical fruits

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Sentelhas

    1996-01-01

    Full Text Available Com o objetivo de conhecer melhor o efeito das baixas temperaturas sobre as frutíferas de clima tropical e possibilitar o desenvolvimento de novas variedades, mais tolerantes, simularam-se geadas em câmaras frigoríficas para a determinação da temperatura letal de diferentes plantas frutíferas tropicais. Os resultados permitiram classificar as espécies em três grupos: Grupo I - moderada tolerância (-4°C: condessa (Annona reticulata; goiaba (Psidium guajava; acerola (Malpighia glabra e abacate (Persea americana var. Geada; Grupo II - média tolerância (-5°C: conde (A. squamosa; araticum-mirim (Rollinea spp.; anona-do-brejo (A. glabra; falsa-gravioleira (A. montana; araticum-de-folha-miúda (R. ermaginata e maracujá-amarelo (Passiflora edulis f. flavicarpa; Grupo III - acentuada tolerância (-6°C: cherimóia (A. cherimola.The effect of low temperature on tropical fruits was studied in order to guide future developments of frost resistant varieties. Simulations of frost were done in a freezing chamber to determine the freezing points of various fruit plants. On the basis of the results the studied species can be classified into three groups according to their tolerance to low temperatures: Group I - little tolerance (-4°C: Annona reticulata; Psidium guajava; Malpighia glabra and Persea americana (var. Geada; Group II - medium tolerance (-5°C: A. squamosa; Rollinea spp.; A. glabra; A. montana; R. ermaginata and Passiflora edulis f. flavicarpa; Group III - high tolerance (-6°C: A. cherimola.

  1. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  2. Advantages of liquid nitrogen freezing of Penaeus monodon over conventional plate freezing

    OpenAIRE

    Chakrabarti, R; Chaudhury, D.R.

    1987-01-01

    Liquid nitrogen frozen products are biochemically and organoleptically superior to conventional plate frozen products but beneficial effect of liquid nitrogen freezing over conventional plate freezing can exist only up to 59 days at a commercial storage temperature of -18°C.

  3. Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson’s Disease with Freezing of Gait

    OpenAIRE

    Elke Heremans; Evelien Nackaerts; Griet Vervoort; Sarah Vercruysse; Sanne Broeder; Carolien Strouwen; Stephan P Swinnen; Alice Nieuwboer

    2015-01-01

    Background Recent studies show that besides freezing of gait (FOG), many people with Parkinson's disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing. Objective To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait. Metho...

  4. Female Fertility: Is it Safe to "Freeze?"

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-01-01

    Full Text Available Objective: To evaluate the safety and risk of cryopreservation in female fertility preservation. Data sources: The data analyzed in this review were the English articles from 1980 to 2013 from journal databases, primarily PubMed and Google scholar. The criteria used in the literature search show as following: (1 human; embryo; cryopreservation/freezing/vitrification, (2 human; oocyte/immature oocyte; cryopreservation/ freezing/vitrification, (3 human; ovarian tissue transplantation; cryopreservation/freezing/vitrification, (4 human; aneuploidy/DNA damage/epigenetic; cryopreservation/freezing/vitrification, and (5 human; fertility preservation; maternal age. Study selection: The risk ratios based on survival rate, maturation rate, fertilization rate, cleavage rate, implantation rate, pregnancy rate, and clinical risk rate were acquired from relevant meta-analysis studies. These studies included randomized controlled trials or studies with one of the primary outcome measures covering cryopreservation of human mature oocytes, embryos, and ovarian tissues within the last 7 years (from 2006 to 2013, since the pregnancy rates of oocyte vitrification were significantly increased due to the improved techniques. The data involving immature oocyte cryopreservation obtained from individual studies was also reviewed by the authors. Results: Vitrifications of mature oocytes and embryos obtained better clinical outcomes and did not increase the risks of DNA damage, spindle configuration, embryonic aneuploidy, and genomic imprinting as compared with fresh and slow-freezing procedures, respectively. Conclusions: Both embryo and oocyte vitrifications are safe applications in female fertility preservation.

  5. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  6. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    Directory of Open Access Journals (Sweden)

    Ferreira Célia

    2010-11-01

    Full Text Available Abstract Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry.

  7. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  8. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  9. Reproducing Black's experiments: freezing point depression and supercooling of water

    International Nuclear Information System (INIS)

    We carried out two historical experiments referred to by Joseph Black, one on freezing mixtures of salted water with ice and another on freezing supercooled pure water by a small disturbance. The results confirm thermodynamical predictions for the depression of the freezing point of salted water and for the latent heat of freezing of supercooled water respectively, which came after Black. The depression of the freezing point can hardly be fitted in the framework of the caloric theory of heat, which was taken for granted by Black, and the instantaneous freezing of supercooled water also poses some difficulties for that theory. (author)

  10. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    Science.gov (United States)

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  11. Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics

    OpenAIRE

    du Toit, Elloise; Vesterlund, Satu; Gueimonde Fernández, Miguel; Salminen, Seppo

    2013-01-01

    The production of viable functional probiotics presupposes stability of strain features in the final product. We evaluated the impact of acquisition of heat-tolerance and subsequent freeze-drying on the adhesion properties of Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium lactis Bb-12 and Bifidobacterium animalis IF20/1 and on their ability to inhibit the adhesion of pathogens in a mucus model. Both fresh and freeze-dried cultures were evaluated. Significant differen...

  12. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  13. FREEZE-FRAME: Fast Action Stress Relief.

    Science.gov (United States)

    Childre, Doc Lew

    Recent scientific research has proven that we can, not only manage our stress, we can even prevent it. Ways to achieve stress management are presented in this book. It details a method called FREEZE-FRAME, a process in which individuals mentally stop the chaos that surrounds them and then calmly contemplate their situation. The text opens with an…

  14. Theoretical prediction of 'optimal' freezing programmes

    NARCIS (Netherlands)

    Woelders, H.; Chaveiro, A.

    2004-01-01

    We have developed a quantitative description of the osmotic behaviour of cells during freezing without a presupposed value of the cooling rate. Instead, at all times the intracellular supercooling is maximised provided that it does not exceed a predetermined value 'p' (e.g., 2°C). This should preclu

  15. Sysnthesis of powders by freeze-drying

    International Nuclear Information System (INIS)

    The freeze-drying method of synthesizing powders of the superconducting oxide YBa2Cu3O7-δ is described. This process produces homogeneous, submicron powders of high purity. The effects of salt selection, solution concentration and pH on the process are described. Some evaluation of the sintering behavior and the effects on critical current density are included

  16. Anomalous freezing behavior of nanoscale liposomes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Kumar, P. B. S.; Laradji, M.

    2012-01-01

    The effect of the finite size of one-component liposomes on their phase behavior is investigated via simulations of an implicit-solvent model of self-assembled lipid bilayers. We found that the high curvature of nanoscale liposomes has a significant effect on their freezing behavior. While the lo...

  17. Freeze-thaw induced gelation of alginates.

    Science.gov (United States)

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry. PMID:27185114

  18. Aversive life events enhance human freezing responses.

    Science.gov (United States)

    Hagenaars, Muriel A; Stins, John F; Roelofs, Karin

    2012-02-01

    In the present study, we investigated the effect of prior aversive life events on freezing-like responses. Fifty healthy females were presented neutral, pleasant, and unpleasant images from the International Affective Picture System while standing on a stabilometric platform and wearing a polar band to assess body sway and heart rate. In the total sample, only unpleasant pictures elicited reduced body sway and reduced heart rate (freezing). Moreover, participants who had experienced 1 or more aversive life events showed greater reductions in heart rate for unpleasant versus pleasant pictures than those who had experienced no such event. In addition, relative to no-event participants, single-event participants showed reduced body sway to unpleasant pictures, while multiple-event participants showed reduced body sway in response to all picture categories. These results indicate that aversive life events affect automatic freezing responses and may indicate the cumulative effect of multiple trauma. The experimental paradigm presented is a promising method to study freezing as a primary defense response in trauma-related disorders. PMID:21767043

  19. Directional freezing of sperm and associated derived technologies.

    Science.gov (United States)

    Arav, Amir; Saragusty, Joseph

    2016-06-01

    Directional freezing has now completed 30 years of development since it was first introduced to cryobiology. In the field of sperm cryopreservation, directional freezing has been shown to be advantageous over slow freezing for numerous domestic and wildlife species. In particular, it was shown that freezing of large volume is possible. Furthermore, double freezing of sperm and freezing of sex-sorted sperm are possible and became the routine in the sex sorted sperm industry. In wild animals, our labs and others showed that sperm from a wide range of terrestrial and aquatic species can be successfully cryopreserved using directional freezing. Finally, we will describe for the first time the successful freeze-drying of human sperm in an aseptic method. Using a device that produces clean liquid air, we froze human sperm in small droplets and then dried them in a bench top lyophilizer that was sterilized prior to use. More than 80% of DNA integrity was found after rehydration. PMID:26879097

  20. Nanomaterials for efficiently lowering the freezing point of anti-freeze coolants.

    Science.gov (United States)

    Hong, Haiping; Zheng, Yingsong; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water/50% anti-freeze coolant (PAC) or 50% water/50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g., NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants. PMID:18019146

  1. Female Fertility: Is it Safe to "Freeze?"

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Li-Ying Yan; Xu Zhi; Jie Yan; Jie Qiao

    2015-01-01

    Objective:To evaluate the safety and risk of cryopreservation in female fertility preservation.Data sources:The data analyzed in this review were the English articles from 1980 to 2013 from journal databases,primarily PubMed and Google scholar.The criteria used in the literature search show as following:(1) human; embryo; cryopreservation/freezing/vitrification,(2) human; oocyte/immature oocyte; cryopreservation/freezing/vitrification,(3) human; ovarian tissue transplantation; cryopreservation/ freezing/vitrification,(4) human; aneuploidy/DNA damage/epigenetic; cryopreservation/freezing/vitrification,and (5) human; fertility preservation; maternal age.Study selection:The risk ratios based on survival rate,maturation rate,fertilization rate,cleavage rate,implantation rate,pregnancy rate,and clinical risk rate were acquired from relevant meta-analysis studies.These studies included randomized controlled trials or studies with one of the primary outcome measures covering cryopreservation of human mature oocytes,embryos,and ovarian tissues within the last 7 years (from 2006 to 2013,since the pregnancy rates of oocyte vitrification were significantly increased due to the improved techniques).The data involving immature oocyte cryopreservation obtained from individual studies was also reviewed by the authors.Results:Vitrifications of mature oocytes and embryos obtained better clinical outcomes and did not increase the risks of DNA damage,spindle configuration,embryonic aneuploidy,and genomic imprinting as compared with fresh and slow-freezing procedures,respectively.Conclusions:Both embryo and oocyte vitrifications are safe applications in female fertility preservation.

  2. Intensification of the freeze drying process by the control of both freezing and primary drying steps

    OpenAIRE

    Pisano, Roberto; Oddone, Irene; Barresi, Antonello

    2013-01-01

    The problem of optimization of freeze-drying cycles is addressed, with emphasis in both freezing and primary drying steps. In particular, this study shows that the control of the nucleation event produces more uniform batches (as ice nucleation is induced in all the vials of batch almost at the same time and temperature) and allows a marked reduction in the duration of the optimized cycle (if compared to cycles carried out with conventional stochastic nucleation)

  3. Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying

    OpenAIRE

    Castro, H. P.; Teixeira, P. M.; Kirby, R

    1997-01-01

    The mechanism of inactivation of Lactobacillus bulgaricus due to freeze drying was investigated. Cells were freeze-dried in skim milk powder, maltodextrin, glycerol, trehalose and water. Results are presented confirming previous authors’observations regarding membrane damage during freeze drying. In an attempt to define more clearly the nature of this damage, further experiments were carried out. Results show that following freeze drying changes occur in the unsaturated: saturated fatty acid ...

  4. ENHANCING SOLUBILITY AND DISSOLUTION OF INDOMETHACIN BY FREEZE DRYING

    OpenAIRE

    Getyala Anil; Dixit Mudit; Kulkarni Parthasarathi Keshavarao; Naga Vamsi Krishna; Devabhaktuni Lavanya

    2011-01-01

    Indomethacin, an anti-inflammatory drug, exhibits poor water solubility and flow properties. Freeze dried crystals were prepared by freeze drying method. Solvent composition for freeze drying chosen were isopropyl 10 ml of alcohol: water (50:50 %) mixture. Crystallization medium used for freeze drying of indomethacin consisted of isopropyl alcohol: water in the ratio of 50:50, respectively. Spherical agglomerates were characterized by DSC, IR, XRD AND SEM. Micromeritic, mechanical property, s...

  5. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1

    OpenAIRE

    Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart Roy; Neil Shirley; Andrew Jacobs; Alexander Johnson; Mark Tester

    2010-01-01

    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na(+)) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na(+) exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored...

  6. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soowhan; Mench, M.M. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea); Ahn, Byung Ki [Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea)

    2008-04-15

    In this work, the effects of properties of diffusion media (DM) (stiffness, thickness and micro-porous layer (MPL)) on the physical damage of membrane electrode assembly (MEA) subjected to freeze/thaw cycling were studied. Pressure uniformity of the diffusion media onto the catalyst layer (CL) was determined to be a key parameter to mitigate freeze-induced physical damage. Stiffer diffusion media, enabling more uniform compression under the channels and lands, can mitigate surface cracks, but flexible cloth diffusion media experienced severe catalyst layer surface damage. The thickness of the diffusion media and existence of a micro-porous layer were not observed to be major factors to mitigate freeze-damage when the catalyst layer is in contact with liquid. Interfacial delamination between diffusion media and catalyst layers, but not between the catalyst layer and membrane, was observed. This permanent deformation of the stiff diffusion media in the channel locations as well as fractures of carbon fibers increased electrical resistance, and may increase water flooding, resulting in reduced longevity and operational losses. Although use of a freeze-tolerable MEA design (negligible virgin cracked catalyst layers with thinner reinforced membrane) [S. Kim, M.M. Mench, J. Power Sources, in press] with stiff diffusion media can reduce the freeze-damage in the worst case scenario test condition of direct liquid contact, extensive irreversible damage (diffusion media/catalyst layer interfacial delamination) was not completely prevented. In addition to proper material selection, liquid water contact with the catalyst layer should be removed prior to shutdown to a frozen state to permit long-term cycling damage and facilitate frozen start. (author)

  7. Objective video quality assessment method for freeze distortion based on freeze aggregation

    Science.gov (United States)

    Watanabe, Keishiro; Okamoto, Jun; Kurita, Takaaki

    2006-01-01

    With the development of the broadband network, video communications such as videophone, video distribution, and IPTV services are beginning to become common. In order to provide these services appropriately, we must manage them based on subjective video quality, in addition to designing a network system based on it. Currently, subjective quality assessment is the main method used to quantify video quality. However, it is time-consuming and expensive. Therefore, we need an objective quality assessment technology that can estimate video quality from video characteristics effectively. Video degradation can be categorized into two types: spatial and temporal. Objective quality assessment methods for spatial degradation have been studied extensively, but methods for temporal degradation have hardly been examined even though it occurs frequently due to network degradation and has a large impact on subjective quality. In this paper, we propose an objective quality assessment method for temporal degradation. Our approach is to aggregate multiple freeze distortions into an equivalent freeze distortion and then derive the objective video quality from the equivalent freeze distortion. Specifically, our method considers the total length of all freeze distortions in a video sequence as the length of the equivalent single freeze distortion. In addition, we propose a method using the perceptual characteristics of short freeze distortions. We verified that our method can estimate the objective video quality well within the deviation of subjective video quality.

  8. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  9. COMPREHENSIVE DESIGN METHOD OF FREEZE WALL AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    CHENXiangsheng

    1995-01-01

    Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domke(1915) formula based on frozen soil strength has widely been used for designing freeze wall thickness. However, it can not ensure the stability of freeze wall, nor guarantee the safety of shaft construction as frozen depth increase in unstable water bearing strata. F.A.Auld (1985, 1988) presented a design method of freeze wall, which is on the basis of strength and stability, together with deformation of freeze wall.He combined deformation of freeze wall, lining and deformation of freeze tube to set up a comprehensive design method for freeze wall. This paper, according to the practice in China, describes a comprehensive design method for deep freeze wall, considering influence of excavation rate of advance, unsupported length of freeze wall and the sump state on inward deformation of freeze wall, and the allowable pipe deformation caused by inward deformation of freeze wall. Finally, successful application of this method to the large scale coal mine-Jining No.2 Mine in Shandong Province of China, is presented.It saved much investment compared with F.A.Auld's design for the same mine on behalf of Shell Coal International.

  10. Genetics of winter wheat response to two freezing treatments

    Science.gov (United States)

    The inheritance of the ability of winter wheat plants to survive two kinds of freezing stress was investigated in a five-parent diallel cross. Plants were acclimated at +4°C for 5 wks and frozen with or without a –3°C, 16-hour pre-freezing (PF) period prior to freezing to damaging temperatures. The ...

  11. 7 CFR 58.620 - Freezing and packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  12. Comparing contact and immersion freezing from continuous flow diffusion chambers

    Science.gov (United States)

    Nagare, Baban; Marcolli, Claudia; Welti, André; Stetzer, Olaf; Lohmann, Ulrike

    2016-07-01

    Ice nucleating particles (INPs) in the atmosphere are responsible for glaciating cloud droplets between 237 and 273 K. Different mechanisms of heterogeneous ice nucleation can compete under mixed-phase cloud conditions. Contact freezing is considered relevant because higher ice nucleation temperatures than for immersion freezing for the same INPs were observed. It has limitations because its efficiency depends on the number of collisions between cloud droplets and INPs. To date, direct comparisons of contact and immersion freezing with the same INP, for similar residence times and concentrations, are lacking. This study compares immersion and contact freezing efficiencies of three different INPs. The contact freezing data were obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH) using 80 µm diameter droplets, which can interact with INPs for residence times of 2 and 4 s in the chamber. The contact freezing efficiency was calculated by estimating the number of collisions between droplets and particles. Theoretical formulations of collision efficiencies gave too high freezing efficiencies for all investigated INPs, namely AgI particles with 200 nm electrical mobility diameter, 400 and 800 nm diameter Arizona Test Dust (ATD) and kaolinite particles. Comparison of freezing efficiencies by contact and immersion freezing is therefore limited by the accuracy of collision efficiencies. The concentration of particles was 1000 cm-3 for ATD and kaolinite and 500, 1000, 2000 and 5000 cm-3 for AgI. For concentrations refer to a contact nucleation process that is enhanced compared to immersion freezing due to the position of the INP on the droplet, and we discriminate it from collisional contact freezing, which assumes an enhancement due to the collision of the particle with the droplet. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber Immersion Mode Cooling ch

  13. Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions

    Directory of Open Access Journals (Sweden)

    Kalaji Hazem M.

    2016-06-01

    Full Text Available Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Salinity is one of the main abiotic stressors which affects plant growth through various physiological processes such as photosynthesis. The aim of this work is to study the impact of salinity stress on Arabidopsis plants by evaluating plant growth rate and photosynthetic activity, while investigating the influence of effective microorganisms (EMs with the objective to determine if EMs could alleviate the induced stress affiliated with salinity. Results showed that salinity negatively affects photosynthesis efficiency in Arabidopsis plants based on the data obtained from the measured chlorophyll fluorescence parameters. Additionally, application of EMs enhanced plant tolerance to counteract the induced stress. Effective microorganisms concentration of 10 mL/L suggested to bring about the best results. This work advocates, that quantum efficiency of photosystem II (PSII is a reliable indicator for tolerance in Arabidopsis plants to salinity stress, the impact of which may be softened by the EMs.

  14. The effects of freeze drying and freeze drying additives on the prothrombin time and the international sensitivity index.

    OpenAIRE

    Poller, L; Keown, M; Shepherd, S A; Shiach, C R; Tabeart, S

    1999-01-01

    AIM: To determine whether freezing, freeze drying protective additives, or freeze drying of plasma samples from patients on coumarin treatment and from normal individuals affects prothrombin times or the international sensitivity index (ISI) calibration. METHODS: The effect of the addition of the protective additives singly and combined on the prothrombin time of coumarin samples and normal samples before and after freeze drying was observed using high and low ISI reference thromboplastins. I...

  15. Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus.

    Science.gov (United States)

    Nam, Moon; Koh, Serry; Kim, Sung Uk; Domier, Leslie L; Jeon, Jae Heung; Kim, Hong Gi; Lee, Su-Heon; Bent, Andrew F; Moon, Jae Sun

    2011-11-01

    Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways. PMID:22057987

  16. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  17. Hydraulic Fracture Test to Determine Aggregate Freeze-Thaw Durability

    OpenAIRE

    Desta, Belayneh; Whiting, Nancy M; Snyder, Mark B

    2014-01-01

    The freeze-thaw durability of carbonate aggregates can vary greatly from durable to highly susceptible to freeze-thaw distress. Using nondurable aggregate in concrete pavement exposed to freeze-thaw cycles may lead to serious distress and greatly decrease the pavement’s service life. The testing needed to identify freeze-thaw durable aggregates can take several months to complete. The main objective of this study was to develop a reliable, quick test method for determining the freeze-thaw res...

  18. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  19. Ground freezing for containment of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  20. SOME STUDIES ON FREEZE - DRIED ARTERIES

    Directory of Open Access Journals (Sweden)

    H. Sadeghi - Nejad

    1970-01-01

    Full Text Available (1 The secondary stage of freeze - drying, particularly the last day, is not important and I suggest the whole procedure is reduced to three days, the primary stage occupying two of these. (2 The mothod used obtains the satisfactory low level of residual moisture. RESUME (3 Experiments on reconstitution with saline and distilled water show that distilled water is more satisfactory and I suggest that saline should not he used.

  1. Liquid Freeze-Thaw--EAC Presentation 2004

    OpenAIRE

    Alleman, James E.; Schmidt, Jeff

    2004-01-01

    Resource recovery is one of the most crucial aspects of long-term survival in interplanetary space travel, and a key aspect of resource recovery lies in urine processing for a potable source of water. Currently, there is a need for an independent, energetically efficient process that achieves a high efficiency of water recovery without a high degree of cleaning problems. Through research initiatives, LiFT technology has taken several forms in the freeze-thaw and in the sublimation regime. ...

  2. Scaling-Up Eutectic Freeze Crystallization

    OpenAIRE

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids) and water from a wide variety of aqueous process streams. Using EFC, processes producing large quantities of saline solutions could be carried out in an ecologically and economically attractive way. ...

  3. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    OpenAIRE

    Zhang, Nana; Tonsor, Stephen J; Traw, M. Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevationa...

  4. Genome wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis

    OpenAIRE

    Bac-Molenaar, Johanna A.; Granier, Christine; Keurentjes, Joost J.B.; Vreugdenhil, Dick

    2016-01-01

    Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory n...

  5. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    OpenAIRE

    Francesco Dovana; Marco Mucciarelli; Maurizio Mascarello; Anna Fusconi

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 i...

  6. Freezing of water droplets colliding with kaolinite particles

    Directory of Open Access Journals (Sweden)

    E. A. Svensson

    2009-01-01

    Full Text Available Contact freezing of single supercooled water droplets colliding with kaolinite dust particles has been investigated. The experiments were performed with droplets levitated in an electrodynamic balance at temperatures from 240 to 268 K. Under dry conditions freezing was observed to occur below 249 K, while a freezing threshold of 267 K was observed at high relative humidity. The effect of relative humidity is attributed to an influence on the contact freezing process for the kaolinite-water droplet system, and it is not related to the lifetime of the droplets in the electrodynamic balance. Freezing probabilities per collision were derived assuming that collisions at the lowest temperature employed had a probability of unity. The data recorded at high humidity should be most relevant to atmospheric conditions, and the results indicate that parameterizations currently used in modelling studies to describe freezing rates are appropriate for kaolinite aerosol particles. Mechanisms for contact freezing are briefly discussed.

  7. Freezing enhancement around a horizontal tube using copper foil disks

    Science.gov (United States)

    Sugawara, M.; Komatsu, Y.; Takahashi, Y.; Beer, H.

    2011-12-01

    Freezing of water saturated in circumferentially arranged copper foils around a cooling tube is studied experimentally and numerically. The copper foils need not to be welded to the cooling tube but are merely placed around the tube so that the freezing system is easily arranged. Copper foils greatly enhance freezing compared with that of a bare tube, even with a small copper volume fraction in the freezing system. Numerical calculations by means of a continuum model predict well freezing enhancement. The effect of the copper foils is also considered numerically for the melting process in order to compare with freezing. It is seen that copper foils contribute more to the melting enhancement than to the increase of the freezing rate.

  8. Freeze-dried tungsten heavy alloys

    International Nuclear Information System (INIS)

    Tungsten heavy alloy powders were produced from freeze-dried aqueous solutions of ammonium metatungstate and, primarily, sulfates of Ni and Fe. The freeze-dried salts were calcined and hydrogen reduced to form very fine, homogenous, low-density, W heavy alloy powders having a coral-like structure with elements of approximately 0.1 μm in diameter. The powders yield high green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%, and 97% W were prepared by freeze drying, compacted, and solid-state (SS) sintered to full density at temperatures as low as 1200 degree C and also at conventional liquid-phase (LP) sintering temperatures. Solid-state sintered microstructures contained polygonal W grains with high contiguity; the matrix did not coat and separate the W grains to form low-contiguity, high-ductility structures. Liquid-phase sintered microstructures were very conventional in appearance, having W spheroids of low contiguity. All of these materials were found to be brittle. High levels of residual S accompanied by segregation of the S to all the microstructural interfaces are principally responsible for the brittleness; problems with S could be eliminated by using Fe and Ni nitrates rather than the sulfates. Unusually high hardness, approaching 48 HRC, was obtained from sintering at 1130 degree C. As-sintered hardness decreases as grain size increases with sintering temperature during SS sintering and with time during LP sintering. 8 refs., 9 figs., 2 tabs

  9. Atmospheric freeze drying assisted by power ultrasound

    International Nuclear Information System (INIS)

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms−1), temperature (−10°C) and relative humidity (10%) with (20.5 kWm−3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  10. Human freezing in response to affective films.

    Science.gov (United States)

    Hagenaars, Muriel A; Roelofs, Karin; Stins, John F

    2014-01-01

    Human freezing has been objectively assessed using a passive picture viewing paradigm as an analog for threat. These results should be replicated for other stimuli in order to determine their stability and generalizability. Affective films are used frequently to elicit affective responses, but it is unknown whether they also elicit freezing-like defense responses. To test whether this is the case, 50 participants watched neutral, pleasant and unpleasant film fragments while standing on a stabilometric platform and wearing a polar band to assess heart rate. Freezing-like responses (indicated by overall reduced body sway and heart rate deceleration) were observed for the unpleasant film only. The unpleasant film also elicited early reduced body sway (1-2 s after stimulus onset). Heart rate and body sway were correlated during the unpleasant film only. The results suggest that ecologically valid stimuli like films are adequate stimuli in evoking defense responses. The results also underscore the importance of including time courses in human experimental research on defense reactions in order to delineate different stages in the defense response. PMID:23805855

  11. The influence of freezing rates on bovine pericardium tissue Freeze-drying

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Borgognoni

    2009-12-01

    Full Text Available The bovine pericardium has been used as biomaterial in developing bioprostheses. Freeze-drying is a drying process that could be used for heart valve's preservation. The maintenance of the characteristics of the biomaterial is important for a good heart valve performance. This paper describes the initial step in the development of a bovine pericardium tissue freeze-drying to be used in heart valves. Freeze-drying involves three steps: freezing, primary drying and secondary drying. The freezing step influences the ice crystal size and, consequently, the primary and secondary drying stages. The aim of this work was to investigate the influence of freezing rates on the bovine pericardium tissue freeze-drying parameters. The glass transition temperature and the structural behaviour of the lyophilized tissues were determined as also primary and secondary drying time. The slow freezing with thermal treatment presented better results than the other freeze-drying protocols.O pericárdio bovino é um material utilizado na fabricação de biopróteses. A liofilização é um método de secagem que vem sendo estudado para a conservação de válvulas cardíacas. A preservação das características do biomaterial é de fundamental importância no bom funcionamento das válvulas. Este artigo é a primeira etapa do desenvolvimento do ciclo de liofilização do pericárdio bovino. Liofilização é o processo de secagem no qual a água é removida do material congelado por sublimação e desorção da água incongelável, sob pressão reduzida. O congelamento influencia o tamanho do cristal de gelo e, consequentemente, a secagem primária e secundária. O objetivo deste estudo foi verificar a influência das taxas de congelamento nos parâmetros de liofilização do pericárdio bovino. Determinou-se a temperatura de transição vítrea e o comportamento estrutural do pericárdio bovino liofilizado. Determinou-se o tempo da secagem primária e secundária. O

  12. Toleration, Groups, and Multiculturalism

    DEFF Research Database (Denmark)

    Lægaard, Sune

    The chapter considers how groups might be relevant as objects of policies of toleration and the different senses 'group' might have in relation to questions of toleration. The chapter argues that groups can be relevant to toleration in several different ways as objects of toleration. Toleration is...... routinely defined as involving an objection component, a power requirement and an acceptance component. The objection and acceptance components refer to reasons or dispositions of the subjects of toleration, e.g. public authorities deciding how to act in relation to groups. The power condition refers to the...... toleration allows receivers of toleration to enjoy. The chapter shows how groups may be objects of toleration in different ways in relation to each of these components or conditions of toleration. The sense of 'group' relevant to toleration may differ when the group is an object of power, i.e. when others...

  13. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S. M.; Xiao, X.; Faber, K. T.

    2015-11-01

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys, and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.

  14. Food freezing with simultaneous surface dehydration: approximate prediction of weight loss during freezing and storage

    Energy Technology Data Exchange (ETDEWEB)

    Campanone, Laura A.; Salvadori, Viviana O.; Mascheroni, Rodolfo H. [Centro de Investigacion Desarollo en Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, La Plata (Argentina); MODIAL, Facultad de Ingenieria, La Plata (Argentina)

    2005-03-01

    Weight loss of unpackaged foods during freezing and later storage is an important quality and economic issue. It is originated on surface ice sublimation due to differences in water activity between food surface and the refrigerating air. Weight loss rate is determined by refrigerating conditions and product characteristics. The modelling of this phenomenon has merited very little attention; at present there are no simplified methods to predict weight losses during the freezing and the storage of unpackaged foods. In previous studies we developed a detailed model for the simultaneous heat and mass transfer during food freezing and storage with ice sublimation. Based on the information of this numerical model, simplified analytical methods for the prediction of weight loss during the freezing and the storage of unpackaged frozen foods were developed. The methods account for product characteristics and storage conditions. The prediction equations are very simple and results of their use - simulating usual freezing and storage conditions for different products - give very good accuracy when tested against the previously cited numerical model and experimental data. (Author)

  15. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Wojas, Sylwia [Faculty of Biology, University of Warsaw, Miecznikowa str. 1, 02-096 Warszawa (Poland); Hennig, Jacek [Institute of Biochemistry and Biophysics PAS, Pawinskiego str. 5A, 02-106 Warszawa (Poland); Plaza, Sonia; Geisler, Markus [Institute of Plant Biology, University of Zuerich, CH-8008 Zuerich (Switzerland); Siemianowski, Oskar; Sklodowska, Aleksandra [Faculty of Biology, University of Warsaw, Miecznikowa str. 1, 02-096 Warszawa (Poland); Ruszczynska, Anna; Bulska, Ewa [Faculty of Chemistry, University of Warsaw, Pasteura str.1, 02-093 Warszawa (Poland); Antosiewicz, Danuta M., E-mail: dma@biol.uw.edu.p [Faculty of Biology, University of Warsaw, Miecznikowa str. 1, 02-096 Warszawa (Poland)

    2009-10-15

    Arabidopsis MRPs/ABCCs have been shown to remove various organic and inorganic substrates from the cytosol to other subcellular compartments. Here we first demonstrate that heterologous expression of AtMRP7 in tobacco (Nicotiana tabacum var. Xanthi) modifies cadmium accumulation, distribution and tolerance. Arabidopsis MRP7 was localized both in the tonoplast and in the plasma membrane when expressed in tobacco. Its overexpression increased tobacco Cd-tolerance and resulted in enhanced cadmium concentration in leaf vacuoles, indicating more efficient detoxification by means of vacuolar storage. Heterologous AtMRP7 expression also led to more efficient retention of Cd in roots, suggesting a contribution to the control of cadmium root-to-shoot translocation. The results underscore the use of AtMRP7 in plant genetic engineering to modify the heavy-metal accumulation pattern for a broad range of applications. - AtMRP7 expression in tobacco enhances Cd-tolerance and increases Cd storage in vacuoles

  16. Momilactone sensitive proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kitajima, Shinya

    2015-05-01

    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  17. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques.

    Science.gov (United States)

    Isaure, Marie-Pierre; Huguet, Stéphanie; Meyer, Claire-Lise; Castillo-Michel, Hiram; Testemale, Denis; Vantelon, Delphine; Saumitou-Laprade, Pierre; Verbruggen, Nathalie; Sarret, Géraldine

    2015-06-01

    Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant. PMID:25873676

  18. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    Science.gov (United States)

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  19. Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa.

    Science.gov (United States)

    Jiang, Yanjuan; Qiu, Yuping; Hu, Yanru; Yu, Diqiu

    2016-01-01

    Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Recently, we have found that overexpressing AtWRKY57 enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance to transgenic rice (Oryza sativa) plants. The enhanced drought tolerance of transgenic rice was resulted from the lower water loss rates, cell death, malondialdehyde contents and relative electrolyte leakage while a higher proline content and reactive oxygen species-scavenging enzyme activities was observed during stress conditions. Moreover, further investigation revealed that the expression levels of several stress-responsive genes were up-regulated in drought-tolerant transgenic rice plants, compared with those in wild-type plants. In addition to the drought tolerance, the AtWRKY57 over-expressing plants also had enhanced salt and PEG stress tolerances. Taken together, our study indicates that over-expressing AtWRKY57 in rice improved not only drought tolerance but also salt and PEG tolerance, demonstrating its potential role in crop improvement. PMID:26904091

  20. Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics.

    Science.gov (United States)

    du Toit, Elloise; Vesterlund, Satu; Gueimonde, Miguel; Salminen, Seppo

    2013-07-01

    The production of viable functional probiotics presupposes stability of strain features in the final product. We evaluated the impact of acquisition of heat-tolerance and subsequent freeze-drying on the adhesion properties of Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium lactis Bb-12 and Bifidobacterium animalis IF20/1 and on their ability to inhibit the adhesion of pathogens in a mucus model. Both fresh and freeze-dried cultures were evaluated. Significant differences were observed between fresh, freeze dried, fresh heat-tolerant and freeze dried heat-tolerant strains, especially in the ability of the freeze dried probiotics to exclude, displace or outcompete pathogens. Based on our study characterizing probiotic properties such as adhesion and competitive exclusion, it seems possible to adapt probiotics to processing stresses, such as heat, without significantly changing the probiotic properties of the strains assessed. This may provide new options for future probiotic production technology. However, our results also emphasize that the properties of the stress-adapted strains, as well as the effect of the production processes should always be assessed as these are strain-specific. PMID:23688551

  1. Investigations on freezing processes of molten cores

    International Nuclear Information System (INIS)

    In reactor safety analysis of fast breeder reactors the freezing behaviour of molten core materials plays an important role. This, and particularly the conditions under which stable crusts and melt-films exist were investigated in simulation experiments. Different structures (tubes, annuli, bundles) of stainless steel and quartz glass were used. The molten core was simulated by aluminum oxide and iron. In all experiments, including those with melting steel walls stable crusts were found and no intermixing of molten steel and streaming oxide was observed. The measured penetration depths and crust thicknesses were recalculated with a modified version of the code PLUGM. In most cases the agreement was good. (orig.)

  2. Mechano-freezing of the ambient water

    CERN Document Server

    Zhang, Xi; Zou, Bo; Sun, Chang Q

    2013-01-01

    Raman spectroscopy examination of the 25 deg-C water freezing under compression revealed transition from 1.35 GPa to 0.86 GPa upon ice being formed at continued volume change. The transition is associated with a slight blue shift of the high-frequency phonon (omiga_H ~ 3120 cm-1) and creation of the low-frequency phonons (Omiga_L ~ 200 cm-1). In the liquid and in the solid phase, the increased pressure softens the Omiga_H and stiffens the Omida_L, which indicates the presence of the inter-electron-pair repulsion in both liquid and solid water.

  3. [Studies of viability and vitality after freezing of the probiotic yeast Saccharomyces boulardii: physiological preconditioning effect].

    Science.gov (United States)

    Pardo, Silvina; Galvagno, Miguel Angel; Cerrutti, Patricia

    2009-06-30

    The aim of this study was to evaluate the vitality and viability of the probiotic yeast Saccharomyces boulardii after freezing/thawing and the physiological preconditioning effect on these properties. The results indicate that the specific growth rate (0.3/h(-1)) and biomass (2-3 x10(8)cells/ml) of S. boulardii obtained in flasks shaken at 28 degrees C and at 37 degrees C were similar. Batch cultures of the yeast in bioreactors using glucose or sugar-cane molasses as carbon sources, reached yields of 0.28 g biomass/g sugar consumed, after 10h incubation at 28 degrees C; the same results were obtained in fed batch fermentations. On the other hand, in batch cultures, the vitality of cells recovered during the exponential growth phase was greater than the vitality of cells from the stationary phase of growth. Vitality of cells from fed-batch fermentations was similar to that of stationary growing cells from batch fermentations. Survival to freezing at -20 degrees C and subsequent thawing of cells from batch cultures was 0.31% for cells in exponential phase of growth and 11.5% for cells in stationary phase. Pre-treatment of this yeast in media with water activity (a(w)) 0.98 increased the survival to freezing of S. boulardii cells stored at -20 degrees C for 2 months by 10 fold. Exposure of the yeast to media of reduced a(w) and/or freezing/thawing process negatively affected cell vitality. It was concluded that stress conditions studied herein decrease vitality of S. boulardii. Besides, the yeast strain studied presented good tolerance to bile salts even at low pH values. PMID:19631167

  4. Freezing of water droplets colliding with kaolinite particles

    Directory of Open Access Journals (Sweden)

    E. A. Svensson

    2009-07-01

    Full Text Available Contact freezing of single supercooled water droplets colliding with kaolinite dust particles has been investigated. The experiments were performed with droplets levitated in an electrodynamic balance at temperatures from 240 to 268 K. Under relatively dry conditions (when no water vapor was added freezing was observed to occur below 249 K, while a freezing threshold of 267 K was observed when water vapor was added to the air in the chamber.

    The effect of relative humidity is attributed to an influence on the contact freezing process for the kaolinite-water droplet system, and it is not related to the lifetime of the droplets in the electrodynamic balance. Freezing probabilities per collision were derived assuming that collisions at the lowest temperature employed had a probability of unity. Mechanisms for contact freezing are briefly discussed.

  5. Study on Freeze-drying Process of Frozen Poached Meatballs

    Directory of Open Access Journals (Sweden)

    Wanren Chen

    2015-05-01

    Full Text Available In this study, the technology of freeze-drying of poached meatballs was studied. Also, the effect of the pre-freezing time, drying temperature and the loadage of per unit on drying rate and rehydration ratio was investigated. the technological conditions of freeze-drying of poached meatballs and the parameters of the industrial process have been optimized by orthogonal tests. The results shows that the optimical conditions of freeze-drying poached meatballs are: pre-freezing temperature is -60C, pre-freezing time is 4 h, drying temperature is 45C and the loadage of per unit is 320 kg/m2.

  6. Status of ram spermatozoa DNA after freeze-drying process

    OpenAIRE

    Takdir Saili; wahono Esthi Prasetyaningtyas; Mohamad Agus Setiadi; Srihadi AgungPriyono; Arief Boediono

    2006-01-01

    The process of freeze drying caused detrimental effect on plasma membrane and acrosome of the spermatozoa, even it potentially could alter the chromatin and DNA integrities. On the other hand, DNA integrity is essential for spermatozoa to participate in pronucleus formation during fertilization event. Therefore the evaluation of DNA integrity should be carried out to study the effect of freeze drying process. EDTA, EGTA, and PBS were used as dilution media of spermatozoa prior to freeze dryin...

  7. Continuous Production of Lime Juice by Vacuum Freeze Drying

    OpenAIRE

    Wasan Theansuwan; Kitichai Triratanasirichai; Kiatfa Tangchaichit

    2008-01-01

    An experimental dryer was developed to determine the characteristics of lime juice powder that produced from freeze-drying processes on continuous production. The experimental process consists of two processes, freezing process (the air blast freezer type) and freeze-drying process (tray method with heating plate type). NaHCO3 (2% by weight of lime juice) was dissolved in lime juice as solid aid. The result was found that this experimental dryer can produce lime juice powder which has the sim...

  8. Mathematical Modeling of Food Freezing in Air-Blast Freezer

    OpenAIRE

    Guiqiang Wang; Pinghua Zou

    2014-01-01

    A mathematical model for simulating the heat transfer during food freezing was presented. The model consists of three steps. First, the flow field inside the freezing chamber was modeled using the CFD method, based on which the freezing condition, including the temperature and velocity around the food, was calculated. Second, the heat transfer coefficient between food and air was calculated in the CFD model. Third, a finite-difference model was employed to simulate the heat transfer inside th...

  9. FEM Simulation on Artificial Freezing of Seepage Ground

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-min

    2005-01-01

    The coupling mechanism in freezing process of seepage ground was studied and a simplified coupling math model was proposed. The nonlinear and coupling problems of PDEs were well solved using the exponential function, error function and normal distribution function, and a series of FEM equations of coupled fields of temperature and seepage were deduced and put forward. With the example of shaft ground freezing, the formation of freezing wall in seepage ground was simulated.

  10. SOME STUDIES ABOUT CEREALS BEHAVIOR DURING FREEZE DRYING PROCESS

    OpenAIRE

    GABRIELA-VICTORIA MNERIE; D. MNERIE; D. ŢUCU

    2013-01-01

    The paper presents some special method and equipment and the principal advantages of freeze-dried food. The freeze drying is a good method of freeze-drying for make some experiments with many kind of cereals, for the improvement that in food production. It is necessary and is possible to study the corn oil extract, wheat flour, the maltodextrin from corn, modified cornstarch, spice extracts, soy sauce, hydrolyzed wheat gluten, partially hydrogenated soybean and cottonseed oil etc. That is ver...

  11. Freeze-Thaw Durability of Air-Entrained Concrete

    OpenAIRE

    Huai-Shuai Shang; Ting-Hua Yi

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. T...

  12. An improved high pressure freezing and freeze substitution method to preserve the labile vaccinia virus nucleocapsid.

    Science.gov (United States)

    Jesus, Desyree Murta; Moussatche, Nissin; Condit, Richard C

    2016-07-01

    In recent years, high pressure freezing and freeze substitution have been widely used for electron microscopy to reveal viral and cellular structures that are difficult to preserve. Vaccinia virus, a member of the Poxviridae family, presents one of the most complex viral structures. The classical view of vaccinia virus structure consists of an envelope surrounding a biconcave core, with a lateral body in each concavity of the core. This classical view was challenged by Peters and Muller (1963), who demonstrated the presence of a folded tubular structure inside the virus core and stated the difficulty in visualizing this structure, possibly because it is labile and cannot be preserved by conventional sample preparation. Therefore, this tubular structure, now called the nucleocapsid, has been mostly neglected over the years. Earlier studies were able to preserve the nucleocapsid, but with low efficiency. In this study, we report the protocol (and troubleshooting) that resulted in preservation of the highest numbers of nucleocapsids in several independent preparations. Using this protocol, we were able to demonstrate an interdependence between the formation of the virus core wall and the nucleocapsid, leading to the hypothesis that an interaction exists between the major protein constituents of these compartments, A3 (core wall) and L4 (nucleocapsid). Our results show that high pressure freezing and freeze substitution can be used in more in-depth studies concerning the nucleocapsid structure and function. PMID:27155322

  13. Identifying freezing of gait in Parkinson's disease during freezing provoking tasks using waist-mounted accelerometry

    NARCIS (Netherlands)

    Zach, H.; Janssen, A.M.; Snijders, A.H.; Delval, A.; Ferraye, M.U.; Auff, E.; Weerdesteyn, V.G.; Bloem, B.R.; Nonnekes, J.H.

    2015-01-01

    BACKGROUND: Freezing of gait (FOG) is a common and debilitating phenomenon in Parkinson's disease (PD). Wearable accelerometers might help to assess FOG in the research setting. Here, we evaluate whether accelerometry can detect FOG while executing rapid full turns and while walking with rapid short

  14. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    Science.gov (United States)

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress. PMID:27208271

  15. A molecular dynamics study of freezing in a confined geometry

    Science.gov (United States)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  16. Study on Freeze-drying Process of Dumpling Wrappers

    OpenAIRE

    Wanren Chen; Hua Li; Xingli Jiao; Xiang Gui

    2015-01-01

    The freeze-drying process of frozen dumpling wrappers is studied in this study. And the effects of drying time, drying temperature and the capacity of unit area in the freezing process on the drying rate and rehydration rate of freeze-drying dumpling wrappers are investigated. The result shows that, in the process of freeze-drying dumpling wrappers, the optimal condition is: drying time is 3 h, drying temperature is 45°C and the loadage of per unit area is 4.0 kg/m2.

  17. Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures

    DEFF Research Database (Denmark)

    Koskinen, Anna-Kaisa; Fraser-Miller, Sara J.; Bøtker, Johan P.;

    2016-01-01

    Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried.......Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried....

  18. Retarded condensate freezing propagation on superhydrophobic surfaces patterned with micropillars

    Science.gov (United States)

    Zhao, Yugang; Yang, Chun

    2016-02-01

    Previous studies have shown ice delay on nano-structured or hierarchical surfaces with nanoscale roughness. Here we report retarded condensate freezing on superhydrophobic silicon substrates fabricated with patterned micropillars of small aspect ratio. We further investigated the pillar size effects on freezing propagation. We found that the velocity of freezing propagation on the surface patterned with proper micropillars can be reduced by one order of magnitude, compared to that on the smooth untreated silicon surface. Additionally, we developed an analytical model to describe the condensate freezing propagation on a structured surface with micropillars and the model predictions were compared with our experimental results.

  19. Parameter Sensitivity of the Microdroplet Vacuum Freezing Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The vacuum freezing process of microdroplets (1 mm. Pressure and droplet diameter have an effect on cooling and freezing stages, but initial temperature only affects the cooling stage. The thermal conductivity coefficient kl affected the cooling stage, whereas ki affected the freezing stage. Heat capacity Cl affected the cooling stage, but Ci has virtually no effect on all stages. The actual latent heat of freezing ΔH was also affected. Higher density corresponds to lower cooling rate in the cooling stage.

  20. A“TIME-SPACE” RELATED DESIGNMETHOD OF FREEZING WALL

    Institute of Scientific and Technical Information of China (English)

    陈湘生

    1996-01-01

    Artificially ground freezing (AGF) is one of the main methods to establish temporarysupport for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozensoil strength has widely been used for designing freezing wall thickness. However, it can not en-sure the stability of freezing wall, nor guarantee the safety of shaft construction as frozen depth in-creases in unstable water bearing strata. F. A. Auld (1985, 1988)[1'2] presented a designmethod of freezing wall, which is on the basis of strength and stability, together with deformationof freezing wall. This paper, according to the practice in China, describes a "time -space" relat-ed design method for deep freezing wall. The method is based on "time-space" concept, whichincludes influence of excavation rate of advance, unsupported length of freezing wall and the sumpstate on inward deformation of freezing wall, and the allowable pipe deformation caused by in-ward deformation of freezing wall. Finally, successful application of this method to the large scalecoal mine-Jining No. 2 Mine[3] in Shandong Province of China is presented. It saved much invest-ment compared with F. A. Auld's design for the same mine.

  1. Study on Freeze-drying Process of Dumpling Wrappers

    Directory of Open Access Journals (Sweden)

    Wanren Chen

    2015-06-01

    Full Text Available The freeze-drying process of frozen dumpling wrappers is studied in this study. And the effects of drying time, drying temperature and the capacity of unit area in the freezing process on the drying rate and rehydration rate of freeze-drying dumpling wrappers are investigated. The result shows that, in the process of freeze-drying dumpling wrappers, the optimal condition is: drying time is 3 h, drying temperature is 45°C and the loadage of per unit area is 4.0 kg/m2.

  2. Freezing of water droplets colliding with kaolinite particles

    DEFF Research Database (Denmark)

    Svensson, Erik Anders; Delval, Christophe Eric Ludovic; Freiherr von Und zu Hessberg, P J H;

    2009-01-01

    Contact freezing of single supercooled water droplets colliding with kaolinite dust particles has been investigated. The experiments were performed with droplets levitated in an electrodynamic balance at temperatures from 240 to 268 K. Under dry conditions freezing 5 was observed to occur below 249...... K, while a freezing threshold of 267 K was observed at high relative humidity. The effect of relative humidity is attributed to an influence on the contact freezing process for the kaolinite-water droplet system, and it is not related to the lifetime of the droplets in the electrodynamic balance...

  3. Asset Freezing: Smart Sanction or Criminal Charge?

    Directory of Open Access Journals (Sweden)

    Wouter de Zanger

    2011-02-01

    Full Text Available In this article the question is asked whether asset freezing can be qualified as a criminal charge within the meaning of Article6 ECHR and if yes, what effects this qualification may have on the legislative framework on so called smart sanctions. Byanalysing Community and EU law and case law of the European Court of Human Rights, General Court of Instance andCourt of Justice of the European Communities the authors give an overview of the notion and possible qualification of assetfreezing as a criminal charge. The article further focusses on the consequenses of qualifying asset freezing as a criminal chargeunder ECHR and EC/EU law and concludes by answering the aforementioned question.This article is a rewrite of a research paper written under supervision of prof. dr. J.A.E. Vervaele and prof. dr. C.H. Brants(Willem Pompe Institute for Criminal Law and Criminology, Utrecht University School of Law, whom the authors wouldlike to thank for their useful comments and supervision.

  4. Spray freeze drying of YSZ nanopowder

    International Nuclear Information System (INIS)

    Spray freeze drying of yttria stabilised zirconia nanopowders with a primary particle size of ∼16 nm has been undertaken using different solids content starting suspensions, with the effect of the latter on the flowability and crushability of the granules being investigated. The flowability and fill density of the granules increased with an increase in the solid content of the starting suspension, whilst the crushability decreased. The powder flowability, measured using a Hall flowmeter and model shoe-die filling tests, showed that the flowability of otherwise poorly flowable nanopowders can be improved to match that of the commercial spray dried submicron powder. The 5.5 vol.% solid content based suspension yielded soft agglomerates whilst a 28 vol.% solid content suspension formed hard agglomerates on spray freeze drying; the granule relics were visible in the fracture surface of the die pressed green compact in the latter case. The increase in granule strength is explained by the reduction in inter-particle distance based on the theories developed by Rumpf and Kendall. The flaw sizes computed using the Kendall model are comparable with those seen in the micrographs of the granule. With an optimum solid content, it is possible to have a granulated nanopowder with reasonable flowability and compactability resulting in homogeneous green bodies with ∼54 % of theoretical density.

  5. Spray freeze drying of YSZ nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Raghupathy, Bala P. C., E-mail: balapraveen2000@yahoo.com [VIT University, Center for Nanotechnology Research (India); Binner, J. G. P. [Loughborough University, Department of Materials (United Kingdom)

    2012-07-15

    Spray freeze drying of yttria stabilised zirconia nanopowders with a primary particle size of {approx}16 nm has been undertaken using different solids content starting suspensions, with the effect of the latter on the flowability and crushability of the granules being investigated. The flowability and fill density of the granules increased with an increase in the solid content of the starting suspension, whilst the crushability decreased. The powder flowability, measured using a Hall flowmeter and model shoe-die filling tests, showed that the flowability of otherwise poorly flowable nanopowders can be improved to match that of the commercial spray dried submicron powder. The 5.5 vol.% solid content based suspension yielded soft agglomerates whilst a 28 vol.% solid content suspension formed hard agglomerates on spray freeze drying; the granule relics were visible in the fracture surface of the die pressed green compact in the latter case. The increase in granule strength is explained by the reduction in inter-particle distance based on the theories developed by Rumpf and Kendall. The flaw sizes computed using the Kendall model are comparable with those seen in the micrographs of the granule. With an optimum solid content, it is possible to have a granulated nanopowder with reasonable flowability and compactability resulting in homogeneous green bodies with {approx}54 % of theoretical density.

  6. Influence of freezing on strata behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Stoss, K.; Oellers, T.

    1985-10-10

    Freezing the ground has not only the desired beneficial effects but can also have unavoidable deleterious effects on strata properties and behaviour. The usual calculation for dimensioning the ice wall does provide some valuable indications about strata behaviour during sinking. But the effects from fissure and ice lentil formation caused by temperature are not recorded, nor can they be in practical terms. For certain beds it is advisable to complement the preliminary investigations carried out on core samples to establish strata properties and behaviour when frozen by investigations into the degree of frost endangerment (ice lentils). In critical beds regular convergence measurement in the shaft with continuous evaluation are the most important means of avoiding unpleasant surprises during sinking. A properly tested array of additional support measures has to be ready to keep strata movement around the shaft within acceptable limits even in unfavourable conditions. To sum up: Success in sinking a freezing shaft does not only depend on the care during preliminary examinations, planning and preparation but also to a large degree on the ability and experience of the shaft construction engineers and on the decisions which these will make at the site in each case on the basis of what they see and measure. (orig./MOS).

  7. Effect of freezing on rabbit cultured chondrocytes

    Directory of Open Access Journals (Sweden)

    R.R Filgueiras

    2011-02-01

    Full Text Available This work evaluated the effect of freezing on chondrocytes maintained in culture, aiming the establishment of a cell bank for future application as heterologous implant. Chondrocytes extracted from joint cartilage of nine healthy New Zealand White rabbits were cultivated and frozen with the cryoprotector 5% dimethylsulfoxide for six months. Phenotypic and scanning electron microscopy analyses were carried out to identify morphological and functional differences between fresh and thawed cells. After enzymatic digestion, a total of 4.8x10(5cells per rabbit were obtained. Fresh chondrocytes showed a high mitotic rate and abundant matrix was present up to 60 days of culture. Loss of phenotypic stability was notable in the thawed chondrocytes, with a low labeling of proteoglycans and weak immunostaining of type II collagen. The present study showed important loss of chondrocyte viability under the freezing conditions. For future in vivo studies of heterologous implant, these results suggests that a high number of cells should be implanted in the host site in order to achieve an adequate number of viable cells. Furthermore, the chondrocytes should be implanted after two weeks of culture, when the highest viability rate is found

  8. Arabidopsis thaliana—Aphid Interaction

    OpenAIRE

    Louis, Joe; Singh, Vijay,; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide impor...

  9. Selenium Speciation in Arabidopsis Thaliana

    OpenAIRE

    Wang, Xiaoou

    2011-01-01

    Selenium has been proved as an essential micronutrient and is beneficial to animals and humans. It is a structural component of the important antioxidant enzyme, glutathione peroxidase, which catalyzes reactions to detoxify reactive oxygen species. However, the essentiality of Se in plants remains controversial and the protective role of Se in plants has rarely been investigated. In this study, Arabidopsis thaliana was grown in controlled environments having selenate or selenite enriched medi...

  10. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  11. Effects of anti-freeze concentration in the engine coolant on the cavitation temperature of a water pump

    International Nuclear Information System (INIS)

    Improvements in engine-manufacturing technology have gradually increased the thermal efficiencies of engines as well as the burning temperature and pressure of fuels within the cylinders. Accordingly, greater heat dissipation are required. However, the volume of the radiators is constrained by the configuration of the engines, leading to excessive internal resistance in the engine-cooling system. Therefore, water pumps in engines are prone to cavitation, and air bubbles are likely to permeate into the anti-freeze, thereby severely reducing the performance, reliability and service life of the engines. Ethylene glycol (EG) is added to the radiator of some vehicles in cold areas to reduce the solidification point of the coolant and prevent freezing. This study probes the effects of the percentage of anti-freeze added to the cooling water in a water pump in an engine on the water-supply capability and cavitation temperature, whether air or burnt gas is present in the system. The results of this study have revealed that engines have a higher tolerance to air bubbles at lower rates of rotation. At a given fixed rotational speed, the tolerable cavitation temperature of an engine's water pump will fall slowly as the amount of air bubbles increases

  12. Characterization of Arabidopsis calreticulin mutants in response to calcium and salinity stresses

    Institute of Scientific and Technical Information of China (English)

    Zhigang Li; Yangrong Cao; Jinsong Zhang; Shouyi Chen

    2008-01-01

    As an important calcium-binding protein,calreticulin plays an important role in regulating calcium homeostasis in endoplasmic reticulum (ER) of plants.Here,we identified three loss-of-function mutants ofcalreticulin genes in Arabidopsis to demonstrate the function of calreticulin in response to calcium and salinity stresses.There are three genes encoding calreticulin in Arabidopsis,and they are named AtCRT1,2,and 3,respectively.We found that both single mutant of crt3 and double mutant of crtl crt2 were more sensitive to low calcium environment than wild-type Arabidopsis.Moreover,crt3 mutant showed more sensitivity to salt treatment at germination stage,but tolerance to salt stress at later stage compared with wild-type plant.However,there was no obvious growth difference in the mutant crt1 and crt2 compared with wild-type Arabidopsis under calcium and salt stresses.These results suggest that calreticulin functions in plant responses to calcium and salt stresses.

  13. Gene mining in halophytes: functional identification of stress tolerance genes in Lepidium crassifolium.

    Science.gov (United States)

    Rigó, Gábor; Valkai, Ildikó; Faragó, Dóra; Kiss, Edina; Van Houdt, Sara; Van de Steene, Nancy; Hannah, Matthew A; Szabados, László

    2016-09-01

    Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non-destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full-length cDNAs encoding proteins with high homologies to GDSL-lipase/esterase or acyl CoA-binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications. PMID:27343166

  14. Lactose tolerance tests

    Science.gov (United States)

    Hydrogen breath test for lactose tolerance ... Two common methods include: Lactose tolerance blood test Hydrogen breath test The hydrogen breath test is the preferred method. It measures the amount of hydrogen ...

  15. Mechanisms of immunological tolerance.

    Science.gov (United States)

    Waldmann, Herman

    2016-03-01

    There is increasing interest in establishing diagnostic markers of immunological tolerance applicable to efforts to minimize drug immunosuppression in transplantation and chronic immunological diseases. It is hoped that an understanding of the diverse mechanisms that can contribute to tolerance will guide efforts to establish diagnostic tolerance biomarkers. Not only would these be valuable for management of autoimmune diseases, transplants and allergies, but they might also guide efforts to override tolerance processes in cancer and vaccine development. Where tolerance is generated by deletion or inactivation of antigen reactive lymphocytes, it is unlikely that any long-term-valid blood biomarkers might be found. Where tolerance is mediated by active regulatory mechanisms, indicators that can be usefully measured may emerge, but these would likely show significant heterogeneity reflecting the diversity of active tolerance processes operating in different individuals. Given this, the most useful "kits" might be those "smart" enough to detect this diversity of tolerance players. PMID:26036868

  16. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Directory of Open Access Journals (Sweden)

    Yu Song

    Full Text Available In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL proteins in two Arabidopsis species (A. lyrata and A. thaliana and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  17. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  18. Arabidopsis CDS blastp result: AK106750 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106750 002-115-C09 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  19. Arabidopsis CDS blastp result: AK104851 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104851 001-043-A10 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  20. Arabidopsis CDS blastp result: AK100909 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100909 J023132G24 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylul ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  1. Arabidopsis CDS blastp result: AK058950 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058950 001-020-A07 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  2. Arabidopsis CDS blastp result: AK059821 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059821 006-205-D11 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  3. Arabidopsis CDS blastp result: AK064944 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064944 J013000P14 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylul ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  4. Arabidopsis CDS blastp result: AK068400 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068400 J013151M04 At3g45810.1 ferric reductase-like transmembrane component family protein sim ... ilar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  5. Arabidopsis CDS blastp result: AK066013 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066013 J013047I12 At3g45810.1 ferric reductase-like transmembrane component family protein sim ... ilar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  6. Arabidopsis CDS blastp result: AK100241 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100241 J023054P13 At3g45810.1 ferric reductase-like transmembrane component family protein sim ... ilar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  7. Arabidopsis CDS blastp result: AK318553 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318553 J075145A22 At3g45810.1 68416.m04958 ferric reductase-like transmembrane component famil ... y protein similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  8. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  9. Software fault tolerance

    OpenAIRE

    Kazinov, Tofik Hasanaga; Mostafa, Jalilian Shahrukh

    2009-01-01

    Because of our present inability to produce errorfree software, software fault tolerance is and will contiune to be an important consideration in software system. The root cause of software design errors in the complexity of the systems. This paper surveys various software fault tolerance techniquest and methodologies. They are two gpoups: Single version and Multi version software fault tolerance techniques. It is expected that software fault tolerance research will benefit from this research...

  10. Software for tolerance design

    OpenAIRE

    Shilo, Galina; Kovalenko, Daria; Gaponenko, Mykola

    2012-01-01

    Software for tolerance assignment and element selection is presented in the paper. Methods of tolerance design apply mathematical models of tolerance regions in shapes of hyperparallelepiped and hyperellipsoid which makes possible to take into consideration distribution laws of element parameters. The methods allow carrying element selection and tolerance assignment taking into account external influences. Specification of software functional characteristics and input data presentation were s...

  11. STEFINS: a steel freezing integral simulation program

    International Nuclear Information System (INIS)

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included

  12. STEFINS: a steel freezing integral simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included.

  13. Cooling method with automated seasonal freeze protection

    Energy Technology Data Exchange (ETDEWEB)

    Cambell, Levi; Chu, Richard; David, Milnes; Ellsworth, Jr, Michael; Iyengar, Madhusudan; Simons, Robert; Singh, Prabjit; Zhang, Jing

    2016-05-31

    An automated multi-fluid cooling method is provided for cooling an electronic component(s). The method includes obtaining a coolant loop, and providing a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  14. Cooling system with automated seasonal freeze protection

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  15. Hot water can freeze faster than cold?!?

    CERN Document Server

    Jeng, M

    2005-01-01

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more ...

  16. Hadron freeze-out and Unruh radiation

    International Nuclear Information System (INIS)

    In this paper, we consider hadron production in high energy collisions as an Unruh radiation phenomenon. This mechanism describes the production pattern of newly formed hadrons and is directly applicable at vanishing baryon chemical potential, μ ≃ 0. It had already been found to correctly yield the hadronization temperature, Th = √σ/2π ≃ 165 MeV in terms of the string tension σ. Here, we show that the Unruh mechanism also predicts hadronic freeze-out conditions, giving s/Th3 = 3π2/4 ≃ 7.4 in terms of the entropy density s and 〈E〉/〈N〉 = √2πσ ≃ 1.09 for the average energy per hadron. These predictions provide a theoretical basis for previous phenomenological results and are also in accord with recent lattice studies. (author)

  17. The combined effect of freeze thaw events and heavy metal pollution leads to distinct lethal synergy in Enchytraeus albidus

    DEFF Research Database (Denmark)

    Boas, Sara Wincentz; Slotsbo, Stine; Holmstrup, Martin

    Europe, and recent interest in increasing mineral deposit mining activity in arctic regions further emphasizes the need for focus on the environmental impact in these areas. In the present study it was investigated how the combination of freeze-thaw events and copper contamination of soil affected the....... Bioaccumulation of copper was also quantified to expose any increase in body burden in freeze-thaw treated worms. Regardless of the physiological responses, it is evident that arctic organisms are negatively affected by the environmental impact of global warming and exploitation of mineral deposits through mining....... Icelandic, freeze tolerant annelid worm, Enchytraeus albidus. Worms were exposed to one of three temperature treatments (constant +1.5⁰C, constant -6⁰C, or daily cycles between +1.5 and -6⁰C) in combination with one of several different copper (CuCl2) concentrations in soil. The results showed a distinct...

  18. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Sarret, Géraldine; Saumitou-Laprade, Pierre; Bert, Valérie; Proux, Olivier; Hazemann, Jean-Louis; Traverse, Agnès; Marcus, Matthew A; Manceau, Alain

    2002-12-01

    The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and muEXAFS. Plants were grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collected. Zn speciation in A. halleri was independent of the origin of the plants (contaminated or non-contaminated) and Zn exposure. In aerial parts, Zn was predominantly octahedrally coordinated and complexed to malate. A secondary organic species was identified in the bases of the trichomes, which contained elevated Zn concentrations, and in which Zn was tetrahedrally coordinated and complexed to carboxyl and/or hydroxyl functional groups. This species was detected thanks to the good resolution and sensitivity of synchrotron-based x-ray microfluorescence and muEXAFS. In the roots of A. halleri grown in hydroponics, Zn phosphate was the only species detected, and is believed to result from chemical precipitation on the root surface. In the roots of A. halleri grown on the contaminated soil, Zn was distributed in Zn malate, Zn citrate, and Zn phosphate. Zn phosphate was present in both the roots and aerial part of A. lyrata subsp. petraea. This study illustrates the complementarity of bulk and spatially resolved techniques, allowing the identification of: (a) the predominant chemical forms of the metal, and (b) the minor forms present in particular cells, both types of information being essential for a better understanding of the bioaccumulation processes. PMID:12481065

  19. Versatile Aerogel Fabrication by Freezing and Subsequent Freeze-Drying of Colloidal Nanoparticle Solutions.

    Science.gov (United States)

    Freytag, Axel; Sánchez-Paradinas, Sara; Naskar, Suraj; Wendt, Natalja; Colombo, Massimo; Pugliese, Giammarino; Poppe, Jan; Demirci, Cansunur; Kretschmer, Imme; Bahnemann, Detlef W; Behrens, Peter; Bigall, Nadja C

    2016-01-18

    A versatile method to fabricate self-supported aerogels of nanoparticle (NP) building blocks is presented. This approach is based on freezing colloidal NPs and subsequent freeze drying. This means that the colloidal NPs are directly transferred into dry aerogel-like monolithic superstructures without previous lyogelation as would be the case for conventional aerogel and cryogel fabrication methods. The assembly process, based on a physical concept, is highly versatile: cryogelation is applicable for noble metal, metal oxide, and semiconductor NPs, and no impact of the surface chemistry or NP shape on the resulting morphology is observed. Under optimized conditions the shape and volume of the liquid equal those of the resulting aerogels. Also, we show that thin and homogeneous films of the material can be obtained. Furthermore, the physical properties of the aerogels are discussed. PMID:26638874

  20. PREPARATION AND CHARACTERIZATION OF FREEZE DRIED CRYSTALS OF IBUPROFEN

    Directory of Open Access Journals (Sweden)

    Dixit Mudit

    2011-12-01

    Full Text Available Ibuprofen, an anti-inflammatory drug, exhibits poor water solubility and flow properties.. Crystallization medium used for freeze dried crystals of Ibuprofen consisted of Isopropyl alcohol and water (50:50% respectively. Freeze dried crystals were characterized by differential scanning calorimetry, Infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Micromeritic and mechanical property and dissolution behavior studies were carried out. Process variables such as amount of bridging liquid, stirring time and duration of stirring were optimized. Dissolution profile of the freeze dried crystals was compared with pure sample and recrystallized sample. Freeze dried crystals exhibited decreased crystallinity and improved micromeritic properties. The dissolution of the freeze dried crystals was improved compared with pure sample.

  1. Freezing Precipitation and Freezing Events over Northern Eurasia and North America

    Science.gov (United States)

    Groisman, Pavel; Yin, Xungang; Bulygina, Olga; Partasenok, Irina; Zolina, Olga; Hanssen-Bauer, Inger

    2016-04-01

    With global climate change in the extratropics, the 0°C isotherm will not disappear and associated precipitation events will continue to occur. The near-0°C temperatures should generally move poleward and arrive at many locations earlier in spring or later in autumn. This could potentially affect the seasonal cycle of near-0°C precipitation. The overall warming, together with a larger influx of the water vapor in the winter atmosphere from the oceans (including ice-free portions of the Arctic Ocean) can also affect the amount of near-0°C precipitation. The issue of near 0°C precipitation is linked with several hazardous phenomena including heavy snowfall/rainfall transition around °C; strong blizzards; rain-on-snow events causing floods; freezing rain and freezing drizzle; and ice load on infrastructure. In our presentation using more than 1,500 long-term time series of synoptic observations for the past four decades, we present climatology and the empirical evidence about changes in occurrence, timing, and intensity of freezing rains and freezing drizzles over several countries of Northern Eurasia and North America. In the former Soviet Union, instrumental monitoring of ice load has been performed by ice accretion indicator that in addition to the type, intensity and duration of ice deposits reports also their weight and size. Estimates of climatology and changes in ice load based on this monitoring at 958 Russian stations will be also presented. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026) and NASA LCLUC Program (grant "How Environmental Change in Central Asian Highlands Impacts High Elevation Communities").

  2. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  3. Regulatory Network of Transcription Factors in Response to Drought in Arabidopsis and Crops

    Institute of Scientific and Technical Information of China (English)

    Chen Li-miao; Li Wen-bin; Zhou Xin-an

    2012-01-01

    Drought is one of the most important environmental constraints limiting plant growth, development and crop yield. Many drought-inducible genes have been identified by molecular and genomic analyses in Arabidopsis, rice and other crops. To better understand reaction mechanism of plant to drought tolerance, we mainly focused on introducing the research of transcription factors (TFs) in signal transduction and regulatory network of gene expression conferring drought. A TF could bind multiple target genes to increase one or more kinds of stress tolerance. Sometimes, several TFs might act together with a target gene. So drought-tolerance genes or TFs might respond to high-salinity, cold or other stresses. The crosstalk of multiple stresses signal pathways is a crucial aspect of understanding stress signaling.

  4. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out that there...... is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the...... design of the nominal feedback con-troller....

  5. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2004-01-01

    BackgroundDimensioning and TolerancingTolerance Format and Decimal PlacesConverting Plus/Minus Dimensions and Tolerances into Equal Bilaterally Toleranced DimensionsVariation and Sources of VariationTolerance AnalysisWorst-case Tolerance StackupsStatistical Tolerance StackupsGeometric Dimensioning and Tolerancing (GD&T)Converting Plus/Minus Tolerancing to Positional Tolerancing and Projected Tolerance ZonesDiametral and Radial Tolerance StackupsSpecifying Material Condition Modifiers and Their Effect on Tolerance Stackups The Tolerance Stackup SketchThe Tolerance Stackup Report FormTolerance S

  6. Effect of freezing and thawing rates on sperm motility in Bocachico Prochilodus magdalenae (Pisces, Characiformes)

    OpenAIRE

    Martínez, José G; Sandra Pardo C

    2015-01-01

    ABSTRACTObjective. To determine the freezing and thawing rates necessary to maintain sperm viability during cryopreservation of Bocachico semen. Materials and methods. Four interactional treatments were implemented between two freezing (rapid and slow) and two thawing (rapid and slow) curves, in a 2x2 factorial as follows: rapid freezing-rapid thawing, rapid freezing-slow thawing, slow freezing-rapid thawing, and slow freezing-slow thawing. After thawing by Sperm Class Analyzer (SCA) curvilin...

  7. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets.

    Science.gov (United States)

    Cai, Congxi; Miao, Huiying; Qian, Hongmei; Yao, Leishuan; Wang, Bingliang; Wang, Qiaomei

    2016-11-01

    The effects of industrial pre-freezing processing and freezing handling on the contents of glucosinolates and antioxidants (vitamin C, polyphenols, carotenoid and chlorophyll), as well as the antioxidant capacity in broccoli (Brassica oleracea L. var. italica) florets were investigated in the present study. Our results showed that the glucosinolate accumulations were significantly decreased after pre-freezing processing, whereas elevated levels of phenols, carotenoids, chlorophyll, and also antioxidant capacity were observed in frozen broccoli florets. The contents of vitamin C remained constant during above mentioned processing. In conclusion, the current industrial freezing processing method is a good practice for the preservation of main antioxidant nutrients in broccoli florets, although some improvements in pre-freezing processing, such as steam blanching and ice-water cooling, are needed to attenuate the decrease in glucosinolate content. PMID:27211670

  8. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available 2,4,6-Trinitrotoluene (TNT is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3 gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  9. Hypoxia up-regulates mitochondrial genome-encoded transcripts in Arabidopsis roots.

    Science.gov (United States)

    Hameed, Muhammad Waqar

    2016-04-28

    Plants are frequently exposed to limitations in oxygen availability during their lifetime. During evolution, they have developed a number of physiological and morphological adaptations to tolerate oxygen and other stress conditions. These include regulation of growth by gene expression and ATP generation. The regulation of nuclear genes after hypoxia and anoxia is well studied; however, the regulation of mitochondrial genes in response to oxygen stress has not been characterized to date. Therefore, we have established an Arabidopsis mitochondrial genome-specific microarray that accommodates probes for all mitochondrial DNA-encoded genes and conserved open reading frames. Our analysis showed an up-regulation of mitochondrial transcripts in Arabidopsis roots after 48 h of hypoxia. Since no significant difference was detected in the expression of mitochondrial RNA polymerases or the mitochondrial DNA content per cell, we propose a transcriptional mode of induction of mitochondrial gene expression under hypoxia. PMID:27002184

  10. Studies on Freezing RAM Semen in Absence of Glycerol.

    Science.gov (United States)

    Abdelnaby, Abdelhady Abdelhakeam

    1988-12-01

    Glycerol is widely used as a major cryoprotective agent for freezing spermatozoa of almost all species. However, it reduces fertility of sheep inseminated cervically compared with intrauterine insemination. Studies were conducted to develop a method and procedure for freezing ram semen in the absence of glycerol. Post -thaw survival of ram spermatozoa frozen in the absence of glycerol was affected by time and temperature after collection and before dilution and time after dilution and before freezing. Increase in time at 5^ circC before or after dilution and before freezing increased both post-thaw motility and number of cells passing through Sephadex filter. A cold dilution method was developed. Slow cooling of fresh ram semen and diluting at 5^circ C 2-3 hr. after collection, then freezing 1 hr. after dilution improved both post-thaw motility and number of cells passing through Sephadex filter compared with immediate dilution at 30-37^circC after collection and freezing 3-4 hr. later (P < 0.05). An extender was developed to freeze ram semen in the absence of glycerol. An increase in post-thaw motility was obtained when semen was extended in TES titrated with Tris to pH 7.0 (TEST) and osmotic pressure of 375-400 mOsm/kg, containing 25-30% (v/v) egg yolk and 10% (v/v) maltose. A special device (boat) for freezing was constructed to insure the same height of the sample above LN _2 and thus the same freezing rate from freeze to freeze. Freezing of semen in 0.25cc straws at 5-10 cm above LN_2 (73.8 to 49.5 ^circC/min) yielded higher post-thaw motility than the rates resulted from freezing at 15 cm above LN_2 or 1 cm above LN _2. Faster Thawing in 37^ circC water for 30 sec. (7.8^ circC/sec.) increased post-thaw motility compared with slower thawing in 5 or 20^circ C water (P < 0.05). A lambing rate of 52.2% was obtained in one fertility trial conducted with ram semen frozen without glycerol and 17.1% in a second trial. One injection (IM) of 15 mg PGF_{2alpha}/ewe for

  11. Comparison of methods for extracting thylakoid membranes of Arabidopsis plants.

    Science.gov (United States)

    Chen, Yang-Er; Yuan, Shu; Schröder, Wolfgang P

    2016-01-01

    Robust and reproducible methods for extracting thylakoid membranes are required for the analysis of photosynthetic processes in higher plants such as Arabidopsis. Here, we compare three methods for thylakoid extraction using two different buffers. Method I involves homogenizing the plant material with a metal/glass blender; method II involves manually grinding the plant material in ice-cold grinding buffer with a mortar and method III entails snap-freezing followed by manual grinding with a mortar, after which the frozen powder is thawed in isolation buffer. Thylakoid membrane samples extracted using each method were analyzed with respect to protein and chlorophyll content, yields relative to starting material, oxygen-evolving activity, protein complex content and phosphorylation. We also examined how the use of fresh and frozen thylakoid material affected the extracts' contents of protein complexes. The use of different extraction buffers did not significantly alter the protein content of the extracts in any case. Method I yielded thylakoid membranes with the highest purity and oxygen-evolving activity. Method III used low amounts of starting material and was capable of capturing rapid phosphorylation changes in the sample at the cost of higher levels of contamination. Method II yielded thylakoid membrane extracts with properties intermediate between those obtained with the other two methods. Finally, frozen and freshly isolated thylakoid membranes performed identically in blue native-polyacrylamide gel electrophoresis experiments conducted in order to separate multimeric protein supracomplexes. PMID:26337850

  12. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    OpenAIRE

    Sultana eRasheed; Khurram eBashir; Akihiro eMatsui; Maho eTanaka; Motoaki eSeki

    2016-01-01

    Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicat...

  13. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana

    OpenAIRE

    Stefanato, Francesca L.; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G.; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-01-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mut...

  14. Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density.

    Science.gov (United States)

    Hodge, Simon; Ward, Jane L; Beale, Michael H; Bennett, Mark; Mansfield, John W; Powell, Glen

    2013-04-01

    Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid-host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g(-1) dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant. PMID:23242075

  15. Freeze-thaw durability of air-entrained concrete.

    Science.gov (United States)

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  16. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  17. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica

    Science.gov (United States)

    Adaptations to low moisture availability are arguably as important as cold resistance for polar terrestrial invertebrates, especially because water, in the form of ice, is biologically inaccessible for much of the year. Desiccation responses under ecologically realistic soil humidity conditions – t...

  18. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats to external environments. We...

  19. Cryopreserving turkey semen in straws and nitrogen vapour using DMSO or DMA: effects of cryoprotectant concentration, freezing rate and thawing rate on post-thaw semen quality.

    Science.gov (United States)

    Iaffaldano, N; Di Iorio, M; Miranda, M; Zaniboni, L; Manchisi, A; Cerolini, S

    2016-04-01

    1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality. 2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined. 3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found. 4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen. PMID:26872498

  20. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins.

    Directory of Open Access Journals (Sweden)

    Alex Boyko

    Full Text Available Epigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF. Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL 2 and DCL3 encode Dicer activities important for small RNA-dependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways.

  1. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  2. Studies on Freezing RAM Semen in Absence of Glycerol.

    Science.gov (United States)

    Abdelnaby, Abdelhady Abdelhakeam

    1988-12-01

    Glycerol is widely used as a major cryoprotective agent for freezing spermatozoa of almost all species. However, it reduces fertility of sheep inseminated cervically compared with intrauterine insemination. Studies were conducted to develop a method and procedure for freezing ram semen in the absence of glycerol. Post -thaw survival of ram spermatozoa frozen in the absence of glycerol was affected by time and temperature after collection and before dilution and time after dilution and before freezing. Increase in time at 5^ circC before or after dilution and before freezing increased both post-thaw motility and number of cells passing through Sephadex filter. A cold dilution method was developed. Slow cooling of fresh ram semen and diluting at 5^circ C 2-3 hr. after collection, then freezing 1 hr. after dilution improved both post-thaw motility and number of cells passing through Sephadex filter compared with immediate dilution at 30-37^circC after collection and freezing 3-4 hr. later (P semen in the absence of glycerol. An increase in post-thaw motility was obtained when semen was extended in TES titrated with Tris to pH 7.0 (TEST) and osmotic pressure of 375-400 mOsm/kg, containing 25-30% (v/v) egg yolk and 10% (v/v) maltose. A special device (boat) for freezing was constructed to insure the same height of the sample above LN _2 and thus the same freezing rate from freeze to freeze. Freezing of semen in 0.25cc straws at 5-10 cm above LN_2 (73.8 to 49.5 ^circC/min) yielded higher post-thaw motility than the rates resulted from freezing at 15 cm above LN_2 or 1 cm above LN _2. Faster Thawing in 37^ circC water for 30 sec. (7.8^ circC/sec.) increased post-thaw motility compared with slower thawing in 5 or 20^circ C water (P semen frozen without glycerol and 17.1% in a second trial. One injection (IM) of 15 mg PGF_{2alpha}/ewe for estrus synchronization during breeding season resulted in higher heat response and lambing rate than two injections given 10 days apart.

  3. PEM Fuel Cell Freeze Durability and Cold Start Project

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, T.; O' Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  4. Freeze-thaw bond properties of new-old concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using composite cubic specimens of new-old concrete, the bond splitting tensile strength and failure mechanism for the interface of new-old concrete in saturating state were explored when exposed to freeze-thaw cycling. Specimens were experienced for 0,25,50,75,100 and 125 freezing cycles. The roughness and ad hesion agent including cement paste, cement mortar and cement paste with 10 percent of UEA expanding agent were also investigated. The test results indicate that the bond splitting tensile strength decreases with increased numbers of freezing-and-thawing cycles. The roughness and adhesion agent have different effects on the bond strength.

  5. Influence of Freeze-drying on the texture of mushrooms.

    OpenAIRE

    Guiné, Raquel; Barroca, Maria João

    2009-01-01

    In the present work the textural properties of mushrooms were studied in the fresh state and after a freeze-drying treatment, to perceive what is the influence of this drying treatment on the texture of the mushrooms. The moisture content was determined in both forms, with the fresh samples showing an average moisture of 90.25 % and the freeze-dried 7.01 % (both wet basis). The texture profile analysis (TPA) to the samples of the fresh and freeze-dried mushrooms that neither possessed measura...

  6. The impact of freeze-drying on strawberry quality

    OpenAIRE

    Mahacine Amrani; Jamal Brigui

    2010-01-01

    This work analyses and models the dehydration kinetics for whole and sliced strawberries during freeze-drying. A Virtis 35L Gardiner lyophyliser was used. Freeze-drying was carried out at various hotplate temperatures and several product thicknesses. It was observed that increasing hotplate temperature from 30°C to 70°C during the course of freeze-drying led to reducing the process from 48h to 36h for whole strawberries and from 12h to 8h for the slices, stable dry products being obtained. St...

  7. SOME STUDIES ABOUT CEREALS BEHAVIOR DURING FREEZE DRYING PROCESS

    Directory of Open Access Journals (Sweden)

    GABRIELA-VICTORIA MNERIE

    2013-07-01

    Full Text Available The paper presents some special method and equipment and the principal advantages of freeze-dried food. The freeze drying is a good method of freeze-drying for make some experiments with many kind of cereals, for the improvement that in food production. It is necessary and is possible to study the corn oil extract, wheat flour, the maltodextrin from corn, modified cornstarch, spice extracts, soy sauce, hydrolyzed wheat gluten, partially hydrogenated soybean and cottonseed oil etc. That is very porous, since it occupies the same volume as the original and so rehydrates rapidly. There is less loss of flavour and texture than with most other methods of drying.

  8. Freezing-induced deformation of biomaterials in cryomedicine

    Science.gov (United States)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  9. Freezing water in no-man's land.

    Science.gov (United States)

    Manka, Alexandra; Pathak, Harshad; Tanimura, Shinobu; Wölk, Judith; Strey, Reinhard; Wyslouzil, Barbara E

    2012-04-01

    We report homogeneous ice nucleation rates between 202 K and 215 K, thereby reducing the measurement gap that previously existed between 203 K and 228 K. These temperatures are significantly below the homogenous freezing limit, T(H)≈ 235 K for bulk water, and well within no-man's land. The ice nucleation rates are determined by characterizing nanodroplets with radii between 3.2 and 5.8 nm produced in a supersonic nozzle using three techniques: (1) pressure trace measurements to determine the properties of the flow as well as the temperature and velocity of the droplets, (2) small angle X-ray scattering (SAXS) to measure the size and number density of the droplets, and (3) Fourier Transform Infrared (FTIR) spectroscopy to follow the liquid to solid phase transition. Assuming that nucleation occurs throughout the droplet volume, the measured ice nucleation rates J(ice,V) are on the order of 10(23) cm(-3) s(-1), and agree well with published values near 203 K. PMID:22354018

  10. Drying a tuberculosis vaccine without freezing.

    Science.gov (United States)

    Wong, Yun-Ling; Sampson, Samantha; Germishuizen, Willem Andreas; Goonesekera, Sunali; Caponetti, Giovanni; Sadoff, Jerry; Bloom, Barry R; Edwards, David

    2007-02-20

    With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present bacillus Calmette-Guérin (BCG) vaccine. We demonstrate that BCG vaccine can be dried without traditional freezing and maintained with remarkable refrigerated and room-temperature stability for months through spray drying. Studies with a model Mycobacterium (Mycobacterium smegmatis) revealed that by removing salts and cryoprotectant (e.g., glycerol) from bacterial suspensions, the significant osmotic pressures that are normally produced on bacterial membranes through droplet drying can be reduced sufficiently to minimize loss of viability on drying by up to 2 orders of magnitude. By placing the bacteria in a matrix of leucine, high-yield, free-flowing, "vial-fillable" powders of bacteria (including M. smegmatis and M. bovis BCG) can be produced. These powders show relatively minor losses of activity after maintenance at 4 degrees C and 25 degrees C up to and beyond 4 months. Comparisons with lyophilized material prepared both with the same formulation and with a commercial formulation reveal that the spray-dried BCG has better overall viability on drying. PMID:17299039

  11. Stochastic flux freezing and magnetic dynamo

    International Nuclear Information System (INIS)

    Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the ''spontaneous stochasticity'' of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Prm) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Prm=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered.

  12. GPR utilization in artificial freezing engineering

    International Nuclear Information System (INIS)

    To utilize ground penetrating radar (GPR) in artificial freezing engineering (AFE), the electromagnetic parameters (EMP) of frozen soil were measured using a vector network analyser, which showed that the dielectric permittivity and electric conductivity change abruptly at the boundary between the frozen and the non-frozen soil. Then similarity criteria of GPR model experiments were deduced, and GPR laboratory model experiments and field explorations of AFE were carried out. It was found that for AFE, the GPR travel time and profile characters of anomalies in model experiments were similar to those in field explorations, while the amplitude of GPR signals in laboratory model experiments were much stronger than those in field explorations. Numerical simulations were also implemented to analyse the relationship between model experiments and field explorations, which further told us why we could easily find the targets by GPR in the laboratory but not in field explorations. The outputs showed that GPR could be used to detect the thickness of the frozen wall and to find unfrozen soil defects, even though the amplitude of the reflective signals were much weaker than those of laboratory experiments. The research findings have an important theoretical value for AFE and permafrost region engineering, and the deduced GPR similarity criteria could be widely used in other GPR model experiments. (paper)

  13. Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson’s Disease with Freezing of Gait

    Science.gov (United States)

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Vercruysse, Sarah; Broeder, Sanne; Strouwen, Carolien; Swinnen, Stephan P.; Nieuwboer, Alice

    2015-01-01

    Background Recent studies show that besides freezing of gait (FOG), many people with Parkinson’s disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing. Objective To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait. Methods Thirty-four patients with PD, including 17 with and 17 without FOG, performed a writing task on a touch-sensitive writing tablet requiring writing at constant small and large size as well as writing at gradually increasing and decreasing size. Patients of both groups were matched for disease severity, tested while ‘on’ medication and compared to healthy age-matched controls. Results Fifty upper limb freezing episodes were detected in 10 patients, including 8 with and 2 without FOG. The majority of the episodes occurred when participants had to write at small or gradually decreasing size. The occurrence of FOUL and the number of FOUL episodes per patient significantly correlated with the occurrence and severity of FOG. Patients with FOUL also showed a significantly smaller amplitude in the writing parts outside the freezing episodes. Conclusions Corroborating findings of gait research, the current study supports a core problem in amplitude control underlying FOUL, both in maintaining as well as in flexibly adapting the cycle size. PMID:26580556

  14. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress. PMID:24502519

  15. Toleration and its enemies

    DEFF Research Database (Denmark)

    Jarvad, Ib Martin

    2010-01-01

    After a presentation of the development of freedom of expression in Danish constitutional law, to freedom of the press in European human rights law - the Jersild case- to a right to mock and ridicule other faiths in recent Danish practice, the essay of Locke on toleration is examined, its...... background in arminist protestant theology of toleration considered, its conclusion that only faiths that demand allegiance and obedience to foreign powers can be excluded from toleration is highlighted....

  16. State, religion and toleration

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    underline not only the broadmindedness and liberty of individuals or of groups, but also the relevant distinctions and arguments in political philosophy, epistemology, philosophy of religion and philosophical anthropology and their connection with educational issues. Through a discussion of these relations......, the essay argues three theses: (1) Toleration is not reducible to an ethics of spiritual freedom. (2) Toleration is not neutral to fanatism. (3) Toleration involves esteem for the person....

  17. MERICAN CULTURAL TOLERANCE

    Institute of Scientific and Technical Information of China (English)

    ZHANG RUIXIAO

    2014-01-01

    As an emigrant country, the essential characteristic of America culture is its tolerance. It contributes to the formation the diversity of American culture. By tracing back to American history, this essay shows what caused American cultural tolerance. Through describing briefly the manifestation of American cultural tolerance from certain aspects and analyzing the major factors, it will give us a clue about the reason why America can be always prosperous. At last, the paper shows the limitation as well as advantages about the tolerance from the point of current status.

  18. Physiological and biochemical responses of Yarrowia lipolytica to dehydration induced by air-drying and freezing.

    Directory of Open Access Journals (Sweden)

    Caroline Pénicaud

    Full Text Available Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell's ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y

  19. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  20. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei