WorldWideScience

Sample records for arabidopsis enhances heat

  1. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings.

  2. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Changjun Mu

    Full Text Available Small heat shock proteins (smHSPs play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson Raffill var. Willmottiae, which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.

  3. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LI; Chunguang; CHEN; Qijun; GAO; Xinqi; QI; Bishu; CHEN; Na

    2005-01-01

    There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H2O2 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.

  4. Universal Stress Protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress

    Directory of Open Access Journals (Sweden)

    Jung eYoung Jun

    2015-12-01

    Full Text Available Although a wide range of physiological information on Universal Stress Proteins (USPs is available from many organisms, their biochemical and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990 from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW species to high molecular weight (HMW complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

  5. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  6. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  7. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  8. Enhancement of reproductive heat tolerance in plants.

    Directory of Open Access Journals (Sweden)

    John J Burke

    Full Text Available Comparison of average crop yields with reported record yields has shown that major crops exhibit annual average yields three- to seven-fold lower than record yields because of unfavorable environments. The current study investigated the enhancement of pollen heat tolerance through expressing an Arabidopsis thaliana heat shock protein 101 (AtHSP101 that is not normally expressed in pollen but reported to play a crucial role in vegetative thermotolerance. The AtHSP101 construct under the control of the constitutive ocs/mas 'superpromoter' was transformed into cotton Coker 312 and tobacco SRI lines via Agrobacterium mediated transformation. Thermotolerance of pollen was evaluated by in vitro pollen germination studies. Comparing with those of wild type and transgenic null lines, pollen from AtHSP101 transgenic tobacco and cotton lines exhibited significantly higher germination rate and much greater pollen tube elongation under elevated temperatures or after a heat exposure. In addition, significant increases in boll set and seed numbers were also observed in transgenic cotton lines exposed to elevated day and night temperatures in both greenhouse and field studies. The results of this study suggest that enhancing heat tolerance of reproductive tissues in plant holds promise in the development of crops with improved yield production and yield sustainability in unfavorable environments.

  9. Enhanced heat transfer using nanofluids

    Science.gov (United States)

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  10. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  11. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis

    Science.gov (United States)

    Wang, Xiuyun; Huang, Wanlu; Yang, Zhimin; Liu, Jun; Huang, Bingru

    2016-01-01

    Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance. PMID:27320381

  12. Heat transfer enhancement by pin elements

    Energy Technology Data Exchange (ETDEWEB)

    Sahiti, N.; Durst, F.; Dewan, A. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Cauerstrasse 4, D-91058 Erlangen (Germany)

    2005-11-01

    Heat transfer enhancement is an active and important field of engineering research since increases in the effectiveness of heat exchangers through suitable heat transfer augmentation techniques can result in considerable technical advantages and savings of costs. Considerable enhancements were demonstrated in the present work by using small cylindrical pins on surfaces of heat exchangers. A partly quantitative theoretical treatment of the proposed method is presented. It uses simple relationships for the conductive and convective heat transfer to derive an equation that shows which parameters permit the achievement of heat transfer enhancements. Experiments are reported that demonstrate the effectiveness of the results of the proposed approach. It is shown that the suggested method of heat transfer enhancements is much more effective than existing methods, since it results in an increase in heat transfer area (like fins) and also an increase in the heat transfer coefficient. (author)

  13. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, Taha Jibril

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  14. Mass and Heat Transfer Enhancement of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan

    1993-01-01

    An inert additive,expanded graphit(EG),has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps.The effects of mixing ratio and mixing method on the chemical reaction time are investigated.

  15. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  16. A Proximal Promoter Region of Arabidopsis DREB2C Confers Tissue-specific Expression under Heat Stress

    Institute of Scientific and Technical Information of China (English)

    Huan Chen; Jihyun Je; Chieun Song; Jung Eun Hwang; Chae Oh Lim

    2012-01-01

    The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins,which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF)domain.To identify the expression pattern of the DREB2C gene,which contains multiple transcription cis-regulatory elements in its promoter,an approximately 1.4 kb upstream DREB2C sequence was fused to the β-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.) Heynh.The promoter of the gene directed prominent GUS activity in the vasculature in diverse young dividing tissues.Upon applying heat stress (HS),GUS staining was also enhanced in the vasculature of the growing tissues.Analysis of a series of 5'-deletions of the DREB2C promoter revealed that a proximal upstream sequence sufficient for the tissue-specific spatial and temporal induction of GUS expression by HS is localized in the promoter region between -204 and -34 bps relative to the transcriptional start site.Furthermore,electrophoretic mobility shift assay (EMSA) demonstrated that nuclear protein binding activities specific to a -120 to -32 bp promoter fragment increased after HS.These results indicate that the TATA-proximal region and some latent trans-acting factors may cooperate in HS-induced activation of the Arabidopsis DREB2C promoter.

  17. Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation.

    Science.gov (United States)

    Zhang, Ru; Wise, Robert R; Struck, Kimberly R; Sharkey, Thomas D

    2010-08-01

    Photosynthesis is inhibited by heat stress. This inhibition is rapidly reversible when heat stress is moderate but irreversible at higher temperature. Absorbance changes can be used to detect a variety of biophysical parameters in intact leaves. We found that moderate heat stress caused a large reduction of the apparent absorbance of green light in light-adapted, intact Arabidopsis thaliana leaves. Three mechanisms that can affect green light absorbance of leaves, namely, zeaxanthin accumulation (absorbance peak at 505 nm), the electrochromic shift (ECS) of carotenoid absorption spectra (peak at 518 nm), and light scattering (peak at 535 nm) were investigated. The change of green light absorbance caused by heat treatment was not caused by changes of zeaxanthin content nor by the ECS. The formation of non-photochemical quenching (NPQ), chloroplast movements, and chloroplast swelling and shrinkage can all affect light scattering inside leaves. The formation of NPQ under high temperature was not well correlated with the heat-induced absorbance change, and light microscopy revealed no appreciable changes of chloroplast location because of heat treatment. Transmission electron microscopy results showed swollen chloroplasts and increased number of plastoglobules in heat-treated leaves, indicating that the structural changes of chloroplasts and thylakoids are significant results of moderate heat stress and may explain the reduced apparent absorbance of green light under moderately high temperature.

  18. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  19. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  20. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  1. The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Olga V.Popova; Huy Q.Dinh; Werner Aufsatz; Claudia Jonak

    2013-01-01

    Heat stress affects epigenetic gene silencing in Arabidopsis.To test for a mechanistic involvement of epigenetic regulation in heat-stress responses,we analyzed the heat tolerance of mutants defective in DNA methylation,histone modifications,chromatin-remodeling,or siRNA-based silencing pathways.Plants deficient in NRPD2,the common second-largest subunit of RNA polymerases Ⅳ and V,and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure.Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress.The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription.We provide evidence that the transcriptional response to temperature stress,at least partially,relies on the integrity of the RNA-dependent DNA methylation pathway.

  2. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    Science.gov (United States)

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  3. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  4. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  5. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.

    Science.gov (United States)

    Dong, Wei; Stockwell, Virginia O; Goyer, Aymeric

    2015-12-01

    Thiamin is an essential nutrient in the human diet. Severe thiamin deficiency leads to beriberi, a lethal disease which is common in developing countries. Thiamin biofortification of staple food crops is a possible strategy to alleviate thiamin deficiency-related diseases. In plants, thiamin plays a role in the response to abiotic and biotic stresses, and data from the literature suggest that boosting thiamin content could increase resistance to stresses. Here, we tested an engineering strategy to increase thiamin content in Arabidopsis. Thiamin is composed of a thiazole ring linked to a pyrimidine ring by a methylene bridge. THI1 and THIC are the first committed steps in the synthesis of the thiazole and pyrimidine moieties, respectively. Arabidopsis plants were transformed with a vector containing the THI1-coding sequence under the control of a constitutive promoter. Total thiamin leaf content in THI1 plants was up approximately 2-fold compared with the wild type. THI1-overexpressing lines were then crossed with pre-existing THIC-overexpressing lines. Resulting THI1 × THIC plants accumulated up to 3.4- and 2.6-fold more total thiamin than wild-type plants in leaf and seeds, respectively. After inoculation with Pseudomonas syringae, THI1 × THIC plants had lower populations than the wild-type control. However, THI1 × THIC plants subjected to various abiotic stresses did not show any visible or biochemical changes compared with the wild type. We discuss the impact of engineering thiamin biosynthesis on the nutritional value of plants and their resistance to biotic and abiotic stresses.

  6. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis.

    Science.gov (United States)

    Zhou, Yuliang; Chu, Pu; Chen, Huhui; Li, Yin; Liu, Jun; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi

    2012-03-01

    Metallothioneins (MTs) are small, cysteine-rich and metal-binding proteins which are involved in metal homeostasis and scavenging of reactive oxygen species. Although plant MTs have been intensively studied, their roles in seeds remain to be clearly established. Here, we report the isolation and characterization of NnMT2a, NnMT2b and NnMT3 from sacred lotus (Nelumbo nucifera Gaertn.) and their roles in seed germination vigor. The transcripts of NnMT2a, NnMT2b and NnMT3 were highly expressed in developing and germinating sacred lotus seeds, and were dramatically up-regulated in response to high salinity, oxidative stresses and heavy metals. Analysis of transformed Arabidopsis protoplasts showed that NnMT2a-YFP and NnMT3-YFP were localized in cytoplasm and nucleoplasm. Transgenic Arabidopsis seeds overexpressing NnMT2a and NnMT3 displayed improved resistance to accelerated aging (AA) treatment, indicating their significant roles in seed germination vigor. These transgenic seeds also exhibited higher superoxide dismutase activity compared to wild-type seeds after AA treatment. In addition, we showed that NnMT2a and NnMT3 conferred improved germination ability to NaCl and methyl viologen on transgenic Arabidopsis seeds. Taken together, these data demonstrate that overexpression of NnMT2a and NnMT3 in Arabidopsis significantly enhances seed germination vigor after AA treatment and under abiotic stresses.

  7. Analysis of solid-liquid phase change heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    张寅平; 王馨

    2002-01-01

    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  8. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  9. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.

    Science.gov (United States)

    Zhu, Bo; Peng, Ri-He; Fu, Xiao-Yan; Jin, Xiao-Fen; Zhao, Wei; Xu, Jing; Han, Hong-Juan; Gao, Jian-Jie; Xu, Zhi-Sheng; Bian, Lin; Yao, Quan-Hong

    2012-01-01

    2,4,6-Trinitrotoluene (TNT) is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3) gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  10. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available 2,4,6-Trinitrotoluene (TNT is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3 gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  11. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit

    OpenAIRE

    Jiang, N; Shelley, J D; Smith, Robin

    2014-01-01

    The retrofit of heat exchanger networks requires detailed models of the heat exchangers for the detailed assessment of network performance. Network retrofit options include heat transfer enhancement. There is thus a requirement for detailed models of heat exchanger performance, including heat transfer enhancement, suitable for inclusion in network retrofit optimization algorithms. Such models must be robust, computationally efficient and accurate enough to reflect the heat transfer and pressu...

  12. Enhanced condensation heat transfer with wettability patterning

    Science.gov (United States)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  13. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid

    Science.gov (United States)

    Roy, Sujit; Das, Kali Pada

    2017-01-01

    Abscisic acid (ABA) acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB) repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ) pathway genes, and mutants related to homologous recombination (HR) pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0) during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0) and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis. PMID:28046013

  14. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    Science.gov (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.

  15. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    Science.gov (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  16. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    Science.gov (United States)

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  17. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2

    Directory of Open Access Journals (Sweden)

    Alexandre Evrard

    2013-04-01

    Full Text Available So far little is known on the functional role of phosphorylation in the heat stress response of plants. Here we present evidence that heat stress activates the Arabidopsis mitogen-activated protein kinase MPK6. In vitro and in vivo evidence is provided that MPK6 specifically targets the major heat stress transcription factor HsfA2. Activation of MPK6 results in complex formation with HsfA2. MPK6 phosphorylates HsfA2 on T249 and changes its intracellular localisation. Protein kinase and phosphatase inhibitor studies indicate that HsfA2 protein stability is regulated in a phosphorylation-dependent manner, but this mechanism is independent of MPK6. Overall, our data show that heat stress-induced targeting of HsfA2 by MPK6 participates in the complex regulatory mechanism how plants respond to heat stress.

  18. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  19. Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple.

    Science.gov (United States)

    Tan, Yanxiao; Li, Mingjun; Yang, Yingli; Sun, Xun; Wang, Na; Liang, Bowen; Ma, Fengwang

    2017-01-01

    Phytocystatins (PhyCys) comprise a group of inhibitors for cysteine proteinases in plants. They play a wide range of important roles in regulating endogenous processes and protecting plants against various environmental stresses, but the underlying mechanisms remain largely unknown. Here, we detailed the biological functions of MpCYS4, a member of cystatin genes isolated from Malus prunifolia. This gene was activated under water deficit, heat (40°C), exogenous abscisic acid (ABA), or methyl viologen (MV) (Tan et al., 2014a). At cellular level, MpCYS4 protein was found to be localized in the nucleus, cytoplasm, and plasma membrane of onion epidermal cells. Recombinant MpCYS4 cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Transgenic overexpression of MpCYS4 in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) led to ABA hypersensitivity and series of ABA-associated phenotypes, such as enhanced ABA-induced stomatal closing, altered expression of many ABA/stress-responsive genes, and enhanced drought tolerance. Taken together, our results demonstrate that MpCYS4 is involved in ABA-mediated stress signal transduction and confers drought tolerance at least in part by enhancing stomatal closure and up-regulating the transcriptional levels of ABA- and drought-related genes. These findings provide new insights into the molecular mechanisms by which phytocystatins influence plant growth, development, and tolerance to stress.

  20. The Study of the Participation of Heat Shock Proteins in the Resistance to High and Low Temperatures with the Use of Thellungiella (Thellungiella salsuguinea and Transgenic Lines of Arabidopsis (Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    K.Z. Gamburg

    2017-02-01

    Full Text Available Transgenic lines of Arabidopsis with HSP101 gene in sense and anti sense orientations acquired resistance to hard heat shock (50° C 10 min or 45-47° C 1 hour and to freezing (-4° C 2 hours due to the preliminary 2 hour’s heating at 37° C. Thus, it was shown at the first time that the induction of the resistance to hard heat shock and freezing with mild heat shock is possible in the absence of HSP101 synthesis. Thellungiella with the genome to 95-97% identical to the genome of Arabidopsis did not have higher resistance to high temperature, but was significantly more resistant to freezing. It differed from Arabidopsis by several times higher contents of HSP101, HSP60 and HSC70. Contents of these HSPs in Arabidopsis increased as a result of hardening at 4° C what was accompanied by the increase of the resistance to freezing. It is supposed that the resistances to heat and cold shocks are dependent not only from HSP101, but also from other HSPs.

  1. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    Directory of Open Access Journals (Sweden)

    Yu-Hung eYeh

    2015-05-01

    Full Text Available Upon recognition of microbe-associated molecular patterns (MAMPs such as the bacterial flagellin (or the derived peptide flg22 by pattern-recognition receptors (PRRs such as the FLAGELLIN SENSING2 (FLS2, plants activate the pattern-triggered immunity (PTI response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2 is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs possess two copies of the C-X8-C-X2-C (DUF26 motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6 and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1 was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6 and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  2. Heat transfer enhancement by application of nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Mosavian, M. T. Hamed, E-mail: mosavian@um.ac.ir; Heris, S. Zeinali [Ferdowsi University of Mashhad, Department of Chemical Engineering, Faculty of Engineering (Iran, Islamic Republic of); Etemad, S. Gh.; Esfahany, M. Nasr [Isfahan University of Technology, Department of Chemical Engineering (Iran, Islamic Republic of)

    2010-09-15

    In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al{sub 2}O{sub 3} (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

  3. A review on boiling heat transfer enhancement with nanofluids.

    Science.gov (United States)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  4. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis.

    Science.gov (United States)

    Maisonneuve, Sylvie; Bessoule, Jean-Jacques; Lessire, René; Delseny, Michel; Roscoe, Thomas J

    2010-02-01

    In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.

  5. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress.

    Science.gov (United States)

    Hsieh, Tsai-Hung; Lee, Jent-turn; Charng, Yee-yung; Chan, Ming-Tsair

    2002-10-01

    A DNA cassette containing an Arabidopsis C repeat/dehydration-responsive element binding factor 1 (CBF1) cDNA and a nos terminator, driven by a cauliflower mosaic virus 35S promoter, was transformed into the tomato (Lycopersicon esculentum) genome. These transgenic tomato plants were more resistant to water deficit stress than the wild-type plants. The transgenic plants exhibited growth retardation by showing dwarf phenotype, and the fruit and seed numbers and fresh weight of the transgenic tomato plants were apparently less than those of the wild-type plants. Exogenous gibberellic acid treatment reversed the growth retardation and enhanced growth of transgenic tomato plants, but did not affect the level of water deficit resistance. The stomata of the transgenic CBF1 tomato plants closed more rapidly than the wild type after water deficit treatment with or without gibberellic acid pretreatment. The transgenic tomato plants contained higher levels of Pro than those of the wild-type plants under normal or water deficit conditions. Subtractive hybridization was used to isolate the responsive genes to heterologous CBF1 in transgenic tomato plants and the CAT1 (CATALASE1) was characterized. Catalase activity increased, and hydrogen peroxide concentration decreased in transgenic tomato plants compared with the wild-type plants with or without water deficit stress. These results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.

  6. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-05-11

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions.

  7. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  8. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis.

    Science.gov (United States)

    Lv, Feifei; Zhou, Jun; Zeng, Lizhang; Xing, Da

    2015-08-01

    β-cyclocitral (β-CC), a volatile oxidized derivative of β-carotene, can upregulate the expression of defence genes to enhance excess light (EL) acclimation. However, the signalling cascades underlying this process remain unclear. In this study, salicylic acid (SA) is involved in alleviating damage to promote β-CC-enhanced EL acclimation. In early stages of EL illumination, β-CC pretreatment induced SA accumulation and impeded reactive oxygen species (ROS) production in the chloroplast. A comparative analysis of two SA synthesis pathways in Arabidopsis revealed that SA concentration mainly increased via the isochorismate synthase 1 (ICS1)-mediated isochorismate pathway, which depended on essential regulative function of enhanced disease susceptibility 1 (EDS1). Further results showed that, in the process of β-CC-enhanced EL acclimation, nuclear localization of nonexpressor of pathogenesis-related genes 1 (NPR1) was regulated by SA accumulation and NPR1 induced subsequent transcriptional reprogramming of gluthathione-S-transferase 5 (GST5) and GST13 implicated in detoxification. In summary, β-CC-induced SA synthesis contributes to EL acclimation response by decreasing ROS production in the chloroplast, promoting nuclear localization of NPR1, and upregulating GST transcriptional expression. This process is a possible molecular regulative mechanism of β-CC-enhanced EL acclimation.

  9. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2013-01-01

    Full Text Available Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vibration frequency between 50 to 1,000 Hz to pin fins heat sinks. The results of numerical simulation clearly show satisfied heat transfer augmentation. However, the Pressure drop significantly increases with frequency. This phenomenon affects the heat transfer enhancement performance that it increases with frequency until certain value then it drops rapidly. The results of this study can help designing heat sinks for electronics cooling by employing the concept of vibration.

  10. Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s.

    Science.gov (United States)

    Shukla, Devesh; Tiwari, Manish; Tripathi, Rudra D; Nath, Pravendra; Trivedi, Prabodh Kumar

    2013-05-10

    Phytochelatins (PCs) are naturally occurring thiol-rich peptides containing gamma (γ) peptide bonds and are well known for their metal-binding and detoxification capabilities. Whether synthetic phytochelatins (ECs) can be used as an alternative approach for enhancing the metal-binding capacity of plants has been investigated in this study. The metal-binding potential of ECs has been demonstrated in bacteria; however, no report has investigated the expression of ECs in plants. We have expressed three synthetic genes encoding ECs of different lengths in wild type (WT) Arabidopsis (Col-0 background) and a phytochelatin-deficient Arabidopsis mutant (cad1-3). After exposure to different heavy metals, the transgenic plants were examined for phenotypic changes, and metal accumulation was evaluated. The expression of EC genes rescued the sensitive phenotype of the cad1-3 mutant under heavy metal(loid) stress. Transgenic Arabidopsis plants expressing EC genes accumulated a significantly enhanced level of heavy metal(loid)s in comparison with the WT plant. The mutant complementation and enhanced heavy metal(loid) accumulation in the transgenic Arabidopsis plants suggest that ECs work in a manner similar to that of PCs in plants and that ECs could be used as an alternative for phytoremediation of heavy metal(loid) exposure.

  11. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  12. Effect of the heating surface enhancement on the heat transfer coefficient for a vertical minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2016-01-01

    Full Text Available The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.

  13. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  14. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.

    Science.gov (United States)

    Tanaka, Yu; Sugano, Shigeo S; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2013-05-01

    Photosynthetic rate is determined by CO2 fixation and CO2 entry into the plant through pores in the leaf epidermis called stomata. However, the effect of increased stomatal density on photosynthetic rate remains unclear. This work investigated the effect of alteration of stomatal density on leaf photosynthetic capacity in Arabidopsis thaliana. Stomatal density was modulated by overexpressing or silencing STOMAGEN, a positive regulator of stomatal development. Leaf photosynthetic capacity and plant growth were examined in transgenic plants. Increased stomatal density in STOMAGEN-overexpressing plants enhanced the photosynthetic rate by 30% compared to wild-type plants. Transgenic plants showed increased stomatal conductance under ambient CO2 conditions and did not show alterations in the maximum rate of carboxylation, indicating that the enhancement of photosynthetic rate was caused by gas diffusion changes. A leaf photosynthesis-intercellular CO2 concentration response curve showed that photosynthetic rate was increased under high CO2 conditions in association with increased stomatal density. STOMAGEN overexpression did not alter whole plant biomass, whereas its silencing caused biomass reduction. Our results indicate that increased stomatal density enhanced leaf photosynthetic capacity by modulating gas diffusion. Stomatal density may be a target trait for plant engineering to improve photosynthetic capacity.

  15. Arabidopsis TTG2 regulates TRY expression through enhancement of activator complex-triggered activation.

    Science.gov (United States)

    Pesch, Martina; Dartan, Burcu; Birkenbihl, Rainer; Somssich, Imre E; Hülskamp, Martin

    2014-10-01

    Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex.

  16. Enhanced radiative heat transfer between nanostructured gold plates

    CERN Document Server

    Guérout, R; Rosa, F S S; Hugonin, J -P; Dalvit, D A R; Greffet, J -J; Lambrecht, A; Reynaud, S

    2012-01-01

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  17. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  18. Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis.

    Science.gov (United States)

    Echevarría-Zomeño, Sira; Fernández-Calvino, Lourdes; Castro-Sanz, Ana B; López, Juan Antonio; Vázquez, Jesús; Castellano, M Mar

    2016-06-01

    In many plant species, an exposure to a sublethal temperature triggers an adaptative response called acclimation. This response involves an extensive molecular reprogramming that allows the plant to further survive to an otherwise lethal increase of temperature. A related response is also launched under an abrupt and lethal heat stress that, in this case, is unable to successfully promote thermotolerance and therefore ends up in plant death. Although these molecular programmes are expected to have common players, the overlapping degree and the specific regulators of each process are currently unknown. We have carried out a high-throughput comparative proteomics analysis during acclimation and during the early stages of the plant response to a severe heat stress that lead Arabidopsis seedlings either to survival or death. This analysis dissects these responses, unravels the common players and identifies the specific proteins associated with these different fates. Thermotolerance assays of mutants in genes with an uncharacterized role in heat stress demonstrate the relevance of this study to uncover both positive and negative heat regulators and pinpoint a pivotal role of JR1 and BAG6 in heat tolerance.

  19. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N. (Univ. of Illinois, Urbana, IL (United States))

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seed number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.

  20. Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber

    Institute of Scientific and Technical Information of China (English)

    LIU Li-ying; DUAN Liu-sheng; ZHANG Jia-chang; MI Guo-quan; ZHANG Xiao-lan; ZHANG Zhen-xian; REN Hua-zhong

    2013-01-01

    Low temperature and high salinity are the major abiotic stresses that restrict cucumber growth and production, breeding materials with multiple abiotic resistance are in greatly need. Here we investigated the effect of introducing the LOS5 gene, a key regulator of ABA biosynthesis in Arabidopsis thaliana, under the stress-responsive RD29A promoter into cucumber (Cucumis sativus L. cv. S516). We found that T1 RD29A-LOS5 transgenic lines have enhanced tolerance to cold and salt stresses. Specifically, transgenic lines exhibited dwarf phenotypes with reduced leaf number, shorter internode, decreased length of the biggest leaf, fewer female flowers, shorter fruit neck and lower vitamin C (Vc). The increased cold tolerance can be reflected from the significantly decreased cold index, the reduced electrolyte leakage index and the MDA content upon cold treatment as compared to those in the control. This may result from the accumulation of internal ABA, soluble sugars and proline, and the enhanced activities of protective enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic lines. Under salt treatment, the transgenic lines exhibited increased germination index, vigor index, more lateral roots and increased root fresh weight. Moreover, RD29A-LOS5 transgenic plants displayed quicker responses in salt stress than that in low-temperature stress.

  1. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sako, Kaori; Kim, Jong-Myong; Matsui, Akihiro; Nakamura, Kotaro; Tanaka, Maho; Kobayashi, Makoto; Saito, Kazuki; Nishino, Norikazu; Kusano, Miyako; Taji, Teruaki; Yoshida, Minoru; Seki, Motoaki

    2016-04-01

    Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient in AtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 at AtSOS1 was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment.

  2. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance

    NARCIS (Netherlands)

    Ton, J.; Vos, M. de; Robben, C.; Buchala, Anthony; Métraux, Jean-Pierre; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    In Arabidopsis, the rhizobacterial strain Pseudomonas fluorescens WCS417r triggers jasmonate (JA)- and ethylene (ET)-dependent induced systemic resistance (ISR) that is effective against different pathogens. Arabidopsis genotypes unable to express rhizobacteria-mediated ISR against the bacterial pat

  3. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  4. Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit

    Institute of Scientific and Technical Information of China (English)

    Jeong Im Kim; Dongwon Baek; Hyeong Cheol Park; Hyun Jin Chun; Dong-Ha Oh; Min Kyung Lee; Joon-Yung Cha

    2013-01-01

    Indole-3-acetic acid (IAA),a major plant auxin,is produced in both tryptophan-dependent and tryptophanindependent pathways.A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan.Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins.We identified eight putative StYUC (Solanum tuberosum YUCCA)genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins.All include canonical,conserved YUCCA sequences:FATGY motif,FMO signature sequence,and FAD-binding and NADP-binding sequences.In addition,five genes were found with-50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases.Transgenic potato (Solanum tuberosum cv.Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves,increased height,erect stature,and longevity.Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss.The phenotype was correlated with reduced levels of reactive oxygen species in leaves.The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.

  5. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  6. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-04-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  7. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2017-01-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  8. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application

    Institute of Scientific and Technical Information of China (English)

    张寅平; 胡先旭; 郝磬; 王馨

    2003-01-01

    This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.

  9. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Osakabe, Yuriko; Mizuno, Shinji; Tanaka, Hidenori; Maruyama, Kyonoshin; Osakabe, Keishi; Todaka, Daisuke; Fujita, Yasunari; Kobayashi, Masatomo; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-03-19

    RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.

  10. Strategy for selection of elements for heat transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Sahiti, N.; Durst, F.; Dewan, A. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany). LSTM-Erlangen Institute of Fluid Mechanics

    2006-09-15

    The present paper points out that the selection of elements for heat transfer enhancement in heat exchangers requires a methodology to make a direct comparison of the performances of heat exchanger surfaces with different elements. Methods of comparison used in the past are, in many respects, approximate and hence fail to predict accurately the relative performance of conventional heat exchanger surfaces operated with different heat exchanger elements. Owing to the direct use of the Colburn factor for performance assessment, these methods over-predict the relative performance of heat exchangers. In the present paper, a more consistent comparison method is presented and is demonstrated to work by comparison of the performance of an experimentally investigated pin fin heat exchanger with that of a smooth pipe heat exchanger. The method yields results that belong to the volume goodness factors group. It represents a practical approach, as it is applicable to all kinds of heat exchanger surfaces and does not require the conversion of the experimental data in terms of Nusselt number and friction factor for comparison purposes. The present work demonstrates that the suggested method can also be used for performance comparison of existing heat exchanger surfaces with available heat transfer and pressure loss data. (author)

  11. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression.

    Science.gov (United States)

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra

    2013-07-01

    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.

  12. Electrically heated particulate filter enhanced ignition strategy

    Science.gov (United States)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  13. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max

    Energy Technology Data Exchange (ETDEWEB)

    Weston, David [ORNL; Wullschleger, Stan D [ORNL; Yang, Xiaohan [ORNL; Karve, Abhijit A [ORNL; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Allen, Sara M [ORNL

    2011-01-01

    The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

  14. Early-Evaporation of Microlayer for Boiling Heat Transfer Enhancement.

    Science.gov (United States)

    Zou, An; Singh, Dhirendra P; Maroo, Shalabh C

    2016-10-06

    For over five decades, enhancement in pool boiling heat transfer has been achieved by altering the surface wetting, wickability, roughness, nucleation site density and providing separate liquid/vapor pathways. In this work, a new enhancement mechanism based on the early-evaporation of the microlayer is discovered and validated. The microlayer is a thin liquid film present at the base of a vapor bubble. Presence of micro-ridges on the silicon-dioxide surface partitions the microlayer and disconnects it from bulk liquid causing it to evaporate sooner, thus leading to increase in bubble growth rate, heat transfer, departure frequency and critical heat flux (CHF). Compared to a plain surface, ~120% enhancement in CHF is obtained with only ~18% increase in surface area. A CHF enhancement map is developed based on ridge height and spacing, resulting in three regions of full, partial and no enhancement. The new mechanism is validated by comparing the growth rate of a laser created vapor bubble on ridge-structured surface and plain surface, and the corresponding prediction of CHF enhancement is found to be in good agreement with experimental boiling data. This discovery opens up a new field of CHF enhancement and can be coupled with existing techniques to further push the limits of boiling heat transfer.

  15. Enhanced heat transfer with metal wool filled tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Collins, J.T.; Khounsary, A.M. (Argonne National Lab., IL (USA)); Morales, G. (Argonne National Lab., IL (USA) Texas Univ., El Paso, TX (USA))

    1990-08-01

    The Advanced Photon Source (APS) to be constructed at Argonne National Laboratory (ANL) utilizes magnetic devices which generate x-ray beams with very intense heat flux levels. The flux levels encountered can be one or two orders of magnitude higher than those commonly found in nuclear reactors or fusion devices. The beam line elements and optics on such beams pose significant challenge to the researchers and designers to keep them cooled at acceptable levels of surface temperature and/or temperature gradients. Therefore, methods and techniques achieving heat removal enhancement are constantly sought. One such technique suggested and considered is the use of conductive metal wool filled tubes where the filter is brazed to the tube walls. A comparative investigation of the conventionally achievable heat transfer coefficient h'' with water and the wall conductance of a heavy wall copper tube reveals that major resistance is on the coolant side. Therefore, there exists a significant opportunity to improve heat transfer in the tubes by enhancement of the coolant side. To this end a variety of copper wool filled tubes as well as a commercially available enhanced copper tube were subjected to laboratory tests with water and conventional heating to assess the resulting heat transfer improvement. Design improvements using enhanced cooling are discussed in terms of structural weight, controls, grazing angles, the operational reliability. 9 refs., 11 figs., 5 tabs.

  16. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana.

    Science.gov (United States)

    Chung, Kyung Sook; Lee, Jeong Hwan; Lee, Jong Seob; Ahn, Ji Hoon

    2013-06-01

    In flowering plants, fruit dehiscence enables seed dispersal. Here we report that ntt-3D, an activation tagged allele of NO TRANSMITTING TRACT (NTT), caused a failure of fruit dehiscence in Arabidopsis. We identified ntt-3D, in which the 35S enhancer was inserted adjacent to AT3G-57670, from our activation tagged mutant library. ntt-3D mutants showed serrated leaves, short siliques, and indehiscence phenotypes. NTT-overexpressing plants largely phenocopied the ntt-3D plants. As the proximate cause of the indehiscence, ntt-3D plants exhibited a near absence of valve margin and lignified endocarp b layer in the carpel. In addition, the replum was enlarged in ntt-3D mutants. NTT expression reached a peak in flowers at stage 11 and gradually decreased thereafter and pNTT::GUS expression was mainly observed in the replum, indicating a potential role in fruit patterning. NTT:GFP localized in the nucleus and cytoplasm. FRUITFULL (FUL) expression was downregulated in ntt-3D mutants and ntt-3D suppressed upregulation of FUL in replumless mutants. These results indicate that NTT suppresses FUL, indicating a potential role in patterning of the silique. In seed crops, a reduction in pod dehiscence can increase yield by decreasing seed dispersal; therefore, our results may prove useful as a basis to improve crop yield.

  17. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.

    Science.gov (United States)

    Zhong, Linlin; Zhou, Wen; Wang, Haijun; Ding, Shunhua; Lu, Qingtao; Wen, Xiaogang; Peng, Lianwei; Zhang, Lixin; Lu, Congming

    2013-08-01

    Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)-dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.

  18. Multiple Regulatory Elements in the Arabidopsis NIA1 Promoter Act Synergistically to Form a Nitrate Enhancer1[W][OA

    Science.gov (United States)

    Wang, Rongchen; Guan, Peizhu; Chen, Mingsheng; Xing, Xiujuan; Zhang, Yali; Crawford, Nigel M.

    2010-01-01

    To accommodate fluctuating nutrient levels in the soil, plants modulate their metabolism and root development via signaling mechanisms that rapidly reprogram the plant transcriptome. In the case of nitrate, over 1,000 genes are induced or repressed within minutes of nitrate exposure. To identify cis-regulatory elements that mediate these responses, an enhancer screen was performed in transgenic Arabidopsis (Arabidopsis thaliana) plants. A 1.8-kb promoter fragment from the nitrate reductase gene NIA1 was identified that acts as a nitrate enhancer when fused to a 35S minimal promoter. Enhancer activity was localized to a 180-bp fragment, and this activity could be enhanced by the addition of a 131-bp fragment from the nitrite reductase promoter. A promoter construct containing the 180- and 131-bp fragments was also induced by nitrite and repressed by ammonium, indicating that it was responsive to multiple nitrogen signals. To identify specific regulatory elements within the 180-bp NIA1 fragment, a transient expression system using agroinfiltration of Nicotiana benthamiana was developed. Deletion analysis identified three elements corresponding to predicted binding motifs for homeodomain/E-box, Myb, and Alfin1 transcription factors. A fully active promoter showing nitrate and nitrite enhancer activity equivalent to that of the wild-type 180-bp fragment could be built from these three elements if the spacing between the homeodomain/E-box and Myb-Alfin1 sites was equivalent to that of the native promoter. These findings were validated in transgenic Arabidopsis plants and identify a cis-regulatory module containing three elements that comprise a nitrate enhancer in the NIA1 promoter. PMID:20668061

  19. Transformation of Arabidopsis thaliana via Agrobacterium tumefacience with an endochitinase gene from Trichoderma, and enhanced resistance to Sclerotinia sclerotiorum

    Institute of Scientific and Technical Information of China (English)

    DAI Fu-ming; XU Tong

    2004-01-01

    @@ Sclerotinia sclerotiorum is an important pathogen to many crops and is especially damaging to rape in China. As a model plant Arabidopsis thaliana (ColO) was transformed by spraying Agrobacterium tumefacience with Trichoderma endochitinase gene ThEn-42 at initial bud stage. Eleven seedlings (corresponding to about 0.22 percent transformation) exhibited resistance to hygromycin. The DNA fragment unique to endochitinase ( ThEn-42 ) was amplified by Arabidopsis leaf-PCR or genomic DNA PCR. Unfertile, dwarf and normal phenotypes appeared in the T1 generation. In addition, an enhanced resistance to S. sclerotiorum was observed. The mortality percentage (7.7% to 33.3%) in transgenic plants was significantly lower than in non-transgenic plants (86. 7%) 10 days after inoculation with the pathogen.

  20. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanhong; Wu, Jingzhi, E-mail: jzwu@live.nuc.edu.cn [Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, Shanxi (China)

    2016-02-15

    Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  1. Enhancement of gas phase heat transfer by acoustic field application.

    Science.gov (United States)

    Komarov, Sergey; Hirasawa, Masahiro

    2003-06-01

    This study discusses a possibility for enhancement of heat transfer between solids and ambient gas by application of powerful acoustic fields. Experiments are carried out by using preheated Pt wires (length 0.1-0.15 m, diameter 50 and 100 micro m) positioned at the velocity antinode of a standing wave (frequency range 216-1031 Hz) or in the path of a travelling wave (frequency range 6.9-17.2 kHz). A number of experiments were conducted under conditions of gas flowing across the wire surface. Effects of sound frequency, sound strength, gas flow velocity and wire preheating temperature on the Nusselt number are examined with and without sound application. The gas phase heat transfer rate is enhanced with acoustic field strength. Higher temperatures result in a vigorous radiation from the wire surface and attenuate the effect of sound. The larger the gas flow velocity, the smaller is the effect of sound wave on heat transfer enhancement.

  2. Numerical Study on Flow and Heat Transfer Performance of Rectangular Heat Sink with Compound Heat Transfer Enhancement Structures

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-04-01

    Full Text Available Modern gas turbine blade is operating at high temperature which requires abundant cooling. Considering both heat transfer rate and pumping power for internal passages, developing efficient cooling passages is of great importance. Ribbed channel has been proved as effective heat transfer enhancement technology for considerable heat transfer characteristics; however, the pressure loss is impressive. Dimple and protrusion are frequently considered as new heat transfer augmentation tools for their low friction loss in recent years. Numerical simulations are adopted to investigate the thermal performance of rectangular channel with compound heat transfer enhancement structures with ribs, dimples, and protrusions. Among all configurations, the nondimensional dimple/protrusion depths are 0.2. The results present the flow structures of all channel configurations. The Nu/Nu0 distributions of channel section are discussed for each case. The pressure penalty f/f0 and the thermal performance TP are also considered as important parameters for heat transfer enhancement. It can be concluded that the optimal structure of the compound heat transfer enhancement structure is rib + protrusion (D = 6 mm + dimple (D = 15 mm.

  3. Heat transfer enhancement in two-start spirally corrugated tube

    Directory of Open Access Journals (Sweden)

    Zaid S. Kareem

    2015-09-01

    Full Text Available Various techniques have been tested on heat transfer enhancement to upgrade the involving equipment, mainly in thermal transport devices. These techniques unveiled significant effects when utilized in heat exchangers. One of the most essential techniques used is the passive heat transfer technique. Corrugations represent a passive technique. In addition, it provides effective heat transfer enhancement because it combined the features of extended surfaces, turbulators and artificial roughness. Therefore, A Computational Fluid Dynamics was employed for water flowing at low Reynolds number in spiral corrugated tubes. This article aimed for the determination of the thermal performance of unique smooth corrugation profile. The Performance Evaluation Criteria were calculated for corrugated tubes, and the simulation results of both Nusselt number and friction factor were compared with those of standard plain and corrugated tubes for validation purposes. Results showed the best thermal performance range of 1.8–2.3 for the tube which has the severity of 45.455 × 10−3 for Reynolds number range of 100–700. The heat transfer enhancement range was 21.684%–60.5402% with friction factor increase of 19.2–36.4%. This indicated that this creative corrugation can improve the heat transfer significantly with appreciably increasing friction factor.

  4. Enhanced heat discrimination in congenital blindness

    DEFF Research Database (Denmark)

    Slimani, Hocine; Ptito, Maurice; Kupers, Ron

    2015-01-01

    There is substantial evidence that congenitally blind individuals perform better than normally sighted controls in a variety of auditory, tactile and olfactory discrimination tasks. However, little is known about the capacity of blind individuals to make fine discriminatory judgments in the thermal...... discrimination. Thermal stimuli were delivered with either a 2.56 or 9 cm(2) Peltier-based thermode. We applied for 5-8s lasting non-painful thermal stimuli to the forearm and asked participants to detect small increments in temperature (ΔT = 0.4, 0.8, 1.2 or 1.6°C) that occurred at random time intervals. Blank...... of the stimulated skin surface or magnitude of the temperature shift. Increasing the size of the stimulated skin area increased the response criterion in the blind (p=0.022) but not in the sighted. Together, these findings show that congenitally blind individuals have enhanced temperature discrimination accuracy...

  5. Temperature enhancement induced by ionosphere heating in low altitude region

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Jian Wu; Zhensen Wu; Jun Wu; Haiqin Che; Yubo Yan; Kun Xue

    2008-01-01

    The assumption that the electron temperature is approximately equal to the ion temperature is not rational during the high frequency (HF) heating in low ionosphere region. Thus, using the theoretical formula of incoherent scatter spectra with collisional plasma, the incoherent scatter data are analyzed during ionosphere heating at 91.7 km height on August 15th 2006. The enhancements of electron temperature are obtained, and the incremental percent is up to 37% and 46% at the universal time of 10:22 and 10:30, respectively. By using the same initialization value, the ionosphere heating process is simulated by Ohmic theory and the experimental results are basically consistent with the simulation.

  6. COMPLEX HEAT TRANSFER ENHANCEMENT BY FLUID INDUCED VIBRATION

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new method of heat transfer enhancement by fluid induced vibration was put forward, and its theoretical analysis and experimental study were performed. Though people always try to prophylaxis fluid induced vibration for regarding it as an accident, the utilization space of fluid induced vibration is still very large. The in-surface and out-surface vibrations which come from the fluid induce elastic tube bundles, can effectively increase the convective heat transfer coefficient, and also decrease the fouling resistance, then increase the heat transfer coefficient remarkably.

  7. Heat Transfer Enhancement by Using Different Types of Inserts

    Directory of Open Access Journals (Sweden)

    S. Tabatabaeikia

    2014-07-01

    Full Text Available Heat transfer enhancement has been always a significantly interesting topic in order to develop high efficient, low cost, light weight, and small heat exchangers. The energy cost and environmental issue are also encouraging researchers to achieve better performance than the existing designs. Two of the most effective ways to achieve higher heat transfer rate in heat exchangers are using different kinds of inserts and modifying the heat exchanger tubes. There are different kinds of inserts employed in the heat exchanger tubes such as helical/twisted tapes, coiled wires, ribs/fins/baffles, and winglets. This paper presents an overview about the early studies on the improvement of the performance of thermal systems by using different kinds of inserts. Louvered strip insert had better function in backward flow compared to forward one. Modifying the shape of twisted tapes led to a higher efficiency in most of the cases excpet for perforated twisted tape and notched twisted tape. Combination of various inserts and tube with artificial roughness provided promising results. In case of using various propeller types, heat transfer enhancement was dependent on higher number of blades and blade angle and lower pitch ratio.

  8. Study on analysis of ionic wind for heat transfer enhancement .

    Science.gov (United States)

    Ko, Han Seo; Shin, Dong Ho

    2016-11-01

    Local heat transfer technology was investigated using ionic wind generation in this study. Characteristics of ionic wind using wire and plate electrodes were studied by experimental and numerical methods. A particle image velocitimetry (PIV) test was conducted for a study of a boundary layer controlled by the ionic wind on the heated surface in the wind tunnel. It was found that the coulombic force consistently acted on the surface to reduce the effect of the viscous boundary layer. The boundary layer was formed on the heated surface and controlled by the ionic wind regardless of the Reynolds number of the bulk flow. The heat transfer coefficient increased and decreased, 11% and 19% in average on the heated surface by the ionic wind, for the condition of lower (100 200) and higher (2500 3500) Reynolds numbers of the bulk flow, respectively. It was concluded that the ionic wind can be used for enhancing the convection heat transfer rate or insulating the local surface according to its operating condition. The results of the local heat transfer controlled by the ionic wind were applied for the heat exchanger and the performance was confirmed by the experimental and numerical methods.

  9. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  10. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  11. A KH Domain-Containing Putative RNA-Binding Protein Is Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qingmei Guan; Changlong Wen; Haitao Zeng; Jianhua Zhu

    2013-01-01

    Heat stress is a severe environmental factor that significantly reduces plant growth and delays development.Heat stress factors (HSFs) are a class of transcription factors that are synthesized rapidly in response to elevations in temperature and are responsible for the transcription of many heat stress-responsive genes including those encoding heat shock proteins (HSPs).There are 21 HSFs in Arabidopsis,and recent studies have established that the HSFA1 family members are master regulators for the remaining HSFs.However,very little is known about upstream molecular factors that control the expression of HSFA1 genes and other HSF genes under heat stress.Through a forward genetic analysis,we identified RCF3,a K homology (KH) domain-containing nuclear-localized putative RNA-binding protein.RCF3 is a negative regulator of most HSFs,including HSFAla,HSFAlb,and HSFAld.In contrast,RCF3 positively controls the expression of HSFAle,HSFA3,HSFA9,HSFB3,and DREB2C.Consistently with the overall increased accumulation of heat-responsive genes,the rcf3 mutant plants are more tolerant than the wild-type to heat stress.Together,our results suggest that a KH domain-containing putative RNA-binding protein RCF3 is an important upstream regulator for heat stress-responsive gene expression and thermotolerance in Arabidopsis.

  12. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance.

    Science.gov (United States)

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2015-10-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG.

  13. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaolian Zhang

    Full Text Available Ariadne (ARI subfamily of RBR (Ring Between Ring fingers proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L. Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.

  14. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Xiaolian; Wang, Ning; Chen, Pei; Gao, Mengmeng; Liu, Juge; Wang, Yufeng; Zhao, Tuanjie; Li, Yan; Gai, Junyi

    2014-01-01

    Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.

  15. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Zhu, Jian-Kang; Chan, Zhulong

    2014-08-01

    Nitric oxide (NO) is involved in plant responses to many environmental stresses. Transgenic Arabidopsis lines that constitutively express rat neuronal NO synthase (nNOS) were described recently. In this study, it is reported that the nNOS transgenic Arabidopsis plants displayed high levels of osmolytes and increased antioxidant enzyme activities. Transcriptomic analysis identified 601 or 510 genes that were differentially expressed as a consequence of drought stress or nNOS transformation, respectively. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in photosynthesis, redox, stress, and phytohormone and secondary metabolism were greatly affected by the nNOS transgene. Several CBF genes and members of zinc finger gene families, which are known to regulate transcription in the stress response, were changed by the nNOS transgene. Genes regulated by both the nNOS transgene and abscisic acid (ABA) treatments were compared and identified, including those for two ABA receptors (AtPYL4 and AtPYL5). Moreover, overexpression of AtPYL4 and AtPYL5 enhanced drought resistance, antioxidant enzyme activity, and osmolyte levels. These observations increase our understanding of the role of NO in drought stress response in Arabidopsis.

  16. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    Science.gov (United States)

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  17. Fouling characteristics of compact heat exchangers and enhanced tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C. B.; Rabas, T. J.

    1999-07-15

    Fouling is a complex phenomenon that (1) encompasses formation and transportation of precursors, and (2) attachment and possible removal of foulants. A basic understanding of fouling mechanisms should guide the development of effective mitigation techniques. The literature on fouling in complex flow passages of compact heat exchangers is limited; however, significant progress has been made with enhanced tubes.

  18. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.

  19. Scalable graphene coatings for enhanced condensation heat transfer.

    Science.gov (United States)

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  20. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.

  1. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance.

    Science.gov (United States)

    Huffaker, Alisa; Dafoe, Nicole J; Schmelz, Eric A

    2011-03-01

    ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.

  2. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.

    Science.gov (United States)

    Shahriari, Arjang; Wurz, Jillian; Bahadur, Vaibhav

    2014-10-14

    The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid toward the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperatures exceeding 500 °C, which is more than 8 times the Leidenfrost superheat for organic solvents. Robust Leidenfrost state suppression is observed for a variety of liquids, ranging from low electrical conductivity organic solvents to electrically conducting salt solutions. Elimination of the vapor layer increases heat dissipation capacity by more than 1 order of magnitude. Heat removal capacities exceeding 500 W/cm(2) are measured, which is 5 times the critical heat flux (CHF) of water on common engineering surfaces. Furthermore, the heat transfer rate can be electrically controlled by the applied voltage. The underlying science is explained via a multiphysics analytical model which captures the coupled electrostatic-fluid-thermal transport phenomena underlying electrostatic Leidenfrost state suppression. Overall, this work uncovers the physics underlying dryout prevention and demonstrates electrically tunable boiling heat transfer with ultralow power consumption.

  3. EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER THE DIMPLED SURFACE

    Directory of Open Access Journals (Sweden)

    Dr. Sachin L. Borse

    2012-08-01

    Full Text Available Over the past couple of years the focus on using concavities or dimples provides enhanced heat transfer has been documented by a number of researchers. Dimples are used on the surface of internal flow passages because they produce substantial heat transfer augmentation. This project work is concerned with experimentalinvestigation of the forced convection heat transfer over the dimpled surface. The objective of the experiment is to find out the heat transfer and air flow distribution on dimpled surfaces and all the results obtained are compared with those from a flat surface. The varying parameters were i Dimple arrangement on the plate i.e.staggered and inline arrangement and ii Heat input iiiDimple density on the plate. Heat transfer coefficients and Nusselt number were measured in a channel with one side dimpled surface. Thespherical type dimples were fabricated, and the diameter and the depth of dimple were 6 mm and 3 mm, respectively. Channel height is 25.4mm, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 5000 to 15000.Study shown that thermal performance is increasing with Reynolds number. With the inline and staggered dimple arrangement, the heat transfer coefficients, Nusselt number and the thermal performance factors were higher for the staggered arrangement.

  4. HEAT TRANSFER ENHANCEMENT WITH NANOFLUIDS – A REVIEW

    Directory of Open Access Journals (Sweden)

    A.M. Hussein

    2013-06-01

    Full Text Available This paper presents a review of the studies undertaken on convection heat transfer with nanofluids. Initial studies were directed towards the determination of the properties of nanofluids, especially their thermal conductivity and viscosity. The studies indicate that thermal conductivity and viscosity increase with an increase in the concentration of the nanofluid. Experiments were conducted with different nanofluids, at various concentrations and temperature ranges, for the estimation of the heat transfer coefficient and friction factor for water-based nanofluids. All the studies confirmed enhancement of the heat transfer coefficient with an increase in concentration. The experimental ranges of temperature undertaken by the authors were different for different nanofluids. Certain studies with smaller particle sizes indicated an increase in heat transfer enhancements when compared with values obtained when using larger particle sizes. It is observed that the concentration of the nanofluid, the operating temperature, the particle size and shape, together with the material of the nanoparticle dispersed in the base liquid, have significant influence on the heat transfer coefficient. All the studies indicate a nominal increase in pressure drop.

  5. Thermally enhanced photoluminescence for heat harvesting in photovoltaics

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Sabapathy, Tamilarasan; Rotschild, Carmel

    2016-10-01

    The maximal Shockley-Queisser efficiency limit of 41% for single-junction photovoltaics is primarily caused by heat dissipation following energetic-photon absorption. Solar-thermophotovoltaics concepts attempt to harvest this heat loss, but the required high temperatures (T>2,000 K) hinder device realization. Conversely, we have recently demonstrated how thermally enhanced photoluminescence is an efficient optical heat-pump that operates in comparably low temperatures. Here we theoretically and experimentally demonstrate such a thermally enhanced photoluminescence based solar-energy converter. Here heat is harvested by a low bandgap photoluminescent absorber that emits thermally enhanced photoluminescence towards a higher bandgap photovoltaic cell, resulting in a maximum theoretical efficiency of 70% at a temperature of 1,140 K. We experimentally demonstrate the key feature of sub-bandgap photon thermal upconversion with an efficiency of 1.4% at only 600 K. Experiments on white light excitation of a tailored Cr:Nd:Yb glass absorber suggest that conversion efficiencies as high as 48% at 1,500 K are in reach.

  6. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  7. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  8. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  9. Etopic expression of "Arabidopsis" H(+)-pyrophosphatase AVP1 enhances drought resistance in bottle gourd

    Science.gov (United States)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the "Arabidopsis AVP1" gene that encodes a vacuolar H(+)-pyro...

  10. Heat shock and heat shock protein 70i enhance the oncolytic effect of replicative adenovirus.

    Science.gov (United States)

    Haviv, Y S; Blackwell, J L; Li, H; Wang, M; Lei, X; Curiel, D T

    2001-12-01

    Replication-competent viruses are currently being evaluated for their cancer cell-killing properties. These vectors are designed to induce tumor regression after selective viral propagation within the tumor. However, replication-competent viruses have not resulted heretofore in complete tumor eradication in the clinical setting. Recently, heat shock has been reported to partially alleviate replication restriction on an avian adenovirus (Ad) in a human lung cancer cell line. Therefore, we hypothesized that heat shock and overexpression of heat shock protein (hsp) would support the oncolytic effect of a replication-competent human Ad. To this end, we tested the oncolytic and burst kinetics of a replication-competent Ad after exposure to heat shock or to inducible hsp 70 overexpression by a replication-deficient Ad (Adhsp 70i). Heat-shock resulted in augmentation of Ad burst and oncolysis while decreasing total intracellular Ad DNA. Overexpression of hsp 70i also enhanced Ad-mediated oncolysis but did not decrease intracellular Ad DNA levels. We conclude that heat shock and Adhsp 70i enhance the Ad cell-killing potential via distinct mechanisms. A potential therapeutic implication would be the use of local hyperthermia to augment oncolysis by increasing the burst of replication-competent Ad. The role of hsp in Ad-mediated oncolysis should be additionally explored.

  11. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  12. Magnetic nanofluid properties as the heat transfer enhancement agent

    Directory of Open Access Journals (Sweden)

    Roszko Aleksandra

    2016-01-01

    Full Text Available The main purpose of this paper was to investigate an influence of various parameters on the heat transfer processes with strong magnetic field utilization. Two positions of experimental enclosure in magnetic environment, two methods of preparation and three different concentrations of nanoparticles (0.0112, 0.056 and 0.112 vol.% were taken into account together with the magnetic field strength. Analysed nanofluids consisted of distilled water (diamagnetic and Cu/CuO particles (paramagnetic of 40–60 nm size. The nanofluids components had different magnetic properties what caused complex interaction of forces’ system. The heat transfer data and fluid flow structure demonstrated the influence of magnetic field on the convective phenomena. The most visible consequence of magnetic field application was the heat transfer enhancement and flow reorganization under applied conditions.

  13. Experimental Investigation on Heat Transfer Enhancement in Composite Porous Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of composite porous media with mini-longitudinal channels at the surface and with beads packing between plates was put foward to improve the integated performance of flow and heat transfer in porous media. The experimental results in the corresponding porous media were reported and analyzed. The experiments indicate that with proper matching of the particle diameter dp, the mini-channel width w, the channel depth d and the distance between plates δr the heat transfer in the composite porois media is enhanced and flow resistence reduced compared with those of no mini-longitudinal channels at the surface. So this is an effective method to improve the integrated performance of flow and heat transfer in porous media.

  14. Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty.

    Science.gov (United States)

    Yu, Linhui; Chen, Xi; Wang, Zhen; Wang, Shimei; Wang, Yuping; Zhu, Qisheng; Li, Shigui; Xiang, Chengbin

    2013-07-01

    Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought tolerance was associated with a more extensive root system, reduced stomatal density, and higher water use efficiency. The transgenic rice plants also had higher levels of abscisic acid, proline, soluble sugar, and reactive oxygen species-scavenging enzyme activities during stress treatments. The increased grain yield of the transgenic rice was contributed by improved seed setting, larger panicle, and more tillers as well as increased photosynthetic capacity. Digital gene expression analysis indicated that AtEDT1/HDG11 had a significant influence on gene expression profile in rice, which was consistent with the observed phenotypes of transgenic rice plants. Our study shows that AtEDT1/HDG11 can improve both stress tolerance and grain yield in rice, demonstrating the efficacy of AtEDT1/HDG11 in crop improvement.

  15. On the specific heat capacity enhancement in nanofluids.

    Science.gov (United States)

    Hentschke, Reinhard

    2016-12-01

    Molten salts are used as heat transfer fluids and for short-term heat energy storage in solar power plants. Experiments show that the specific heat capacity of the base salt may be significantly enhanced by adding small amounts of certain nanoparticles. This effect, which is technically interesting and economically important, is not yet understood. This paper presents a critical discussion of the existing attendant experimental literature and the phenomenological models put forward thus far. A common assumption, the existence of nanolayers surrounding the nanoparticles, which are thought to be the source of, in some cases, the large increase of a nanofluid's specific heat capacity is criticized and a different model is proposed. The model assumes that the influence of the nanoparticles in the surrounding liquid is of long range. The attendant long-range interfacial layers may interact with each other upon increase of nanoparticle concentration. This can explain the specific heat maximum observed by different groups, for which no other theoretical explanation appears to exist.

  16. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  17. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    Science.gov (United States)

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.

  18. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    OpenAIRE

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C.; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F.; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; María E. González; Carrasco, Pedro; Ruiz, Oscar A.

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes m...

  19. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  20. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ana Rus

    2006-12-01

    Full Text Available Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na(+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively, accumulate higher shoot levels of Na(+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na(+ transporter, as being the causal locus driving elevated shoot Na(+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na(+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics. Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na

  1. The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants.

    Science.gov (United States)

    Bouwmeester, Klaas; Han, Miao; Blanco-Portales, Rosario; Song, Wei; Weide, Rob; Guo, Li-Yun; van der Vossen, Edwin A G; Govers, Francine

    2014-01-01

    Late blight caused by the plant pathogenic oomycete Phytophthora infestans is known as one of the most destructive potato diseases. Plant breeders tend to employ NB-LRR-based resistance for introducing genetically controlled late blight resistance in their breeding lines. However, P. infestans is able to rapidly escape this type of resistance, and hence, NB-LRR-based resistance in potato cultivars is often not durable. Previously, we identified a novel type of Phytophthora resistance in Arabidopsis. This resistance is mediated by the cell surface receptor LecRK-I.9, which belongs to the family of L-type lectin receptor kinases. In this study, we report that expression of the Arabidopsis LecRK-I.9 gene in potato and Nicotiana benthamiana results in significantly enhanced late blight resistance. Transcriptional profiling showed strong reduction in salicylic acid (SA)-mediated defence gene expression in LecRK-I.9 transgenic potato lines (TPLs). In contrast, transcripts of two protease inhibitor genes accumulated to extreme high levels, suggesting that LecRK-I.9-mediated late blight resistance is relying on a defence response that includes activation of protease inhibitors. These results demonstrate that the functionality of LecRK-I.9 in Phytophthora resistance is maintained after interfamily transfer to potato and N. benthamiana and suggest that this novel type of LecRK-based resistance can be exploited in breeding strategies to improve durable late blight resistance in Solanaceous crops.

  2. Cell Wall Targeted in planta Iron Accumulation Enhances Biomass Conversion and Seed Iron Concentration in Arabidopsis and Rice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haibing; Wei, Hui; Ma, Guojie; Antunes, Mauricio S.; Vogt, Stefan; Cox, Joseph; Zhang, Xiao; Liu, Xiping; Bu, Lintao; Gleber, S. Charlotte; Carpita, Nicholas C.; Makowski, Lee; Himmel, Michael E.; Tucker, Melvin P.; McCann, Maureen C.; Murphy, Angus S.; Peer, Wendy A.

    2016-10-01

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  3. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    Science.gov (United States)

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds.

  4. Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation.

    Science.gov (United States)

    Chu, Seung Hee; Noh, Ha-na; Kim, Sooah; Kim, Kyoung Heon; Hong, Suk-Whan; Lee, Hojoung

    2010-11-01

    In animals, high glucose exerts some of its deleterious effects by activation of the hexosamine biosynthesis pathway (HBP), a branch of the glycolytic pathway that produces amino sugars (Daniels et al. in Mol Endocrinol 7:1041-1048, 1993; Du et al. in Proc Natl Acad Sci USA 97:12222-12226, 2000). Glucosamine (GlcN) is a naturally occurring amino sugar produced by amidation of fructose-6-phosphate. Previously, we observed that glucosamine (GlcN) inhibits hypocotyl elongation in Arabidopsis thaliana by a process involving the significant increase of reactive oxygen species. The present study investigated the relationship between GlcN-induced ROS generation and abiotic stress responses in Arabidopsis by generating two types of transgenic plant. Scavenging of endogenous GlcN by ectopic expression of E. coli glucosamine-6-phosphate deaminase (NagB) was observed to confer enhanced tolerance to oxidative, drought, and cold stress. Consistent with this result, overproduction of GlcN by the ectopic expression of E. coli glucosamine-6-phosphate synthase (GlmS) induced cell death at an early stage. Taken together, these data suggest that genetic manipulation of endogenous GlcN level can effectively lead to the generation of abiotic stress-tolerant transgenic crop plants.

  5. Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance.

    Science.gov (United States)

    Wu, Shin-Jye; Wang, Lian-Chin; Yeh, Ching-Hui; Lu, Chun-An; Wu, Shaw-Jye

    2010-06-01

    *The Arabidopsis heat-intolerant 2 (hit2) mutant was isolated on the basis of its impaired ability to withstand moderate heat stress (37 degrees C). Determination of the genetic mutation that underlies the hit2 thermosensitive phenotype allowed better understanding of the mechanisms by which plants cope with heat stress. *Genetic analysis revealed that hit2 is a single recessive mutation. Map-based cloning was used to identify the hit2 locus. The response of hit2 to other types of heat stress was also investigated to characterize the protective role of HIT2. *hit2 was defective in basal but not in acquired thermotolerance. hit2 was sensitive to methyl viologen-induced oxidative stress, and the survival of hit2 seedlings in response to heat stress was affected by light conditions. The mutated locus was located at the EXPORTIN1A (XPO1A) gene, which encodes a nuclear transport receptor. Two T-DNA insertion lines, xpo1a-1 and xpo1a-3, exhibited the same phenotypes as hit2. *The results provide evidence that Arabidopsis XPO1A is dispensable for normal plant growth and development but is essential for thermotolerance, in part by mediating the protection of plants against heat-induced oxidative stress.

  6. Convective heat transfer enhancement inside tubes using inserted helical coils

    Science.gov (United States)

    Ali, R. K.; Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.

    2016-01-01

    Convective heat transfer was experimentally investigated in tubes with helical coils inserts in turbulent flow regime within Reynolds number range of 14400 ≤ Re ≤ 42900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio from 0.044 to 0.133 and coil pitch ratio from 1 to 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6%) and (100.1-128%) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re.

  7. Evidence of convective heat transfer enhancement induced by spinodal decomposition.

    Science.gov (United States)

    Poesio, P; Lezzi, A M; Beretta, G P

    2007-06-01

    Spinodal decomposition can be driven by either diffusion or self-induced convection; the importance of convection relative to diffusion depends on the Péclet number, defined as the ratio between convective and diffusive mass fluxes. Diffusion is the dominating mechanism of phase segregation when the Péclet number is small - i.e., when viscosity and diffusivity are large - or when the domain characteristic size is small. For low-viscosity mixtures, convection is the dominating process and the segregation is very rapid as it takes a few seconds compared to the hours needed in the case of pure diffusion. In such cases, strong convective motion of the phase segregating domains is generated even in small-size systems and is almost independent of the temperature difference as long as it is below the transition value. We study experimentally the enhancement of heat transfer in a 1-mm -thick cell. A water-acetonitrile-toulene mixture is quenched into a two-phase region so as to induce convection-driven spinodal decomposition. The heat transfer rate is measured and compared to that obtained in the absence of convective motion. A substantial reduction in the cooling time obtains in the case of spinodal decomposition. The heat transfer enhancement induced by this self-induced, disordered but effectively convective effect may be exploited in the cooling or heating of small-scale systems whereby forced convection cannot be achieved because of the small sizes involved. A scaling analysis of the data based on the diffuse interface H model for a symmetric mixture near the equilibrium point yields very encouraging agreement and insights.

  8. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.; Maurya, D.; Biswas, G.; Eswaran, V. [Indian Institute of Technology, Kanpur (India). Dept. of Mechanical Engineering

    2003-07-01

    A three-dimensional study of laminar flow and heat transfer in a channel with built-in oval tube and delta winglets is carried out through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross-flow heat exchanger. The size of such heat exchangers can be reduced through enhancement of transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta-winglet type vortex generators in various configuration's are mounted on the fin-surface. An evaluation of the strategy is attempted in this investigation. The investigation is carried out for different angles of attack of the winglets to the incoming flow for the case of two winglet pairs. The variation of axial location of the winglets is also considered for one pair of winglets mounted in common-flow-down configuration. The structures of the velocity field and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers. (author)

  9. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.

    Science.gov (United States)

    van der Zaal, B J; Neuteboom, L W; Pinas, J E; Chardonnens, A N; Schat, H; Verkleij, J A; Hooykaas, P J

    1999-03-01

    We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.

  10. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.

    Science.gov (United States)

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-06-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism.

  11. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; GUO ZengYuan

    2009-01-01

    Based on the principle of field synergy for heat transfer enhancement, the concept of physical quantity synergy in the laminar flow field is proposed in the present study according to the physical mechanism of convective heat transfer between fluid and tube wall. The synergy regulation among physical quantities of fluid particle is revealed by establishing formulas reflecting the relation between synergy angles and heat transfer enhancement. The physical nature of enhancing heat transfer and reducing flow resistance, which is directly associated with synergy angles α,βγ,φ, θ and ψ, is also explained. Be-sides, the principle of synergy among physical quantities is numerically verified by the calculation of heat transfer and flow in a thin cylinder-interpolated tube, which may guide the optimum design for better heat transfer unit and high-efficiency heat exchanger.

  12. Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids

    Science.gov (United States)

    Kamatchi, R.; Venkatachalapathy, S.; Nithya, C.

    2016-11-01

    In the present study, reduced graphene oxide (rGO) is synthesized from graphite using modified Hummer and chemical reduction methods. Various characterizations techniques are carried out to study the in-plane crystallite size, number of layers, presence of functional groups and surface morphology. Different concentrations of 0.01, 0.1, and 0.3 g/l of rGO/water nanofluids are prepared by dispersing the flakes in DI water. The colloidal stability of 0.3 g/l concentration is measured after 5 days using Zetasizer and found to be stable. The rGO/water nanofluids are then used to study the effect on the enhancement of critical heat flux (CHF) in pool boiling heat transfer. Results indicate an enhancement in CHF ranging from 145 to 245 % for the tested concentrations. The mechanisms of CHF enhancement are analyzed based on surface wettability, surface roughness, and porous layer thickness. The macrolayer dryout model sufficiently supports the mechanism of CHF enhancement of thin wire with rGO deposits, which is not reported yet.

  13. Heat Transfer Enhancement by Fluidized Solid Particles in Gas Carrying Evaporation

    Institute of Scientific and Technical Information of China (English)

    于志家; 孙成新; 孙相彧; 刘展红

    2001-01-01

    Heat transfer characteristics are studied for gas carrying evaporation with fluidized solid particles in a vertical rectangular conduit. Experimental results show that heat transfer of gas carrying evaporation is enhanced and the superheat of liquid in contact with heating surface lowers remarkably by introducing solid particles. Nucleate boiling on the heating surface is suppressed to a considerable degree. The mechanism of heat transfer enhancement by fluidized solid particles is analyzed with the consideration of collisions of solid particles with the boiling vapor bubbles.

  14. EXPERIMENTAL STUDY OF ENHANCED HEAT TRANSFER BY FLOW-INDUCED VIBRATION OF ELASTIC TUBE BUNDLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new concept of heat transfer enhancement by flow-induced vibration was put forward, and a novel heat transfer element called elastic tube bundles was designed. The experimental investigation was performed on its characteristics of flow-induced virbration in out-tube or in-tube flow. Under the conditions of fixed heat flux and steam-water heat transfer, the regularity of heat transfer enhancement by flow-induced vibration was examined.

  15. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    SUN XuWu; WANG LiYuan; ZHANG LiXin

    2007-01-01

    Deg5,deg8 and the double mutant,deg5deg8 of Arabidopsis thaliana were used to study the physiological role of the DEG proteases in the repair cycle of photosystem II (PSII) under heat stress. PSII activity in deg mutants showed increased sensitivity to heat stress,and the extent of this effect was greater in the double mutant,deg5deg8,than in the single mutants,deg5 and deg8. Degradation of the D1 protein was slower in the mutants than in the WT plants. Furthermore,the levels of other PSII reaction center proteins tested remained relatively stable in the mutant and WT plants following high-temperature treatment. Thus,our results indicate that DEG5 and DEG8 may have synergistic function in degradation of D1 protein under heat stress.

  16. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    Science.gov (United States)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  17. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Botella-Pavía, Patricia; Besumbes, Oscar; Campos, Narciso; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-11-01

    The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.

  18. Enhancement of heat transfer in red cell suspensions in vitro experiments.

    Science.gov (United States)

    Carr, R T; Tiruvaloor, N R

    1989-05-01

    New data on laminar heat convection with red cell suspensions have been gathered for both heating and cooling. When compared to data for the suspending medium alone, it is apparent that the red cells enhance laminar heat transfer when Pe greater than 4. This is probably due to particle movements. These new data disagree with earlier studies which indicated no enhancement of heat transfer for blood cell suspensions. The data do agree with previous correlations for enhanced thermal transport in sheared suspensions.

  19. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    Science.gov (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  20. Arabidopsis TTG2 Regulates TRY Expression through Enhancement of Activator Complex-Triggered Activation[C][W

    Science.gov (United States)

    Pesch, Martina; Dartan, Burcu; Birkenbihl, Rainer; Somssich, Imre E.; Hülskamp, Martin

    2014-01-01

    Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex. PMID:25304203

  1. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    Science.gov (United States)

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.

  2. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; Meer, van der T.H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  3. F region ion temperature enhancements resulting from Joule heating

    Science.gov (United States)

    Baron, M. J.; Wand, R. H.

    1983-05-01

    The present investigation has the objective to describe F region ion temperature results obtained near summer solstice by the Chatanika and Millstone Hill radars. The experimental mode was Magnetosphere-Ionosphere-Thermosphere Radar Studies (MITHRAS) 1, i.e., a wide latitudinal coverage experiment. Simultaneous Chatanika and Millstone Hill incoherent scatter radar measurements for two summer 24-hour periods show significantly greater Joule heating enhancements of ion temperatures in the morning sector for similar magnitudes of ion velocity. The morning/evening auroral zone temperature asymmetry is interpreted to be a consequence of different neutral wind behaviors in the morning and evening. It is inferred that the neutral wind is consistent with global thermospheric models and with more direct wind measurements. In the evening, the neutral wind is nearly aligned with the ion flow because of ion drag. In the morning, the neutral wind is predominantly equatorward.

  4. Acoustic Streaming and Heat and Mass Transfer Enhancement

    Science.gov (United States)

    Trinh, E. H.; Gopinath, A.

    1996-01-01

    A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.

  5. Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators

    CERN Document Server

    He, Ya-Ling

    2016-01-01

    In the last several decades, heat transfer enhancements using extended surface (fins) has received considerable attentions. A new heat transfer enhancement technique, longitudinal vortex generators (LVG), has received significant attention since the 1990s. It is activated by a special type of extended surface that can generate vortices with axes parallel to the main flow direction. The vortices result from strong swirling secondary flow caused by flow separation and friction. The state-of-the-art on research and applications of LVG are described here. The topical coverage includes heat transfer enhancement in straight channels and in heat exchangers. Among the latter are plate and wavy fin-and-tube heat exchangers, fin-and-oval-tube heat exchangers, and fin-and-tube heat exchangers with multiple rows of tubes. The trends and future directions of heat transfer enhancement by means of LVG are discussed.

  6. Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice

    Institute of Scientific and Technical Information of China (English)

    WU Liangqi; FAN Zhanmin; GUO Lei; LI Yongqing; ZHANG Wenjing; QU Li-Jia; CHEN Zhangliang

    2003-01-01

    δ-OAT, ornithine-δ-aminotransferase, is the key enzyme involved in proline biosynthesis. In this study the Arabidopsisδ-OAT gene was transferred into rice (Oryza sativa L. ssp japonica cv. Zhongzuo 321), whose successful integration was demonstrated by PCR and Southern blot analysis. The over-expression of the gene in transgenic rice was also confirmed. Biochemical analysis showed that, under salt or drought stress conditions, proline contents in the leaves and roots in transgenic rice plants were 5- to 15-fold of those in non-transgenic controls. Under stress conditions, germinating rate of transgenic lines is higher than that of controls. Although the growth of rice plants tested were more and more retarded with the increasing of NaCl concentration, the transgenic plants grow faster compared to the controls under the same stress condition. Meanwhile, the resistance to KCl and MgSO4 stresses was also found enhanced in transgenic rice. Furthermore, the over-expression ofδ-OAT also improved the yield of transgenic plants under stress conditions. The average yield per plant of transgenic lines increases about 12%-41% more than that of control lines under 0.1 mol/L NaCl stress. These data indicated that the over-expression of δ-OAT, with the accumulation of proline, resulted in the enhancement of salt and drought tolerance and an increase of rice yield, which is of significance in agriculture.

  7. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  8. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  9. Enhanced convective heat transfer using graphene dispersed nanofluids.

    Science.gov (United States)

    Baby, Tessy Theres; Ramaprabhu, Sundara

    2011-04-04

    Nanofluids are having wide area of application in electronic and cooling industry. In the present work, hydrogen exfoliated graphene (HEG) dispersed deionized (DI) water, and ethylene glycol (EG) based nanofluids were developed. Further, thermal conductivity and heat transfer properties of these nanofluids were systematically investigated. HEG was synthesized by exfoliating graphite oxide in H2 atmosphere at 200°C. The nanofluids were prepared by dispersing functionalized HEG (f-HEG) in DI water and EG without the use of any surfactant. HEG and f-HEG were characterized by powder X-ray diffractometry, electron microscopy, Raman and FTIR spectroscopy. Thermal and electrical conductivities of f-HEG dispersed DI water and EG based nanofluids were measured for different volume fractions and at different temperatures. A 0.05% volume fraction of f-HEG dispersed DI water based nanofluid shows an enhancement in thermal conductivity of about 16% at 25°C and 75% at 50°C. The enhancement in Nusselts number for these nanofluids is more than that of thermal conductivity.

  10. REVIEW OF HEAT TRANSFER ENHANCEMENT IN DIFFERENT TYPES OF BAFFLES AND THEIR ORIENTATIONS.

    Directory of Open Access Journals (Sweden)

    S.P.WALDE

    2012-04-01

    Full Text Available The use of baffles in channel is commonly used for passive heat transfer enhancement strategy in single phase internal flow. Considering the rapid increase in energy demand, effective heat transfer enhancement techniques have become important task worldwide. Some of the applications of passive heat transfer enhancement strategies are in process industries, thermal regenerator, Shell and tube type heat exchanger, Internal cooling system of gas turbine blades, radiators for space vehicles and automobiles, etc. Thepresent paper is a review of different types of baffles and its arrangement. According to recent studies these are known to be economic heat transfer augmentation tools.

  11. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress.

    Science.gov (United States)

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; Del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Ruiz, Oscar A; Carrasco, Pedro

    2011-02-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.

  12. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    Science.gov (United States)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  13. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Zhou, Yuliang; Chen, Huhui; Chu, Pu; Li, Yin; Tan, Bin; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi

    2012-02-01

    In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.

  14. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity.

    Science.gov (United States)

    Feys, Bart J; Wiermer, Marcel; Bhat, Riyaz A; Moisan, Lisa J; Medina-Escobar, Nieves; Neu, Christina; Cabral, Adriana; Parker, Jane E

    2005-09-01

    Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.

  15. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jeffrey C.; Wan, Ying; Kim, Young-Mo; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Peck, Scott C.

    2014-04-21

    Many phytopathogenic bacteria use a type III secretion system (T3SS) to inject defense-suppressing effector proteins into host cells. Genes encoding the T3SS are induced at the start of infection, yet host signals that initiate T3SS gene expression are poorly understood. Here we identify several plant-derived metabolites that induce the T3SS in the bacterial pathogen Pseudomonas syringae pv tomato DC3000. In addition, we report that mkp1 (mapk phosphatase 1), an Arabidopsis mutant that is more resistant to bacterial infection, produces decreased levels of these T3SS-inducing metabolites. Consistent with the observed decrease in these metabolites, T3SS effector delivery by DC3000 was impaired in mkp1. Addition of the bioactive metabolites to the mkp1-DC3000 interaction fully restored T3SS effector delivery and suppressed enhanced resistance in mkp1. Together, these results demonstrate that DC3000 perceives multiple signals derived from plants to initiate their virulence program, and reveal a new layer of molecular communication between plants and these pathogenic bacteria.

  16. WEREWOLF and ENHANCER of GLABRA3 are interdependent regulators of the spatial expression pattern of GLABRA2 in Arabidopsis.

    Science.gov (United States)

    Song, Sang-Kee; Kwak, Su-Hwan; Chang, Soo Chul; Schiefelbein, John; Lee, Myeong Min

    2015-11-01

    In multicellular organisms, cell fates are specified through differential regulation of transcription. Epidermal cell fates in the Arabidopsis thaliana root are precisely specified by several transcription factors, with the GLABRA2 (GL2) homeodomain protein acting at the farthest downstream in this process. To better understand the regulation of GL2 expression, we ectopically expressed WEREWOLF (WER) and ENHANCER OF GLABRA3 (EGL3) in various tissues and examined GL2 expression. Here we show that WER expressed ubiquitously in the root induced GL2 expression only in the root epidermis, whereas co-expression of WER and EGL3 induced GL2 expression in the corresponding tissues. We also found that GL3 accumulated in the nucleus at the early meristematic region and EGL3 accumulated later in the nucleus of epidermal cells. We further found that ectopic expression of WER and EGL3 in ground tissues inhibited GL2 expression in the epidermis. Our results suggest that the co-expression of WER and EGL3 is sufficient for driving GL2 and CPC expression.

  17. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    Science.gov (United States)

    Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Cabrera-Ponce, José L.; Hinojosa-Moya, Jesús; Ruiz-Salas, Jorge L.; Galván-Gordillo, Santiago V.; Guevara-González, Ramón G.; Ruiz-Medrano, Roberto

    2015-01-01

    The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCTP2 demonstrates that it suppresses the capacity for plant regeneration; also, this phenomenon is enhanced by the presence of TCTP (AtTCTP1 or 2) in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species. PMID:26191065

  18. OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis.

    Science.gov (United States)

    Cui, Yanchun; Wang, Manling; Zhou, Huina; Li, Mingjuan; Huang, Lifang; Yin, Xuming; Zhao, Guoqiang; Lin, Fucheng; Xia, Xinjie; Xu, Guoyun

    2016-01-01

    Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice (Oryza sativa). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL (Oryza sativa Stress tolerance and Grain Length), a novel DUF1645 domain-containing protein from rice. OsSGL was up-regulated by multiple stresses and localized to the nucleus. Transgenic plants over-expressing or hetero-expressing OsSGL conferred significantly improved drought tolerance in transgenic rice and Arabidopsis thaliana, respectively. The overexpressing plants accumulated higher levels of proline and soluble sugars but lower malondialdehyde (MDA) contents under osmotic stress. Our RNA-sequencing data demonstrated that several stress-responsive genes were significantly altered in transgenic rice plants. We unexpectedly observed that those overexpressing rice plants also had extensive root systems, perhaps due to the altered transcript levels of auxin- and cytokinin-associated genes. These results suggest that the mechanism by which OsSGL confers enhanced drought tolerance is due to the modulated expression of stress-responsive genes, higher accumulations of osmolytes, and enlarged root systems.

  19. The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Chowdhury, Zulkarnain; Sarowar, Sujon; Klossner, Guy; Lee, Hyeonju; Burdan, Dehlia; Trick, Harold N; Gobbato, Enrico; Parker, Jane E; Shah, Jyoti

    2015-08-01

    Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat and other cereals. F. graminearum also causes disease in Arabidopsis thaliana. In both Arabidopsis and wheat, F. graminearum infection is limited by salicylic acid (SA) signaling. Here, we show that, in Arabidopsis, the defense regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) and its interacting partners, PAD4 (PHYTOALEXIN-DEFICIENT4) and SAG101 (SENESCENCE-ASSOCIATED GENE101), promote SA accumulation to curtail F. graminearum infection. Characterization of plants expressing the PAD4 noninteracting eds1(L262P) indicated that interaction between EDS1 and PAD4 is critical for limiting F. graminearum infection. A conserved serine in the predicted acyl hydrolase catalytic triad of PAD4, which is not required for defense against bacterial and oomycete pathogens, is necessary for limiting F. graminearum infection. These results suggest a molecular configuration of PAD4 in Arabidopsis defense against F. graminearum that is different from its defense contribution against other pathogens. We further show that constitutive expression of Arabidopsis PAD4 can enhance FHB resistance in Arabidopsis and wheat. Taken together with previous studies of wheat and Arabidopsis expressing salicylate hydroxylase or the SA-response regulator NPR1 (NON-EXPRESSER OF PR GENES1), our results show that exploring fundamental processes in a model plant provides important leads to manipulating crops for improved disease resistance.

  20. HEAT TRANSFER ENHANCEMENT USING ALUMINA NANOFLUID IN CIRCULAR MICRO CHANNEL

    Directory of Open Access Journals (Sweden)

    K. S. ARJUN

    2017-01-01

    Full Text Available In this study, thermal and flow behavior models for circular microchannel using water and its nanofluids with alumina as a coolant fluid in single phase flow have been developed. A finite volume-based CFD technique is used and models are solved by using Fluent Solver. The 2D axis symmetric geometry with structured mesh and 100 x 18 nodes are used for single phase flow with Al2O3 nanoparticles of 23 nm average diameter. Viscous laminar and standard k-ε models are used to predict the steady temperature in laminar and turbulent zone. The heat transfer enhancement upto 83% in laminar and turbulent zones are obtained with the Re ranging from 5 to 11980 and particle volume concentration from 0 to 5%. Even though the pressure drop increases with increase in Re, it is comparatively less compared to the corresponding decrease in temperature. The increase in temperature depends on Re and Pe; but the temperature distribution is found to be independent of radial position even for very low Pe. Comparison with analytical results both in laminar and turbulent zone is provided to justify the assumptions introduced in the models and very close agreement is observed statistically. Nusselt number can well predict the analytical data.

  1. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress.

    Science.gov (United States)

    Wang, Lian-Chin; Wu, Jia-Rong; Hsu, Yi-Ju; Wu, Shaw-Jye

    2015-01-01

    Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized.

  2. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem.

    Science.gov (United States)

    Hashiguchi, Yasuko; Yano, Daisuke; Nagafusa, Kiyoshi; Kato, Takehide; Saito, Chieko; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko; Tasaka, Masao; Terao Morita, Miyo

    2014-04-01

    Plant vacuoles play critical roles in development, growth and stress responses. In mature cells, vacuolar membranes (VMs) display several types of structures, which are formed by invagination and folding of VMs into the lumenal side and can gradually move and change shape. Although such VM structures are observed in a broad range of tissue types and plant species, the molecular mechanism underlying their formation and maintenance remains unclear. Here, we report that a novel HEAT-repeat protein, SHOOT GRAVITROPISM6 (SGR6), of Arabidopsis is involved in the control of morphological changes and dynamics of VM structures in endodermal cells, which are the gravity-sensing cells in shoots. SGR6 is a membrane-associated protein that is mainly localized to the VM in stem endodermal cells. The sgr6 mutant stem exhibits a reduced gravitropic response. Higher plants utilize amyloplast sedimentation as a means to sense gravity direction. Amyloplasts are surrounded by VMs in Arabidopsis endodermal cells, and the flexible and dynamic structure of VMs is important for amyloplast sedimentation. We demonstrated that such dynamic features of VMs are gradually lost in sgr6 endodermal cells during a 30 min observation period. Histological analysis revealed that amyloplast sedimentation was impaired in sgr6. Detailed live-cell imaging analyses revealed that the VM structures in sgr6 had severe defects in morphological changes and dynamics. Our results suggest that SGR6 is a novel protein involved in the formation and/or maintenance of invaginated VM structures in gravity-sensing cells.

  3. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th

  4. Experimental study on heat transfer enhancement of a helically baffled heat exchanger combined with three-dimensional finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhnegguo; Xu Tao; Fang Xiaoming [South China University of Technology, Guangzhou (China). Ministry of Education

    2004-10-01

    Heat transfer and pressure drop of helically baffled heat exchanger combined with petal-shaped finned tubes for oil (ISO VG-32) cooling with water as coolant was experimentally studied. The tube side heat transfer coefficient was obtained by a modified Wilson plot technique. Results were presented as plots of the shell side heat transfer coefficient based on the actual outside surface area of tube bundle and pressure drop against volumetric flow rate of oil. Under experimental conditions, the maximum shell side heat transfer coefficient is 2265 W/m{sup 2} K, the corresponding shell side pressure drop is 91 kPa. The preliminary heat transfer enhancement mechanisms were discussed for oil flow helically on outside surface of petal-shaped finned tubes. (author)

  5. The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis.

    Science.gov (United States)

    Ochsenbein, Christian; Przybyla, Dominika; Danon, Antoine; Landgraf, Frank; Göbel, Cornelia; Imboden, André; Feussner, Ivo; Apel, Klaus

    2006-08-01

    Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen (1O2) that is restricted to the plastid compartment. Distinct sets of genes are activated that are different from those induced by hydrogen peroxide/superoxide. One of the genes that is rapidly upregulated is EDS1 (enhanced disease susceptibility). The EDS1 protein has been shown to be required for the resistance to biotrophic pathogens and the accumulation of salicylic acid (SA) that enhances the defenses of a plant by inducing the synthesis of pathogen-related (PR) proteins. Because of the similarity of its N-terminal portion to the catalytic site of lipases, EDS1 has also been implicated with the release of polyunsaturated fatty acids and the subsequent formation of various oxylipins. The release of singlet oxygen in the flu mutant triggers a drastic increase in the concentration of free SA and activates the expression of PR1 and PR5 genes. These changes depend on the activity of EDS1 and are suppressed in flu/eds1 double mutants. Soon after the beginning of singlet oxygen production, the synthesis of oxylipins such as jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) also start and plants stop growing and induce a cell-death response. The inactivation of EDS1 does not affect oxylipin synthesis, growth inhibition and the initiation of cell death, but it does allow plants to recover much faster from singlet oxygen-mediated growth inhibition and it also suppresses the spread of necrotic lesions in leaves. Hence, singlet oxygen activates a complex stress-response program with EDS1 playing a key role in initiating and modulating several steps of it. This program includes not only responses to oxidative stress, but also responses known to be activated during plant-pathogen interactions and wounding.

  6. Numerical Study of Heat Transfer Enhancement by Liquid Film on the Walls

    Institute of Scientific and Technical Information of China (English)

    ChunlinXia

    1994-01-01

    The mechanism of heat transfer enhancement by liquid film on the channel walls has been investigated in laminar mixed convective flow.The temperature distribution,velocity and mass fraction distributions,and the effects of the wetted wall temperatures and the Reynolds number on the momentum,heat and mass transfer were examined in details.Results show that the liquid film can enhance heat transfer along the wetted walls by 5-10 times.

  7. Heat transfer enhancement with mixing vane spacers using the field synergy principle

    Science.gov (United States)

    Yang, Lixin; Zhou, Mengjun; Tian, Zihao

    2017-01-01

    The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.

  8. Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus.

    Science.gov (United States)

    Geng, Xing-Min; Liu, Xiang; Ji, Mikyoung; Hoffmann, William A; Grunden, Amy; Xiang, Qiu-Yun J

    2016-01-01

    Production of reactive oxygen species (ROS) can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR) is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was introduced into a flowering plant Cornus canadensis to enhance its heat tolerance and reduce heat induced damage. A fusion construct of the SOR gene and Green Fluorescent Protein gene (GFP) was introduced into C. canadensis using Agrobacterium-mediated transformation. Heat tolerance of the GFP-SOR expressing transgenic plants was investigated by observing morphological symptoms of heat injury and by examining changes in photosynthesis, malondialdehyde (MDA), and proline levels in the plants. Our results indicate that the expression of the P. furiosus SOR gene in the transgenic plants alleviated lipid peroxidation of cell membranes and photoinhibition of PS II, and decreased the accumulation of proline at 40°C. After a series of exposures to increasing temperatures, the SOR transgenic plants remained healthy and green whereas most of the non-transgenic plants dried up and were unable to recover. While it had previously been reported that expression of SOR in Arabidopsis enhanced heat tolerance, this is the first report of the successful demonstration of improved heat tolerance in a non-model plant resulting from the introduction of P. furiosus SOR. The study demonstrates the potential of SOR for crop improvement and that inherent limitations of plant heat tolerance can be ameliorated with P. furiosus SOR.

  9. Enhancing heat tolerance of the little dogwood Cornus canadensis L. f. with introduction of a superoxide reductase gene from the hyperthermophilic archaeon Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Xinmin eGeng

    2016-01-01

    Full Text Available Production of reactive oxygen species (ROS can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was introduced into a flowering plant Cornus canadensis to enhance its heat tolerance and reduce heat induced damage. A fusion construct of the SOR gene and Green Fluorescent Protein gene (GFP was introduced into C. canadensis using Agrobacterium-mediated transformation. Heat tolerance of the GFP-SOR expressing transgenic plants was investigated by observing morphological symptoms of heat injury and by examining changes in photosynthesis, malondialdehyde (MDA, and proline levels in the plants. Our results indicate that the expression of the P. furiosus SOR gene in the transgenic plants alleviated lipid peroxidation of cell membranes and photoinhibition of PS II, and decreased the accumulation of proline at 40°C. After a series of exposures to increasing temperatures, the SOR transgenic plants remained healthy and green whereas most of the non-transgenic plants dried up and were unable to recover. While it had previously been reported that expression of SOR in Arabidopsis enhanced heat tolerance, this is the first report of the successful demonstration of improved heat tolerance in a non-model plant resulting from the introduction of P. furiosus SOR. The study demonstrates the potential of SOR for crop improvement and that inherent limitations of plant heat tolerance can be ameliorated with P. furiosus SOR.

  10. New Sensor Concepts for Enhancing Heat Treatment Processes and Analysis

    Institute of Scientific and Technical Information of China (English)

    Jay I. Frankel

    2004-01-01

    The need for developing accurate quenching models requires an extensive experimental database that includes surface heat flux characterization. Quantification of the quenching process permits i) the development of high-quality heat treated products, ii) the evaluation of new quenchants and quenchant systems, and iii) the evaluation of quenchant quality over usage time. The surface heat transfer coefficient (or heat flux) is rarely measured, calculated or modeled in sufficient detail for real scientific use. Many single-thermocouple based probes are designed for the purpose of measuring the cooling power of a liquid quenchant or for monitoring quenchant quality. Lumped based probes are sufficient for these types of applications. However, the lack of sufficient distributed detail impedes the development of future high-quality heat-treated products. Frankel and his coworkers are developing a new family of transient thermal-rate sensors that will improve both diagnostic and real-time analyzes in heat transfer studies. Analyzes have been performed indicating that there exists a novel,thermal-rate sensor hierarchy that stabilizes predictions when used with analysis. This concept can be used for investigating both (i) direct surface heat transfer effects, and (ii) projective surface analysis based on embedded sensors. This new sensor family includes the ability to measure temperature, T; heat flux, q"; and their temporal derivatives, i.e., dT/dt, d2T/dt2 and dq"/dt.

  11. Experimental Study of Heat Transfer Enhancement in a Heated Tube Caused by Wire-Coil and Rings

    Directory of Open Access Journals (Sweden)

    Saeed Vahidifar

    2015-01-01

    Full Text Available This study investigates heat transfer characteristics and the pressure drop of a horizontal double pipe heat exchanger with wire coil inserts. The amplification of convection heat transfer coefficient in the heat exchanger reduces the weight, size and cost of heat exchanger. One way of augmenting the heat transfer is to disturb the boundary layer. When an object is placed in a boundary layer, it affects the flow structure and alters the velocity and thermal profiles. The change is affected by the formation of jets and wakes in the boundary layer as it alters modifies transfer and friction coefficients on the wall. This paper studies the characteristics of the heat transfer and the pressure drop of a double pipe horizontal tube heat exchanger with an inserted wire coil and rings. Wire coil acts as a swirl flow, which increases turbulence and roughness whereas rings increase heat transfer as a promoter of turbulence and roughness. The experimental data sets were extracted from wire coils and rings tested within a geometrical range with a pitch of (P/D=1, 2, 4 and wire diameter of (d/D=0.05, 0.07, 0.11. For wire coil with d/D=0.11, P/D =1 and Reynolds number of 10000, the overall enhancement efficiency amounted to 128%.

  12. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity.

    Science.gov (United States)

    Rietz, Steffen; Stamm, Anika; Malonek, Stefan; Wagner, Stephan; Becker, Dieter; Medina-Escobar, Nieves; Vlot, A Corina; Feys, Bart J; Niefind, Karsten; Parker, Jane E

    2011-07-01

    Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. • The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. • EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. • Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.

  13. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7.

    Science.gov (United States)

    Bartsch, Michael; Gobbato, Enrico; Bednarek, Pawel; Debey, Svenja; Schultze, Joachim L; Bautor, Jaqueline; Parker, Jane E

    2006-04-01

    Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) controls defense activation and programmed cell death conditioned by intracellular Toll-related immune receptors that recognize specific pathogen effectors. EDS1 is also needed for basal resistance to invasive pathogens by restricting the progression of disease. In both responses, EDS1, assisted by its interacting partner, PHYTOALEXIN-DEFICIENT4 (PAD4), regulates accumulation of the phenolic defense molecule salicylic acid (SA) and other as yet unidentified signal intermediates. An Arabidopsis whole genome microarray experiment was designed to identify genes whose expression depends on EDS1 and PAD4, irrespective of local SA accumulation, and potential candidates of an SA-independent branch of EDS1 defense were found. We define two new immune regulators through analysis of corresponding Arabidopsis loss-of-function insertion mutants. FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) positively regulates the EDS1 pathway, and one member (NUDT7) of a family of cytosolic Nudix hydrolases exerts negative control of EDS1 signaling. Analysis of fmo1 and nudt7 mutants alone or in combination with sid2-1, a mutation that severely depletes pathogen-induced SA production, points to SA-independent functions of FMO1 and NUDT7 in EDS1-conditioned disease resistance and cell death. We find instead that SA antagonizes initiation of cell death and stunting of growth in nudt7 mutants.

  14. A synthetic antimicrobial peptide BTD-S expressed in Arabidopsis thaliana confers enhanced resistance to Verticillium dahliae.

    Science.gov (United States)

    Li, Feng; Shen, Hao; Wang, Ming; Fan, Kai; Bibi, Noreen; Ni, Mi; Yuan, Shuna; Wang, Xuede

    2016-08-01

    BTD-S is a synthetic non-cyclic θ-defensin derivative which was previously designed in our laboratory based on baboon θ-defensins (BTDs). It shows robust antimicrobial activity against economically important phytopathogen, Verticillium dahliae. Here, we deduced the coding nucleotide sequence of BTD-S and introduced the gene into wild-type (ecotype Columbia-0) Arabidopsis thaliana plants. Results demonstrated that BTD-S-transgenic lines displayed in bioassays inhibitory effects on the growth of V. dahliae in vivo and in vitro. Based on symptom severity, enhanced resistance was found in a survey of BTD-S-transgenic lines. Besides, crude protein extracts from root tissues of BTD-S-transformed plants significantly restricted the growth of fungal hyphae and the germination of conidia. Also, fungal biomass over time determined by real-time PCR demonstrated the overgrowth of V. dahliae in wild-type plants 2-3 weeks after inoculation, while almost no fungal DNA was detected in aerial tissues of their transgenic progenitors. The result suggested that fungus failed to invade and progress acropetally up to establish a systemic infection in BTD-S-transgenic plants. Moreover, the assessment of basal defense responses was performed in the leaves of WT and BTD-S-transgenic plants. The mitigated oxidative stress and low antioxidase level in BTD-S-transgenic plants revealed that BTD-S acts via permeabilizing target microbial membranes, which is in a category different from hypersensitive response-dependent defense. Taken together, our results demonstrate that BTD-S is a promising gene to be explored for transgenic engineering for plant protection against Verticillium wilt.

  15. Overexpression of ZmIRT1 and ZmZIP3 Enhances Iron and Zinc Accumulation in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suzhen Li

    Full Text Available Iron and zinc are important micronutrients for both the growth and nutrient availability of crop plants, and their absorption is tightly controlled by a metal uptake system. Zinc-regulated transporters, iron-regulated transporter-like proteins (ZIP, is considered an essential metal transporter for the acquisition of Fe and Zn in graminaceous plants. Several ZIPs have been identified in maize, although their physiological function remains unclear. In this report, ZmIRT1 was shown to be specifically expressed in silk and embryo, whereas ZmZIP3 was a leaf-specific gene. Both ZmIRT1 and ZmZIP3 were shown to be localized to the plasma membrane and endoplasmic reticulum. In addition, transgenic Arabidopsis plants overexpressing ZmIRT1 or ZmZIP3 were generated, and the metal contents in various tissues of transgenic and wild-type plants were examined based on ICP-OES and Zinpyr-1 staining. The Fe and Zn concentration increased in roots and seeds of ZmIRT1-overexpressing plants, while the Fe content in shoots decreased. Overexpressing ZmZIP3 enhanced Zn accumulation in the roots of transgenic plants, while that in shoots was repressed. In addition, the transgenic plants showed altered tolerance to various Fe and Zn conditions compared with wild-type plants. Furthermore, the genes associated with metal uptake were stimulated in ZmIRT1 transgenic plants, while those involved in intra- and inter- cellular translocation were suppressed. In conclusion, ZmIRT1 and ZmZIP3 are functional metal transporters with different ion selectivities. Ectopic overexpression of ZmIRT1 may stimulate endogenous Fe uptake mechanisms, which may facilitate metal uptake and homeostasis. Our results increase our understanding of the functions of ZIP family transporters in maize.

  16. HEAT TRANSFER ENHANCEMENT USING LOW VOLUME CONCENTRATIONS OF Fe3O4 NANOFLUID IN CIRCULAR PIPE

    Directory of Open Access Journals (Sweden)

    BHRAMARA PANITAPU

    2014-10-01

    Full Text Available Nanofluids are emerging as one of the effective means of enhancing the heat transfer compared to the conventional heat transfer fluids due enhancement of thermophysical properties of base fluids due to addition of nanosized particles. Numerical experiments were conducted for heat transfer inside a circular pipe subjected to constant heat flux with water as base fluid. Heat transfer enhancement was studied by adding low volume concentrations, viz., 0.1 to 0.6 % of Fe3O4 magnetic nanoparticles of particle size 36 nm in water. The numerical analysis of nanofluid was performed using the single phase approach for the Reynold Number of the flow ranging from 2500 – 22000. The results show that better enhancement was observed at higher Re and at higher volume fractions. The numerical results were compared with the experimental data available in the literature.

  17. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    Science.gov (United States)

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  18. Expression analysis of a heat-inducible, Myo-inositol-1-phosphate synthase (MIPS) gene from wheat and the alternatively spliced variants of rice and Arabidopsis.

    Science.gov (United States)

    Khurana, Neetika; Chauhan, Harsh; Khurana, Paramjit

    2012-01-01

    Molecular dissection and a deeper analysis of the heat stress response mechanism in wheat have been poorly understood so far. This study delves into the molecular basis of action of TaMIPS, a heat stress-inducible enzyme that was identified through PCR-select subtraction technology, which is named here as TaMIPS2. MIPS (L-Myo-inositol-phosphate synthase) is important for the normal growth and development in plants. Expression profiling showed that TaMIPS2 is expressed during different developing seed stages upon heat stress. Also, the transcript levels increase in unfertilized ovaries and significant amounts are present during the recovery period providing evidence that MIPS is crucial for its role in heat stress recovery and flower development. Alternatively spliced forms from rice and Arabidopsis were also identified and their expression analysis revealed that apart from heat stress, some of the spliced variants were also inducible by drought, NaCl, Cold, ABA, BR, SA and mannitol. In silico promoter analysis revealed various cis-elements that could contribute for the differential regulation of MIPS in different plant systems. Phylogenetic analysis indicated that MIPS are highly conserved among monocots and dicots and TaMIPS2 grouped specifically with monocots. Comparative analyses was undertaken by different experimental approaches, i.e., semi-quantitative RT-PCR, quantitative RT-PCR, Genevestigator as a reference expression tool and motif analysis to predict the possible function of TaMIPS2 in regulating the different aspects of plant development under abiotic stress in wheat.

  19. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    Science.gov (United States)

    Taha, T. J.; Thakur, D. B.; Van der Meer, T. H.

    2012-11-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nano structures is achieved using thermal catalytic chemical vapor deposition process (TCCVD) on a 50 μm pure nickel (Ni270) wire. The micro wire samples covered with CNF layers were subjected to a uniform flow from a nozzle. Heat transfer measurement was achieved by a controlled heat dissipation through the micro wire to attain a constant temperature during the flow. This measurement technique is adopted from hot wire anemometry calibration method. Synthesis of carbon nano structures, heat transfer surface characterization and measurement technique are evaluated. Preliminary results indicate that an average enhancement in Nusselt Number of 17% is achieved.

  20. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis.

    Science.gov (United States)

    Ger, Mang-Jye; Louh, Guan-Yu; Lin, Yi-Hsien; Feng, Teng-Yung; Huang, Hsiang-En

    2014-12-01

    Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.

  1. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  2. Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LinZhiping; MaTongze; 等

    1994-01-01

    Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.

  3. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner.

    Science.gov (United States)

    Singh, Prashant; Yekondi, Shweta; Chen, Po-Wen; Tsai, Chia-Hong; Yu, Chun-Wei; Wu, Keqiang; Zimmerli, Laurent

    2014-06-01

    In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics.

  4. BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME

    Directory of Open Access Journals (Sweden)

    Suresh Chandrasekhar

    2016-08-01

    Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.

  5. A general theoretical principle for single-phase convection heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    WANG SongPing; CHEN QingLin; ZHANG BingJian; HUA Ben

    2009-01-01

    The main methods of single-phase convection heat transfer enhancement are analyzed in this paper,and the unity of contradiction between heat transfer enhancement and energy consumption(or exergy destruction)is expounded.The thermodynamic relationship between heat(or exergy)transfer efficiency and energy consumption(or exergy destruction)as well as driving forces is established,and a general theoretical principle for single-phase convection heat transfer enhancement is further obtained.The principle shows that temperature gradient field distribution and velocity field distribution constrain each other,and that the optimum heat transfer efficiency can be obtained when they are synergetic.If the level of the synergy of temperature gradient field distribution with velocity field distribution is determined,the relative uniform temperature gradient is required,and vice versa.The principle also shows the relationship of relative temperature gradient with specific heat and coefficient of heat conductivity.The deduced results can be used as a theoretical guidance for single-phase convection heat transfer enhancement and optimum design of heat exchangers.

  6. A general theoretical principle for single-phase convection heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The main methods of single-phase convection heat transfer enhancement are analyzed in this paper, and the unity of contradiction between heat transfer enhancement and energy consumption(or exergy destruction)is expounded.The thermodynamic relationship between heat(or exergy)transfer efficiency and energy consumption(or exergy destruction)as well as driving forces is established,and a general theoretical principle for single-phase convection heat transfer enhancement is further obtained. The principle shows that temperature gradient field distribution and velocity field distribution constrain each other,and that the optimum heat transfer efficiency can be obtained when they are synergetic.If the level of the synergy of temperature gradient field distribution with velocity field distribution is determined,the relative uniform temperature gradient is required,and vice versa.The principle also shows the relationship of relative temperature gradient with specific heat and coefficient of heat conductivity.The deduced results can be used as a theoretical guidance for single-phase convection heat transfer enhancement and optimum design of heat exchangers.

  7. Titania doped triaxial porcelain: Enhancement of strength by controlled heat treatment

    Indian Academy of Sciences (India)

    Sunipa Bhattacharyya; Swapan Kumar Das; Kausik Dana; Nirendra Krishna Mitra

    2007-06-01

    Titania doped vitrified triaxial porcelain samples were subjected to controlled heat treatment at different temperatures of 600, 800 and 1000°C with a specific heating schedule. The results revealed that flexural strength of 800°C heat treated sample was significantly enhanced to 60 MPa from its original value of 40 MPa. XRD pattern revealed the formation of mullite in the system both before and after heat treatment and the differences in their growth was ascertained through SEM analysis. The present heat treatment process may be useful to produce high strength porcelain body from a common triaxial system.

  8. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  9. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J. [Argonne National Lab., IL (United States)

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  10. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    OpenAIRE

    2013-01-01

    During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer...

  11. Preparation, thermo-physical properties and heat transfer enhancement of nanofluids

    Science.gov (United States)

    Rashmi, W.; Khalid, M.; Ong, S. S.; Saidur, R.

    2014-09-01

    Research interest in convective heat transfer using suspensions of nano-sized solid particles has been growing rapidly over the past decade, seeking to develop novel methods for enhancing the thermal performance of heat transfer fluids. Due to their superior transport properties and significant enhancement in heat transfer characteristics, nanofluids are believed to be a promising heat transfer fluid for the future. The stability of nanofluids is also a key aspect of their sustainability and efficiency. This review summarizes the recent research findings on stability, thermophysical properties and convective heat transfer of nano-sized particles suspended in base fluids. Furthermore, various mechanisms of thermal conductivity enhancement and challenges faced in nanofluid development are also discussed.

  12. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations.

  13. District heating and cooling : review of technology and potential enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Rezaie, B.; Rosen, M.A. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    This study reviewed the economic and environmental aspects of district energy systems in order to facilitate research into expanded thermal networks. The work is part of a broader research program by the authors regarding the use of integrated thermal networks, based on expanded district heating and cooling systems, to meet the thermal requirements for various buildings and applications with greater efficiency and less environmental impact than traditional systems. This paper presented various definitions, classifications and applications of district cooling and heating and described the elements of a district energy system. The study investigated the integration of combined heat and power (CHP) with district energy, permitting the cogeneration of electricity and heat. Environmental benefits are among the main advantages of district heating and cooling systems. This paper described the economics of a thermal network system, as a major factor in the justification for any project from industrial, governmental and societal perspectives. Related regulations at government levels were also suggested based on various investigations. The efficiency of district energy was discussed and exergy analysis was shown to be an effective method for calculating the efficiency of a thermal network. 38 refs., 2 tabs., 2 figs.

  14. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins

    Energy Technology Data Exchange (ETDEWEB)

    Agyenim, Francis; Smyth, Mervyn [Centre for Sustainable Technologies, University of Ulster, Newtownabbey BT37 0QB (United Kingdom); Eames, Philip [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2009-09-15

    An experimental energy storage system has been designed using a horizontal concentric tube heat exchanger incorporating a medium temperature phase change material (PCM) Erythritol, with a melting point of 117.7 C. Three experimental configurations, a control system with no heat transfer enhancement and systems augmented with circular and longitudinal fins have been studied. The results presented compare the system heat transfer characteristics using isotherm plots and temperature-time curves. The system with longitudinal fins gave the best performance with increased thermal response during charging and reduced subcooling in the melt during discharging. The experimentally measured data for the control, circular finned and longitudinal finned systems have been shown to vindicate the assumption of axissymmetry (direction parallel to the heat transfer fluid flow) using temperature gradients in the axial, radial and angular directions in the double pipe PCM system. (author)

  15. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-09-01

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200-6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties

  16. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    Science.gov (United States)

    Herman, C.; Kang, E.

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re=200-6500, corresponding to flow velocities from 0.076 to 2.36m/s. Flow oscillations were first observed between Re=1050 and 1320 for the basic grooved channel, and around Re=350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also

  17. Mild heat stress enhances differentiation and proliferation of Japanese quail myoblasts and enhances slow muscle fiber characteristics.

    Science.gov (United States)

    Choi, Y M; Chen, P R; Shin, S; Zhang, J; Hwang, S; Lee, K

    2016-08-01

    The objective of this study was to investigate the effect of mild heat stress on muscle fiber hyperplastic and hypertrophic growth in quail primary myogenic cells to better understand the mechanisms leading to increased skeletal muscle development in avian embryos incubated at a higher temperature. Compared to control cultures maintained at 37°C, incubation at 39°C enhanced myotube length (P fusion index (56.7 vs. 46.2%, P heat stress compared to the control cells. On the other hand, mild heat stress enhanced protein levels of slow myosin heavy chain isoform (P heat stress plays a significant role in myogenic mechanisms related to muscle mass and development.

  18. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    Directory of Open Access Journals (Sweden)

    Dhanraj S.Pimple

    2014-12-01

    Full Text Available This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data (Dittus 1930, Petukhov 1970, Moody 1944 for axial flows in the plain tube. The flow considered is in a low Reynolds number range between 2300 and 8800. A maximum percentage gain of 165% in heat transfer rate is obtained for using the helical insert in comparison with the plain tube.

  19. Experimental and Numerical Investigation of Enhancement of Heat and Mass Transfer in Adsorbent Beds

    Institute of Scientific and Technical Information of China (English)

    LiuZhenyan; FuZhumantffu

    1994-01-01

    Some interrelated parameters of heat and mass transfer in two phases of pressure rise and constant pressure are obtained by studying the desorption processes of two kinds of cylindrical adsorbent beds.with fins and without fins.Moreover,the effects of equivalent thermal conductivity of adsorbent beds,contact thermal transfer coefficient,heat transfer of fins,condensation temperature,uncondensable gas in the adsorber are analyzed.finally,enhancement of heat and mass transfer has been attained.

  20. Enhancement of Leptospira hardjo agglutination titers in sheep and goat serum by heat inactivation.

    Science.gov (United States)

    Malkin, K

    1984-04-01

    Heat inactivation of sheep serum samples resulted in the detection of an additional 9% reactors to Leptospira hardjo that were negative on the initial test of fresh samples. Treatment with EDTA gave results generally similar to heat inactivation suggesting that complement was responsible for the inhibition of agglutination. Tests on heat inactivated serum from experimentally infected sheep and goats revealed enhanced titers or reactions which were not detected in fresh serum.

  1. The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory

    Science.gov (United States)

    Lee, K. L.; Chan, Y. H.; Lee, T. C.; Goggins, William B.; Chan, Emily Y. Y.

    2016-07-01

    This paper presents a study to develop a heat index, for use in hot and humid sub-tropical climate in Hong Kong. The study made use of hospitalization data and heat stress measurement data in Hong Kong from 2007 to 2011. The heat index, which is called Hong Kong Heat Index (HKHI), is calculated from the natural wet bulb temperature, the globe temperature, and the dry bulb temperature together with a set of coefficients applicable to the high humidity condition in the summer of Hong Kong. Analysis of the response of hospitalization rate to variation in HKHI and two other heat indices, namely Wet Bulb Globe Temperature (WBGT) and Net Effective Temperature (NET), revealed that HKHI performed generally better than WBGT and NET in reflecting the heat stress impact on excess hospitalization ratio in Hong Kong. Based on the study results, two reference criteria of HKHI were identified to establish a two-tier approach for the enhancement of the heat stress information service in Hong Kong.

  2. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    Science.gov (United States)

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  3. Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties

    Directory of Open Access Journals (Sweden)

    Balla Hyder H.

    2015-01-01

    Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.

  4. Studying heat transfer enhancement for water boiling on a surface with micro- and nanorelief

    Science.gov (United States)

    Kuzma-Kichta, Yu. A.; Lavrikov, A. V.; Shustov, M. V.; Chursin, P. S.; Chistyakova, A. V.; Zvonarev, Yu. A.; Zhukov, V. M.; Vasil'eva, L. T.

    2014-03-01

    We present the results from a study of heat transfer enhancement for bulk water boiling at atmospheric pressure on a surface with micro- and nanorelief, including a relief formed from silicon carbide and aluminum oxide nanoparticles. Horizontally oriented steel tube 1.2 mm in diameter and copper plate 15 × 3 mm in size were selected as test sections. The process was recorded by means of a video camera, and the values of heat transfer, critical heat fluxes, and contact angles were measured. The use of surface with micro- and nanorelief makes it possible to obtain a significantly higher critical heat flux and boiling heat transfer coefficient owing to a change of surface wettability. The results of investigations can find use in compact heat exchangers, refrigerating plants, heat pipes, in the mirrors of high-capacity lasers, in the targets and resonators of charged particle accelerators and for external cooling of reactor vessels under emergency conditions.

  5. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    Science.gov (United States)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  6. Enhancement of Pool Boiling Heat Transfer to Lithium Bromide Aqueous Solution

    Science.gov (United States)

    Furukawa, Masahiro; Kaji, Masuo; Suyama, Takayuki; Sekoguchi, Kotohiko

    An experimental study on enhancement of nucleate pool boiling heat tranfer by placing a sponge metal close to a plain heated surface was conducted in order to improve the heat transfer performance of the high temperature generator of absorption chiller/heater. The sponge metal has three dimensional porous mesh framework like sponge. Boiling curves of water under the atmospheric pressure were compared with those of lithium bromide aqueous solution of mass concentration 55 to 58%. Heat transfer characteristics were improved by 2 to3 times both for water and lithium bromide aqueous solution when the sponge metal was placed on the heated surface with and without cleareance. Three kinds of sponge metals were used for lithium bromide aqueous solution under the reduced pressure (24 kPa). At lower heat fluxes,#6 sponge metal which has the finest mesh and the lowest porosity shows excellent results. At high heat fluxes, however,it causes deterioration of heat transfer. Over the wide range of heat fluxes,# 4 sponge metal was found to be most suitable and the optimal clearence was determined as 0.5 mm. The sponge metal is of good practical use as a device to enhance the boiling, since no special manufacturing is required for placing it on the heated surface.

  7. Heat transfer enhancement in water when used as PCM in thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, L.F. [Universitat de Lleida (Spain). Escola Universitaria Politecnica; Mehling, H.; Hiebler, S.; Ziegler, F. [Bavarian Center for Applied Energy Research, Garching (Germany)

    2002-07-01

    Efficient and reliable storage systems for thermal energy are an important requirement in many applications where heat demand and supply or availability do not coincide. Heat and cold stores can basically be divided in two groups. In sensible heat stores the temperature of the storage material is increased significantly. Latent heat stores, on the contrary, use a storage material that undergoes a phase change (PCM) and a small temperature rise is sufficient to store heat or cold. The major advantages of the phase change stores are their large heat storage capacity and their isothermal behavior during the charging and discharging process. However, while unloading a latent heat storage, the solid-liquid interface moves away from the heat transfer surface and the heat flux decreases due to the increasing thermal resistance of the growing layer of the molten/solidified medium. This effect can be reduced using techniques to increase heat transfer. In this paper, three methods to enhance the heat transfer in a cold storage working with water/ice as PCM are compared: addition of stainless steel pieces, copper pieces (both have been proposed before) and a new PCM-graphite composite material. The PCM-graphite composite material showed an increase in heat flux bigger than with any of the other techniques. (Author)

  8. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    Science.gov (United States)

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; Blancaflor, Elison B.

    2017-01-01

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. Fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH have been used for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, in part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Collectively, our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants. PMID:28112243

  9. Comprehensive Evaluation and Prediction of Enhancement of Boiling Heat Transfer with Additives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model of evaluation and prediction of enhancement of boiling heat transfer with additives has been propoeed according to fuzzy fundamentals. Correlative appraisement of boiling heat transfer augmentation was done with the model based on 39 additives which were tested by the authors and other researchers. The results show that the evaluation of 35 additives is consistent with experiments, which means that the accuracy of the model is 89.7 percent. In addition, the prediction of the ability of boiling heat transfer enhancement with sodium oleate,polyethylene glycol and Tween-40 is also in good agreement with correspondent experiments.

  10. Vibration-induced coherence enhances the performance of a biological quantum heat engine

    CERN Document Server

    Chen, Hong-Bin; Chen, Yueh-Nan

    2016-01-01

    Photosynthesis has been the long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also inspire attention from thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results suggest new insights into the photosynthetic processes and a design principle mimicking natural organisms.

  11. Vibration-induced coherence enhancement of the performance of a biological quantum heat engine

    Science.gov (United States)

    Chen, Hong-Bin; Chiu, Pin-Yi; Chen, Yueh-Nan

    2016-11-01

    Photosynthesis has been a long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also have inspired attention from a thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results provide insights into the photosynthetic processes and a design principle mimicking natural organisms.

  12. Experimental investigation of enhanced heat transfer for fined circular tube heat exchanger with rectangular fins

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xing; YANG Dong; CHEN Ting-kuan

    2006-01-01

    Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 ×4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s,the heat transfer rate ranged from 21.8 to 47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8°C. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are proposed based on the experimental results.

  13. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    Directory of Open Access Journals (Sweden)

    J.A.Livingston1 , P. Selvakumar2

    2013-04-01

    Full Text Available During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer around the tubes by introducing special type of fin arrangement over the tubes. The effect of shape and orientation of the fin on vortex generation and respective heat transfers are studied numerically. It have been identified that by introducing special type of fin arrangement over the tube there is a possibility for increase the vortex formation at the rear portion of the tube, which significantly leads to creation of uniform heat transfer all around the tube.

  14. Heating Unsaturated Sediments Using Solar Energy to Enhance Passive Sediment Remediation Technologies

    Science.gov (United States)

    Rossman, A.

    2002-12-01

    Sediment heating has been shown to enhance passive sediment remediation technologies such as bioremediation and barometric pumping (passive soil venting). Sediment heating raises the slow remediation rates that often limit the widespread use of these technologies. In bioremediation applications, a 10 degree C increase in subsurface temperature is expected to double the microbial activity, and thus the remediation rate. The removal rate of tetracholorethylene (PCE - a common subsurface contaminant) by passive soil vapor extraction is expected to nearly double in low-permeable sediments when the subsurface is heated 10 degree C from ambient temperatures due to an increased vapor pressure in the PCE. When the sediment is heated using renewable energy sources, these thermally enhanced remediation technologies can be environmentally benign alternatives to conventional remediation techniques that rely on large external energy inputs. The thermally enhanced passive technologies may be particularly useful for remediating unsaturated, low-permeable lenses that are troublesome to most conventional remediation technologies such as conventional soil vapor extraction and co-solvent flushes. The main objective of this work was to quantify subsurface sediment heating using a solar powered heat injection well. To do this, a pilot sediment heating system was installed in Vermont and high resolution meteorological and sediment temperature data were collected using a stand-alone data acquisition system. Unsaturated, silty sediments were heated in-situ by converting the direct and indirect solar energy available at the surface to heat energy in the subsurface using stand-alone renewable energy sources and a resistive element heat injection well. The heat injection well was powered by a 600-W passively tracking photovoltaic (PV) array and a small 1.2-m swept area wind turbine. It is envisioned that the heat injection well would be placed directly into an area of high subsurface

  15. Urban heat islands in China enhanced by haze pollution

    Science.gov (United States)

    Cao, Chang; Lee, Xuhui; Liu, Shoudong; Schultz, Natalie; Xiao, Wei; Zhang, Mi; Zhao, Lei

    2016-08-01

    The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the surrounding rural land, is commonly attributed to changes in biophysical properties of the land surface associated with urbanization. Here we provide evidence for a long-held hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a contributor to the UHI. Our results are based on satellite observations and urban climate model calculations. We find that a significant factor controlling the nighttime surface UHI across China is the urban-rural difference in the haze pollution level. The average haze contribution to the nighttime surface UHI is 0.7+/-0.3 K (mean+/-1 s.e.) for semi-arid cities, which is stronger than that in the humid climate due to a stronger longwave radiative forcing of coarser aerosols. Mitigation of haze pollution therefore provides a co-benefit of reducing heat stress on urban residents.

  16. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    Science.gov (United States)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  17. Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets

    CERN Document Server

    Haqq-Misra, Jacob

    2014-01-01

    Earth-like planets within the liquid water habitable zone of M type stars may evolve into synchronous rotators. On these planets, the sub-stellar hemisphere experiences perpetual daylight while the opposing anti-stellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the anti-stellar side. Here we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the anti-stellar hemisphere. We also explore the persisten...

  18. Enhanced Near-Field Heat Flow of a Monolayer Dielectric Island

    Science.gov (United States)

    Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2013-03-01

    We have investigated the influence of thin films of a dielectric material on the near-field mediated heat transfer at the fundamental limit of single monolayer islands on a metallic substrate. We present spatially resolved measurements by near-field scanning thermal microscopy showing a distinct enhancement in heat transfer above NaCl islands compared to the bare Au(111) film. Experiments at this subnanometer scale call for a microscopic theory beyond the macroscopic fluctuational electrodynamics used to describe near-field heat transfer today. The method facilitates the possibility of developing designs of nanostructured surfaces with respect to specific requirements in heat transfer down to a single atomic layer.

  19. Enhanced near-field heat flow of a monolayer dielectric island.

    Science.gov (United States)

    Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2013-03-29

    We have investigated the influence of thin films of a dielectric material on the near-field mediated heat transfer at the fundamental limit of single monolayer islands on a metallic substrate. We present spatially resolved measurements by near-field scanning thermal microscopy showing a distinct enhancement in heat transfer above NaCl islands compared to the bare Au(111) film. Experiments at this subnanometer scale call for a microscopic theory beyond the macroscopic fluctuational electrodynamics used to describe near-field heat transfer today. The method facilitates the possibility of developing designs of nanostructured surfaces with respect to specific requirements in heat transfer down to a single atomic layer.

  20. Heat Transfer Enhancement Due to Marangoni Flow Around Moving Bubbles During Nucleate Boiling

    Institute of Scientific and Technical Information of China (English)

    David M. Christopher; WANG Hao; PENG Xiaofeng

    2006-01-01

    Nucleate boiling is a very efficient method for generating high heat transfer rates from solid surfaces; however, the fundamental physical mechanisms governing nucleate boiling heat transfer are not well understood. The heat transfer mechanisms around stationary and moving bubbles on very thin microwires were analyzed numerically to evaluate the effect of the bubble motion on the heat transfer from the wire surface. The numerical analysis accurately models the experimentally observed bubble movement and fluid velocities. The analytical model includes the effects of the Marangoni flow around the bubble and the evaporation and condensation within the bubble. The analysis shows that the heat transfer was significantly enhanced by the Marangoni flow around the outside of the bubble which transfers at least twice as much energy from the wire as the heat transfer directly from the wire to the bubble. The enhanced heat transfer due to the Marangoni flow was evident for both stationary and moving bubbles. The moving bubbles also created a wake that further enhanced the heat transfer from the wire. Since the Marangoni number for water is greater than for ethanol for the same conditions, the Marangoni flow and, hence, the bubble velocities are predicted to be greater in water than in ethanol.

  1. Investigating crosstalk between heat tolerance and redox status through suppressor screening of EMS mutagenized Arabidopsis monothioglutaredoxin GRXS17 mutants

    Science.gov (United States)

    Global environmental temperature changes threaten innumerable plant species. While various signaling networks regulate plant responses to heat stress (HS), the mechanisms unifying these diverse processes are largely unknown. The thioredoxin (Trx) and glutaredoxin (Grx) systems help control cellular ...

  2. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress.

  3. Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Pais, M. R.; Baker, K.

    1993-01-01

    Experiments were conducted to investigate the vaporization heat transfer characteristics for the dielectric liquid FC-72 on several wicking surfaces which may be used in flat-plate heat pipes. The wicking materials studied included microstructure enhanced surfaces and coarse surfaces covered with screen meshes. Experimental data for q versus deltaT curves and critical heat fluxes were obtained for the two different operating conditions of a heat pipe, evaporation, and shallow pool boiling. When the liquid level was above the heated surface, the height of the liquid level above the surface was varied from 0 to 10 mm. When the liquid level was below the heated surface, the distance from the liquid level to the edge of the surface was adjusted from 0 to 15 mm. Experimental results revealed that for shallow pool boiling when the heated surface was covered with a wire screen mesh, the heat transfer coefficient increased at lower heat fluxes but the critical heat flux (CHF) decreased for all the surfaces tested. In the case of evaporation, both CHF and the heat transfer coefficient increased as the microstructure surfaces were covered with screen meshes.

  4. Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis.

    Science.gov (United States)

    Wituszynska, Weronika; Slesak, Ireneusz; Vanderauwera, Sandy; Szechynska-Hebda, Magdalena; Kornas, Andrzej; Van Der Kelen, Katrien; Mühlenbock, Per; Karpinska, Barbara; Mackowski, Sebastian; Van Breusegem, Frank; Karpinski, Stanislaw

    2013-04-01

    There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of lesion simulating disease1 (LSD1), enhanced disease susceptibility1 (EDS1), and phytoalexin deficient4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.

  5. Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis

    OpenAIRE

    Xiaolian Zhang; Ning Wang; Pei Chen; Mengmeng Gao; Juge Liu; Yufeng Wang; Tuanjie Zhao; Yan Li; Junyi Gai

    2014-01-01

    Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine...

  6. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    OpenAIRE

    Roberto eToscano-Morales; Beatriz eXoconostle-Cázares; José Luis eCabrera-Ponce; Jesús eHinojosa-Moya; Jorge Luis eRuiz-Salas; Valentin eGalván-Gordillo; Ramon Gerardo eGuevara-González; Roberto eRuiz-Medrano

    2015-01-01

    The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage...

  7. Collection of low-grade waste heat for enhanced energy harvesting

    Directory of Open Access Journals (Sweden)

    Ercan M. Dede

    2016-05-01

    Full Text Available Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  8. Luminaries-level structure improvement of LEDs for heat dissipation enhancement under natural convection

    Indian Academy of Sciences (India)

    Ke Wu; Le Wang; Yi-Bo Yu; Zhi-Yi Huang; Pei Liang

    2013-12-01

    Heat dissipation enhancement of LED luminaries is of great significance to the large-scale application of LED. Luminaries-level structure improvement by the method of boring through-hole is adopted to intensify heat dissipation. Furthermore, the natural convection heat transfer process of LED luminaries is simulated by computational fluid dynamics (CFD) model before and after the structural modification. As shown by computational results, boring through-hole is beneficial to develop bottomto-top natural convection, eliminate local circumfluence, and finally form better flow pattern. Analysis based on field synergy principle shows that boring through-hole across LED luminaries improves the synergy between flow field and temperature field, and effectively decreases the thermal resistance of luminaries-level heat dissipation structure. Under the same computational conditions, by luminaries-level structure improvement the highest temperature of heat sink is decreased by about 8° C and the average heat transfer coefficient is increased by 45.8%.

  9. Collection of low-grade waste heat for enhanced energy harvesting

    Science.gov (United States)

    Dede, Ercan M.; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-05-01

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  10. Heat Transfers Enhancement with Different Square Jagged Twisted Tapes

    Directory of Open Access Journals (Sweden)

    Mr. A.V.Gawandare

    2014-03-01

    Full Text Available The present experimental work are carried out with copper twisted tape inserts 3mm with 5.2,4.2 and 3.2 twists respectively. The inserts when placed in the path of the flow of the fluid, create a high degree of turbulence resulting in an increase in the heat transfer rate and the pressure drop. The work includes the determination of friction factor and heat transfer coefficient for various twisted wire inserts with varying twists and different materials. The Reynolds number is varied from 5000 to 16000. Correlations for Nusselt number and friction factor are developed for the twisted wire inserts from the obtained results. The results of varying twists in square jagged tape with different pitches have been compared with the values for the smooth tube. The 3mm thick with 3.2 twists copper insert shows increase in Nusselt number values by 76% however there is increase in friction factor by only 19.5% as compared to the smooth tube values.

  11. Urban heat islands in China enhanced by haze pollution.

    Science.gov (United States)

    Cao, Chang; Lee, Xuhui; Liu, Shoudong; Schultz, Natalie; Xiao, Wei; Zhang, Mi; Zhao, Lei

    2016-08-23

    The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the surrounding rural land, is commonly attributed to changes in biophysical properties of the land surface associated with urbanization. Here we provide evidence for a long-held hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a contributor to the UHI. Our results are based on satellite observations and urban climate model calculations. We find that a significant factor controlling the nighttime surface UHI across China is the urban-rural difference in the haze pollution level. The average haze contribution to the nighttime surface UHI is 0.7±0.3 K (mean±1 s.e.) for semi-arid cities, which is stronger than that in the humid climate due to a stronger longwave radiative forcing of coarser aerosols. Mitigation of haze pollution therefore provides a co-benefit of reducing heat stress on urban residents.

  12. Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid

    Directory of Open Access Journals (Sweden)

    Hooman Yarmand

    2014-01-01

    Full Text Available Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM. The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.

  13. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.

    Science.gov (United States)

    Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza

    2014-01-01

    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.

  14. A new model for analyzing laminar forced convective enhanced heat transfer in latent functionally thermal fluid

    Institute of Scientific and Technical Information of China (English)

    LU Wenqiang; BAI Fengwu

    2004-01-01

    In this paper, a new model to analyze laminar forced convective enhanced heat transfer in latent functionally thermal fluid is developed. The main characteristics of the model are: I) a new formula of the specific heat at constant pressure is used; ii) a real heat transfer process is considered; that is, heat transfer processes occur not only between working fluid and microcapsules, but also between the mixture and tube wall; iii) the new method, which combines the newly developed axisymmetrical dual reciprocity boundary element method (DRBEM) with finite difference method (FDM), is used to solve the control equations of this problem. The new model is validated by experimental data.Some new physical results on the variational characteristics of the specific heat at constant pressure with space and time during phase-change process, the time-marching history of the phase-change interfaces and so on are obtained. Several main physical factors that affect enhanced heat transfer in latent functionally thermal fluid are numerically analyzed.Some new understandings for the mechanism of enhanced heat transfer in the functionally fluid are obtained.

  15. Enhanced heat rectification effect in a quantum dot connected to ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Feng, E-mail: chifeng@semi.ac.cn [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China); College of Engineering, Bohai University, Jinzhou 121013 (China); Sun, Lian-Liang [College of Science, North China University of Technology, Beijing 100041 (China); Zheng, Jun; Guo, Yu [College of Engineering, Bohai University, Jinzhou 121013 (China)

    2015-06-15

    We study theoretically the heat generation by electric current in an interacting single level quantum-dot connected to ferromagnetic leads. The heat is transferred between the dot and the lattice vibration of its host material (phonon reservoir). Particular attention is paid on the heat's rectification effect achieved by properly arranging the dot level and the bias voltage. We find that this effect is remarkably enhanced when the two leads' magnetic moments are in antiparallel configuration, i.e., the magnitude of the heat generation is reduced (amplified) in the negative (positive) bias regime as compared to the cases of parallel configuration and nonmagnetic leads. The rectification effect is even enhanced when one of the lead's spin polarization approaches to unit, during which the negative differential of the heat generation is weakened due to the change of the spin-dependent electron occupation numbers on the dot. The found results may be used for thermal transistor in the newly emerged research subject of phononics. - Highlights: • Heat flow between electrons and phonons is controlled by interaction between them. • A thermal diode or rectifier is proposed to work under electrical bias. • The heat rectification effect can be enhanced by the leads' ferromagnetism.

  16. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Torii, K.; Kwak, K.M.; Nishino, K. [Yokohama National Univ. (Japan). Dept. of Mechanical Engineering

    2002-08-01

    This paper proposes a novel technique that can augment heat transfer but nevertheless can reduce pressure-loss in a fin-tube heat exchanger with circular tubes in a relatively low Reynolds number flow, by deploying delta winglet-type vortex generators. The winglets are placed with a heretofore-unused orientation for the purpose of augmentation of heat transfer. This orientation is known as ''common flow up'' configuration. The proposed configuration causes significant separation delay, reduces form drag, and removes the zone of poor heat transfer from the near-wake of the tubes. This enhancement strategy has been successfully verified by experiments in the proposed configuration. In case of staggered tube banks, the heat transfer was augmented by 30% to 10%, and yet the pressure loss was reduced by 55% to 34% for the Reynolds number (based on two times channel height) ranging from 350 to 2100, when the present winglets were added. In case of in-line tube banks, these were found to be 20% to 10% augmentation, and 15% to 8% reduction, respectively. (author)

  17. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana.

    Science.gov (United States)

    Wituszyńska, Weronika; Szechyńska-Hebda, Magdalena; Sobczak, Mirosław; Rusaczonek, Anna; Kozłowska-Makulska, Anna; Witoń, Damian; Karpiński, Stanisław

    2015-02-01

    As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport.

  18. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  19. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natasha Savage

    Full Text Available Phosphate (Pi deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana, we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC, ENHANCER OF TRY AND CPC 1 (ETC1, WEREWOLF (WER and SCRAMBLED (SCM. From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias' in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts. Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  20. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (Ptomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  1. Airshuffler implementation at freezer air outlets for heat transfer enhancement

    Science.gov (United States)

    Ćerezci, Gökhan; Darka, Murat; Şenman, Ozan

    2016-06-01

    A study which is composed of computational simulation and experimental validation has been conducted for implementation of small, vane type geometries at freezer air outlets, similar to microvortex generators used in aircraft wings, in order to improve the heat transfer efficiency inside the freezer compartment by decreasing airside thermal resistance and improving the air distribution. Both simulation and experimental validation were performed in a loaded condition which was prepared according to `Household refrigerating appliances - characteristics and test methods - IEC 62552 [1]. Solutions for the incompressible K-epsilon (k-ɛ) turbulence model obtained for Bosch KDN 49 refrigerator freezer both with and without airshufflers at air outlets, which are similar to vane type microvortex generators with different geometric dimensions. The airshuffler dimensions were chosen with design of experiment (DOE) principles for finding the optimum geometry. The best combinations were tested according to cooling rate inside freezer compartment. Results were evaluated for feasibility of implementing of vortex generating surfaces (airshufflers) for cooling appliances.

  2. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  3. Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis.

    Science.gov (United States)

    Jia, Hongge; Van Loock, Bram; Liao, Mingjun; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-07-01

    The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and beta-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY vector conversion system. The method can be extended to other species when enhancer trap lines become available.

  4. Mechanism and numerical analysis of heat transfer enhancement in the core flow along a tube

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The present study introduces the principles of enhanced heat transfer in the core flow to form an equivalent thermal boundary layer in the fully developed laminar tube flow, which consequently enlarges the temperature gradient of the fluid near the tube wall, and thereby enhances the heat transfer between the fluid and the tube wall. At the same time, the increase of flow resistance in the tube is not so obvious. Mechanism analysis and numerical calculation based on air and water have been carried out to verify the principle and method presented in this paper, which may bring positive effects to the design of heat exchanger with high heat transfer efficiency and low flow resistance.

  5. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    Science.gov (United States)

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-06-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer.

  6. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.

    Science.gov (United States)

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer.

  7. Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; LIN GuiPing; CHEN HaiSheng; DING YuLong

    2009-01-01

    The latent heat of the microencapsulated phase change material (MPCM) increases the effective ther-mal capacity of latent functionally thermal fluid. However, researchers found that the heat transfer performance of such fluids was diminished due to the reduction of the low thermal conductivity of MPCM. For this reason, the nanoparticle enhanced latent functionally thermal fluids were formulated and the heat transfer behaviors of these fluids in a vertical circular tube at the laminar regime were conducted. The result showed that slurries containing 0.5% TiO2 nanoparticles by mass and 5%-20% MPCM by mass exhibited improved heat transfer rates in comparison with the conventional latent functionally thermal fluid and that the enhancement increased with the increasing MPCM concentration and up to 18.9% of the dimensionless wall temperature was reduced.

  8. Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The latent heat of the microencapsulated phase change material(MPCM)increases the effective ther-mal capacity of latent functionally thermal fluid.However,researchers found that the heat transfer performance of such fluids was diminished due to the reduction of the low thermal conductivity of MPCM.For this reason,the nanoparticle enhanced latent functionally thermal fluids were formulated and the heat transfer behaviors of these fluids in a vertical circular tube at the laminar regime were conducted.The result showed that slurries containing 0.5% TiO2 nanoparticles by mass and 5%―20% MPCM by mass exhibited improved heat transfer rates in comparison with the conventional latent functionally thermal fluid and that the enhancement increased with the increasing MPCM concentration and up to 18.9% of the dimensionless wall temperature was reduced.

  9. Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    李国能; 郑友取; 胡桂林; 张治国

    2014-01-01

    Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.

  10. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 5. Transient Liquid Movement in Heat Pipe Wicks

    Science.gov (United States)

    1992-08-01

    pipe wall. This is not likely to be the case in the thin wicks used in most heat pipes unless severe dryout occurs. Eninger [7] studied the capillary...balance on a randomly oriented fibecr. The theoretical model required an empirical constant obtained from the experimental results. Eninger also 6...structure was utilized for this experimpnt. The two-component wick structure was utilized previously by Eninger [7], who was able to measure slight

  11. Double tube heat exchanger with novel enhancement: Part I - flow development length and adiabatic friction factor

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)

    2012-04-15

    The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)

  12. Boiling heat transfer enhancement of nanofluids on a smooth surface with agitation

    Science.gov (United States)

    Kong, Xin; Qi, Baojin; Wei, Jinjia; Li, Wei; Ding, Jie; Zhang, Yonghai

    2016-12-01

    The pool boiling heat transfer performance on a smooth silicon chip surface with agitation was experimentally investigated in this study. The nanofluids (Ag/alcohol) of 0.02 % volume concentration and ethyl alcohol with purification over 99.9 % were the two contrast working fluids. For each group, subcoolings of 40, 50 and 60 K were conducted under atmospheric pressure. To enhance the heat transfer performance, an agitating device was fixed above the top of the chip. The experimental results indicated that nanofluids could enhance the heat transfer performance especially in the nucleate boiling region. The heat transfer coefficient was significantly increased with nanofluids, while the critical heat flux (CHF) was nearly not changed. In the agitation Reynolds number of 20,300, the heat transfer performance of nanofluids was significantly enhanced in the convection region, and the CHF was increased by more than 25 % for all groups. This boiling phenomenon was observed for both nanofluids and alcohol groups. Meanwhile, the boiling curves of different liquid subcoolings in the nucleate region were quite similar to each other under agitation.

  13. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Fiebig, M.; Mitra, N.K. [Ruhr-Universitaet Bochum (Germany). Inst. fuer Thermo- und Fluiddynamik

    2000-02-01

    Punched longitudinal vortex generators in form of winglets in staggered arrangements were employed to enhance heat transfers in high performance finned oval tube heat exchanger elements. Three-dimensional hydrodynamically and thermally developing laminar flow (Re = 300) and conjugate heat transfer in finned oval tubes were calculated by solving the Navier-Stokes and energy equations with a finite-volume method in curvilinear grids. Velocity field, pressure distribution, vortex formation, temperature fields, local heat transfer distributions and global results for finned oval tubes with two to four staggered winglets ({beta}= 30{sup o}, {lambda} = 2, h =H) were presented and compared. Winglets in staggered arrangement bring larger heat transfer enhancement than in in-line arrangement since the longitudinal vortices from the former arrangement influence a larger area and intensify the fluid motion normal to the flow direction. For Re = 300 and Fi = 500, the ratios of heat transfer enhancement to flow loss penalty (j/j{sub 0})/( f/f{sub 0}) were 1.151 and 1.097 for a finned oval tube with two and four staggered winglets, respectively. (author)

  14. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  15. Heat exchanger performance calculations for enhanced-tube condenser applications

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J.

    1992-07-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  16. Heat exchanger performance calculations for enhanced-tube condenser applications

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J.

    1992-01-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  17. Moss Pathogenesis-Related-10 Protein Enhances Resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana.

    Science.gov (United States)

    Castro, Alexandra; Vidal, Sabina; Ponce de León, Inés

    2016-01-01

    Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR)-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.

  18. Moss Pathogenesis-Related-10 protein enhances resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Alexandra eCastro

    2016-04-01

    Full Text Available Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.

  19. Enhanced heat transfer in a heat exchanger square-duct with discrete V-finned tape inserts☆

    Institute of Scientific and Technical Information of China (English)

    Watcharin Noothong; Supattarachai Suwannapan; Chinaruk Thianpong; Pongjet Promvonge

    2015-01-01

    The article presents an experimental and numerical study on thermal performance enhancement in a constant heat-fluxed square-duct inserted diagonal y with 45° discrete V-finned tapes (DFT). The experiments were carried out by varying the airflow rate through the tested square duct with DFT inserts for Reynolds number from 4000 to 25000. The effect of the DFT with V-tip pointing upstream at various relative fin heights and pitches on heat transfer and pressure drop characteristics was experimentally investigated. Both the heat transfer and pressure drop were presented in terms of Nusselt number and friction factor respectively. Several V-finned tape characteristics were introduced such as fin-to duct-height ratio or blockage ratio (RB=e/H=0.075, 0.1, 0.15 and 0.2), fin pitch to duct height ratio (RP=P/H=0.5, 1.0, 1.5 and 2.0) and fin attack angle,α=45°. The experimental results reveal that the heat transfer and friction factor values with DFT inserts increase with the increment of RB but the decrease of RP. The inserted square-duct at RB=0.2 and RP=0.5 provides the highest heat transfer and friction factor while the one with RB=0.1 and RP=1.5 yields the highest thermal performance. Also, a numerical simulation was conducted to investigate the flow structure and heat transfer mechanism inside the tested duct with DFT inserts.

  20. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  1. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.

    Science.gov (United States)

    Li, D; Wu, G S; Wang, W; Wang, Y D; Liu, Dong; Zhang, D C; Chen, Y F; Peterson, G P; Yang, Ronggui

    2012-07-11

    Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient.

  2. An experimental investigation of convective heat transfer enhancement in electronic module using curved deflector

    Science.gov (United States)

    Rosas, A. S.; Ali, R. K.; Abdel-Aziz, A. A.; Elshazly, K. M.

    2016-07-01

    This work investigated experimentally the heat transfer and pressure drop in electronic module using a curved deflector to direct the flow towards the recirculation zone enclosed between the two heat sources. The experiments were carried out to investigate the effect of deflector dimensionless radius (R r ) and both horizontal and vertical distances (R x , R y ) within a range of Reynolds number from 5223 to 11,380. The results show that larger deflector at small vertical distance enhances the heat transfer for upstream and downstream heat sources while the horizontal distance has a contrast effect. Correlations are obtained for the average Nusselt number of both upstream and downstream heat sources utilizing the present measurements within 5223 ≤ Re L ≤ 11,380, 0.02 ≤ R x ≤ 0.4, 0.3 ≤ R y ≤ 0.5 and 0.15 ≤ R r ≤ 0.35.

  3. An experimental investigation of convective heat transfer enhancement in electronic module using curved deflector

    Science.gov (United States)

    Rosas, A. S.; Ali, R. K.; Abdel-Aziz, A. A.; Elshazly, K. M.

    2017-03-01

    This work investigated experimentally the heat transfer and pressure drop in electronic module using a curved deflector to direct the flow towards the recirculation zone enclosed between the two heat sources. The experiments were carried out to investigate the effect of deflector dimensionless radius ( R r ) and both horizontal and vertical distances ( R x , R y ) within a range of Reynolds number from 5223 to 11,380. The results show that larger deflector at small vertical distance enhances the heat transfer for upstream and downstream heat sources while the horizontal distance has a contrast effect. Correlations are obtained for the average Nusselt number of both upstream and downstream heat sources utilizing the present measurements within 5223 ≤ Re L ≤ 11,380, 0.02 ≤ R x ≤ 0.4, 0.3 ≤ R y ≤ 0.5 and 0.15 ≤ R r ≤ 0.35.

  4. Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement

    CERN Document Server

    Soti, Atul Kumar; Sheridan, John

    2015-01-01

    Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

  5. Numerical analysis on heat transfer enhancement by longitudinal vortex based on field synergy principle

    Institute of Scientific and Technical Information of China (English)

    WU Junmei; TAO Wenquan

    2007-01-01

    Three-dimensional numerical simulation results are presented for a fin-and-tube heat transfer surface with vortex generators.The effects of the Reynolds number (from 800 to 2 000) and the attack angle (30° and 45°) of a delta winglet vortex generator are examined.The numerical results are analyzed on the basis of the field synergy principle to explain the inherent mechanism of heat transfer enhancement by longitudinal vortex.The secondary flow generated by the vortex generators causes the reduction of the intersection angle between the velocity and fluid temperature gradients.In addition,the computational evaluations indicate that the heat transfer enhancement of delta winglet pairs for an aligned tube bank fin-and-tube surface is more significant than that for a staggered tube bank fin-and-tube surface.The heat transfer enhancement of the delta winglet pairs with an attack angle of 45° is larger than that with an angle of 30°.The delta winglet pair with an attack angle of 45° leads to an increase in pressure drop,while the delta winglet pair with the 30°angle results in a slight decrease.The heat transfer enhancement under identical pumping power condition for the attack angle of 30° is larger than that for the attack angle of 45°either for staggered or for aligned tube bank arrangement.

  6. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.

    Science.gov (United States)

    Wu, Tingquan; Tang, Dingzhong; Chen, Weida; Huang, Hexun; Wang, Rui; Chen, Yongfang

    2013-09-15

    Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed

  7. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. (This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid sus-pension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low soliding ratio (Ms of less than 0.05 kg/kg). A usefial correlation ineorpomting solid lolling ratio, particle size and flow Reytmlds number was derived from experimental data. In addition, the κ-ε two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transit of the gas-phase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well wih experimental data.

  8. Numerical investigation on side heat transfer enhancement in 300 kA aluminum reduction cell

    Institute of Scientific and Technical Information of China (English)

    Changhong WANG; Dongsheng ZHU; Jiemin ZHOU; Junxi LEI

    2008-01-01

    Industrial test and numerical simulation were synchronously applied to analyze the side heat transfer process and enhance heat transfer in aluminum reduction cell. The 3D slice finite element model of aluminum reduc-tion cell was developed, with which the sidewall temper-ature field of the cell was computed by using software ANSYS. The main influencing factors on heat dissipation were analyzed and some effective measures were proposed to enhance sidewall heat transfer. The results show that the shell temperature of the test cell and the common cell is respectively 312℃ and 318℃ and the ledge thickness is 16 cm and 15 cm when side coefficient of heat transfer With the increase of the side coefficient of heat transfer between the shell and the surroundings, the temperature of the shell decreases but the thickness of the side ledge increases when the electrolytic temperature, the ambient temperature, the coefficient of heat transfer between mol-ten bath and ledge, the eutectic temperature and the thermo-resistance of the side lining are constant.

  9. Effect of alumina nanofluid jet on the enhancement of heat transfer from a steel plate

    Science.gov (United States)

    Tiara, A. M.; Chakraborty, Samarshi; Sarkar, Ishita; Pal, Surjya K.; Chakraborty, Sudipto

    2016-12-01

    Low thermal conductivity has been found to be a major constraint in developing energy efficient heat transfer fluids in several industrial applications. Nanofluids, prepared by the suspension of nanoparticles in water, have been found to enhance the thermal conductivity of the base fluid, and thereby the cooling rate of the steel surface. In this study, alumina nanofluid has been used to enhance the rate of cooling of a steel surface of dimension 100 mm × 100 mm × 6 mm, from an initial surface temperature of 900 °C. The sub-surface temperature data collected through thermocouple was used for inverse heat conduction calculation in order to estimate the temperature histories and heat flux at the surface. TEM analysis revealed that the nanoparticles were spherical in shape, having an average size of 14 nm. The concentration of the nanofluids was varied from 1 to 20 ppm in this study. A maximum cooling rate of 104 °C/s and critical heat flux (CHF) of 2.10 MW/m2 was obtained for a concentration of 10 ppm, which was 1.2 times and 1.5 times that attained in case of pure water, as depicted by the enhancement in thermal conductivity. Lower concentrations are used in order to strike a balance between surface roughness study and cooling applications. The surface roughness of the plate after the nanofluid jet impingement depicted an enhancement of 7.74%, thereby enhancing the number of nucleation sites and augmenting the value of CHF.

  10. Fundamental studies on enhancing heat transfer in contact zone during high efficiency grinding

    Institute of Scientific and Technical Information of China (English)

    XU; Hongjun(徐鸿钧); FU; Yucan(傅玉灿); XU; Xipeng(徐西鹏); XU; Xipeng

    2002-01-01

    On the basis of research on the thermal effect in grinding contact zone during high effi-ciency grinding, an idea of enhancing heat transfer in contact zone using high pressure water jetimpinging is advanced. Fundamental heat transfer experiments on enhancing heat transfer withhigh pressure water jet impinging were completed. The maximum speed of jet impinging reaches110m/s. The experimental results of transient and steady-state experiment prove that the criticalheat flux and the heat-transfer coefficient of water jet impinging are 70 and 30 times those of thepool boiling, respectively. Furthermore, a new grinding fluid supply system was employed to en-hance heat transfer in grinding zone by high-pressure water jet impingement during creep feedgrinding. The experimental results show that high-pressure water jet impinging has remarkablecooling effect. The temperature of the workpiece surface can be steadily kept below 100℃, whilethe workpiece is badly burnt with conventional coolant supply. The study will exploit an importantresearch orientation that has great potentialities in the high efficiency grinding. Further perfectionof this study will not only enable us to increase the available material removal rate to a new levelbut also solve the workpiece burn problem of the difficult-to-machining materials in high efficiencygrinding,

  11. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes.

    Science.gov (United States)

    Sasmito, Agus Pulung; Kurnia, Jundika Candra; Mujumdar, Arun Sadashiv

    2011-05-09

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.

  12. 管壳式换热器壳程的传热强化%Heat Transfer Enhancement in Shell Side of Shell and Tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    李若兰; 丁杰; 霍正齐

    2014-01-01

    This article described heat transfer enhancement technology in shell side of the shell and tube heat ex-changer, sketched a typical structure and performance of shell side of heat exchanger, analyzed heat transfer en-hancement mechanism.%本文介绍管壳式换热器壳程的强化传热技术,简述换热器壳程的典型结构、性能,分析强化传热机理。

  13. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  14. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in m a ny industry processes, such as circulating fluidized bed process, pneumatic conv eying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and g as-solid suspension. The presence of particles causes positive enhancement of h e at transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (Ms of les s than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle s ize and flow Reynolds number was derived from experimental data. In addition, th e k-ε two-equation model and the Fluctuation-Spectrum- Random-Trajecto ry Model ( FSRT Model) are used to simulate the flow field and heat transfer of the gas-ph a se and the solid-phase, respectively. Through coupling of the two phases the mo d el can predict the local and total heat transfer characteristics of tube in gas - solid cross flow. For the total heat transfer enhancement due to particles loadi ng the model predictions agreed well with experimental data.

  15. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-01-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics. PMID:28303952

  16. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling.

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-17

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  17. 管壳式换热器换热管的传热强化%Heat Transfer Enhancement of Shell and Tube Heat Exchanger Heat tTransfer Tube

    Institute of Scientific and Technical Information of China (English)

    李若兰; 丁杰; 霍正齐

    2013-01-01

    This paper introduces the heat transfer and saving energy unit of the shell and tube heat exchanger -heat transfer enhancement technology of heat transfer tube and new approaches for the development of heat transfer tech -nology.Briefly introduce the structure , performance of the typical enhanced heat transfer tube and analyze the en-hanced heat transfer mechanism of heat transfer tube.%本文介绍管壳式换热器的传热节能元件-换热管的强化传热技术,指出传热技术发展新途径。简述典型强化换热管的构造、性能,分析换热管强化传热机理。

  18. Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate.

    Science.gov (United States)

    Blancquaert, Dieter; Storozhenko, Sergei; Van Daele, Jeroen; Stove, Christophe; Visser, Richard G F; Lambert, Willy; Van Der Straeten, Dominique

    2013-09-01

    Folates are important cofactors in one-carbon metabolism in all living organisms. Since only plants and micro- organisms are capable of biosynthesizing folates, humans depend entirely on their diet as a folate source. Given the low folate content of several staple crop products, folate deficiency affects regions all over the world. Folate biofortification of staple crops through enhancement of pterin and para-aminobenzoate levels, precursors of the folate biosynthesis pathway, was reported to be successful in tomato and rice. This study shows that the same strategy is not sufficient to enhance folate content in potato tubers and Arabidopsis thaliana plants and concludes that other steps in folate biosynthesis and/or metabolism need to be engineered to result in substantial folate accumulation. The findings provide a plausible explanation why, more than half a decade after the proof of concept in rice and tomato, successful folate biofortification of other food crops through enhancement of para-aminobenzoate and pterin content has not been reported thus far. A better understanding of the folate pathway is required in order to determine an engineering strategy that can be generalized to most staple crops.

  19. Large Eddy Simulation of New Vortex Generator Enhancing Heat Exchange of Solar Energy

    Institute of Scientific and Technical Information of China (English)

    WEN Juan; YANG Li; QI Cheng-ying

    2009-01-01

    This paper put forward a new-type vortex generator enhancing heat exchange of solar air-drier and air-heater on the gas side,and investigated the mechanism of heat transfer enhancement and drag reduction by the influence of vortex generators on the coherent structure of turbulent boundary layer.The flow and heat transfer characteristics of rectangle channel with bevel-cut half-elliptical column vortex generators were obtained using large eddy simulation (LES) and the hydromechanics software FLUENT6.3.The instantaneous proper-ties of velocity,temperature and pressure in channel were gained.The coherent structure of turbulent boundary layer flow was showed, and the characteristic of vortex induced by inclined-cut semi-ellipse vortex generator and its influence on turbulent coherent structure were analyzed.And the effect mechanism of turbulent coherent structure on flow field,pressure field and temperature field was discussed.Based on the results,the heat trans-fer coefficient and drag reduction of the new vortex generator with different pitch angles were compared.Some-times.the coherent effects of the increased wall heat transfer and the decreased skin friction do not satisfy theReynolds analogy.The turbulent coherent structure can be controlled through the geometry of the vortex gener-ator.so the heat transfer and drag reduction can also be controlled.Then we can seek suitable form of vortex generator and structure parameters.in order to achieve the enhanced heat transfer and flow of drag reduction in the solar air-heater and solar air-drier.

  20. Hybrid Graphene and Single-Walled Carbon Nanotube Films for Enhanced Phase-Change Heat Transfer.

    Science.gov (United States)

    Seo, Han; Yun, Hyung Duk; Kwon, Soon-Yong; Bang, In Cheol

    2016-02-10

    Nucleate boiling is an effective heat transfer method in power generation systems and cooling devices. In this letter, hybrid graphene/single-walled carbon nanotube (SWCNT), graphene, and SWCNT films deposited on indium tin oxide (ITO) surfaces were fabricated to investigate the enhancement of nucleate boiling phenomena described by the critical heat flux and heat transfer coefficient. The graphene films were grown on Cu foils and transferred to ITO surfaces. Furthermore, SWCNTs were deposited on the graphene layer to fabricate hybrid graphene/SWCNT films. We determined that the hybrid graphene/SWCNT film deposited on an ITO surface is the most effective heat transfer surface in pool boiling because of the interconnected network of carbon structures.

  1. Further understanding of twisted tape effects as tube insert for heat transfer enhancement

    Science.gov (United States)

    Abu-Khader, Mazen M.

    2006-12-01

    Tube inserts are used as heat transfer enhancement tool for both retrofit and new design of shell and tube heat exchangers. This paper discusses and reviews the characteristics and performance of twisted tapes. The theory and application are also addressed. Industrial case study was selected to illustrate the behaviour effect that the twisted tapes impose at various laminar, transition and turbulent flow regions. This effect was demonstrated by changing the inside tube diameter and twist ratio through evaluating selected exchanger design parameters such as: local heat transfer coefficient, friction factor and pressure drop. Testing the exponent powers for Re and Pr at both laminar and turbulent regions were carried out. General design considerations are outlined for the use of twisted tapes in shell and tube heat exchangers.

  2. The technology of heat transfer enhancement in channels by means of flow pulsations

    Directory of Open Access Journals (Sweden)

    Tsynaeva Anna

    2016-01-01

    Full Text Available The rate and efficiency of curing of concrete can boost when used intense heat. The work is dedicated to the development and research of technologies of intensification of heat transfer in channels by pulsations. The study was conducted by means of numerical methods based on mass and momentum conservation equations (Navier-Stokes with software Code Saturne. Verification of implemented methods and software was performed. The research of heat transfer enhancement for semicircle-shaped channel exposed to low-frequency pulsations was performed. The pulsation frequency of the flow during the study was in a range of 0…10 Hz. A significant (up to 4 times increase of turbulent kinetic energy with implementing pulsations was detected. Flow pulsations with frequency of 10 Hz results in 1.21 times increase of heat transfer coefficient.

  3. Enhanced heat transfer of forced convective fin flow with transverse ribs

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shyy Woei; Chiou, Shyr Fuu [Thermal Fluids Laboratory, National Kaohsiung Institute of Marine Technology, No. 142, Hai-Chuan Road, Nan-Tzu District, Post code 811, Kaohsiung, Taiwan (China); Su, Lo May [Department of Electrical Engineering, Tung Fang Institute of Technology, Taiwan (China); Yang, Tsun Lirng [Department of Electrical Engineering, Fortune Institute of Technology, Taiwan (China)

    2004-02-01

    This experimental study investigates the heat transfers in three side-opened and bottom-sealed rectangular channels with two opposite walls roughened by 90 staggered ribs, which simulate the enhanced cooling passages in the fin-type heat sinks of electronic chip-sets. The various degrees of interactive effects due to the surface ribs, side-profile leakage flows and stream-wise weakened coolant flow are functionally related with Reynolds number (Re) and channel length-to-gap ratio (L/B), which unravel the considerable impacts on local and spatially averaged heat transfers over the rib-roughened fin surfaces. A selection of detailed heat transfer measurements over the rib-roughened fin surfaces illustrates the manner by which the isolated and interactive influences of Re and L/B-ratio affect the local and spatially averaged heat transfers. Relative to the heat transfer results acquired from the smooth-walled test channels, the augmentations of spatially averaged heat transfers generated by the present surface ribs are in the range of 140-200% of the flat fin reference levels. In conformity with the experimentally revealed heat transfer physics, a regression-type analysis is performed to develop the correlation of spatially-averaged Nusselt number over rib-roughened fin surface, which permits the individual and interactive effect of Re and L/B on heat transfer to be evaluated. A criterion for selecting the optimal length-to-gap ratio of a fin channel, which provides the maximum convective heat flux from the rib-roughened fin surface, is formulated as an engineering tool to assist the design activity for the cooling device of electronic chip-sets. (authors)

  4. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    Science.gov (United States)

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  5. Melting of nanoparticle-enhanced phase change material inside an enclosure heated by laminar heat transfer fluid flow

    Science.gov (United States)

    Elbahjaoui, Radouane; El Qarnia, Hamid; El Ganaoui, Mohammed

    2016-05-01

    The proposed work presents a numerical investigation of the melting of a phase change material (PCM: Paraffin wax P116) dispersed with nanoparticles (Al2O3) in a latent heat storage unit (LHSU). The latter is composed of a number of vertical and identical slabs of nano-enhanced phase change material (NEPCM) separated by rectangular channels through which passes heat transfer fluid (HTF: water). A mathematical model based on the conservation equations of mass, momentum and energy has been developed. The resulting equations are discretized using the finite volume approach. The numerical model has been validated by experimental and numerical results published in literature. Numerical investigations have been conducted to evaluate the effects of the volumetric fraction of nanoparticles, HTF mass flow rate and inlet temperature on the latent heat storage unit's thermal behaviour and performance. Modelling results show that the volumetric fraction, HTF mass flow rate and inlet temperature need to be designed to achieve a significant improvement in thermal performance. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. Flow boiling critical heat flux enhancement by using magnetic nanofluids and external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.; Jeong, Y.H. [Korea Advanced Inst. of Science and Tech., Daejeon (Korea, Republic of)

    2011-07-01

    By using the nanofluid as a working fluid, we can expect the enhancement in the flow boiling critical heat flux mainly due to the deposition of nanoparticles on the heat transfer surface. In this study, we suggest the magnetic nanofluid, or magnetite-water nanofluid, as a working fluid which is regarded as a controllable nanofluid, that is, nanoparticles or magnetite nanoparticles in a nanofluid can be controlled by an external magnetic field. Therefore, we can expect the advantages of magnetic nanofluid such as, i) control of nanofluid concentration to maintain nanoparticle suspension and to localize nanofluid concentration, and ii) removal of nanoparticle from nanofluid when we want. In this study, we focused on the investigation of flow boiling critical heat flux characteristics for the magnetic nanofluid. Series of experiments were performed under the low pressure and low flow conditions, and based on the experimental results; we can conclude that the use of magnetic nanofluid improves the flow boiling critical heat flux characteristics. This is mainly due to the deposition of magnetite nanoparticles on the heat transfer surface, which results in the improvement of wettability and re-wetting characteristics of heat transfer surface. Preliminary results of the magnetic field effects on the flow boiling critical heat flux would be presented also. (author)

  7. Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity.

    Science.gov (United States)

    Zhang, Yunfei; Zhang, Yong; Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.

  8. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance.

    Science.gov (United States)

    Breitenbach, Heiko H; Wenig, Marion; Wittek, Finni; Jordá, Lucia; Maldonado-Alconada, Ana M; Sarioglu, Hakan; Colby, Thomas; Knappe, Claudia; Bichlmeier, Marlies; Pabst, Elisabeth; Mackey, David; Parker, Jane E; Vlot, A Corina

    2014-04-22

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.

  9. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Eunsook Chung

    Full Text Available The ubiquitin conjugating enzyme E2 (UBC E2 mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1. RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA, but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana. The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1, a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  10. Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.

    Science.gov (United States)

    Lee, Sang Sook; Park, Hyun Ji; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Luan, Sheng; Cho, Hye Sun

    2015-10-01

    Cyclophilin 18-2 (CYP18-2) genes, homologues of human peptidyl-prolyl isomerase-like 1 (PPiL1), are conserved across multicellular organisms and Schizosaccharomyces pombe. Although PPiL1 is known to interact with ski-interacting protein (SKIP), a transcriptional co-regulator and spliceosomal component, there have been no functional analyses of PPiL1 homologues in plants. Rice cyclophilin 18-2 (OsCYP18-2) bound directly to amino acids 56-95 of OsSKIP and its binding was independent of cyclosporin A, a cyclophilin-binding drug. Moreover, OsCYP18-2 exhibited PPIase activity regardless of its interaction with OsSKIP. Therefore, the binding site for OsCYP18-2's interaction with SKIP was distinct from the PPIase active site. OsCYP18-2's interaction with SKIP full-length protein enabled OsCYP18-2's translocation from the cytoplasm into the nucleus and AtSKIP interacted in planta with both AtCYP18-2 and OsCYP18-2. Drought and salt stress induced similar expression of OsCYP18-2 and OsSKIP. Overexpression of OsCYP18-2 in transgenic rice and Arabidopsis thaliana plants enhanced drought tolerance and altered expression and pre-mRNA splicing patterns of stress-related genes in Arabidopsis under drought conditions. Furthermore, OsCYP18-2 caused transcriptional activation with/without OsSKIP in the GAL4 system of yeast; thus the OsSKIP-OsCYP18-2 interaction has an important role in the transcriptional and post-transcriptional regulation of stress-related genes and increases tolerance to drought stress.

  11. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kang, Jee-Sook; Chung, Young Soo; Lee, Jai-Heon

    2013-01-01

    The ubiquitin conjugating enzyme E2 (UBC E2) mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1). RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA), but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana). The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1), a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  12. 换热器的选择使用及强化传热%Alternative Use and Enhanced Heat Transfer of Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    高丽

    2011-01-01

    换热器作为一种交换热量的设备,具有强化传热措施传热阻力小、传热能力大的特点,也使换热器的应用更加广泛。要选择适合于生产系统的换热器,就需要了解各种换热器的性能和特点,笔者从换热器的特点和换热器强化传热的方式分析,以此提高换热器的节能效果。%As a kind of equipment to exchange heat, heat exchanger is more widely used by making use of enhanced heat transfer measure's features of small heat transmission resistance and great heat transmission capability. To choose heat exchanger suitable to production system requires understanding of performance and characteristics of all kinds of heat exchangers. This paper analyzes the method of enhanced heat transfer and the characteristics of heat exchanger, which enhances the energy saving effect of heat exchanger.

  13. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nasution, Olviyani; Lee, Jaok; Srinivasa, Kavitha; Choi, In-Geol; Lee, Young Mi; Kim, Eunjung; Choi, Wonja; Kim, Wankee

    2015-08-01

    The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively. Of the 23 down-regulated genes, 11 of 13 viable deletion mutants were identified to be tolerant to heat, suggesting that the down-regulation of those genes might have contributed to the enhanced heat tolerance in dfg5Δ. Deletion of DFG5 caused slight activation of mitogen-activated protein kinases Hog1 in the high-osmolarity glycerol pathway and Slt2 in the cell wall integrity pathway. Therefore, a model is proposed on the signal transduction pathways associated with deletion of DFG5 upon heat stress.

  14. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed

    2015-03-01

    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  15. Heat transfer enhancement through PCM thermal storage by use of copper fins

    Directory of Open Access Journals (Sweden)

    Rudonja Nedžad R.

    2016-01-01

    Full Text Available Enhancement of heat transfer over a cylinder shaped thermal energy storage filled by paraffin E53 by use of radial rectangular copper fins was analyzed. The thermo-physical features of the storage material are determined in separate experiments and implemented to Fluent software over UDF. Advanced thermal storage geometry comprehension and optimization required introduction of a parameter suitable for the analysis of heat transfer enhancement, so the ratio of heat transfer surfaces as a factor was proposed and applied. It is revealed that increase of the ratio of heat transfer surfaces leads to the decrease of melting time and vice versa. Numerical analysis, employing the 3D model built in Ansys software, observed storage reservoir geometries with variable number of longitudinal radial fins. The adjusted set of boundary conditions was carried out and both written in C language and implemented over UDF in order to define variable heat flux along the height of the heater. The comparison of acquired numerical and experimental results showed a strong correlation. Experimental validation of numerical results was done on the real TES apparatus. [Projekat Ministarstva nauke Republike Srbije, br. III42011, TR 33042 i OI 176006

  16. Mixed Convection Heat Transfer Enhancement in a Vented Cavity Filled with a Nanofluid

    Directory of Open Access Journals (Sweden)

    Ahmed BAHLAOUI

    2016-01-01

    Full Text Available In this paper, a numerical investigation is carried out on mixed convection in a vertical vented rectangular enclosure filled with Al2O3-water nanofluid. The mixed convection effect is attained by heating the right wall by a constant hot temperature and cooling the cavity by an injected or sucked imposed flow. The effects of some pertinent parameters such as the Reynolds number, 100  Re  5000, the solid volume fraction of the nanoparticles, 0    0.1, and the aspect ratio of the cavity, 1  A  4, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes. For a value of the aspect ratio A = 2, the obtained results demonstrate that the increase of volume fraction of nanoparticles contributes to an enhancement of the heat transfer and to an increase of the mean temperature within the cavity. Also, it was revealed that the fluid suction mode yields the best heat transfer performance. In the case when A is varied from 1 to 4, it was obtained that the heat transfer enhancement, using nanofluids, is more pronounced at shallow enclosures than at tall ones.

  17. Numerical simulation of fluid flow and heat transfer in enhanced copper tube

    Science.gov (United States)

    Rahman, M. M.; Zhen, T.; Kadir, A. K.

    2013-06-01

    Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.

  18. Numerical study on the effective heating due to inertial cavitation in microbubble-enhanced HIFU therapy

    Science.gov (United States)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2015-10-01

    The enhancement of heating due to inertial cavitation was focused in high-intensity focused ultrasound (HIFU) therapy. The influences of the rectified diffusion on microbubble-enhanced HIFU were examined numerically. A bubble dynamics equation in consideration of the spherical shell bubble and the elasticity of surrounding tissue was employed. Mass and heat transfer between the surrounding medium and the bubble were considered. The basic equations were discretized by finite difference method. The mixture phase and bubbles are coupled by the Euler-Lagrange method to take into account the interaction between ultrasound and bubbles. The mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the results, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Thus, the injection of microbubble reduces the cavitation threshold pressure. On the other hand, the influence of the rectified diffusion on the triggered HIFU therapy which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves. The calculation showed that the localized heating was enhanced by the increase of the equilibrium bubble size due to the rectified diffusion.

  19. Experimental study of enhanced heat transfer by addition of CuO nanoparticle

    Science.gov (United States)

    Jesumathy, Stella; Udayakumar, M.; Suresh, S.

    2012-06-01

    An energy storage system has been designed to study the thermal characteristics of paraffin wax with an embedded nano size copper oxide (CuO) particle. This paper presents studies conducted on phase transition times, heat fraction as well as heat transfer characteristics of paraffin wax as phase change material (PCM) embedded with CuO nanoparticles. 40 nm mean size CuO particles of 2, 5 and 10% by weight were dispersed in PCM for this study. Experiments were performed on a heat exchanger with 1.5-10 l/min of heat transfer fluid (HTF) flow. Time-based variations of the temperature distributions are revealed from the results of observations of melting and solidification curves. The results strongly suggested that the thermal conductivity enhances 6, 6.7 and 7.8% in liquid state and in dynamic viscosity it enhances by 5, 14 and 30% with increasing mass fraction of the CNEPs. The thermal conductivity ratio of the composites can be augmented by a factor up to 1.3. The heat transfer coefficient during solidification increased about 78% for the maximum flow rate. The analysis of experimental results reveals that the addition of copper oxide nanoparticles to the paraffin wax enhances both the conduction and natural convection very effectively in composites and in paraffin wax. The paraffin wax-based composites have great potential for energy storage applications like industrial waste heat recovery, solar thermal applications and solar based dynamic space power generation with optimal fraction of copper oxide nanoparticles.

  20. A hydrogen peroxide-generating agent, 6-formylpterin, enhances heat-induced apoptosis.

    Science.gov (United States)

    Wada, S; Cui, Z-G; Kondo, T; Zhao, Q-L; Ogawa, R; Shoji, M; Arai, T; Makino, K; Furuta, I

    2005-05-01

    The enhancement of heat-induced apoptosis by 6-formylpterin, an intra-cellular generator of hydrogen peroxide (H2O2), was examined in human myelomonocytic lymphoma U937 cells. The cells were treated with either 6-formylpterin alone at a nontoxic concentration of 300 microM (37 degrees C), heat shock (44 degrees C per 20 min) alone or a combination of the two, then incubated at 37 degrees C for 6 h. Assessments of apoptosis, mitochondrial membrane potential and caspase-3 activation were performed by flow cytometry. Moreover, caspase-8 activation and changes in the intra-cellular Ca2+ concentration ([Ca2+]i) were examined. Bax, Bcl-2, Bcl-XL, Bid, cytochrome c and PKCd were detected by Western blotting. The induction of heat-induced apoptosis evaluated by morphological observation and DNA fragmentation were promoted by the addition of 6-formylpterin. Mitochondrial membrane potential was decreased and the activation of caspase-3 and -8 was enhanced in the cells treated with the combination. A decreased-expression of Bid was noted, although no significant changes in Bax, Bcl-2 and Bcl-XL expression were observed after the combined treatment. Furthermore, both the release of cytochrome c from mitochondria to cytosol and the translocation of PKCd from cytosol to mitochondria, which were induced by heat shock, were enhanced by the addition of 6-formylpterin. The number of cells with a higher [Ca2+]i was also increased by the addition of 6-formylpterin. These findings suggest that the increase in [Ca2+]i, the activation of the mitochondria-caspase dependent pathway and the translocation of PKCd to mitochondria play principal roles in the enhancement of heat-induced apoptosis by 6-FP.

  1. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Alan D. [GreenFire Energy, Emeryville, CA (United States)

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  2. Enhancement of heat radiative characteristics of coatings by ultra-attenuation

    Institute of Scientific and Technical Information of China (English)

    Dehong Xia; Yonghong Wu

    2004-01-01

    The absorption process of radiative heat in its transmission medium and the effect of ultra-attenuation on the radiative characteristics are analyzed in detail. A method of ultra-attenuation to enhance the radiative characteristics of the medium is proposed. It is proved that decreasing the particle size of coatings can increase the transmission depth of radiative heat and get higher emissivity and absorptivity both theoretically and practically. Ultra-attenuation and nanocrystallization will bring a brilliant prospect to the development of radiative coatings.

  3. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  4. Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana

    Science.gov (United States)

    The presence of multiple enhancers and promoters within a single vector often provokes complicated mutual interaction and crosstalk, thereby, altering promoter specificity, which causes serious problems for precisely engineering gene function and agronomic traits in transgenic plants. Enhancer elem...

  5. Growth enhancement effects of radish sprouts: atmospheric pressure plasma irradiation vs. heat shock

    Science.gov (United States)

    Sarinont, T.; Amano, T.; Kitazaki, S.; Koga, K.; Uchida, G.; Shiratani, M.; Hayashi, N.

    2014-06-01

    We compare growth enhancement effects due to atmospheric air dielectric barrier discharge plasma irradiation and heat shock to seeds of radish sprouts (Raphanus sativus L.). Interactions between radicals and seeds in a short duration of 3 min. lead to the growth enhancement of radish sprouts in a long term of 7 days and the maximum average length is 3.7 times as long as that of control. The growth enhancement effects become gradually weak with time, and hence the ratio of the average length for plasma irradiation to that for control decreases from 3.7 for the first day to 1.3 for 7 day. The average length for heat shock of 60°C for 10 min. and 100°C for 3 min. is longer than that for control, and the maximum average length is 1.3 times as long as that of control. Heat shock has little contribution to the growth enhancement due to plasma irradiation, because the maximum temperature due to plasma irradiation is less than 60°C.

  6. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus.

    Science.gov (United States)

    Gamboa, M C; Baltierra, F; Leon, G; Krauskopf, E

    2013-12-01

    Vacuolar solute accumulation has been shown to be a mechanism by which plants are capable of increasing drought and salt tolerance. The exposure of plants to NaCl induces H+ transport into the vacuole by specialized pumps. One of them corresponds to the vacuolar H+-pyrophosphatase, which generates a H+ gradient across the vacuolar membrane. In our laboratory we isolated the first cDNA sequence of a vacuolar pyrophosphatase type I (EVP1) from Eucalyptus globulus. Using real-time PCR we confirmed that EVP1 participates in Eucalyptus plants' response to drought and salt stress through an ABA independent pathway. Additionally, the overexpression of EVP1 in transgenic Arabidopsis resulted in an enhancement of drought and salt tolerance. Interestingly we established that the transgenic plants had a higher number of root hairs, which may have a positive effect on the plant's response to drought and salt stress. These results suggest that EVP1 plays an active role in abiotic stress tolerance in E. globulus, and that it may be potentially used to enhance drought and stress tolerance of plants.

  7. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-06-13

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.

  8. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.

    Science.gov (United States)

    Tiwari, Lalit Dev; Mittal, Dheeraj; Chandra Mishra, Ratnesh; Grover, Anil

    2015-07-01

    Protease inhibitors are involved primarily in defense against pathogens. In recent years, these proteins have also been widely implicated in response of plants to diverse abiotic stresses. Rice chymotrypsin protease inhibitor gene OCPI2 is highly induced under salt and osmotic stresses. The construct containing the complete coding sequence of OCPI2 cloned downstream to CaMV35S promoter was transformed in Arabidopsis and single copy, homozygous transgenic lines were produced. The transgenic plants exhibited significantly enhanced tolerance to NaCl, PEG and mannitol stress as compared to wild type plants. Importantly, the vegetative and reproductive growth of transgenic plants under unstressed, control conditions was also enhanced: transgenic plants were more vigorous than wild type, resulting into higher yield in terms of silique number. The RWC values and membrane stability index of transgenic in comparison to wild type plants was higher. Higher proline content was observed in the AtOCPI2 lines, which was associated with higher transcript expression of pyrroline-5-carboxylate synthase and lowered levels of proline dehydrogenase genes. The chymotrypsin protease activities were lower in the transgenic as against wild type plants, under both unstressed, control as well as stressed conditions. It thus appears that rice chymotrypsin protease inhibitor gene OCPI2 is a useful candidate gene for genetic improvement of plants against salt and osmotic stress.

  9. An Approach to Enhance the Efficiency of a Brownian Heat Engine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Ping; HE Ji-Zhou; XIAO Yu-Ling

    2011-01-01

    A Brownian microscopic heat engine, driven by temperature difference and consisting of a Brownian particle moving in a sawtooth potential with an external load, is investigated. The heat Hows, driven by both potential and kinetic energies, are taken into account. Based on the master equation, the expressions for efficiency and power output are derived analytically, and performance characteristic curves are plotted. It is shown that the heat How via the kinetic energy of the particle decreases. The efficiency of the engine is enhanced, but the power output reduces as the a shape parameter of the sawtooth potential increases. The influence of the a shape parameter on efficiency and power output is then analyzed in detail.%A Brownian microscopic heat engine,driven by temperature difference and consisting of a Brownian particle moving in a sawtooth potential with an external load,is investigated.The heat flows,driven by both potential and kinetic energies,are taken into account.Based on the master equation,the expressions for efficiency and power output are derived analytically,and performance characteristic curves are plotted.It is shown that the heat flow via the kinetic energy of the particle decreases.The efficiency of the engine is enhanced,but the power output reduces as the α shape parameter of the sawtooth potential increases.The influence of the α shape parameter on efficiency and power output is then analyzed in detail.Like the Carnot cycle,the Brownian heat engine can extract work from the temperature difference between heat reservoirs,where the Brownian working material operates as a transducer of thermal energy into mechanical work.In the last few decades,the study of Brownian heat engines has received considerable attention,not only for the construction of the miniaturized engine that helps us utilize energy resources at microscopic scales,but also for a better understanding of nonequilibrium statistical physics.[1-3] The thermodynamic properties of the

  10. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  11. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    Directory of Open Access Journals (Sweden)

    Roberto eToscano-Morales

    2015-07-01

    Full Text Available The Translationally Controlled Tumor Protein (TCTP is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640, which is an important mitotic regulator, and AtTCTP2 (At3g05540, which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCP2 demonstrates that this suppresses the capacity for plant regeneration; also, this phenomenon requires the presence of TCTP (AtTCTP1 or 2 in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species.

  12. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; WANG YingShuang; HUANG SuYi

    2009-01-01

    ormer is superior to that of the latter.Compared with rod baffle heat exchanger,heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop,especially under the high Reynolds numbers.

  13. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  14. Heat transfer enhancement induced by wall inclination in turbulent thermal convection.

    Science.gov (United States)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (10(6)≤Ra≤10(9)) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ"- and "V"-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  15. THEORETICAL STUDY OF HEAT TRANSFER ENHANCEMENT IN PIPE WITH POROUS BODY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A theoretical investigation of the fluid flow and heat transferin a pipe with porous body of high porosity twis ted by metal wire was carried out. A theoretical model of a circular pipe with porous matrix attached at the channel wall and extended inward the centerline was set up. Through ana lyzing the flow in the porous matrix by the Brinkman-extend ed-Darcy equation and through including the effect of disper sion by adding the dispersion coefficient into the energy equa tion, the theoretical solutions of velocity distribution and temperature fields were obtained. Finally the effect of the properties of the porous matrix on the flow and heat transfer in the porous body was studied, which indicates that dispersion can really enhance the heat transfer in pipe.

  16. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    Science.gov (United States)

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment.

  17. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress.

    Science.gov (United States)

    Soto, A; Allona, I; Collada, C; Guevara, M A; Casado, R; Rodriguez-Cerezo, E; Aragoncillo, C; Gomez, L

    1999-06-01

    A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17. 5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37 degrees C to 50 degrees C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4 degrees C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress.

  18. Experimental Study of Heat Transfer Enhancement in a Heated Tube Caused by Wire-Coil and Rings

    OpenAIRE

    Saeed Vahidifar; M. Kahrom

    2015-01-01

    This study investigates heat transfer characteristics and the pressure drop of a horizontal double pipe heat exchanger with wire coil inserts. The amplification of convection heat transfer coefficient in the heat exchanger reduces the weight, size and cost of heat exchanger. One way of augmenting the heat transfer is to disturb the boundary layer. When an object is placed in a boundary layer, it affects the flow structure and alters the velocity and thermal profiles. The change is affected by...

  19. Enhanced heating of salty ice and water under microwaves: molecular dynamics study.

    Science.gov (United States)

    Tanaka, Motohiko; Sato, Motoyasu

    2008-01-01

    Through the use of molecular dynamics simulations, we have studied the enhanced heating of salty ice and water by the electric field of applied microwaves at 2.5 GHz, and in the range of 2.5-10 GHz for the frequency dependence. We show that water molecules in salty ice are allowed to rotate in response to the microwave electric field to the extent comparable to those in pure water because the molecules in salty ice are loosely tied by hydrogen bonds with adjacent molecules unlike rigidly bonded pure ice. The weakening of hydrogen-bonded network of molecules in salty ice is mainly due to the electrostatic effect of salt ions rather than the short-range geometrical (size) effect of salt since the presence of salt ions with small radii causes similar enhanced heating.

  20. Research Progress in Heat Transfer Enhancement Technology of Shell and Tube Heat Exchangers%管壳式换热器强化传热进展

    Institute of Scientific and Technical Information of China (English)

    张轮亭; 邱丽灿; 王臣

    2014-01-01

    管壳式换热器在石油化工领域应用广泛,其强化传热技术的研究受到普遍关注。主要介绍了近年来国内与国外高效节能管壳式换热器强化传热技术研究的进展情况,分别从管侧、壳侧和整体结构改进三方面分析了管壳式换热器的强化传热效果及特点,最后提出了强化传热的发展方向。%The tube and shell heat exchanger is widely used in the petrochemical field; research on the heat transfer enhancement technology is widely concerned. In this paper, research progress in the heat transfer enhancement technology of high efficiency shell and tube heat exchangers was introduced. From three aspects of the tube side, the shell side and the overall improvement, effect and features of the heat transfer enhancement of shell and tube heat exchangers were analyzed. At last, the development direction of the enhanced heat transfer technology was put forward.

  1. Boundary element method applied to a gas-fired pin-fin-enhanced heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C.E.; Knorovsky, G.A.; Drewien, C.A.

    1998-02-01

    The thermal conduction of a portion of an enhanced surface heat exchanger for a gas fired heat pipe solar receiver was modeled using the boundary element and finite element methods (BEM and FEM) to determine the effect of weld fillet size on performance of a stud welded pin fin. A process that could be utilized by others for designing the surface mesh on an object of interest, performing a conversion from the mesh into the input format utilized by the BEM code, obtaining output on the surface of the object, and displaying visual results was developed. It was determined that the weld fillet on the pin fin significantly enhanced the heat performance, improving the operating margin of the heat exchanger. The performance of the BEM program on the pin fin was measured (as computational time) and used as a performance comparison with the FEM model. Given similar surface element densities, the BEM method took longer to get a solution than the FEM method. The FEM method creates a sparse matrix that scales in storage and computation as the number of nodes (N), whereas the BEM method scales as N{sup 2} in storage and N{sup 3} in computation.

  2. Heat transfer enhancement in a cross-slot micro-geometry

    Science.gov (United States)

    Domingues, Allysson; Abed, Waleed; Poole, Robert; Dennis, David

    2016-11-01

    The cross-slot geometry is a common geometric shape in microfluidic applications. In this work we investigate, numerically and experimentally, the influence of a purely-inertial flow instability on the enhancement of heat transfer in a cross-slot micro-geometry where symmetry is broken but the flow remains steady. The cross-slot comprises two crossed square channels with opposed inlets and outlets, which generate a stagnation point at the geometric centre. The flow of a Newtonian fluid is steady, two-dimensional and produces a sharp symmetric boundary between fluid streams entering the cross-slot from opposite directions at low Reynolds numbers (Re). Therefore, only conduction heat transfer occurs between the fluid streams as there is virtually no mixing between them. Beyond a certain critical value of Re , approximately 40, a steady symmetry-breaking bifurcation occurs and convective heat transfer arises because an axially oriented spiral vortex is created in the outlet arms. The effects of this purely-inertial instability suggest it is an effective method of enhancing mixing and heat transfer in microfluidic devices that can be exploited in applications such as lab-on-chip and micro chemical-reaction devices at relatively low Reynolds numbers (i.e. Re < 100). Work supported by CNPq Grant 203195/2014-0.

  3. Perspectives of heat transfer enhancement in nuclear reactors toward nanofluids applications

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane, E-mail: msrocha@ipen.br, E-mail: elcabral@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); and others

    2013-07-01

    Nanofluids are colloidal suspensions of nanoparticles in a base fluid with interesting physical properties and large potential for heat transfer enhancement in thermal systems among other applications. There are an increasing number of nanofluids investigations concerning many aspects of synthesis and fabrication technologies, physical properties, and special applications. Results demonstrate that physical properties like high thermal conductivities and high critical heat flux (CHF) of some nanofluids classifies them as potential working fluids for high heat flux transportation in special systems, including thermal management of microelectronic devices (MEMS) and nuclear reactors. Understanding the importance of such investigations for the knowledge development of nuclear engineering a new research is being conducted at the Nuclear Engineering Center (CEN) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) to analyze the application potentiality of some nanofluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. In this work a revision of theoretical and experimental studies of nanofluids is performed and its potentiality for using in future generations of nuclear reactors is highlighted showing the status of the research at present. (author)

  4. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  5. Optical clearing agent perfusion enhancement via combination of microneedle poration, heating and pneumatic pressure

    OpenAIRE

    Damestani, Y; Melakeberhan, B; Rao, MP; Aguilar, G.

    2014-01-01

    Background and Objective Optical clearing agents (OCAs) have shown promise for increasing the penetration depth of biomedical lasers by temporarily decreasing optical scattering within the skin. However, their translation to the clinic has been constrained by lack of practical means for effectively perfusing OCA within target tissues in vivo. The objective of this study was to address this limitation through combination of a variety of techniques to enhance OCA perfusion, including heating of...

  6. Enhancement of natural convection heat transfer from a fin by triangular perforation of bases parallel and toward its tip

    Institute of Scientific and Technical Information of China (English)

    Abdullah H. AlEssa; Mohamad I. Al-Widyan

    2008-01-01

    This study examines the heat transfer enhancement from a horizontal rect- angular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissipation rate is compared to that of an equivalent solid one. The parameters considered axe geometrical dimensions and thermal properties of the fin and the perforations. The gain in the heat transfer enhancement and the fin weight reduction due to the perforations are considered. The study shows that the heat dissipation from the perforated fin for a certain range of triangular perforation di- mensions and spaces between perforations result in improvement in the heat transfer over the equivalent solid fin. The heat transfer enhancement of the perforated fin increases as the fin thermal conductivity and its thickness are increased.

  7. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    Science.gov (United States)

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.

  8. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    Science.gov (United States)

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  9. Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate

    NARCIS (Netherlands)

    Zanten, M. van; Ritsema, T.; Polko, J.K.; Leon-Reyes, A.; Voesenek, L.A.C.J.; Millenaar, F.F.; Pieterse, C.M.J.; Peeters, A.J.M.

    2012-01-01

    Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (

  10. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses.

  11. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  12. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection

    Science.gov (United States)

    Chang, F.; Dhir, V. K.

    1995-04-01

    The turbulent flowfield in a tube heated uniformly from the wall has been experimentally studied when fluid is injected tangentially. The experiments were conducted by injecting air through injectors placed on the periphery of a 88.9-mm inside diameter and 2.5-m long acrylic tube. Six injectors of 22.23-mm inside diameter were used and tangential to total momentum flux ratio of 2.67 was obtained in the experiments. Temperature profiles were measured with a resistance thermometer probe. Profiles for mean velocities in the axial and tangential directions, as well as the Reynolds stresses were obtained using a single rotated straight hot wire and a single rotated slanted hot wire anemometer. No significant difference in mean velocities and Reynolds stresses were found between the adiabatic experiments and diabatic ones. Two major mechanisms for enhancement of heat transfer are identified: (1) high maximum axial velocity near the wall produces higher heat flux from the wall; and (2) high turbulence level in the middle region of the tube improves mixing and, thus, rate of heat transfer. Furthermore, it is observed that both the kinetic energy of the mean flow and the turbulence level decrease as swirl decays. However, during the decay process, the high turbulence-energy-production from Reynolds stresses is necessary to transfer the kinetic energy of the mean flow to the turbulence energy. This high turbulence-production, in turn, slows down the rate of decrease of the turbulence level. As a result, the swirl and the heat transfer enhancement are preserved for a long distance.

  13. Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Angelakeris, M., E-mail: agelaker@auth.gr [Department of Physics, Aristotle University of Thessaloniki, 54124 Greece (Greece); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, Lotharstr. 1, Duisburg D-47048 (Germany); Li, Zi-An; Hilgendorff, M. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, Lotharstr. 1, Duisburg D-47048 (Germany); Simeonidis, K.; Sakellari, D. [Department of Physics, Aristotle University of Thessaloniki, 54124 Greece (Greece); Filippousi, M.; Tian, H.; Van Tendeloo, G. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Spasova, M.; Acet, M.; Farle, M. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, Lotharstr. 1, Duisburg D-47048 (Germany)

    2015-05-01

    Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core–shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core–shell nanoparticles with mutual coupling of magnetically hard (CoFe{sub 2}O{sub 4}) and soft (MnFe{sub 2}O{sub 4}) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} core–shell nanoparticles is distinctively different from that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core−shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. - Highlights: • Core–shell ferrite magnetic nanoparticles as magnetic particle hyperthermia

  14. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  15. Experimental and Numerical Analysis of Micro-Scale Heat Transfer using Carbon based Nanofluid in Microchannel for Enhanced Thermal Performance

    Science.gov (United States)

    Singh, Bhupinder; Singh, Maniratan; Garg, Harry; Kaur, Inderpreet; Suryavanshi, Suman; Kumar, Hemant

    2016-09-01

    The existing heat transfer technologies suffer from numerous limitations and are poor in high performance and high heat dissipation. Liquid cooling using microchannels and nanofluids work with the increased surface area and minimum thermal resistance. Many researchers showed that nanofluids, particularly with carbon based materials, enhance heat transfer rate. In today era, in the case of microelectronics, small miniaturized heat sinks with high heat transfer are being developed, called micro-channel heat sinks (MCHS). The proposed work is concerned about the heat transfer behavior of aqueous suspensions of CNT nanofluids flowing through the triangular shaped microchannel. Significant enhancement of the convective heat transfer is observed and the enhancement depends on the flow conditions i.e. nusselt number, microchannel channel length, nanoparticles concentration. Particle re-arrangement, shear induced thermal conduction enhancement, reduction of thermal boundary layer due to the presence of nanoparticles, as well as the very high aspect ratio of CNT nanofluids are proposed to be possible mechanisms. Results show that thermal boundary layers distorted due to use of carbon based nanofluids and heat transfer coefficient increases about three times as compared to water.

  16. Optimally enhanced heating for focused ultrasound surgery with split foci, dual-frequency, or multi foci

    Science.gov (United States)

    Lu, Mingzhu; Guan, Yubo; Dong, Tengju; Liu, Fenfen; Wan, Mingxi

    2017-03-01

    To substantially enhance heating in HIFU treatment, several methods such as split foci, multi foci, and dual-frequency modes are used. The enhanced-cavitation heating protocols are implemented experimentally in BSA gel-phantom using four-element split-focus array. Using dual frequency of 1.2 and 2.4 MHz, the superimposing of two frequency pressures at confocal region can enhance nucleation cavitation and inertial cavitation activity. When using 135° phase shift combined with dual frequency of 1.2 and 2.4 MHz, the peak negative pressure reach maximum due to peak-negative pressures of two frequencies occur at same time, resulting strong cavitation activities. When using dual frequency of 1.2 and 2.4 MHz, 25-Hz pulse-repetition frequency (PRF), both 135° and 180° phase shift protocols, the experiment results show the largest lesion size of 10.5 × 10.5 × 11 mm3, quickest lesion inception time of less than 0.2 s, therefore, both 135° and 180° phase shift protocols are most efficient in enhanced-cavitation heating. The filtered-PCD mean square waveforms reveal that the strong inertial-cavitation activities involve in those two treatments. The lesion size of four foci of 180° phase shift, single frequency, 25 Hz PRF, is 2 times that of 0° phase shift, single frequency even if the peak intensity of 180° case is half less than that of 0° phase shift case. When arrange multi foci using phased array in a style of a wavelength distance between neighbor foci in focal plane, the result is the same as that using split foci of 180° phase shift and single frequency.

  17. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.

    Science.gov (United States)

    Liu, Peng; Fan, Zeng; Mikhalchan, Anastasiia; Tran, Thang Q; Jewell, Daniel; Duong, Hai M; Marconnet, Amy M

    2016-07-13

    The production of continuous carbon nanotube (CNT) fibers and films has paved the way to leverage the superior properties of individual carbon nanotubes for novel macroscale applications such as electronic cables and multifunctional composites. In this manuscript, we synthesize fibers and films from CNT aerogels that are continuously grown by floating catalyst chemical vapor deposition (FCCVD) and measure thermal conductivity and natural convective heat transfer coefficient from the fiber and film. To probe the mechanisms of heat transfer, we develop a new, robust, steady-state thermal characterization technique that enables measurement of the intrinsic fiber thermal conductivity and the convective heat transfer coefficient from the fiber to the surrounding air. The thermal conductivity of the as-prepared fiber ranges from 4.7 ± 0.3 to 28.0 ± 2.4 W m(-1) K(-1) and depends on fiber volume fraction and diameter. A simple nitric acid treatment increases the thermal conductivity by as much as a factor of ∼3 for the fibers and ∼6.7 for the thin films. These acid-treated CNT materials demonstrate specific thermal conductivities significantly higher than common metals with the same absolute thermal conductivity, which means they are comparatively lightweight, thermally conductive fibers and films. Beyond thermal conductivity, the acid treatment enhances electrical conductivity by a factor of ∼2.3. Further, the measured convective heat transfer coefficients range from 25 to 200 W m(-2) K(-1) for all fibers, which is higher than expected for macroscale materials and demonstrates the impact of the nanoscale CNT features on convective heat losses from the fibers. The measured thermal and electrical performance demonstrates the promise for using these fibers and films in macroscale applications requiring effective heat dissipation.

  18. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu, E-mail: wanghongyu07010310@163.com; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-11-01

    Co coated carbonyl iron particles (Co (CI)) are fabricated through electroless plating method, and the electromagnetic microwave absorbing properties are investigated in the frequencies during 8.2–12.4 GHz. The complex permittivity of CI particles after electroless plating Co is higher than that of raw CI particles due to improvment of the polarization process. Furthermore, according to the XRD and TG results, the Co layer can enhance the heat resistance of CI particles. The bandwidth below −10 dB can reach 3.9 GHz for the Co(CI) absorbent. The results indicate that the electroless plating Co not only enhances the absorbing properties but also improves the heat resistance of CI. - Highlights: • The Co-coated carbonyl iron Co(CI) particles were prepared by electroless plating. • The electromagnetic wave absorbing properties of Co(CI) particles were studied. • The heat treatment on the absorbing property of Co(CI) particles was studied. • The Co(CI) particles have good absorbing property when compared with CI.

  19. Numerical Anaysis on Heat Transfer Enhancement by Waves on Falling Liquid Film

    Institute of Scientific and Technical Information of China (English)

    AkioMiyara

    2000-01-01

    Numerical simulations have been carried out for two dimensional wavy falling liquid films on a vertical wall.The algorithm of the simulation is based on MAC method and schemes for interfacial boundary conditions are modifed.Small artificial perturbations given at the inflow boundary grow rapidly and then the amplitude of the waves approaches to developed waves.Effects of the disturbance frequency on the wave development behavior and heat transfer characteristics are especially investigated.For low frequency,a disturbance wave develops to a solitary wave consisted of a large amplitude roll wave and small amplitude capillary waves,Increasing the frequency,the wave amplitude decreases and the capillary wave disappears.For further high frequency,the disturbance amplitude reduces along down stream.The heat transfer coefficient is enhanced by the surface wave and has a maximum at a certain frequency,The streamlines and the temperature comtoure contours are shown for various frequency waves and the heat transfer enhancement mechanism is clarified.

  20. Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to Cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Yukiyo Sato

    Full Text Available The accumulation of RCY1 protein, which is encoded by RESISTANCE TO CMV(Y (RCY1, a CC-NB-LRR class R-gene, is tightly correlated with the strength of the resistance to a yellow strain of Cucumber mosaic virus [CMV(Y] in Arabidopsis thaliana. In order to enhance resistance to CMV by overexpression of RCY1, A. thaliana was transformed with intron-less RCY1 cDNA construct under the control of strong CaMV35S promoter. Remarkably, a relative amount of RCY1 protein accumulation in the transformants was much lower than that in plants expressing genomic RCY1 under the control of its native promoter. To identify a regulatory element of RCY1 that could cause such differential levels of RCY1 accumulation, a series of RCY1 cDNA and genomic RCY1 constructs were transiently expressed in Nicotiana benthamiana leaves by the Agrobacterium-mediated infiltration method. Comparative analysis of the level of RCY1 accumulation in the leaf tissues transiently expressing each construct indicated that the intron located in the RCY1-coding region of genomic RCY1, but not the native RCY1 genomic promoter or the 5'-and 3'-untranslated regions of RCY1, was indispensable for high level RCY1 accumulation. The increased levels of RCY1 accelerated plant disease defense reactions. Interestingly, such intron-mediated enhancement of RCY1 accumulation depended neither on the abundance of the RCY1 transcript nor on the RCY1 specific-intron sequence. Taken together, intron-mediated RCY1 expression seems to play a key role in the expression of complete resistance to CMV(Y by maintaining RCY1 accumulation at high levels.

  1. Enhancement and performance evaluation for heat transfer of air cooling zone for reduction system of sponge titanium

    Science.gov (United States)

    Wang, Wenhao; Wu, Fuzhong; Jin, Huixin

    2016-05-01

    Since the magnesiothermic reduction employed in current sponge titanium is a highly exothermic reaction, the TiCl4 feed rate is carried out slowly to keep a suitable temperature in reduction reactor, which accounts for an extremely low level of productivity and energy efficiency. In order to shorten the production cycle and improve the energy efficiency, an enhancing scheme is proposed to enhance the heat transfer of air cooling zone for reduction system. The air cooling zone and enhancing scheme are firstly introduced. And then, the heat transfer characteristics of cooling zone are obtained by theoretical analysis and experimental date without enhancing scheme. Finally, the enhancement is analyzed and evaluated. The results show that the fitting results of heat transfer coefficients can be used to evaluate the heat transfer enhancement of cooling zone. Heat sources temperatures have a limited decreasing, heat transfer rate increases obviously with the enhanced cooling, and the TiCl4 feed rate can be increased significantly by 9.61 %. And the measured and calculated results are good enough to meet the design requirements.

  2. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh.

    Science.gov (United States)

    Sokka, S D; King, R; Hynynen, K

    2003-01-21

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand while rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MRT2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  3. 板式脉动热管强化传热方法研究%Research on Enhancing Heat Transfer of Flat Plate Loop Pulsating Heat Pipe

    Institute of Scientific and Technical Information of China (English)

    陈陶菲; 徐德好; 刘向东

    2011-01-01

    To research the method of enhancing heat transfer of flat plate loop pulsating heat pipe,the article compares the heat transfer character of the original heat pipe and the improved one by numerical simulation.Based on the VOF(volume of fluid) method,a three-dimensional unsteady mathematical model was developed to describe the vapor-liquid two-phase flow and phase change heat transfer in the flat plate loop pulsating heat pipe.The two-phase flow pattern transition and the temperature distribution in the flat plate loop pulsating heat pipe under different heat load conditions was numerically investigated using the developed model.The result shows that the heat transfer character of the improved heat pipe can be enhanced under high heat load condition.%为了研究板式脉动热管的传热性能强化的方法,对原型和改进型两种不同板式脉动热管传热特性进行数值分析比较。基于VOF方法建立板式脉动热管汽液两相流动及相变传热三维非稳态数学模型,仿真得到不同加热功率条件下热管内流型演化和温度分布。仿真结果表明,改进型脉动热管在高功率阶段,整体等效热阻小于原型。

  4. Numerical analysis of melting of nano-enhanced phase change material in latent heat thermal energy storage system

    Directory of Open Access Journals (Sweden)

    Kashani Sina

    2014-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials exhibit enhanced thermal conductivity in comparison to the base material. Calculation is performed for nanoparticle volume fraction from 0 to 0.08. In this study rectangular and cylindrical containers are modeled numerically and the effect of containers dimensions and nano particle volume fraction are studied. It has been found that the rectangular container requires half of the melting time as for the cylindrical container of the same volume and the same heat transfer area and also, higher nano particle volume fraction result in a larger solid fraction. The increase of the heat release rate of the nanoparticle-enhanced phase change materials shows its great potential for diverse thermal energy storage application.

  5. Study of Nano Particles for Enhanced Heat Transfer Characteristics of Base Fluids for Cool Thermal Energy System

    Directory of Open Access Journals (Sweden)

    Promit Choudhury

    2014-04-01

    Full Text Available Reliable heat transfer is very crucial for heat demand and supply related applications where the optimum demand is not met. Cool thermal energy systems are the units which find application in conditioning and preserving items. A colloidal mixture of nano particles in a base fluid tremendously enhances the heat transfer characteristics of the original base fluid and is ideally suited for practical application due to its marvelous characteristics.

  6. Heat transfer enhancement on thin wires in superfluid helium forced flows

    CERN Document Server

    Duri, Davide; Moro, Jean-Paul; Roche, Philippe-Emmanuel; Diribarne, Pantxo

    2014-01-01

    In this paper, we report the first evidence of an enhancement of the heat transfer from a heated wire by an external turbulent flow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counter flow mechanism while the extra cooling produced by the forced convection is found to scale similarly as the corresponding extra cooling in classical fluids. We propose a preliminary analysis of the response of the sensor and show that -contrary to a common assumption- such sensor can be used to probe local velocity in turbulent superfluid helium.

  7. Heat Transfer Enhancement and Hydrodynamic Characteristics of Nanofluid in Turbulent Flow Regime

    Directory of Open Access Journals (Sweden)

    Mohammad Nasiri-lohesara

    2015-01-01

    Full Text Available Turbulent forced convection of γ-Al2O3/water nanofluid in a concentric double tube heat exchanger has been investigated numerically using mixture two-phase model. Nanofluids are used as coolants flowing in the inner tube while hot pure water flows in outer tube. The studies are conducted for Reynolds numbers ranging from 20,000 to 50,000 and nanoparticle volume fractions of 2, 3, 4, and 6 percent. Results showed that nanofluid has no effects on fully developed length and average heat transfer coefficient enhances with lower slope than wall shear stress. Comparisons with experimental correlation in literature are conducted and good agreement with present numerical study is achieved.

  8. A new approach for modelling chromospheric evaporation in response to enhanced coronal heating: 1 the method

    CERN Document Server

    Johnston, C D; Cargill, P J; De Moortel, I

    2016-01-01

    We present a new computational approach that addresses the difficulty of obtaining the correct interaction between the solar corona and the transition region in response to rapid heating events. In the coupled corona, transition region and chromosphere system, an enhanced downward conductive flux results in an upflow (chromospheric evaporation). However, obtaining the correct upflow generally requires high spatial resolution in order to resolve the transition region. With an unresolved transition region, artificially low coronal densities are obtained because the downward heat flux jumps across the unresolved region to the chromosphere, underestimating the upflows. Here, we treat the lower transition region as a discontinuity that responds to changing coronal conditions through the imposition of a jump condition that is derived from an integrated form of energy conservation. To illustrate and benchmark this approach against a fully resolved one-dimensional model, we present field-aligned simulations of corona...

  9. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heran Ma

    2016-09-01

    Full Text Available The antioxidant properties of l-arginine (l-Arg in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.

  10. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng; Thomas LAUMONIER; Jacques MENETREY

    2007-01-01

    Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treatment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and massive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P<0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and nontreated cells (67.69%±8.35% versus 58.79%±8.35%, P>0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32%±8.22% versus 28.27%±6.32%, P<0.01)and more than threefold at 120 h (26.33%±5.54% versus 8.79%±2.51%, P<0.01). Histological analysis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock

  11. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    . Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treat-ment.

  12. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82). 54.25-20 Section 54.25... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  13. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  14. Pool Boiling of FC 770 on Graphene Oxide Coatings: A Study of Critical Heat Flux and Boiling Heat Transfer Enhancement Mechanisms

    OpenAIRE

    Sayee Mohan, Kaushik

    2016-01-01

    This thesis investigates pool boiling heat transfer from bare and graphene-coated NiCr wires in a saturated liquid of FC 770, a fluorocarbon fluid. Of particular interest was the effect of graphene-oxide platelets, dip-coated onto the heater surface, in enhancing the nucleate boiling heat transfer (BHT) rates and the critical heat flux (CHF) value. In the course of the pool boiling experiment, the primary focus was on the reduction mechanism of graphene oxide. The transition from hydrophilic ...

  15. Overview of the Shell and Tube Heat Exchangers about Heat Transfer Enhancement Technology%管壳式换热器强化传热技术概述

    Institute of Scientific and Technical Information of China (English)

    齐洪洋; 高磊; 张莹莹; 周辰琳

    2012-01-01

    The research progress of shell and tube heat exchanger were summarized. The development, structural improvement and heat transfer enhancement of the heat exchangers were introduced through three aspects,e. g. tube pass,shell pass and the whole tub bundle etc. Compared with the traditional seg-mental baffle heat exchanger, various types of heat exchangers' characteristics about heat transfer enhancement were epitomized. At last,the studying directions of heat exchangers were pointed out.%总结了近年来国内外新型管壳式换热器的研究进展,从管程、壳程、管束三方面介绍了管壳式换热器的发展历程、结构改进及强化传热机理,并与普通弓形折流板换热器进行对比,概括了各式换热器的强化传热特点.最后指出了换热器的研究方向.

  16. Research Status and Development on Heat Transfer Enhancement of Ground Heat Exchanger used in Ground-coupled Heat Pump%土壤源热泵地埋管传热强化研究现状及其发展

    Institute of Scientific and Technical Information of China (English)

    朱洁莲; 杨卫波; 嵇素雯

    2013-01-01

    The article analyzes the technology characteristics of ground-coupled heat pump and influence factors of heat exchange performance of ground heat exchanger, and points out that heat transfer enhancement of the ground heat exchanger is one of the core problems of the ground coupled heat pump research. The research status on heat transfer enhancement of ground heat exchanger at home and abroad were analyzed in detail, the latest progress and the key problems to be solved about heat transfer enhancement subject were also pointed out.%分析了土壤源热泵技术特点及地埋管换热器的影响因素,指出地埋管换热器传热强化是地源热泵研究的核心问题之一,详细介绍了近十年来地埋管传热强化的国内外研究状况,在此基础上指出了土壤源热泵地埋管传热强化的最新进展和有待解决的关键问题。

  17. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  18. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  19. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  20. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  1. Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements.

    Science.gov (United States)

    Guo, Shou-Zhu; Li, Yang; Jiang, Ji-Sen; Xie, Hua-Qing

    2010-05-20

    Homogeneous and stable magnetic nanofluids containing γ-Fe2O3 nanoparticles were prepared using a two-step method, and their thermal transport properties were investigated. Thermal conductivities of the nanofluids were measured to be higher than that of base fluid, and the enhanced values increase with the volume fraction of the nanoparticles. Viscosity measurements showed that the nanofluids demonstrated Newtonian behavior and the viscosity of the nanofluids depended strongly on the tested temperatures and the nanoparticles loadings. Convective heat transfer coefficients tested in a laminar flow showed that the coefficients increased with the augment of Reynolds number and the volume fraction.

  2. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  3. Enhanced heating of salty water and ice under microwaves: Molecular dynamics study

    OpenAIRE

    Tanaka, Motohiko; Sato, Motoyasu

    2008-01-01

    By molecular dynamics simulations, we have studied the enhanced heating process of salty ice and water by the electric field of applied microwaves at 2.5 GHz, and those in the range 2.5-10 GHz for the frequency dependence. We show that water molecules in salty ice are allowed to rotate in response to the microwave electric field to the extent comparable to those in pure water, because the molecules in salty ice are loosely tied by hydrogen bonds with adjacent molecules unlike the case of rigi...

  4. Immunological enhancement action of endotoxin-free tilapia heat shock protein 70 against Streptococcus iniae.

    Science.gov (United States)

    Chen, Ming; Wang, Rui; Li, Liping; Liang, Wanwen; Wang, Qiuhua; Huang, Ting; Li, Chao; Li, Jian; Gan, Xi; Lei, Aiying; Huang, Weiyi; Luo, Honglin

    2014-07-01

    The immunological effects of heat shock proteins (HSPs) had been found in humans and mice, but scarce data of endotoxin-free Hsp70 were reported in tilapia. In the current study, we reported that tHsp70 alone and antigen-tHsp70 compound increased the proliferations of lymphocytes and macrophages, significantly increased the NO release and phagocytotic ability of macrophages (ptilapia lymphocytes and macrophages post S. iniae exposure and its up-regulation effects on vaccine-induced protection. Our research highlights the immunological enhancement action of Hsp70 in teleost immunity.

  5. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review.

    Science.gov (United States)

    Kim, Hyungdae

    2011-06-09

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified.

  6. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor

    DEFF Research Database (Denmark)

    Zhang, Xia; Wollenweber, Bernd; Jiang, Dong

    2008-01-01

    The effects of water deficits (WD), heat shock (HS), and both (HSWD) on photosynthetic carbon- and light-use efficiencies together with leaf ABA content, pigment composition and expressions of stress- and light harvesting-responsive genes were investigated in ABP9 [ABA-responsive-element (ABRE......, altered expression of stress-regulated or light harvesting-responsive genes was observed. Collectively, our results indicate that constitutive expression of ABP9 improves the photosynthetic capacity of plants under stress by adjusting photosynthetic pigment composition, dissipating excess light energy......) binding protein 9] transgenic Arabidopsis (5P2). WD, HS, and HSWD significantly decreased photosynthetic rate (A) and stomatal conductance (gs) in wild-type plants (WT). A and gs of 5P2 transgenic plants were slightly reduced by a single stress and were hardly modified by HSWD. Although A and electron...

  7. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Science.gov (United States)

    Segarra, Guillem; Santpere, Gabriel; Elena, Georgina; Trillas, Isabel

    2013-01-01

    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  8. Ectopic Expression in Arabidopsis thaliana of an NB-ARC Encoding Putative Disease Resistance Gene from Wild Chinese Vitis pseudoreticulata Enhances Resistance to Phytopathogenic Fungi and Bacteria

    Directory of Open Access Journals (Sweden)

    Zhifeng eWen

    2015-12-01

    Full Text Available Plant resistance proteins mediate pathogen recognition and activate innate immune responses to restrict pathogen proliferation. One common feature of these proteins is an NB-ARC domain. In this study, we characterized a gene encoding a protein with an NB-ARC domain from wild Chinese grapevine Vitis pseudoreticulata accession Baihe-35-1, which was identified in a transcriptome analysis of the leaves following inoculation with Erysiphe necator (Schw., a causal agent of powdery mildew. Transcript levels of this gene, designated VpCN (GenBank accession number KT265084, increased strongly after challenge of grapevine leaves with E. necator. The deduced amino acid sequence was predicted to contain an NB-ARC domain in the C-terminus and an RxCC-like domain similar to CC domain of Rx protein in the N-terminus. Ectopic expression of VpCN in Arabidopsis thaliana resulted in either a wild-type phenotype or a dwarf phenotype. The phenotypically normal transgenic A. thaliana showed enhance resistance to A. thaliana powdery mildew Golovinomyces cichoracearum, as well as to a virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Moreover, promoter::GUS (β-glucuronidase analysis revealed that powdery mildew infection induced the promoter activity of VpCN in grapevine leaves. Finally, a promoter deletion analysis showed that TC rich repeat elements likely play an important role in the response to E. necator infection. Taken together, our results suggest that VpCN contribute to powdery mildew disease resistant in grapevine.

  9. Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana

    Science.gov (United States)

    Mishra, Sagarika; Alavilli, Hemasundar; Lee, Byeong-ha; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2014-01-01

    Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095 nucleotides with an open reading frame of 1629 nucleotides encoding a predicted protein of 542 amino acids with a deduced molecular mass of 59.6 kDa. The consensus amiloride binding motif (84LFFIYLLPPI93) was observed in the third putative transmembrane domain of VrNHX1. Bioinformatic and phylogenetic analysis clearly suggested that VrNHX1 had high similarity to those of orthologs belonging to Class-I clade of plant NHX exchangers in leguminous crops. VrNHX1 could be strongly induced by salt stress in mungbean as the expression in roots significantly increased in presence of 200 mM NaCl with concomitant accumulation of total [Na+]. Induction of VrNHX1 was also observed under cold and dehydration stress, indicating a possible cross talk between various abiotic stresses. Heterologous expression in salt sensitive yeast mutant AXT3 complemented for the loss of yeast vacuolar NHX1 under NaCl, KCl and LiCl stress indicating that VrNHX1 was the orthologue of ScNHX1. Further, AXT3 cells expressing VrNHX1 survived under low pH environment and displayed vacuolar alkalinization analyzed using pH sensitive fluorescent dye BCECF-AM. The constitutive and stress inducible expression of VrNHX1 resulted in enhanced salt tolerance in transgenic Arabidopsis thaliana lines. Our work suggested that VrNHX1 was a salt tolerance determinant in mungbean. PMID:25350285

  10. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1 and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sagarika Mishra

    Full Text Available Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata, an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1 contains 2095 nucleotides with an open reading frame of 1629 nucleotides encoding a predicted protein of 542 amino acids with a deduced molecular mass of 59.6 kDa. The consensus amiloride binding motif (84LFFIYLLPPI93 was observed in the third putative transmembrane domain of VrNHX1. Bioinformatic and phylogenetic analysis clearly suggested that VrNHX1 had high similarity to those of orthologs belonging to Class-I clade of plant NHX exchangers in leguminous crops. VrNHX1 could be strongly induced by salt stress in mungbean as the expression in roots significantly increased in presence of 200 mM NaCl with concomitant accumulation of total [Na+]. Induction of VrNHX1 was also observed under cold and dehydration stress, indicating a possible cross talk between various abiotic stresses. Heterologous expression in salt sensitive yeast mutant AXT3 complemented for the loss of yeast vacuolar NHX1 under NaCl, KCl and LiCl stress indicating that VrNHX1 was the orthologue of ScNHX1. Further, AXT3 cells expressing VrNHX1 survived under low pH environment and displayed vacuolar alkalinization analyzed using pH sensitive fluorescent dye BCECF-AM. The constitutive and stress inducible expression of VrNHX1 resulted in enhanced salt tolerance in transgenic Arabidopsis thaliana lines. Our work suggested that VrNHX1 was a salt tolerance determinant in mungbean.

  11. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Directory of Open Access Journals (Sweden)

    Guillem Segarra

    Full Text Available Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  12. Effect of Fin Geometry on Condensation Heat Transfer of Refrigerant R134a on Enhanced Finned Tubes

    Science.gov (United States)

    Takahashi, Hiroyuki; Saeki, Chikara; Koyama, Shigeru

    This paper presents the experimental results on the outside condensation heat tral1sfer coefficient of horizontal enhanced filmed tubes. Three different fin geometry types of three-dimensional enhanced finned tubes were tested. A low-fin-tube (LFT) 19 fin-per-inch (fpi) was also tested for reference. Experimental refrigerant used was R134a. The heat tral1sfer coefficient test was carried out at a condensing temperature of 40°C, at a cooling water velocity of 1.5 m/s, and the heat flux of 10 to 110 kW/m2K. The outside condensation heat transfer coefficient of all three dimensional enhanced finned tubes were approximately 1.9 times higher than that of LFTl9fpi at high heat flux range. In low heat flux range, the enhanced finned tube of small circumferential segmentation pitches at the fin tip was shown the highest outside heat transfer coefficient for all tubes tested.

  13. Enhancement of parathion toxicity to quail by heat and cold exposure

    Science.gov (United States)

    Rattner, B.A.; Becker, J.M.; Nakatsugawa, T.

    1987-01-01

    Effects of ambient temperature on the acute oral toxicity of parathion were investigated in Japanese quail (Coturnix japonica) maintained at thermoneutral temperature (26.degree. C) or exposed to elevated (37.degree. C) or reduced (4.degree. C) temperatures commonly encountered by free-ranging wild birds. Based upon estimates of the median lethal dosage, there was up to a two-fold enhancement of parathion toxicity in birds chronically exposed to heat or cold. Twenty-four hours after administration of a low dosage (4 mg/kg body wt, po), there was markedly greater cholinesterase inhibition in surviving heat-exposed quail compared with those reared at 26.degree. C (e.g., brain acetylcholinesterase depression of 42% versus 12%). There were no differences in hepatic activities of parathion oxidase, paraoxonase, or paraoxon deethylase which could account for greater toxicity to chronically heat-exposed birds. In contrast, 4 mg parathion/kg wt elicited less plasma cholinesterase inhibition in cold-exposed quail compared to thermoneutral controls (e.g., depression after 24 hr). Increased liver weight and a doubling of paraoxonase activity may have been associated with greater tolerance to sublethal doses of parathion in chronically cold-exposed quail. These findings, together with limited field observations, indicate that the hazard associated with anticholinesterase exposure of wild birds is substantially influenced by environmental temperature.

  14. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    Science.gov (United States)

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.

  15. Experimental Study on Heat Transfer Enhancement of Natural Circulation Liquid Cooling System for Electronic Component

    Institute of Scientific and Technical Information of China (English)

    张正国; 李倩侠; 方晓明; 本田博司

    2004-01-01

    The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.

  16. Neutron-enhanced annealing of ion-implantation induced damage in silicon heated by nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yoshiie, T. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Chayahara, A.; Mokuno, Y.; Tsubouchi, N.; Horino, Y. [National Institute of Advanced Industrial Science and Technology (AIST), AIST Kansai, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Xu, Q.; Sato, K. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Yasuda, K.; Ishigami, R. [The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga, Fukui 914-0192 (Japan)

    2014-09-01

    Highlights: •Neutron-enhanced annealing was observed for irradiation damage in Si below 90 °C. •The irradiation was performed in a nuclear reactor without intentional heating. •Reduction of damage peaks was detected by Rutherford backscattering/channeling. •The annealing efficiency was comparable to that of ion-beam annealing. -- Abstract: The effect of neutron irradiation on recovery (annealing) of irradiation damage has been investigated for self-ion implanted Si. A damage layer was introduced by 200 keV Si{sup +} implantation to a fluence of 5 × 10{sup 14} Si/cm{sup 2} at room temperature. The damaged samples were neutron-irradiated to 3.8 × 10{sup 19} n/cm{sup 2} (fast neutron), without intentional heating, in the core of the Kyoto University Reactor. During neutron irradiation, the samples were heated only by nuclear reactions, and the irradiation temperature was estimated to be less than 90 °C. The damage levels of the samples were characterized by Rutherford backscattering with channeling. Reduction of damage peaks as a result of neutron irradiation was clearly observed in the samples. The annealing efficiency was calculated to be 0.44 defects/displacement.

  17. Heat transfer enhancement by a multilobe vortex generator in internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Y.Y.; Leu, S.W. [National Chiao Tung Univ., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering

    1999-04-01

    A three-dimensional computational method is employed to study the flow and heat transfer in internally finned tubes with a multilobe vortex generator inserted. Governing equations are discretized using the finite volume method. The irregular lobe geometry is treated using curvilinear nonstaggered grids. The linear interpolation method is adopted to calculate face velocities. The results show that secondary flows induced by the lobes are transformed to become axial vortices downstream of the vortex generator. As a consequence of the transport by the vortex flow, the core flow is moved to the fins and the tube wall, while the wall flow moves to the core. In this way, both heat transfer and flow mixing are enhanced. When the fin height is increased, the axial vortex is more restricted in the centerline region, and the strength of the vortex flow, represented by circulation, is decreased. In turn, the total pressure loss is also decreased. However, the heat transfer increases with fin height. Consequently, efficiency is greatly promoted.

  18. Experimental study of an externally finned tube with internal heat transfer enhancement for phase change thermal energy storage

    Science.gov (United States)

    Martinelli, M.; Bentivoglio, F.; Couturier, R.; Fourmigué, J.-F.; Marty, P.

    2016-09-01

    After having presented the design of a latent heat thermal energy storage system (LHTESS) for district heating, experimental results of a vertical tube-in-shell LHTESS are discussed. The tube is radially finned on its external wall to enhance the heat transfer in the phase change material. The test rig is operated with flow conditions corresponding to the proposed design. As the internal flow of heat transfer fluid (HTF) appears to be laminar and is highly influenced by buoyancy forces, which results in mixed convection regime, cross-sectional area reducers are installed inside the HTF tube in order to reduce the Rayleigh number and thus natural convection. Experimental results are presented for two finned tubes, with and without internal heat transfer enhancement respectively.

  19. An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques

    DEFF Research Database (Denmark)

    Zhang, Ji; Diao, Yanhua; Zhao, Yaohua;

    2017-01-01

    This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels and is w......This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels...... with different micro fin numbers (N = 0, 1, 2, 3 and 4) and nanofluids with three volume concentrations (φ = 0.005%, 0.01% and 0.1%) were used as test sections and working fluids respectively. Secondly, the experiments using two combined enhancement technique were performed. By using conjunctively two...

  20. Review of the correlation developments and a new concept based on mixing mechanism for heat transfer enhancement of spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H.; Yang, B.W.; Liu, X. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research

    2016-07-15

    Spacer grids could cause heat transfer enhancement both at the spacer grid regions and downstream of the spacer grids as a result of mixing promoted by the spacer grids in the rod bundle. This phenomenon has been demonstrated by many experiments, and several correlations have been developed based on these experimental data. This paper gives a review of the grid-enhanced heat transfer correlation developments in single phase flow. Following the exploration of the correlation development history, a predictive formulation of grid-enhanced heat transfer in single phase flow is established taking into account the effect of both swirl flow and crossflow. With emphasis on modeling of the mixing mechanism associated with the mixing vane grid, the new correlation could better reflect the physical process of the heat transfer augmentation, while a large number of experimental data are needed to determine the coefficients of the new correlation.

  1. A note on the flow and heat transfer enhancement in a channel with built-in winglet pair

    Energy Technology Data Exchange (ETDEWEB)

    Hiravennavar, S.R. [Department of Aerospace Engineering, IIT Madras, Chennai 600036 (India)]. E-mail: sadashiv_h@yahoo.co.in; Tulapurkara, E.G. [Department of Aerospace Engineering, IIT Madras, Chennai 600036 (India)]. E-mail: egt@ae.iitm.ac.in; Biswas, G. [Department of Mechanical Engineering, IIT Kanpur, Kanpur 208016 (India)]. E-mail: gtm@iitk.ac.in

    2007-04-15

    Counter rotating longitudinal vortices produced by winglet in a channel are known to enhance heat transfer. In the present investigation the flow structure and heat-transfer enhancement by a winglet pair of non-zero thickness has been studied. A delta winglet pair type vortex generator is placed in a hydrodynamically developed and thermally developing laminar channel flow. Computations are done by solving the unsteady, three-dimensional, incompressible Navier-Strokes equations and energy equation using a modified Marker-and-Cell (MAC) method. The flow structure is complex and consists of main, corner and induced vortices. It is observed that as compared to a channel without winglets, the heat transfer is enhanced by 33% when single winglet is used and by 67% when a winglet pair is employed. Effects of thickness of the winglets and Reynolds number on the heat transfer augmentation are presented.

  2. Properties enhancement of Al-Zn-Mg alloy by retrogression and re-aging heat treatment

    Directory of Open Access Journals (Sweden)

    Zaid H.R.

    2011-01-01

    Full Text Available The higher strength 7xxx aluminum alloys exhibited low resistance to stress corrosion cracking (SCC when aged to the peak hardness (T6 temper. The overaged alloys (T7 temper developed to enhance the SCC with loss in the strength of the alloy. Recently, retrogression and re-aging (RRA heat treatments are used for improving the SCC behavior for alloys in T6 tempers such as 7075, 7475 and 8090. In this study, an application of retrogression and re-aging heat treatment processes are carried out to enhance toughness properties of the 7079-T651 aluminum alloy, while maintaining the higher strength of T651-temper. The results of charpy impact energy and electrical conductivity tests show a significantly increases in absorbed energy and electrical conductivity values, when the alloys are exposed to various retrogression temperatures (190, 200, 210°C and times (20, 40, 60 minutes, and then re-aged at 160°C for 18 hours.

  3. Numerical and experimental investigations of heat transfer enhancement in circular tubes with transverse twisted-baffles

    Science.gov (United States)

    Nanan, K.; Piriyarungrod, N.; Thianpong, C.; Wongcharee, K.; Eiamsa-ard, S.

    2016-10-01

    Transverse twisted-baffles (T-TBs) and transverse baffles (TBs) were employed for heat transfer enhancement in circular tubes. The experimental and numerical studies were carried out to investigate heat transfer, friction loss and thermal performance factor associated with the use of the baffles (T-TBs/TBs). The studies encompass three different baffle width ratios ( w/ D = 0.1, 0.2 and 0.3, for TBs and T-TBs), three baffle twist ratios ( y/ w = 2.0, 3.0 and 4.0, for T-TBs) and Reynolds numbers from 6000 to 20,000. The experimental results reveal that at similar conditions, thermal performance factors of the tubes with the T-TBs are consistently higher than those of the ones with the TBs. This is attributed to the superior heat transfer enhancement with lower pressure drop penalty as the beneficial effects given by the T-TBs, as compared to those given by the TBs. For T-TBs, thermal performance factor increases as baffle width ratio ( w/ D) increases and twist ratio ( y/ w) decreases. The T-TBs with the smallest twist ratio ( y/ w = 2.0) give higher thermal performance factors than the ones with 3.0 and 4.0 by around 4.7-6.1 and 10.2-15 %, respectively. For the studied range, the T-TBs with the optimal geometric parameters, ( y/ w = 2.0 and w/ D = 0.3), give the thermal performance factors in a range of 1.46-1.69.

  4. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation

    Science.gov (United States)

    Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y.

    2010-07-01

    Droplet departure frequency is investigated using environmental scanning electron microscopy with implications to enhancing the rate of dropwise condensation on superhydrophobic surfaces. Superhydrophobic surfaces, formed by cupric hydroxide nanostructures, allow the condensate to depart from a surface with a tilt angle of 30° from the horizontal. The resulting decrease in drop departure size shifts the drop size distribution to smaller radii, which may enhance the heat transfer rate during dropwise condensation. The heat transfer enhancement is estimated by modifying the Rose and Le Fevre drop distribution function to account for a smaller maximum droplet size on a superhydrophobic surface.

  5. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    Science.gov (United States)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a

  6. Pulse mitigation and heat transfer enhancement techniques. Volume 4: Transient behavior of heat pipe with thermal energy storage under pulse heat loads

    Science.gov (United States)

    Chow, L. C.; Chang, M. J.

    1992-08-01

    A novel design of a high-temperature axially grooved heat pipe (HP), which utilizes thermal energy storage (TES) to mitigate pulse heat loads, was presented. Phase-change material (PCM) encapsulated in cylindrical containers was used for thermal energy storage. The transient responses of the HP/TES system under two types of pulse heat loads were studied numerically. The first type is pulse heat loads applied at the heat pipe evaporator; the second type is reversed-pulse heat loads applied at the condenser. The transient response of three different HP/TES configurations were compared: (1) a heat pipe with a large empty cylinder installed in the vapor core, (2) a heat pipe with a large PCM cylinder, and (3) a heat pipe with six small PCM cylinders. It was found that the PCM is very effective in mitigating the adverse effect of pulse heat loads. The six small PCM cylinders are more efficient than the large PCM cylinder in relaxing the heat pipe temperature increase under pulse heat loads.

  7. Overexpression of URO Gene Enhances Drought Resistance in Arabidopsis%过量表达URO基因提高拟南芥的抗旱能力

    Institute of Scientific and Technical Information of China (English)

    庞静洋; 倪伟平; 杨扬; 徐艳飞; 李玲; 杨美良; 李小方; 孙越

    2013-01-01

    拟南芥uro突变体中由于URO (UPRIGHT ROSETTE)基因的过量表达导致生长素含量明显提高.本文结果表明,uro突变体的抗旱能力明显强于野生型,但uro突变体的根长、表皮毛数目以及离体叶的脱水速度都没有优于野生型.uro突变体对外源ABA不敏感,且在uro突变体中ABA响应基因的表达与野生型相比显著推迟.另外,表型分析表明uro突变体的营养生长延长,植株衰老延迟,特别是经过渗透胁迫后,uro植株内的丙二醛含量低于野生型.由此可见,URO基因的过量表达使uro突变体通过ABA非依赖途径提高了抗旱能力,而且uro突变体衰老延迟可能与其干旱抗性提高有关.%Arabidopsis uro mutant has higher IAA content than wild-type plants because of UROSETTE) gene overexpression.In this study,the results showed that uro mutant displayed improved drought tolerance compared to wild type.However,no evidence showed uro mutant had any drought tolerance related phenotypes such as root length,number of trichomes and the speed of cellular dehydration of leaf explants.In addition,uro mutant exhibited decreased sensitivity to exogenous abscisic acid (ABA).At the same time,the enhanced expression of ABA-responsive genes in uro mutant was delayed obviously relative to wild type after ABA treatment.On the other hand,uro mutant has prolonged vegetable growth and delayed senescence.Especially after osmotic stress treatment,there was much less malondialdehyde (MDA) in uro mutant than in wild type.These results indicate that overexpression of URO gene enhances drought tolerance of uro mutant through an ABA-independent pathway,and the delayed senescence of uro mutant may relate to its high drought tolerance.

  8. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, L.; Meer, van der T.H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  9. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    commerically used thermal fluids. Also within the past decade nanofluids have gained attention for thermal conductivity enhancment of fluids, but little analysis has been completed on the heat capacity effects of the nanoparticle addition. The idea of ILs or nanofluids as a HTF is not new, as there are several references that have proposed the idea. However, the use of ionic liquid nanofluids containing nanomaterials other than carbon nanotubes has never before been studied. Here, for the first time, nano-particle enhanced ILs (NEILs) have been shown to increase the heat capacity of the IL with no adverse side effects to the ILs thermal stability and, only at high nanoparticle loading, are the IL physical properties affected. An increase of volumetric heat capacity translates into a better heat transfer fluid as more energy is stored per volumetric unit in the solar concentrating section, thus more efficency in increased steam pressure. Results show that the properties of the NEIL are highly dependant on the suspended nanomaterial and careful materials selection is required to fully optimize the nanofluid properties.

  10. Preparation of Biologically Active Arabidopsis Ribosomes and Comparison with Yeast Ribosomes for Binding to a tRNA-Mimic that Enhances Translation of Plant Plus-Strand RNA Viruses

    Directory of Open Access Journals (Sweden)

    Vera Aleksey Stupina

    2013-07-01

    Full Text Available Isolation of biologically active cell components from multicellular eukaryotic organisms often poses difficult challenges such as low yields and inability to retain the integrity and functionality of the purified compound. We previously identified a cap-independent translation enhancer (3’CITE in the 3’UTR of Turnip crinkle virus (TCV that structurally mimics a tRNA and binds to yeast 80S ribosomes and 60S subunits in the P-site. Yeast ribosomes were used for these studies due to the lack of methods for isolation of plant ribosomes with high yields and integrity. To carry out studies with more natural components, a simple and efficient procedure has been developed for the isolation of large quantities of high quality ribosomes and ribosomal subunits from Arabidopsis thaliana protoplasts prepared from seed-derived callus tissue. Attempts to isolate high quality ribosomes from wheat germ, bean sprouts and evacuolated protoplasts were unsuccessful. Addition of purified Arabidopsis 80S plant ribosomes to ribosome-depleted wheat germ lysates resulted in a greater than 1200-fold enhancement in in vitro translation of a luciferase reporter construct. The TCV 3’CITE bound to ribosomes with a 3 to 7-fold higher efficiency when using plant 80S ribosomes compared with yeast ribosomes, indicating that this viral translational enhancer is adapted to interact more efficiently with host plant ribosomes.

  11. Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance.

    Science.gov (United States)

    Yue, Yuesen; Zhang, Mingcai; Zhang, Jiachang; Duan, Liusheng; Li, Zhaohu

    2011-10-01

    Drought is a major environmental stress factor that affects growth and development of plants. Abscisic acid (ABA), osmotically active compounds, and synthesis of specific proteins, such as proteins that scavenge oxygen radicals, are crucial for plants to adapt to water deficit. LOS5/ABA3 (LOS5) encodes molybdenum-cofactor sulfurase, which is a key regulator of ABA biosynthesis. We overexpressed LOS5 in tobacco using Agrobacterium-mediated transformation. Detached leaves of LOS5-overexpressing seedlings showed lower transpirational water loss than that of nontransgenic seedlings in the same period under normal conditions. When subjected to water-deficit stress, transgenic plants showed less wilting, maintained higher water content and better cellular membrane integrity, accumulated higher quantities of ABA and proline, and exhibited higher activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, as compared with control plants. Furthermore, LOS5-overexpressing plants treated with 30% polyethylene glycol showed similar performance in cellular membrane protection, ABA and proline accumulation, and activities of catalase and peroxidase to those under drought stress. Thus, overexpression of LOS5 in transgenic tobacco can enhance drought tolerance.

  12. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.

    Science.gov (United States)

    Li, Ting; Jia, Kun-Peng; Lian, Hong-Li; Yang, Xu; Li, Ling; Yang, Hong-Quan

    2014-11-07

    Anthocyanins are critical for plants. It is shown that the expression of genes encoding the key enzymes such as dihydroflavonol 4-reductase (DFR), UDP-Glc: flavonoid 3-O-glucosyltransferase (UF3GT), and leucoanthocyanidin dioxygenase (LDOX) in anthocyanin biosynthesis pathway is regulated by MYB75, a R2R3 MYB transcription factor. The production of anthocyanin is known to be promoted by jasmonic acid (JA) in light but not in darkness. The photoreceptors cryptochrome 1 (CRY1), phytochrome B (phyB), and phytochrome A (phyA) are also shown to mediate light promotion of anthocyanin accumulation, respectively, whereas their downstream factor COP1, a master negative regulator of photomorphogensis, represses anthocyanin accumulation. However, whether JA coordinates with photoreceptors in the regulation of anthocyanin accumulation is unknown. Here, we show that under far-red light, JA promotes anthocyanin accumulation in a phyA signaling pathway-dependent manner. The phyA mutant is hyposensitive to jasmonic acid analog methyl jasmonic acid (MeJA) under far-red light. The dominant mutant of MYB75, pap1-D, accumulates significantly higher levels of anthocyanin than wild type under far-red light, whereas knockdown of MYBs (MYB75, MYB90, MYB113, and MYB114) through RNAi significantly reduces MeJA promotion of anthocyanin accumulation. The phyA pap1-D double mutant shows reduced responsiveness to MeJA, similar to phyA mutant under far-red light. In darkness, a mutant allele of cop1, cop1-4, shows enhanced responsiveness to MeJA, but pap1-D mutant is barely responsive to MeJA. Upon MeJA application, the cop1-4 pap1-D double mutant accumulates considerably higher levels of anthocyanin than cop1-4 in darkness. Protein studies indicate that MYB75 protein is stabilized by white light and far-red light. Further gene expression studies suggest that MeJA promotes the expression of DFR, UF3GT, and LDOX genes in a phyA- and MYB75-dependent manner under far-red light. Our findings suggest

  13. Enhancement of compact heat exchanger fins: numerical and experimental study; Optimisation des echangeurs compacts a ailettes: etude numerique et experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.

    2003-10-01

    This work concerns plate fins compact heat exchangers. These compact devices (C > 700 m2/m3) reduce bulk and weight due to large surfaces for heat transfer. These exchangers, widely used in automotive systems, cryogenics and aeronautics, are currently studied with empirical correlations. So, this limits the evolution of fins in compact heat exchangers. We propose a numerical methodology for designing and enhancing Offset Strip Fin (OSF) geometries. Numerical models and methods have been validated to correctly predict thermohydraulics in Offset Strip Fin heat exchangers. We have validated simulations with data from the literature but also with two experimental devices made for this thesis. Local and global temperature and velocity measurements have been realised in geometries near Offset Strip Fins. Hot wire and cold wire anemometry and Laser Doppler Anemometry (LDA) have been used to obtained validation data. Finally, the validated numerical simulations have been used to enhance geometries of fins and to give innovating geometries. (author)

  14. Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films

    CERN Document Server

    Boriskina, Svetlana V; Huang, Yi; Zhou, Jiawei; Chiloyan, Vazrik; Chen, Gang

    2016-01-01

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs) on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (...

  15. The role of several heat transfer mechanisms on the enhancement of thermal conductivity in nanofluids

    Science.gov (United States)

    Machrafi, H.; Lebon, G.

    2016-09-01

    A modelling of the thermal conductivity of nanofluids based on extended irreversible thermodynamics is proposed with emphasis on the role of several coupled heat transfer mechanisms: liquid interfacial layering between nanoparticles and base fluid, particles agglomeration and Brownian motion. The relative importance of each specific mechanism on the enhancement of the effective thermal conductivity is examined. It is shown that the size of the nanoparticles and the liquid boundary layer around the particles play a determining role. For nanoparticles close to molecular range, the Brownian effect is important. At nanoparticles of the order of 1-100 nm, both agglomeration and liquid layering are influent. Agglomeration becomes the most important mechanism at nanoparticle sizes of the order of 100 nm and higher. The theoretical considerations are illustrated by three case studies: suspensions of alumina rigid spherical nanoparticles in water, ethylene glycol and a 50/50w% water/ethylene glycol mixture, respectively, good agreement with experimental data is observed.

  16. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  17. Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.

    Science.gov (United States)

    Shi, Norman Nan; Tsai, Cheng-Chia; Camino, Fernando; Bernard, Gary D; Yu, Nanfang; Wehner, Rüdiger

    2015-07-17

    Saharan silver ants, Cataglyphis bombycina, forage under extreme temperature conditions in the African desert. We show that the ants' conspicuous silvery appearance is created by a dense array of triangular hairs with two thermoregulatory effects. They enhance not only the reflectivity of the ant's body surface in the visible and near-infrared range of the spectrum, where solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter effect enables the animals to efficiently dissipate heat back to the surroundings via blackbody radiation under full daylight conditions. This biological solution for a thermoregulatory problem may lead to the development of biomimetic coatings for passive radiative cooling of objects.

  18. Enhancement of native and phosphorylated TDP-43 immunoreactivity by proteinase K treatment following autoclave heating.

    Science.gov (United States)

    Mori, Fumiaki; Tanji, Kunikazu; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2011-08-01

    TDP-43 is a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). To evaluate the effectiveness of proteinase K (PK) treatment in antigen retrieval for native and phosphorylated TDP-43 protein, we examined the temporal cortex and spinal cord from patients with sporadic ALS and FTLD-TDP and control subjects. PK treatment following heat retrieval enhanced the immunoreactivity for native TDP-43 in controls as well as for native and phosphorylated TDP-43 in ALS and FTLD-TDP. A significant number of TDP-43-positive neuropil threads were demonstrated in lesions, in which routine immunohistochemistry revealed that the predominant inclusions are cytoplasmic. This retrieval method is the best of immunohistochemical techniques for demonstrating TDP-43 pathology, especially in the neuropil.

  19. Variability of Jovian ion winds: an upper limit for enhanced Joule heating

    Directory of Open Access Journals (Sweden)

    M. B. Lystrup

    2007-05-01

    Full Text Available It has been proposed that short-timescale fluctuations about the mean electric field can significantly increase the upper atmospheric energy inputs at Jupiter, which may help to explain the high observed thermospheric temperatures. We present data from the first attempt to detect such variations in the Jovian ionosphere. Line-of-sight ionospheric velocity profiles in the Southern Jovian auroral/polar region are shown, derived from the Doppler shifting of H3+ infrared emission spectra. These data were recently obtained from the high-resolution CSHELL spectrometer at the NASA Infrared Telescope Facility. We find that there is no variability within this data set on timescales of the order of one minute and spatial scales of 640 km, putting upper limits on the timescales of fluctuations that would be needed to enhance Joule heating.

  20. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture

    CERN Document Server

    Killoran, Nathan; Plenio, Martin B

    2014-01-01

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle, and quantify its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's applicability for realistic biological structures.

  1. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture.

    Science.gov (United States)

    Killoran, N; Huelga, S F; Plenio, M B

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  2. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    Energy Technology Data Exchange (ETDEWEB)

    Killoran, N.; Huelga, S. F.; Plenio, M. B. [Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.

  3. Characteristics of thermally-enhanced bentonite grouts for geothermal heat exchanger in South Korea

    Institute of Scientific and Technical Information of China (English)

    Chulho; LEE; Kangja; LEE; Hangseok; CHOI; Hyo-Pum; CHOI

    2010-01-01

    The thermal conductivity and viscosity of bentonite grouts have been evaluated and compared each other to determine the suitability of these materials for backfilling vertical boreholes of ground heat exchangers.Seven bentonite grouts from different product sources were considered in this paper.Two additives,silica sand and graphite were added in bentonite grouts to enhance thermal performance.The bentonite grouts indicate that both the thermal conductivity and the viscosity increase with the content of silica sand and graphite.Therefore,it is recommended to select cautiously the amount of silica sand and graphite considering not only thermal conductivity but also viscosity for the optimum condition of backfilling.Finally,the effect of salinity in the pore water on the change of swelling potential of the bentonite-based grouts has been quantitatively evaluated to show the feasibility of bentonite grouts in the coastal area.

  4. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  5. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    Science.gov (United States)

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system.

  6. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  7. Using solar heat to enhance waste-heat use; Solarthermische Abwaermenutzung; Aufwertung von Abwaerme mittels Solarthermie zur Erzeugung hochwertiger Prozessenergie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [BMG Engineering AG, Schlieren (Switzerland); Luzzi, A.; Marty, H. [HSR, Hochschule fuer Technik, SPF Institut fuer Solartechnik, Rapperswil (Switzerland)

    2008-12-15

    This final report for Swiss Federal Office of Energy (SFOE) presents the work done in a project involving the use of solar heat to enhance the use of waste heat at a chemical plant in Nyon, Switzerland. On the basis of a study carried out in 2006/2007, which looked at the reduction of process energy demand of a production site where an agent is produced in batch operation, possibilities for the recovery of waste heat were identified. The relatively low temperatures of the existing waste heat flows have, however, complicated its efficient use. This reflects a problem with waste heat use in industrial processes that can often be observed. Due to the sunny location in Nyon, a concept using solar energy to increase the temperature level of this waste heat has been developed. The objective of this analysis was the technical and economical assessment of such an installation and its transferability to other sites. Variants are presented and their economic viability is discussed.

  8. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.

    Science.gov (United States)

    Zinta, Gaurav; AbdElgawad, Hamada; Domagalska, Malgorzata A; Vergauwen, Lucia; Knapen, Dries; Nijs, Ivan; Janssens, Ivan A; Beemster, Gerrit T S; Asard, Han

    2014-12-01

    Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.

  9. DETERMINATION OF THE EFFECTIVE RADIAL THERMAL DIFFUSIVITY FOR EVALUATING ENHANCED HEAT TRANSFER IN TUBES UNDER NON-NEWTONIAN LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    A. O. Morais

    2015-06-01

    Full Text Available AbstractEnhanced heat transfer in tubes under laminar flow conditions can be found in coils or corrugated tubes or in the presence of high wall relative roughness, curves, pipe fittings or mechanical vibration. Modeling these cases can be complex because of the induced secondary flow. A modification of the Graetz problem for non-Newtonian power-law flow is proposed to take into account the augmented heat transfer by the introduction of an effective radial thermal diffusivity. The induced mixing was modeled as an increased radial heat transfer in a straight tube. Three experiments using a coiled tube and a tubular heat exchanger with high relative wall roughness are presented in order to show how this parameter can be obtained. Results were successfully correlated with Reynolds number. This approach can be useful for modeling laminar flow reactors (LFR and tubular heat exchangers available in the chemical and food industries.

  10. Experimental investigation of convective heat transfer enhancement using alumina/water and copper oxide/water nanofluids

    Directory of Open Access Journals (Sweden)

    Mangrulkar Chidanand K.

    2016-01-01

    Full Text Available The nanofluids are widely used for heat transfer applications in the various engineering applications. The nanoparticles dispersed uniformly in the base fluid on proper mixing. In the present study, Al2O3 and CuO nanoparticles were selected and the changes in the heat transfer coefficient were investigated in the complete laminar and discrete points of transition fluid flow through a copper tube with constant heat flux. The heat transfer coefficient was investigated at different loading of Al2O3 and CuO nanopowders ranging from 0.1% to 0.5% of volume concentration in each case for the laminar and transition fluid flow zones, which is then compared with the distilled water as a plain base fluid. It is found that the optimum enhancement in heat transfer is observed at relatively lower volume fraction of nanoparticles ranging between 0.2 to 0.3%.

  11. Enhancement of Heat and Mass Transfer in Mechanically Contstrained Ultra Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Drost; Jim Liburdy; Brian Paul; Richard Peterson

    2005-01-01

    Oregon State University (OSU) and the Pacific Northwest National Laboratory (PNNL) were funded by the U.S. Department of Energy to conduct research focused on resolving the key technical issues that limited the deployment of efficient and extremely compact microtechnology based heat actuated absorption heat pumps and gas absorbers. Success in demonstrating these technologies will reduce the main barriers to the deployment of a technology that can significantly reduce energy consumption in the building, automotive and industrial sectors while providing a technology that can improve our ability to sequester CO{sub 2}. The proposed research cost $939,477. $539,477 of the proposed amount funded research conducted at OSU while the balance ($400,000) was used at PNNL. The project lasted 42 months and started in April 2001. Recent developments at the Pacific Northwest National Laboratory and Oregon State University suggest that the performance of absorption and desorption systems can be significantly enhanced by the use of an ultra-thin film gas/liquid contactor. This device employs microtechnology-based structures to mechanically constrain the gas/liquid interface. This technology can be used to form very thin liquid films with a film thickness less then 100 microns while still allowing gas/liquid contact. When the resistance to mass transfer in gas desorption and absorption is dominated by diffusion in the liquid phase the use of extremely thin films (<100 microns) for desorption and absorption can radically reduce the size of a gas desorber or absorber. The development of compact absorbers and desorbers enables the deployment of small heat-actuated absorption heat pumps for distributed space heating and cooling applications, heat-actuated automotive air conditioning, manportable cooling, gas absorption units for the chemical process industry and the development of high capacity CO{sub 2} absorption devices for CO{sub 2} collection and sequestration. The energy

  12. Enhancement of Nucleate Boiling Heat Flux on Macro/Micro-Structured Surfaces Cooled by Multiple Impinging Jets

    Science.gov (United States)

    Kugler, Scott Lee

    1997-01-01

    An experimental investigation of nucleate boiling heat transfer from modified surfaces cooled by multiple in-line impinging circular jets is reported and found to agree with single jet results. A copper block is heated from the back by two electrical arcs, and cooled on the opposite side by three identical liquid jets of distilled water at subcoolings of 25 C 50 C and 77 C and Freon 113 at 24 C subcooling. Liquid flow rates are held constant at 5, 10, and 15 GPH for each of the three jets with jet velocities ranging from 1.4 m/s to 1 1.2 m/s and jet diameters from 0.95 mm to 2.2 mm. To increase the maximum heat flux (CHF) and heat removal rate, the boiling surface was modified by both macro and micro enhancements. Macro modification consists of machined radial grooves in the boiling surface arranged in an optimally designed pattern to allow better liquid distribution along the surface. These grooves also reduce splashing of liquid droplets, and provide 'channels' to sweep away bubbles. Micro modification was achieved by flame spraying metal powder on the boiling surface, creating a porous, sintered surface. With the addition of both micro and macro structured enhancements, maximum heat flux and nucleate boiling can be enhanced by more than 200%. Examination of each surface modification separately and together indicates that at lower superheats, the micro structure provides the enhanced heat transfer by providing more nucleation sites, while for higher superheats the macro structure allows better liquid distribution and bubble removal. A correlation is presented to account for liquid subcoolings and surface enhancements, in addition to the geometrical and fluid properties previously reported in the literature.

  13. Reference: 720 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ang et al. 2008 Mar. Plant Physiol. 146(3):1231-41. The 70-kD heat shock proteins (Hsp70s) have been shown to be important...from Deltacphsc70-1 seeds was further impaired, indicating that cpHsc70-1 is important for thermotolerance o...s. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for therm

  14. Heat Transfer Enhancement Using CuO Nanofluids -The Effect of Sonication Time on the Paradoxical Behaviour.

    Directory of Open Access Journals (Sweden)

    Ramis M.K

    2012-07-01

    Full Text Available Usual heat transfer fluids with suspended ultra fine particles of nanometer size are namedas nanofluids, which have opened a new dimension in heat transfer processes. The recentinvestigations confirm the potential of nanofluids in enhancing heat transfer required forpresent age technology. The present study aims at a critical analysis of the apparently paradoxical behaviour of heat transfer with a special focus on the effect of sonication time on the heat transfer behaviour of nanofluids. To this end CuO nanofluids of different concentrations (0.05%, 0.1%, 0.15%, 0.2% are prepared at various sonication times (2, 3 and 4 hours and their effects on theheat transfer characteristics are investigated. Accordingly, an unsteady state heat transfer analysis of a heated vertical cylinder cooled in the aforesaid aCuO nanofluid is carried out.Investigation shows that the sonication time greatly influences the heat transfer performance of the nanofluids and this influence is affected by thenanoparticle concentration. However a solid conclusive remark as an increasing or decreasing trend could not be observed during these studies. More research needed in future to determine the exactness Sonication time effect.

  15. Reference: 457 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n et al. 2006 Oct. Plant J. 48(2):238-48. The Arabidopsis BAP1 gene encodes a small protein with a C2-like domain. Here...er and is associated with membranes in vivo. We identify multiple roles of BAP1 in negatively re...gulating defense responses and cell death in Arabidopsis thaliana. The loss of BAP1 function ...confers an enhanced disease resistance to virulent bacterial and oomycete pathogens. The enhanced resistance... is mediated by salicylic acid, PAD4 and a disease resistance gene SNC1. BAP1 is

  16. Heat-transport enhancement in rotating turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2016-04-01

    We present new Nusselt-number (Nu) measurements for slowly rotating turbulent thermal convection in cylindrical samples with aspect ratio Γ =1.00 and provide a comprehensive correlation of all available data for that Γ . In the experiment compressed gasses (nitrogen and sulfur hexafluride) as well as the fluorocarbon C6F14 (3M Fluorinert FC72) and isopropanol were used as the convecting fluids. The data span the Prandtl-number (Pr) range 0.74 heat transport Nur(1 /Ro ) ≡Nu (1 /Ro ) /Nu (0 ) as a function of the dimensionless inverse Rossby number 1 /Ro at constant Ra is reported. For Pr ≈0.74 and the smallest Ra =3.6 ×108 the maximum enhancement Nur ,max-1 due to rotation is about 0.02. With increasing Ra, Nur ,max-1 decreased further, and for Ra ≳2 ×109 heat-transport enhancement was no longer observed. For larger Pr the dependence of Nur on 1/Ro is qualitatively similar for all Pr. As noted before, there is a very small increase of Nur for small 1/Ro, followed by a decrease by a percent or so, before, at a critical value 1 /Roc , a sharp transition to enhancement by Ekman pumping takes place. While the data revealed no dependence of 1 /Roc on Ra, 1 /Roc decreased with increasing Pr. This dependence could be described by a power law with an exponent α ≃-0.41 . Power-law dependencies on Pr and Ra could be used to describe the slope SRo+=∂ Nur/∂ (1 /Ro ) just above 1 /Roc . The Pr and Ra exponents were β1=-0.16 ±0.08 and β2=-0.04 ±0.06 , respectively. Further increase of 1/Ro led to further increase of Nur until it reached a maximum value Nur ,max. Beyond the maximum, the Taylor-Proudman (TP) effect, which is expected to lead to reduced vertical fluid transport in the bulk region, lowered Nur. Nur ,max was largest for the largest Pr. For Pr =28.9 , for example, we measured an increase of the heat transport by up to 40% (Nur-1 =0.40 ) for the smallest Ra =2.2

  17. On the Fully-Developed Heat Transfer Enhancing Flow Field in Sinusoidally, Spirally Corrugated Tubes Using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    A numerical study has been carried out to investigate heat transfer enhancing flow field in 28 geometrically different sinusoidally, spirally corrugated tubes. To vary the corrugation, the height of corrugation e/De/D and the length between two successive corrugated sections p/Dp/D are varied in ...

  18. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Directory of Open Access Journals (Sweden)

    Fauziah Abu Bakar

    2016-04-01

    Full Text Available Bacterial toxin-antitoxin (TA systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.

  19. AN EXPERIMENTAL STUDY FOR HEAT TRANSFER ENHANCEMENT BY LAMINAR FORCED CONVECTION FROM HORIZONTAL AND INCLINED TUBE HEATED WITH CONSTANT HEAT FLUX, USING TWO TYPES OF POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Thamir K. Jassem

    2013-05-01

    Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution  will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at  .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase.  It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.  

  20. Elongating axial conduction path design to enhance performance of cryogeinc compact pche (printed circuit heat exchanger)

    Science.gov (United States)

    Baek, Seungwhan; Kim, Jinhyuck; Hwang, Gyuwan; Jeong, Sangkwon

    2012-06-01

    PCHE (Printed Circuit Heat Exchanger) is one of the promising cryogenic compact heat exchangers due to its compactness, high NTU and robustness. The essential procedure for fabricating PCHE is chemical etching and diffusion bonding. These technologies can create sufficiently large heat transfer area for a heat exchanger with numerous micro channels (Dhheat exchanger when it is operated with a large temperature difference. Elongating the heat conduction path is implemented to reduce axial conduction in PCHE in this study. Two PCHEs with identical channel configuration are fabricated, for comparison, one of which is modified to have longer heat conduction path. Both heat exchangers are tested in cryogenic environment (300~70 K), and the modified PCHE shows better performance with significantly reduced axial conduction. The experimental results indicate that the modification of the heat conduction path is effective to increase the performance of PCHE. This paper discusses and analyses the thermal characteristics of the modified PCHE obtained experimentally.

  1. Enhancement of Heat Transfer in a Liquid Metal Flow past a Thermally Conducting and Oscillating Infinite Flat Plate

    Directory of Open Access Journals (Sweden)

    Puvaneswari Puvaneswari

    2016-01-01

    Full Text Available The effect of conjugation on the enhancement of heat transfer in a liquid metal flow past a thermally conducting and sinusoidally oscillating infinite flat plate, when a constant temperature gradient is superimposed on the fluid, is investigated. The plate is made up of the materials compatible with the liquid metals used and is considered to be of finite thickness. Analytical solutions for the velocity and the temperature of the fluid and the solid are obtained. The effects of thermal conductivity and the thickness of the plate on the total time averaged heat flux transported and the thermal boundary layer thickness are investigated in detail. It is found that the effects of wall thickness and wall thermal conductivity on the heat flux transported depend on their effects on the transverse temperature gradient at any frequency. The optimum value of wall thickness at which the net heat flux transported attains the maximum value, for each fluid and for each wall material under consideration, is reported. A maximum increase of 46.14 % in the heat flux transported can be achieved by optimizing the wall thickness. A maximum convective heat flux of 1.87 × 108W/m2 is achieved using Na with AISI 316 wall. All the results obtained have been compared with the experimental and analytical results reported in the literature and are found to be in good agreement. It is believed that the new insights gained will be of significant use while designing liquid metal heat transfer systems.

  2. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.

    Science.gov (United States)

    Loh, Byoung-Gook; Hyun, Sinjae; Ro, Paul I; Kleinstreuer, Clement

    2002-02-01

    Acoustic streaming induced by ultrasonic flexural vibrations and the associated convection enhancement are investigated. Acoustic streaming pattern, streaming velocity, and associated heat transfer characteristics are experimentally observed. Moreover, analytical analysis based on Nyborg's formulation is performed along with computational fluid dynamics (CFD) simulation using a numerical solver CFX 4.3. Two distinctive acoustic streaming patterns in half-wavelength of the flexural vibrations are observed, which agree well with the theory. However, acoustic streaming velocities obtained from CFD simulation, based on the incompressible flow assumption, exceed the theoretically estimated velocity by a factor ranging from 10 to 100, depending upon the location along the beam. Both CFD simulation and analytical analysis reveal that the acoustic streaming velocity is proportional to the square of the vibration amplitude and the wavelength of the vibrating beam that decreases with the excitation frequency. It is observed that the streaming velocity decreases with the excitation frequency. Also, with an open-ended channel, a substantial increase in streaming velocity is observed from CFD simulations. Using acoustic streaming, a temperature drop of 40 degrees C with a vibration amplitude of 25 microm at 28.4 kHz is experimentally achieved.

  3. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  4. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Glazebrook, J.; Zhu, T.; Chang, H.-S.; Loon, L.C. van; Pieterse, C.M.J.

    2004-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicy

  5. Arabidopsis CDS blastp result: AK101133 [KOME

    Lifescience Database Archive (English)

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  6. Arabidopsis CDS blastp result: AK119645 [KOME

    Lifescience Database Archive (English)

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  7. A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Valle Estela M

    2009-10-01

    Full Text Available Abstract Background Transcription initiation by RNA polymerase II is unidirectional from most genes. In plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functional analyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB and a protein of unknown function (PUF, respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes, they are part of the plant antioxidant defence and also act as chaperons. In this study, the transcriptional activity of a small intergenic region (351 bp shared by At5g06290 and At5g06280 in Arabidopsis thaliana was characterized. Results Activity of the intergenic region in both orientations was analyzed by driving the β-glucuronidase (GUS reporter gene during the development and growth of Arabidopsis plants under physiological and stressful conditions. Results have shown that this region drives expression either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter in both orientations has shown similar down-regulation of GUS expression under low temperatures and other stress conditions such as mannitol, oxidative stress, or fungal elicitor. Conclusion The results from this study account for the first evidence of an intergenic region that, in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic region that drives expression of a gene whose product is involved in the chloroplast antioxidant defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the heat stress defensive system

  8. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition

    Science.gov (United States)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen

    2012-10-01

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 tube.

  9. Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer

    Institute of Scientific and Technical Information of China (English)

    XU Jia; YANG MingJie; XU JinLiang; JI XianBing

    2012-01-01

    Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolytes was adopted to fabricate three types of TiO2 NTAs distinguished by their anodization time.Compared to the bare Ti surface,the incipient boiling wall superheat on the TiO2 NTAs was decreased by 11 K.Both the critical heat flux and heat transfer coefficient of pool boiling on the TiO2 NTAs were higher than those from boiling on a bare Ti surface.The measured maximum critical heat flux and heat transfer coefficient values were 186.7 W/cm2 and 6.22 W/cm2K,respectively.Different performances for the enhancement of heat transfer by the three types of TiO2 NTAs were attributed to the different degrees of deformation in the nanostructure during boiling.Long-term performance of the nanomaterial-coated surfaces for enhanced pool boiling showed degradation of the TiO2 NTAs prepared with an anodization time of 3 hours.

  10. Arabidopsis hybrid speciation processes.

    Science.gov (United States)

    Schmickl, Roswitha; Koch, Marcus A

    2011-08-23

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.

  11. Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based on field synergy principle

    Institute of Scientific and Technical Information of China (English)

    Wenquan TAO; Junmei WU

    2008-01-01

    3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the syn-ergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition.

  12. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.

    Science.gov (United States)

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.

  13. CFD study of forced convective heat transfer enhancement in a 90° bend duct of square cross section using nanofluid

    Indian Academy of Sciences (India)

    ASHOK K BARIK; PRASANTA K SATAPATHY; SUDHANSU S SAHOO

    2016-07-01

    In this paper, the forced convective heat transfer enhancement with nanofluids in a 90° pipe bend has been presented. Numerical investigation is carried out for the turbulent flow through the pipe employing finite volume method. The governing differential equations are discretized using hexahedral cells, and theresulting algebraic equations are solved using Commercial solver Fluent 6.3. In order to close the time averaged Navier–Stokes equations, the two-equation k–e turbulence model with a standard wall function have been used.The duct Reynolds number is varied in the range of 2,500–6,000. It is observed that the heat transfer is enhanced significantly by varying the volume fraction of the nanofluid. It is also found that the heat transfer is increased with Reynolds number. A strong secondary flow is observed due to the presence of the wall. Turbulent kinetic energy near outer wall is found to be higher than the inner wall of the bend. A comparative assessment for the heat transfer enhancement with different types of nanofluids is also presented. The computed results of areaweighted average Nusselt numbers are validated with some of the existing literature

  14. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  15. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  16. Short Time-Scale Enhancements to the Global Thermosphere Temperature and Nitric Oxide Content Resulting From Ionospheric Joule Heating

    Science.gov (United States)

    Weimer, D. R.; Mlynczak, M. G.; Hunt, L. A.; Sutton, E. K.

    2014-12-01

    The total Joule heating in the polar ionosphere can be derived from an empirical model of the electric fields and currents, using input measurements of the solar wind velocity and interplanetary magnetic field (IMF). In the thermosphere, measurements of the neutral density from accelerometers on the CHAMP and GRACE satellites are used to derive exospheric temperatures, showing that enhanced ionospheric energy dissipation produces elevated temperatures with little delay.Using the total ionospheric heating, changes in the global mean exosphere temperature as a function of time can be calculated with a simple differential equation. The results compare very well with the CHAMP and GRACE measurement. A critical part of the calculation is the rate at which the thermosphere cools after the ionospheric heating is reduced. It had been noted previously that events with significant levels of heating subsequently cool at a faster rate, and this cooling was attributed to enhanced nitric oxide emissions. This correlation with nitric oxide has been confirmed with very high correlations with measurements of nitric oxide emissions in the thermosphere, from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. These measurements were used in a recent improvement in the equations that calculate the thermosphere temperature. The global nitric oxide cooling rates are included in this calculation, and the predicted levels of nitric oxide, derived from the ionosphere heating model, match the SABER measurements very well, having correlation coefficients on the order of 0.9.These calculations are used to govern the sorting of measurements CHAMP and GRACE measurements, on the basis of the global temperature enhancements due to Joule heating, as well as various solar indices, and season. Global maps of the exospheric temperature are produced from these sorted data.

  17. Investigation of enhancement of steam condensation heat transfer on finned tubes with porous drainage strips

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xijuan; Ma Tongze; Zhang Zhengfang

    1999-07-01

    Condensation of steam on horizontal finned tube with porous drainage strip was investigated experimentally and theoretically. Composite metal screens were used as porous drainage strip. Distilled water was taken in the experiments as working fluid. The experiments were carried out to find the structure effects of composite screen drainage strip on the condensation heat transfer on finned tubes with fin spacing of 0.5mm. Influences of the mesh number of both outer and inner layers and of length and thickness of the drainage strip were investigated. The outer layers of the screens have the mesh numbers of 100, 150, 185 and 220, which lead to different effective pore radius; the inner layers have the mesh numbers of 20, 30 and 40, which lead to different permeability. Strip lengths are 15mm, 20mm and 30mm, while the thickness is 2mm, 4mm and 6mm. Experimental results show that the structure parameters of the porous drainage strip strongly influence condensation on the finned tube. A porous strip having small effective pore radius on the outer layer as well as large permeability, reasonably large length and thickness will lead to excellent performance. In the tested ranges, for steam condensation on a 0.5mm spacing finned tube, the optimum structure of a composite screen drainage strip is of 150 mesh outer layer screen, 20 mesh inner layer screen, 30mm long and 4mm thick. The enhanced condensation heat transfer coefficients are equivalent to 1.15{approximately}1.74 times that of the finned tube and 2.08{approximately}3.08 times that of the plain tube. A new prediction model of condensation on finned tube with porous drainage strip was established. The condensate flow in the interfin grooves and in the porous strip was treated as flow through two kinds of porous medium with different structures. The momentum equation of single phase flow in porous medium was used to solve the condensate flow. The equation was analyzed and several terms were neglected because of their

  18. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  19. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response.

  20. Enhancement of the immune response against Salmonella infection of mice by heat-killed multispecies combinations of lactic acid bacteria.

    Science.gov (United States)

    Chen, Chih-Yuan; Tsen, Hau-Yang; Lin, Chun-Li; Lin, Chien-Ku; Chuang, Li-Tsen; Chen, Chin-Shuh; Chiang, Yu-Cheng

    2013-11-01

    Heat-killed lactic acid bacteria (LAB) has advantages over live LAB in that it has a long shelf-life and is therefore easy to store and transport. From four LAB strains selected by immunomodulatory activity and adherent properties, we prepared the heat-killed multispecies combination of LAB (MLAB) and the cell walls from MLAB under two conditions (100 °C for 30 min and 121 °C for 15 min). Different effects on the adherent properties of these four LAB strains were observed, depending on the heating conditions. With mouse macrophage cells, the two heat-killed MLABs (HMLABs) showed significantly higher induction activities on the production of interleukin 12 (IL-12) than their individual strains did. Heat-killed MLABs and cell-wall preparations were able to reduce the Salmonella invasion of Caco-2 and mouse macrophage cells. Feeding mice with HMLAB could inhibit the Salmonella invasion of mice significantly. For these mice, the expression level of pro-inflammatory cytokines, such as TNF-α and IL-6, in mouse serum was reduced while that of the anti-inflammatory cytokine, i.e. IL-10, was enhanced. The HMLABs developed in this study showed higher protective effect against Salmonella invasion either of Caco-2 cells or of mice, relative to the heat-killed lactobacilli, which consisted of Lactobacillus acidophilus strains selected at random. In conclusion, the HMLABs were potentially useful for the protection of mice against Salmonella infection and the induced inflammation.

  1. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  2. An experimental study of enhanced heat transfer in rectangular PCM thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Stritih, U. [University of Ljubljana (Slovenia). Faculty of Mechanical Engineering

    2004-06-01

    The heat-transfer characteristics of a latent-heat storage unit with a finned surface have been experimentally studied in terms of the solidification and melting processes by comparing them with those of a heat-storage unit with a plain surface. Paraffin with a melting point of 30{sup o}C was used in the investigations because it is appropriate for thermal storage applications in buildings. Time-based variations of the temperature distributions and heat flux are explained from the results of observations of the melting and the solidification layers. The dimensionless Nusselt number was calculated as a function of the Rayleigh number for natural convection in the paraffin for both the melting and the solidification processes. The effectiveness of the fins was calculated from the quotient of the heat flux with fins and the heat flux without fins. (author)

  3. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2005-02-28

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  4. Enhanced Heat Transfer Tubes for Absorber of Absorption Chiller/Heater

    Science.gov (United States)

    Furukawa, Masahiro; Sasaki, Naoe; Kaneko, Toshiyuki; Nosetani, Tadashi

    For the purpose of development of high performance absorption chiller/heater utilizing lithium bromide aqueous solution as working fluid, it is the most effective to improve the performance of absorber with the largest heat transfer area of the four heat exchangers. This paper introduces two kinds of double fluted tubes for the absorber of absorption chiller/heater. Arm tube and floral tube have about 40% higter heat transfer performance than the plain tube conventionally used in absorber. The former is manufactured by double drawbench process, while the latter by single drawbench process. Therefore, floral tube is expected to realize both high heat transfer perfoemance and low cost.

  5. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2.

    Science.gov (United States)

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B

    2016-05-23

    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  6. Comprehensive Analysis of Rice Laccase Gene (OsLAC) Family and Ectopic Expression of OsLAC10 Enhances Tolerance to Copper Stress in Arabidopsis

    Science.gov (United States)

    Liu, Qingquan; Luo, Le; Wang, Xiaoxiao; Shen, Zhenguo; Zheng, Luqing

    2017-01-01

    Laccases are encoded by a multigene family and widely distributed in plant genomes where they play roles oxidizing monolignols to produce higher-order lignin involved in plant development and stress responses. We identified 30 laccase genes (OsLACs) from rice, which can be divided into five subfamilies, mostly expressed during early development of the endosperm, growing roots, and stems. OsLACs can be induced by hormones, salt, drought, and heavy metals stresses. The expression level of OsLAC10 increased 1200-fold after treatment with 20 μM Cu for 12 h. The laccase activities of OsLAC10 were confirmed in an Escherichia coli expression system. Lignin accumulation increased in the roots of Arabidopsis over-expressing OsLAC10 (OsLAC10-OX) compared to wild-type controls. After growth on 1/2 Murashige and Skoog (MS) medium containing toxic levels of Cu for seven days, roots of the OsLAC10-OX lines were significantly longer than those of the wild type. Compared to control plants, the Cu concentration decreased significantly in roots of the OsLAC10-OX line under hydroponic conditions. These results provided insights into the evolutionary expansion and functional divergence of OsLAC family. In addition, OsLAC10 is likely involved in lignin biosynthesis, and reduces the uptake of Cu into roots required for Arabidopsis to develop tolerance to Cu. PMID:28146098

  7. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study.

    Science.gov (United States)

    Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang

    2015-03-01

    This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task.

  8. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    Science.gov (United States)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2016-12-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  9. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2005-06-27

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  10. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2005-11-23

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in crossrolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to

  11. Indirect involvement of armorphous carbon layer on convective heat transfer enhancement using carbon nanofibers

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, L.; Meer, van der T.H.

    2015-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nanostructures was achieved using catalytic

  12. Enhancement of heat transfer in condensation of refrigerant vapor on horizontal finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, O.P.; Khizhnyakov, S.V. (Northwestern Polytechnic Inst. (SU))

    1991-01-01

    This paper reports on the technique for predicting the heat transfer coefficients in film condensation of Freons on horizontal tubes with different fin geometries that has been improved. The suggested technique allows for the spatial orientation of the different parts of the heat transfer area, the capillary contraction of condensate, and its holdup on the bottom zone of the horizontal tube.

  13. Enhancement of urban heat load through social inequalities on an example of a fictional city King's Landing

    Science.gov (United States)

    Žuvela-Aloise, M.

    2017-03-01

    The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.

  14. Enhancement of urban heat load through social inequalities on an example of a fictional city King's Landing

    Science.gov (United States)

    Žuvela-Aloise, M.

    2016-08-01

    The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.

  15. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  16. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids

    Science.gov (United States)

    Amina, Benabderrahmane; Miloud, Aminallah; Samir, Laouedj; Abdelylah, Benazza; Solano, J. P.

    2016-10-01

    In this paper, we present a three dimensional numerical investigation of heat transfer in a parabolic trough collector receiver with longitudinal fins using different kinds of nanofluid, with an operational temperature of 573 K and nanoparticle concentration of 1% in volume. The outer surface of the absorber receives a non-uniform heat flux, which is obtained by using the Monte Carlo ray tracing technique. The numerical results are contrasted with empirical results available in the open literature. A significant improvement of heat transfer is derived when the Reynolds number varies in the range 2.57×104 ≤ Re ≤ 2.57×105, the tube-side Nusselt number increases from 1.3 to 1.8 times, also the metallic nanoparticles improve heat transfer greatly than other nanoparticles, combining both mechanisms provides better heat transfer and higher thermo-hydraulic performance.

  17. Synergetic Surface and Chemical Durability Study of the Aesthetically Enhanced Natural Quartz by Heat Treatment

    Science.gov (United States)

    Sahoo, Rakesh K.; Rout, Prajna P.; Singh, Saroj K.; Mishra, Barada K.; Mohapatra, Birendra K.

    2017-01-01

    The change in surface behavior of natural quartz stone before and after heat treatment with metal oxides such as: cobalt oxide (Co3O4) and copper oxide (Cu2O) under vacuum and open atmosphere has been investigated. The surface feature, bulk density and hardness value of quartz changed after heat treatment, converting to a high value product. Difference in crystallinity of quartz, pre- and post-heat treatment was obtained through X-ray diffraction (XRD) study. The electron probe microanalysis results clearly explicated the diffusion of metal ion in quartz matrix exposed under vacuum atmosphere but as coating on the surface under open atmosphere. The structural transformation of quartz after heat treatment has been observed from the XRD data and well corroborated with the nanoindentation results. Durability of such quartz to chemical hazardous environment was observed. Thus, this communication demonstrates the change in physical and chemical characteristics of natural quartz stone after heat treatment under different atmosphere.

  18. Synergetic Surface and Chemical Durability Study of the Aesthetically Enhanced Natural Quartz by Heat Treatment

    Science.gov (United States)

    Sahoo, Rakesh K.; Rout, Prajna P.; Singh, Saroj K.; Mishra, Barada K.; Mohapatra, Birendra K.

    2017-03-01

    The change in surface behavior of natural quartz stone before and after heat treatment with metal oxides such as: cobalt oxide (Co3O4) and copper oxide (Cu2O) under vacuum and open atmosphere has been investigated. The surface feature, bulk density and hardness value of quartz changed after heat treatment, converting to a high value product. Difference in crystallinity of quartz, pre- and post-heat treatment was obtained through X-ray diffraction (XRD) study. The electron probe microanalysis results clearly explicated the diffusion of metal ion in quartz matrix exposed under vacuum atmosphere but as coating on the surface under open atmosphere. The structural transformation of quartz after heat treatment has been observed from the XRD data and well corroborated with the nanoindentation results. Durability of such quartz to chemical hazardous environment was observed. Thus, this communication demonstrates the change in physical and chemical characteristics of natural quartz stone after heat treatment under different atmosphere.

  19. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  20. Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing the Heat Transfer

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2016-03-01

    Full Text Available The paper presents the results of a transient numerical investigation of the melting and solidification process of sodium nitrate (NaNO3, which is used as phase change material. For enhancing the heat transfer to the sodium nitrate an aluminum wire matrix is used. The numerical simulation of the melting and solidification process was done with the enthalpy-porosity approach. The numerical analysis of the melting process has shown that apart from the first period of the charging process, where heat conduction is the main heat transfer mechanism, natural convection is the dominant heat transfer mechanism. The numerical investigation of the solidification process has shown that the dominant heat transfer mechanism is heat conduction. Based on the numerical results, the discharging process has been slower than the charging process. The performance of the charged and discharged power has shown that the wire matrix is an alternative method to enhance the heat transfer into the phase change material.

  1. Experimental and Numerical Study on Heat Transfer Enhancement of a Rectangular Channel with Discontinuous Crossed Ribs and Grooves

    Institute of Scientific and Technical Information of China (English)

    唐新宜; 朱冬生

    2012-01-01

    Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investigated the overall heat transfer performance and friction factor in ribbed and ribbed-grooved channels with rib angle of 30°.The experimental results show that the overall thermo-hydraulic performance for ribbed-grooved channel is increased by 10%-13.6% when compared to ribbed channel.The investigation on the effects of different rib angles and rib pitches on heat transfer characteristics and friction factor in ribbed-grooved channel was carried out using Fluent with SST(shear-stress transport) k-ω turbulence model.The numerical results indicate that the case for rib angle of 45° shows the best overall thermo-hydraulic performance,about 18%-36% higher than the case for rib angle of 0°.In addition,the flow patterns and local heat transfer characteristics for ribbed and ribbed-grooved channels based on the numerical simulation were also analyzed to reveal the mechanism of heat transfer enhancement.

  2. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

    Science.gov (United States)

    Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman

    2013-01-01

    A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.

  3. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-08-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  4. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-03-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  5. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-05-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  6. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2004-11-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  7. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each

  8. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2006-04-10

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National

  9. Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces

    Science.gov (United States)

    Kralik, Tomas; Hanzelka, Pavel; Zobac, Martin; Musilova, Vera; Fort, Tomas; Horak, Michal

    2012-11-01

    Near-field heat transfer across a gap between plane-parallel tungsten layers in vacuo was studied experimentally with the temperature of the cold sample near 5 K and the temperature of the hot sample in the range 10-40 K as a function of the gap size d. At gaps smaller than one-third of the peak wavelength λm given by Wien’s displacement law, the near-field effect was observed. In comparison with blackbody radiation, hundred times higher values of heat flux were achieved at d≈1μm. Heat flux normalized to the radiative power transferred between black surfaces showed scaling (λm/d)n, where n≈2.6. This Letter describes the results of experiment and a comparison with present theory over 4 orders of magnitude of heat flux.

  10. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis.

    Science.gov (United States)

    Zhu, Lin; Guo, Jiansheng; Zhu, Jian; Zhou, Cheng

    2014-02-01

    Drought can activate several stress responses in plants, such as stomatal closure, accumulation of cuticular wax and ascorbic acid (AsA), which have been correlated with improvement of drought tolerance. In this study, a novel MYB gene, designed as EsWAX1, was isolated and characterized from Eutrema salsugineum. EsWAX1 contained a full-length open reading frame (ORF) of 1068 bp, which encoding 355 amino acids. Transcript levels of EsWAX1 were quickly inducible by drought stress and ABA treatment, indicating that EsWAX1 may act as a positive regulator in response to drought stress. Ectopic expression of EsWAX1 increased accumulation of cuticular wax via modulating the expression of several wax-related genes, such as CER1, KCS2 and KCR1. Scanning electron microscopy further revealed higher densities of wax crystalline structures on the adaxial surfaces of leaves in transgenic Arabidopsis plants. In addition, the expression of several AsA biosynthetic genes (VTC1, GLDH and MIOX4) was significantly up-regulated in EsWAX1-overexpressing lines and these transgenic plants have approximately 23-27% more total AsA content than WT plants. However, the high-level expression of EsWAX1 severely disrupted plant normal growth and development. To reduce negative effects of EsWAX1 over-expression on plant growth, we generated transgenic Arabidopsis plants expressing EsWAX1 driven by the stress-inducible RD29A promoter. Our data indicated the RD29A::EsWAX1 transgenic plants had greater tolerance to drought stress than wild-type plants. Taken together, the EsWAX1 gene is a potential regulator that may be utilized to improve plant drought tolerance by genetic manipulation.

  11. Convective Heat Transfer Enhancement Using Alternating Magnetic Fields and Particle Laden Fluid Applied to the Microscale

    Science.gov (United States)

    2010-05-11

    oil based suspension in the miniaturized tests. 45 5. Endnotes 1 Incropera ...Microchannels,” Proceedings of ASME Thermal Engineering Summer Heat Transfer Conference. 10 Incropera , F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A.S...Pogrebnyak,, 2002, “Effect of coarse particles on the heat transfer in a particle-laden turbulent boundary layer,” Int. J. Multiph. Flow, 28,12. Incropera

  12. Enhanced high intensity focused ultrasound heat deposition for more efficient hemostasis

    Science.gov (United States)

    Labuda, Cecille Pemberton

    High intensity focused ultrasound (HIFU) is currently being developed for hemorrhage control since it provides rapid energy deposition in the form of heat in the HIFU focal region. When the HIFU focus is targeted on soft tissue wounds, the resulting elevation of tissue temperature cauterizes the tissues thus stopping the bleeding. If HIFU is targeted near blood vessels with millimeter-range diameter, the rate of heat deposition is limited by loss of heat to the blood flow. Maximizing the local heat deposition is important for the achievement of HIFU-induced hemorrhage control, or "hemostasis", near large vessels. In this study, the effect of a fiber device on the heat deposition in the HIFU focal region is investigated in tissue-mimicking flow phantoms with liquid albumen as the heat-sensitive denaturing flow fluid. The effect of the embedded fiber on albumen coagulation in the flow phantom is compared to the degree and rate of albumen coagulation when no fiber is present. The effect of the fiber device on the size of lesions formed in a heat-sensitive tissue-mimicking phantom is also investigated. Finally, finite difference time domain simulations are performed to determine the heat deposition in a tissue-mimicking phantom with a nylon disc embedded and a phantom with the nylon disc removed. The results of this study are quite promising for the possibility of increased efficacy of hemostasis for such a device in concert with HIFU in vessel-containing tissue volumes where HIFU alone is not completely effective.

  13. 3D Numerical Study on Compound Heat Transfer Enhancement of Converging-diverging Tubes Equipped with Twin Twisted Tapes

    Institute of Scientific and Technical Information of China (English)

    洪宇翔; 邓先和; 张连山

    2012-01-01

    The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu~d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate.

  14. Numerical and experimental study of local heat transfer enhancement in helically coiled pipes. Preliminary results.

    Science.gov (United States)

    Bozzoli, F.; Cattani, L.; Rainieri, S.; Zachár, A.

    2015-11-01

    In the last years, the attention of heat transfer equipments manufacturers turned toward helically coiled-tube heat exchangers, especially with regards to applications for viscous and/or particulate products. The recent progress achieved in numerical simulation motivated many research groups to develop numerical models for this kind of apparatuses. These models, intended both to improve the knowledge of the fundamental heat transfer mechanisms in curved geometries and to support the industrial design of this kind of apparatuses, are usually validated throughout the comparison with either theoretical or experimental evidences by considering average heat transfer performances. However, this approach doesn't guarantee that the validated models are able to reproduce local effects in details, which are so important in this kind of non-standard geometries. In the present paper a numerical model of convective heat transfer in coiled tubes for laminar flow regime was formulated and discussed. Its goodness was checked throughout the comparison with the latest experimental outcomes of Bozzoli et al. [1] in terms of convective heat flux distribution along the boundary of the duct, by ensuring the effectiveness of the model also in the description of local behaviours. Although the present paper reports only preliminary results of this simulation/validation process, it could be of interest for the research community because it proposes a novel approach that could be useful to validate many numerical models for nonstandard geometries.

  15. Heat transfer enhancement by the Goertler vortices developed on a wall with a finite thermal conductivity

    Science.gov (United States)

    Mutabazi, Innocent; Yoshikawa, Harunori; Peixinho, Jorge; Kahouadji, Lyes

    2013-11-01

    Görtler vortices appear in a flow over a concave wall as a result of centrifugal instability [Saric, Annu. Rev. Fluid Mech. 26, 379 (1994)]. They may have a strong influence on heat transfer [Momayez et al., Int. J. heat Mass transfer 47, 3783 (2004)]. The purpose of this work is to model heat transfer by Görtler vortices using a weakly nonlinear analysis of Smith &-Haj- Hariri [Phys. Fluids A 5, 2815 (1993)]. We have investigated the coupling of the convective heat transfer by the stationary vortices with the heat conduction inside the solid wall. The finite thickness and thermal conductivity of the wall enter into the boundary conditions of the problem through the ratio δ of the wall thickness to the boundary layer thickness and through the ratio K of the thermal conductivities of the fluid and the wall. The parametric dependence Nu (δ , K) of the Nusselt number is performed and it is shown that found the heat transfer is quite well modified by these two parameters. The local thermal stress can be estimated in order to analyze the effects on ageing of the wall material. The authors acknowledge the financial support of the french Agence Nationale de la Recherche (ANR), through the program ``Investissements d'Avenir'' (ANR-10-LABX-09-01), LabEx EMC3.

  16. Experimental study on condensation heat transfer enhancement by various kinds of integral finned tubes. Hankei hoko ni tokki wo motsu shuhoko fin ni yoru gyoshuku netsudentatsu sokushin

    Energy Technology Data Exchange (ETDEWEB)

    Hijikata, K. (Tokyo Inst. of Technology., Tokyo (Japan)); Wang, S.

    1990-07-25

    Condensation heat transfer enhancement by a finned tube having radial ridges on the fin surface (called the R-tube), was investigated. Thermoexcel-C has a flat fin surface, while the R-tube has ridges on the fin surface, consequently the mean heat-transfer coefficient of the R-tube is 30-40% higher than that of Thermoexcel-C, in spite of same condensing areas in the two. The function of ridges on the fin surface of the R-tube to heat transfer enhancement, is remarkable. It is considered that a thin condensate film is formed on the tip of ridges, in the same way as that on the tip of fin without having ridges. The ridges disturb the flow of condensate in the channel, and promote a convective heat transfer due to an agitation action. Though the R-tube shows superior performance than other heat transfer tubes, the mechanisms of heat transfer enhancement are different in the upper part and the lower part of the tube. In the upper part of the tube, the effect of heat transfer enhancement due to the formation of thin film region by the ridges, is predominant. And in the lower part, the enhancement effect due to the convective heat transfer by the agitation of the condensate, is important. 13 refs., 10 figs., 1 tab.

  17. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress.

    Directory of Open Access Journals (Sweden)

    Qian Xu

    Full Text Available Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well understood. The objectives of this study were to isolate and clone an expansin gene in a perennial grass species (Poa pratensis and to determine whether over-expression of expansin may improve plant heat tolerance. Tobacco (Nicotiana tabacum was used as the model plant for gene transformation and an expansin gene PpEXP1 from Poa pratensis was cloned. Sequence analysis showed PpEXP1 belonged to α-expansins and was closely related to two expansin genes in other perennial grass species (Festuca pratensis and Agrostis stolonifera as well as Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Transgenic tobacco plants over-expressing PpEXP1 were generated through Agrobacterium-mediated transformation. Under heat stress (42°C in growth chambers, transgenic tobacco plants over-expressing the PpEXP1 gene exhibited a less structural damage to cells, lower electrolyte leakage, lower levels of membrane lipid peroxidation, and lower content of hydrogen peroxide, as well as higher chlorophyll content, net photosynthetic rate, relative water content, activity of antioxidant enzyme, and seed germination rates, compared to the wild-type plants. These results demonstrated the positive roles of PpEXP1 in enhancing plant tolerance to heat stress and the possibility of using expansins for genetic modification of cool-season perennial grasses in the development of heat-tolerant germplasm and cultivars.

  18. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

    Directory of Open Access Journals (Sweden)

    Oriol Gonzalez

    2016-10-01

    Full Text Available We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal, results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  19. Contraction of radiator length in heavy vehicles using cerium oxide nanofluid by enhancing heat transfer performance

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present investigation, heat transfer performance of CeO2-ethylene glycol as coolants in heat pipes are analyzed. Various concentrations of 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 vol.% with different volumetric flow 1.0, 2.0, 3.0, 3.5, and 4.0 lpm at a temperature of 40°C, are investigated experimentally and the results are numerically analyzed by means of cross tube heat exchanger and horizontal flow with twist plate insert. The results are scrutinized to evaluate the best concentration which will reduce the size of the existing radiator length. The results demonstrated that, for 0.75 vol.% combination of CeO2-ethylene glycol resulted in increase of heat transfer coefficient compared to the combination of water-ethylene glycol. Increase in volumetric flow rate of the coolant increase the heat transfer coefficient results in the contraction of radiator length. Replacing the original coolant with the proposed combination, it is estimated that the size of the radiator, inventory of the fluid, and pumping power is reduced, thus, making this nanofluid an energy efficient fluid for the engine cooling system.

  20. Adjoint analyses of enhanced solidification for shape optimization in conjugate heat transfer problem

    Science.gov (United States)

    Morimoto, Kenichi; Kinoshita, Hidenori; Suzuki, Yuji

    2016-11-01

    In the present study, an adjoint-based shape-optimization method has been developed for designing extended heat transfer surfaces in conjugate heat transfer problems. Here we specifically consider heat conduction-dominated solidification problem under different thermal boundary conditions: (i) the isothermal condition, and (ii) the conjugate condition with thermal coupling between the solidified liquid and the solid wall inside the domain bounded by the extended heat transfer surface. In the present shape-optimization scheme, extended heat transfer surfaces are successively refined in a local way based on the variational information of a cost functional with respect to the shape modification. In the computation of the developed scheme, a meshless method is employed for dealing with the complex boundary shape. For high-resolution analyses with boundary-fitted node arrangement, we have introduced a bubble-mesh method combined with a high-efficiency algorithm for searching neighboring bubbles within a cut-off distance. The present technique can be easily applied to convection problems including high Reynolds number flow. We demonstrate, for the isothermal boundary condition, that the present optimization leads to tree-like fin shapes, which achieve the temperature field with global similarity for different initial fin shapes. We will also show the computational results for the conjugate condition, which would regularize the present optimization due to the fin-efficiency effect.

  1. An enhanced version of the heat exchange algorithm with excellent energy conservation properties

    CERN Document Server

    Wirnsberger, P; Dellago, C

    2015-01-01

    We propose a new algorithm for non-equilibrium molecular dynamics simulations of thermal gradients. The algorithm is an extension of the heat exchange algorithm developed by Hafskjold and co-workers [Mol. Phys. 80, 1389 (1993); Mol. Phys. 81, 251 (1994)], in which a certain amount of heat is added to one region and removed from another by rescaling velocities appropriately. Since the amount of added and removed heat is the same and the dynamics between velocity rescaling steps is Hamiltonian, the heat exchange algorithm is expected to conserve the energy. However, it has been reported previously that the original version of the heat exchange algorithm exhibits a pronounced drift in the total energy, the exact cause of which remained hitherto unclear. Here, we show that the energy drift is due to the truncation error arising from the operator splitting and suggest an additional coordinate integration step as a remedy. The new algorithm retains all the advantages of the original one whilst exhibiting excellent ...

  2. Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction.

    Science.gov (United States)

    Hong, Min-Eui; Hwang, Sung Kwan; Chang, Won Seok; Kim, Byung Woo; Lee, Jeewon; Sim, Sang Jun

    2015-06-01

    High temperatures (30-36 °C) inhibited astaxanthin accumulation in Haematococcus pluvialis under photoautotrophic conditions. The depression of carotenogenesis was primarily attributed to excess intracellular less reactive oxygen species (LROS; O2 (-) and H2O2) levels generated under high temperature conditions. Here, we show that the heat stress-driven inefficient astaxanthin production was improved by accelerating the iron-catalyzed Haber-Weiss reaction to convert LROS into more reactive oxygen species (MROS; O2 and OH·), thereby facilitating lipid peroxidation. As a result, during 18 days of photoautotrophic induction, the astaxanthin concentration of cells cultured in high temperatures in the presence of iron (450 μM) was dramatically increased by 75 % (30 °C) and 133 % (36 °C) compared to that of cells exposed to heat stress alone. The heat stress-driven Haber-Weiss reaction will be useful for economically producing astaxanthin by reducing energy cost and enhancing photoautotrophic astaxanthin production, particularly outdoors utilizing natural solar radiation including heat and light for photo-induction of H. pluvialis.

  3. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Bimal K. Kad

    2006-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (a) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (b) evaluated at ''in-service'' loads at service temperatures and environments. In this 12th quarter of performance, program activities are concluded for Task 2 and continuing

  4. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  5. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Science.gov (United States)

    Micheli, Leonardo; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.; Mallick, Tapas K.

    2015-09-01

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151/Wp is expected for a passive least-material heat sink developed for 4000x applications.

  6. Enhancement of Structure, Tc and Irreversibility Line in High Tc Superconductors by Heat Treatments

    Directory of Open Access Journals (Sweden)

    Abdeljabar Aboulkassim

    2015-08-01

    Full Text Available AC susceptibility (ac= ’+ i‖ and X ray diffraction (XRD are very useful for characterizing high Tc superconductors. We report here on the preparation, X-ray diffraction with Rietveld refinement, resistivity , AC magnetic susceptibility measurements and effect of heat treatments in (Y1-xNdxSrBaCu3O6+z. Each sample was subject to two types of heat treatment: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. For each x, the [AO] heat treatment increases the orthorhombicity ε = (b-a/(b+a (for 0≤x0.2, the distance d[Cu(1-(Sr/Ba] (for x0.25; increase in cationic and chain oxygen ordering; psh and in-phase purity for the [AO] samples may account for the observed data.

  7. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Almonacid, Florencia, E-mail: facruz@ujaen.es [Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Reddy, K. S., E-mail: ksreddy@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India)

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.

  8. Effect of Enhanced UV-B Radiation on Arabidopsis Mesophyll Cell Protein%增强UV-B辐射对拟南芥叶肉细胞蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    魏小丽; 郑娜; 李晓阳; 韩榕

    2013-01-01

    Four-week-old wild-type Arabidopsis seedlings ( Columbia-O) was treated using different doses of UV-B radiation,the protein in the mesophyll cells was extracted using acetone precipitation and TCA-acetone,then Arabidopsis mesophyllcellular protein content and composition of the different intensity of UV-B radiation response were analyzed.The results showed that comparing two methods,the protein content of the TCA-acetone extract is relatively higher,which was more suitable for the analysis of enhanced UV-B radiation on Arabidopsis mesophyll cell protein; The changes of protein contents by two extraction methods showed the same trend,along with the increasing of UV-B radiation dose,the protein content increased first and then reduced,B2 group reached a maximum.In addition,the number of protein bands and expression has taken place significant change,the most obvious changes were also in the middle dose treatment group ( B2) ,both new bands and disappearance bands.This may be due to the Arabidopsis thaliana can activate some of its own resistance gene expressions and induce resistance protein by low doses of UV-B radiation,and thus resist the damage of UV-B; however,when subjected to high doses of UV-B radiation,damage their own protein synthesis pathway,and affect protein synthesis.%采用不同剂量的UV-B辐射处理4周龄