WorldWideScience

Sample records for arabidopsis developing stems

  1. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  2. Inflorescence stem grafting made easy in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nisar Nazia

    2012-12-01

    Full Text Available Abstract Background Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. Results Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87% grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of

  3. Single-Cell Telomere-Length Quantification Couples Telomere Length to Meristem Activity and Stem Cell Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mary-Paz González-García

    2015-05-01

    Full Text Available Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants.

  4. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    Science.gov (United States)

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. PMID:25937286

  5. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    Science.gov (United States)

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants.

  6. Stem cell organization in Arabidopsis

    NARCIS (Netherlands)

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or mer

  7. Molecule mechanism of stem cells in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wenjin Zhang

    2014-01-01

    Full Text Available Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  8. Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Wen-Hui Shen

    2009-01-01

    Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs.In higher plants,stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically.It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs.Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity.Here,we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.

  9. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    Science.gov (United States)

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  10. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  11. A dynamic model for stem cell homeostasis and patterning in Arabidopsis meristems.

    Directory of Open Access Journals (Sweden)

    Tim Hohm

    Full Text Available Plants maintain stem cells in their meristems as a source for new undifferentiated cells throughout their life. Meristems are small groups of cells that provide the microenvironment that allows stem cells to prosper. Homeostasis of a stem cell domain within a growing meristem is achieved by signalling between stem cells and surrounding cells. We have here simulated the origin and maintenance of a defined stem cell domain at the tip of Arabidopsis shoot meristems, based on the assumption that meristems are self-organizing systems. The model comprises two coupled feedback regulated genetic systems that control stem cell behaviour. Using a minimal set of spatial parameters, the mathematical model allows to predict the generation, shape and size of the stem cell domain, and the underlying organizing centre. We use the model to explore the parameter space that allows stem cell maintenance, and to simulate the consequences of mutations, gene misexpression and cell ablations.

  12. Isolation and identification of Sclerotinia stem rot causal pathogen in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Ai-rong WANG; Wen-wei LIN; Xiao-ting CHEN; Guo-dong LU; Lie ZHOU; Zong-hua WANG

    2008-01-01

    A new stem rot disease is found to occur naturally on Arabidopsis plants in greenhouses of Fuzhou, China. In order to identify its pathogen, we conducted a series of fimgal isolation and purification, plant reinoculation, and ascus and ascospore induction from the sclerotia. The isolate caused typical water-soaked lesions after reinoeulation and produced sclerotia both on Arabidopsis plants and culture medium plates, and the sclerotia could be induced to produce discal apothecia and 8 binucleate ascospores per ascus. These disease symptom and fungal morphology data revealed that the fungus Sclerotinia sclerotiorum (Lib.) de Bary was the pathogen for Arabidopsis stem rot. To confirm this, we further amplified its large subunit ribosomal DNA (LSU rDNA) by polymerase chain reaction (PCR), and compared the sequence with the known LSU rDNA sequences in GenBank. The results show that the sequence shares the highest identities with the LSU rDNAs of different S. sclerotiorum strains. Taking all these data together, we concluded that the fungus that caused the Arabidopsis stem rot is S. sclerotiorum (Lib.) de Bary. This is the first report that Arabidopsis is naturally infected by S. sclerotiorum.

  13. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    Science.gov (United States)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  14. Histone Deacetylase Genes in Arabidopsis Development

    Institute of Scientific and Technical Information of China (English)

    Courtney Hollender; Zhongchi Liu

    2008-01-01

    Histone acetylatlon and deacetylation are directly connected with transcriptional activation and silencing in eukaryotas.Gene families for enzymes that accomplish these histone modifications show surprising complexity in domain organization,tissue-specific expression, and function. This review is focused on the family of histone deacetylases (HDACs) that remove the acetyl group from core histone tails, resulting in a "closed" chromatin and transcriptional repression. In Arabidopsis,18 HDAC genes are divided in to three different types - RPD3-1ike, HD-tuin and sirtuin - with two or more members ineach type. The structural feature of each HDAC class, the expression profile of each HDAC gene during development and functional insights of important family members are summarized here. It is clear that HDACs are an important class of global transcriptional regulators that play crucial roles in plant development, defense, and adaptation.

  15. Molecule mechanism of stem cells in Arabidopsis thaliana

    OpenAIRE

    Wenjin Zhang; Rongming Yu

    2014-01-01

    Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. S...

  16. Signal transduction regulating meristem development in Arabidopsis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cark, Steven E.

    2003-09-10

    Research support by DE-FG02-96ER20227 focused on the CLV loci and their regulation of organ formation at the Arabidopsis shoot meristem. Shoot meristem function is central to plant development as all of the above-ground organs and tissues of the plant are derived post-embryonically from the shoot meristem. At the shoot meristem, stem cells are maintained, and progeny cells undergo a switch toward differentiation and organ formation. The CLV loci, represented by three genes CLV1, CLV2 and CLV3 are key regulators of meristem development. Each of the CLV loci encode a putative receptor-mediated signaling component. When this work began, virtually nothing was known about receptor-mediated signaling in plants. Thus, our goal was to both characterize these genes and the proteins they encode as regulators of meristem development, and to investigate how receptor-mediated signaling might function in plants. Our work lead to several major publications that were significant contributions to understanding this system.

  17. A new centrifuge microscope reveals that mobile plastids trigger gravity sensing in Arabidopsis inflorescence stems

    Science.gov (United States)

    Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.; Gilroy, Simon

    2012-07-01

    The starch-statolith hypothesis is the most widely accepted model for plant gravity sensing and proposes that the sedimentation of high-density starch-filled plastids (amyloplasts) in shoot endodermal cells and root columella cells is important for gravity sensing of each organ. However, starch-deficient phosphoglucomutase (pgm-1) mutants sense gravity and show gravitropism in inflorescence stems, even though most starchless amyloplasts in this mutant fail to sediment toward the gravity vector. These results raise the questions about the role of starch in gravity sensing and the features of statolith/statocyte essential for shoot gravity sensing. To address these questions, we developed a new centrifuge microscope and analyzed two gravitropic mutants, i.e., pgm-1 and endodermal-amyloplast less 1 (eal1). All optical devices (e.g., objective lens, light source and CCD camera) and specimens were rotated on a direct-drive motor, and acquired images were wirelessly transmitted during centrifugation. Live-cell imaging during centrifugation revealed that the starchless amyloplasts sedimented to the hypergravity vector (10 and 30 g) in endodermal cells of pgm-1 stems, indicating that the density of the starchless amyloplasts is higher than that of cytoplasm. Electron micrographs of shoot endodermal cells in pgm-1 mutants suggested that the starchless amyloplast contains an organized thylakoid membrane but not starch granules, which morphologically resembles chloroplasts in the adjacent cortical cells. Therefore, the shoot amyloplasts without starch are possibly as dense as chloroplasts. We examined eal1 mutants, an allele of shoot gravitropism (sgr) 7/short-root (shr), which also have starchless amyloplasts due to abnormal differentiation of amyloplasts and show no gravitropic response at 1 g. Hypergravity up to 30 g induced little gravitropism in eal1 stems and the starchless amyloplasts failed to sediment under 30 g conditions. However, the eal1 mutants treated with

  18. MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems.

    Science.gov (United States)

    Öhman, David; Demedts, Brecht; Kumar, Manoj; Gerber, Lorenz; Gorzsás, András; Goeminne, Geert; Hedenström, Mattias; Ellis, Brian; Boerjan, Wout; Sundberg, Björn

    2013-01-01

    The transcription factor MYB103 was previously identified as a member of the transcriptional network regulating secondary wall biosynthesis in xylem tissues of Arabidopsis, and was proposed to act on cellulose biosynthesis. It is a direct transcriptional target of the transcription factor SECONDARY WALL ASSOCIATED NAC DOMAIN PROTEIN 1 (SND1), and 35S-driven dominant repression or over-expression of MYB103 modifies secondary wall thickness. We identified two myb103 T-DNA insertion mutants and chemically characterized their lignocellulose by pyrolysis/GC/MS, 2D NMR, FT-IR microspectroscopy and wet chemistry. The mutants developed normally but exhibited a 70-75% decrease in syringyl (S) lignin. The level of guaiacyl (G) lignin was co-ordinately increased, so that total Klason lignin was not affected. The transcript abundance of FERULATE-5-HYDROXYLASE (F5H), the key gene in biosynthesis of S lignin, was strongly decreased in the myb103 mutants, and the metabolomes of the myb103 mutant and an F5H null mutant were very similar. Other than modification of the lignin S to G ratio, there were only very minor changes in the composition of secondary cell-wall polymers in the inflorescence stem. In conclusion, we demonstrate that F5H expression and hence biosynthesis of S lignin are dependent on MYB103. PMID:22967312

  19. GLABROUS INFLORESCENCE STEMS regulates trichome branching by genetically interacting with SIM in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Li-li SUN; Zhong-jing ZHOU; Li-jun AN; Yan AN; Yong-qin ZHAO; Xiao-fang MENG; Clare STEELE-KING

    2013-01-01

    Arabidopsis trichomes are large branched single cells that protrude from the epidermis.The first morphological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication.Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling,although GIS gene does not play a direct role in regulating trichome cell division.Here,we describe a novel role of GIS,controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM).Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM.A loss of function mutation of SIM signficantly reduced the expression of GIS.Futhermore,the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant.The gain or loss of function of GIS had no significant effect on the expression of SIM.These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM.

  20. Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana.

    Science.gov (United States)

    Boot, Kees J M; Hille, Sander C; Libbenga, Kees R; Peletier, Lambertus A; van Spronsen, Paulina C; van Duijn, Bert; Offringa, Remko

    2016-02-01

    The polar transport of the plant hormone auxin has been the subject of many studies, several involving mathematical modelling. Unfortunately, most of these models have not been experimentally verified. Here we present experimental measurements of long-distance polar auxin transport (PAT) in segments of inflorescence stems of Arabidopsis thaliana together with a descriptive mathematical model that was developed from these data. It is based on a general advection-diffusion equation for auxin density, as suggested by the chemiosmotic theory, but is extended to incorporate both immobilization of auxin and exchange with the surrounding tissue of cells involved in PAT, in order to account for crucial observations. We found that development of the present model assisted effectively in the analysis of experimental observations. As an example, we discuss the analysis of a quadruple mutant for all four AUX1/LAX1-LAX3 influx carriers genes. We found a drastic change in the parameters governing the exchange of PAT channels with the surrounding tissue, whereas the velocity was still of the order of magnitude of the wild type. In addition, the steady-state flux of auxin through the PAT system of the mutant did not exhibit a saturable component, as we found for the wild type, suggesting that the import carriers are responsible for the saturable component in the wild type. In the accompanying Supplementary data available at JXB online, we describe in more detail the data-driven development of the model, review and derive predictions from a mathematical model of the chemiosmotic theory, and explore relationships between parameters in our model and processes and parameters at the cellular level. PMID:26531101

  1. Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana

    Science.gov (United States)

    Boot, Kees J.M.; Hille, Sander C.; Libbenga, Kees R.; Peletier, Lambertus A.; van Spronsen, Paulina C.; van Duijn, Bert; Offringa, Remko

    2016-01-01

    The polar transport of the plant hormone auxin has been the subject of many studies, several involving mathematical modelling. Unfortunately, most of these models have not been experimentally verified. Here we present experimental measurements of long-distance polar auxin transport (PAT) in segments of inflorescence stems of Arabidopsis thaliana together with a descriptive mathematical model that was developed from these data. It is based on a general advection–diffusion equation for auxin density, as suggested by the chemiosmotic theory, but is extended to incorporate both immobilization of auxin and exchange with the surrounding tissue of cells involved in PAT, in order to account for crucial observations. We found that development of the present model assisted effectively in the analysis of experimental observations. As an example, we discuss the analysis of a quadruple mutant for all four AUX1/LAX1–LAX3 influx carriers genes. We found a drastic change in the parameters governing the exchange of PAT channels with the surrounding tissue, whereas the velocity was still of the order of magnitude of the wild type. In addition, the steady-state flux of auxin through the PAT system of the mutant did not exhibit a saturable component, as we found for the wild type, suggesting that the import carriers are responsible for the saturable component in the wild type. In the accompanying Supplementary data available at JXB online, we describe in more detail the data-driven development of the model, review and derive predictions from a mathematical model of the chemiosmotic theory, and explore relationships between parameters in our model and processes and parameters at the cellular level. PMID:26531101

  2. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis.

    Science.gov (United States)

    An, Lijun; Zhou, Zhongjing; Su, Sha; Yan, An; Gan, Yinbo

    2012-02-01

    Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).

  3. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus.

    Science.gov (United States)

    MacMillan, Colleen P; Mansfield, Shawn D; Stachurski, Zbigniew H; Evans, Rob; Southerton, Simon G

    2010-05-01

    The ancient cell adhesion fasciclin (FAS) domain is found in bacteria, fungi, algae, insects and animals, and occurs in a large family of fasciclin-like arabinogalactan proteins (FLAs) in higher plants. Functional roles for FAS-containing proteins have been determined for insects, algae and vertebrates; however, the biological functions of the various higher-plant FLAs are not clear. Expression of some FLAs has been correlated with the onset of secondary-wall cellulose synthesis in Arabidopsis stems, and also with wood formation in the stems and branches of trees, suggesting a biological role in plant stems. We examined whether FLAs contribute to plant stem biomechanics. Using phylogenetic, transcript abundance and promoter-GUS fusion analyses, we identified a conserved subset of single FAS domain FLAs (group A FLAs) in Eucalyptus and Arabidopsis that have specific and high transcript abundance in stems, particularly in stem cells undergoing secondary-wall deposition, and that the phylogenetic conservation appears to extend to other dicots and monocots. Gene-function analyses revealed that Arabidopsis T-DNA knockout double mutant stems had altered stem biomechanics with reduced tensile strength and a reduced tensile modulus of elasticity, as well as altered cell-wall architecture and composition, with increased cellulose microfibril angle and reduced arabinose, galactose and cellulose content. Using materials engineering concepts, we relate the effects of these FLAs on cell-wall composition with stem biomechanics. Our results suggest that a subset of single FAS domain FLAs contributes to plant stem strength by affecting cellulose deposition, and to the stem modulus of elasticity by affecting the integrity of the cell-wall matrix.

  4. A Genetic Pathway for Tapetum Development and Function in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jun Zhu; Yue Lou; Xiaofeng Xu; Zhong-Nan Yang

    2011-01-01

    In anther development,tapetal cells take part in complex processes,including endomitosis and apoptosis (programmed cell death).The tapetum provides many of the proteins,lipids,polysaccharides and other molecules necessary for pollen development.Several transcription factors,including DYT1,TDF1,AMS,MS188 and MS1,have been reported to be essential for tapetum development and function in Arabidopsis thaliana.Here,we present a detailed cytological analysis of knockout mutants for these genes,along with an in situ RNA hybridization experiment and double mutant analysis showing that these transcription factors form a genetic pathway in tapetum development.DYT1,TDF1 and AMS function in early tapetum development,while MS188 and MS1 are important for late tapetum development.The genetic pathway revealed in this work facilitates further investigation of the function and molecular mechanisms of tapetum development in Arabidopsis.

  5. Roles for farnesol and ABA in Arabidopsis flower development

    OpenAIRE

    Fitzpatrick, A. Heather; Shrestha, Nisha; Bhandari, Jayaram; Crowell, Dring N

    2011-01-01

    The Arabidopsis FOLK (At5g58560) gene encodes farnesol kinase, which phosphorylates farnesol to farnesyl phosphate. Loss-of-function mutations in the FOLK gene are associated with enhanced sensitivity to abscisic acid (ABA), suggesting that FOLK negatively regulates ABA signaling. Moreover, folk flowers develop supernumerary carpels under water stress, providing evidence for a molecular link between farnesol metabolism, abiotic stress signaling and flower development. Here, we show that farne...

  6. Advancing the STEM Workforce through STEM-Centric Career Development

    Science.gov (United States)

    Feller, Rich

    2011-01-01

    Preparing for the future is not what it used to be. Yet, advising students, preparing lessons, and promoting the value of STEM options remains constant. As a result, technical and engineering educators seek clarity about the future of careers, career development, and ways to promote STEM options. Recently, the ITEEA conference allowed the author…

  7. Development and application of stem cells

    Institute of Scientific and Technical Information of China (English)

    HUI Guo-zhen; SHAN Li-dong

    2005-01-01

    @@ Stem cells are defined by two important characteristics: the ability to proliferate by a process of self-renewal and the potential to form at least one specialized cell type. Transient population of pluripotent or multipotent stem cells first appear during the development at the first days post coitum. The cells of the inner cell mass (ICM) of the blastocyst, of which embryonic stem cells (ES) are the in vitro counterpart, can give rise to any differentiated cell type in the three primary germ layers of the embryo (endoderm, mesoderm and ectoderm).1-3 These cells gradually mature into committed, organ- and tissue-specific stem cells or adult stem cells, such as neural stem cells, mesenchymal stem cells, hematopoietic stem cells, etc. Over the past years, studies have focused on two aspects: molecular level and application, and some new methods and technology have been used.

  8. PHOSPHATIDYLSERINE SYNTHASE1 is Required for Inflorescence Meristem and Organ Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chengwu Liu; Hengfu Yin; Peng Gao; Xiaohe Hu; Jun Yang; Zhongchi Liu; Xiangdong Fu

    2013-01-01

    Phosphatidylserine (PS),a quantitatively minor membrane phospholipid,is involved in many biological processes besides its role in membrane structure.One PS synthesis gene,PHOSPHATIDYLSERINE SYNTHASE1 (PSS1),has been discovered to be required for microspore development in Arabidopsis thaliana L.but how PSS1 affects postembryonic development is still largely unknown.Here,we show that PSS1 is also required for inflorescence meristem and organ development in Arabidopsis.Disruption of PSS1 causes severe dwarfism,smaller lateral organs and reduced size of inflorescence meristem.Morphological and molecular studies suggest that both cell division and cell elongation are affected in the pss1-1 mutant.RNA in situ hybridization and promoter GUS analysis show that expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) depend on PSS1.Moreover,the defect in meristem maintenance is recovered and the expression of WUS and CLV3 are restored in the pss1-1 clv1-1 double mutant.Both SHOOTSTEMLESS (STM) and BREVIPEDICELLUS (BP) are upregulated,and auxin distribution is disrupted in rosette leaves of pss1-1.However,expression of BP,which is also a regulator of internode development,is lost in the pss1-1 inflorescence stem.Our data suggest that PSS1 plays essential roles in inflorescence meristem maintenance through the WUS-CLV pathway,and in leaf and internode development by differentially regulating the class Ⅰ KNOX genes.

  9. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.

    Science.gov (United States)

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-09-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  10. Stomach development, stem cells and disease.

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A

    2016-02-15

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.

  11. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems.

    Science.gov (United States)

    Pandey, Jyotsna L; Kiemle, Sarah N; Richard, Tom L; Zhu, Yimin; Cosgrove, Daniel J; Anderson, Charles T

    2016-01-01

    Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependencies of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In summary, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis

  12. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    Science.gov (United States)

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  13. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem.

    Science.gov (United States)

    Hashiguchi, Yasuko; Yano, Daisuke; Nagafusa, Kiyoshi; Kato, Takehide; Saito, Chieko; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko; Tasaka, Masao; Terao Morita, Miyo

    2014-04-01

    Plant vacuoles play critical roles in development, growth and stress responses. In mature cells, vacuolar membranes (VMs) display several types of structures, which are formed by invagination and folding of VMs into the lumenal side and can gradually move and change shape. Although such VM structures are observed in a broad range of tissue types and plant species, the molecular mechanism underlying their formation and maintenance remains unclear. Here, we report that a novel HEAT-repeat protein, SHOOT GRAVITROPISM6 (SGR6), of Arabidopsis is involved in the control of morphological changes and dynamics of VM structures in endodermal cells, which are the gravity-sensing cells in shoots. SGR6 is a membrane-associated protein that is mainly localized to the VM in stem endodermal cells. The sgr6 mutant stem exhibits a reduced gravitropic response. Higher plants utilize amyloplast sedimentation as a means to sense gravity direction. Amyloplasts are surrounded by VMs in Arabidopsis endodermal cells, and the flexible and dynamic structure of VMs is important for amyloplast sedimentation. We demonstrated that such dynamic features of VMs are gradually lost in sgr6 endodermal cells during a 30 min observation period. Histological analysis revealed that amyloplast sedimentation was impaired in sgr6. Detailed live-cell imaging analyses revealed that the VM structures in sgr6 had severe defects in morphological changes and dynamics. Our results suggest that SGR6 is a novel protein involved in the formation and/or maintenance of invaginated VM structures in gravity-sensing cells.

  14. Regulation of Arabidopsis root development by small signaling peptides

    Directory of Open Access Journals (Sweden)

    Christina eDelay

    2013-09-01

    Full Text Available Plant root systems arise de novo from a single embryonic root. Complex and highly coordinated developmental networks are required to ensure the formation of lateral organs maximises plant fitness. The Arabidopsis root is well suited to dissection of regulatory and developmental networks due to its highly ordered, predictable structure. A myriad of regulatory signalling networks control the development of plant roots, from the classical hormones such as auxin and cytokinin to short-range positional signalling molecules that relay information between neighbouring cells. Small signaling peptides are a growing class of regulatory molecules involved in many aspects of root development including meristem maintenance, the gravitropic response, lateral root development and vascular formation. Here, recent findings on the roles of regulatory peptides in these aspects of root development are discussed.

  15. Regulation of flower development in Arabidopsis by SCF complexes.

    Science.gov (United States)

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.

  16. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis.

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J; Saito, Kazuki

    2014-05-14

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/.

  17. SUPERKILLER Complex Components Are Required for the RNA Exosome-Mediated Control of Cuticular Wax Biosynthesis in Arabidopsis Inflorescence Stems.

    Science.gov (United States)

    Zhao, Lifang; Kunst, Ljerka

    2016-06-01

    ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3'-to-5' RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3'-5' decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3'-to-5' mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5'-to-3' XRN4 exoribonuclease.

  18. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lijuan Ji

    2011-03-01

    Full Text Available Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1 gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits "slicer" activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms.

  19. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W].

    NARCIS (Netherlands)

    Bemer, M.; Heijmans, K.; Airoldi, C.A.; Davies, B.; Angenent, G.C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally cha

  20. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  1. A Mitochondrial Magnesium Transporter Functions in Arabidopsis Pollen Development

    Institute of Scientific and Technical Information of China (English)

    Le-Gong Li; Lubomir N.Sokolov; Yong-Hua Yang; Dong-Ping Li; Julie Ting; Girdhar K.Pandy; Sheng Luan

    2008-01-01

    Magnesium is an abundant divalent cation in plant cells and plays a critical role in many physiological processes.We have previously described the jdentification of a 10-member Arabidopsis gene family encoding putative magnesium transport(MGT)proteins.Here,we report that a member of the MGT family,AtMGT5, functions as a dual-functional Mg-transporter that operates in a concentration-dependent manner, namely it serves as a Mg-importer at micromolar levels and facilitates the efflux in the millimolar range.The AtMGT5 protein is localized in the mitochondria,suggesting that AtMGT5 mediates Mg-trafficking between the cytosol and mitochondria.The AtMGT5 gene was exclusively expressed in anthers at early stages of flower development.Examination of two independent T-DNA insertional mutants of AtMGT5 gene demonstrated that AtMG7-5 played an essential role for pollen development and male fertility.This study suggests a critical role for Mg2+ transport between cytosol and mitochondria in male gametogenesis in plants.

  2. Arabinan Metabolism during Seed Development and Germination in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Leonardo D. Gomez; Clare G. Steele-King; Louise Jones; Jonathan M. Foster; Supachai Vuttipongchaikij; Simon J. McQueen-Mason

    2009-01-01

    Arabinans are found in the pectic network of many cell walls, where, along with galactan, they are present as side chains of Rhamnogalacturonan I. Whilst arabinans have been reported to be abundant polymers in the cell walls of seeds from a range of plant species, their proposed role as a storage reserve has not been thoroughly investigated. In the cell walls of Arabidopsis seeds, arabinose accounts for approximately 40% of the monosaccharide composition of non-cellulosic polysaccharides of embryos. Arabinose levels decline to ~ 15% during seedling establishment, indicating that cell wall arabinans may be mobilized during germination. Immunolocalization of arabinan in embryos, seeds, and seedlings reveals that arabinans accumulate in developing and mature embryos, but disappear during germination and seedling establishment. Experiments using ~(14)C-arabinose show that it is readily incorporated and metabolized in growing seed-lings, indicating an active catabolic pathway for this sugar. We found that depleting arabinans in seeds using a fungal arabinanase causes delayed seedling growth, lending support to the hypothesis that these polymers may help fuel early seedling growth.

  3. The Cooperative Activities of CSLD2, CSLD3, and CSLD5 Are Required for Normal Arabidopsis Development

    Institute of Scientific and Technical Information of China (English)

    Lan Yina; William G.T. Willats; Henrik Vibe Scheller; Yves Verhertbruggen; Ai Oikawa; Chithra Manisseri; Bernhard Knierim; Lina Prak; Jacob Krüger Jensen; J. Paul Knoxi; Manfred Auer

    2011-01-01

    Glycosyltransferases of the Cellulose Synthase Like D (CSLD) subfamily have been reported to be involved in tip growth and stem development in Arabidopsis.The csld2 and csld3 mutants are root hair defective and the csld5 mutant has reduced stem growth.In this study,we produced double and triple knockout mutants of CSLD2,CSLD3,and CSLD5.Unlike the single mutants and the csld2/csld3 double mutant,the csld2/csld5,csld3/csld5,and csld2/csld3/csld5 mutants were dwarfed and showed severely reduced viability.This demonstrates that the cooperative activities of CSLD2,CSLD3,and CSLD5 are required for normal Arabidopsis development,and that they are involved in important processes besides the specialized role in tip growth.The mutant phenotypes indicate that CSLD2 and CSLD3 have overlapping functions with CSLD5 in early plant development,whereas the CSLD2 and CSLD3 proteins are non-redundant.To determine the biochemical function of CSLD proteins,we used transient expression in tobacco leaves.Microsomes containing heterologously expressed CSLD5 transferred mannose from GDP-mannose onto endogenous acceptors.The same activity was detected when CSLD2 and CSLD3 were co-expressed but not when they were expressed separately.With monosaccharides as exogenous acceptors,microsomal preparations from CSLD5-expressing plants mediated the transfer of mannose from GDP-mannose onto mannose.These results were supported by immunodetection studies that showed reduced levels of a mannan epitope in the cell walls of stem interfascicular fibers and xvlem vessels of the csld2/csld3/csld5 mutant.

  4. Translational control in germline stem cell development.

    Science.gov (United States)

    Slaidina, Maija; Lehmann, Ruth

    2014-10-13

    Stem cells give rise to tissues and organs during development and maintain their integrity during adulthood. They have the potential to self-renew or differentiate at each division. To ensure proper organ growth and homeostasis, self-renewal versus differentiation decisions need to be tightly controlled. Systematic genetic studies in Drosophila melanogaster are revealing extensive regulatory networks that control the switch between stem cell self-renewal and differentiation in the germline. These networks, which are based primarily on mutual translational repression, act via interlocked feedback loops to provide robustness to this important fate decision.

  5. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  6. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  7. The development of Arabidopsis as a plant model

    NARCIS (Netherlands)

    Koornneef, M.; Meinke, D.W.

    2010-01-01

    Twenty-five years ago, Arabidopsis thaliana emerged as the model organism of choice for research in plant biology. A consensus was reached about the need to focus on a single organism to integrate the classical disciplines of plant science with the expanding fields of genetics and molecular biology.

  8. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yang, M; Solava, J; Ma, H

    1999-09-01

    Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo.

  9. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness

    NARCIS (Netherlands)

    Lens, F.; Smets, E.; Melzer, S.

    2012-01-01

    The soc1 ful double mutant of A. thaliana produced substantial secondary growth throughout all aboveground stems, whereas in the Col accession only a few cell layers of wood were produced at the base of old stems. This increased wood formation may be linked to inactivation of the flowering time gene

  10. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  11. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    Science.gov (United States)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  12. Thyroid stem cells: lessons from normal development and thyroid cancer

    OpenAIRE

    Thomas, Dolly; Friedman, Susan; Lin, Reigh-Yi

    2008-01-01

    Ongoing advances in stem cell research have opened new avenues for therapy for many human disorders. Until recently, however, thyroid stem cells have been relatively understudied. Here, we review what is known about thyroid stem cells and explore their utility as models of normal and malignant biological development. We also discuss the cellular origin of thyroid cancer stem cells and explore the clinical implications of cancer stem cells in the thyroid gland. Since thyroid cancer is the most...

  13. Glutathione Dynamics in Arabidopsis Seed Development and Germination

    OpenAIRE

    Sumugat, Mae Rose S.

    2004-01-01

    Seed desiccation and germination have great potential for oxidative stress. Glutathione, one of the most abundant antioxidants in plant cells, is a crucial to the plant's defense mechanisms. To better understand glutathione's responses during these two stages, we examined its dynamics in wildtype Arabidopsis seeds and in a transgenic line containing an antisense glutathione reductase2 (anGR2) cDNA insert. Seeds from the two genotypes were compared morphologically. Glutathione levels in maturi...

  14. Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants1

    Science.gov (United States)

    Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta

    2006-01-01

    Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development. PMID:16384902

  15. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer.

    OpenAIRE

    Alfredo Cruz-Ramírez; Sara Díaz-Triviño; Guy Wachsman; Yujuan Du; Mario Arteága-Vázquez; Hongtao Zhang; Rene Benjamins; Ikram Blilou; Neef, Anne B.; Vicki Chandler; Ben Scheres

    2013-01-01

    Author Summary In the plant Arabidposis thaliana, root meristems (in the growing tip of the root) contain slowly dividing cells that act as an organizing center for the root stem cells that surround them. This centre is called the quiescent centre (QC). In this study, we show that the slow rate of division in the QC is regulated by the interaction between two proteins: Retinoblastoma homolog (RBR) and SCARECROW (SCR), a transcription factor that controls stem cell maintenance. RBR and SCR reg...

  16. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis.

    Science.gov (United States)

    Guo, Hongyan; Zhang, Wei; Tian, Hainan; Zheng, Kaijie; Dai, Xuemei; Liu, Shanda; Hu, Qingnan; Wang, Xianling; Liu, Bao; Wang, Shucai

    2015-01-01

    Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa) CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION) gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid), a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice. Taken together, our results showed that OsCLE48 is an auxin responsive peptide hormone gene, and it regulates shoot apical

  17. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  18. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  19. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation. PMID:12724534

  20. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  1. The role of sugars and sugar metabolism genes (sucrose synthase) in arabidopsis thaliana seed development

    OpenAIRE

    Odunlami, Benjamin Oladipo

    2009-01-01

    Seed development in Arabidopsis thaliana, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between ...

  2. iSTEM Summer Institute: An Integrated Approach to Teacher Professional Development inSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Anne Seifert; Louis Nadelson

    2012-04-01

    The importance of STEM education to our national prosperity and global competitiveness was recently reinforced by the Obama administration support for Change the Equation. Change the Equation is a multi-entity initiative formed in response to the rapidly increasing demand for STEM related careers and the potential lack of preparation by many Americans to be employed in these positions. To address the issue many are calling for increased emphasis on K-12 STEM education, as early preparation in STEM provides the foundation essential for further learning and competencies (National Research Council, 2007). Achieving and sustaining depth and breadth of K-12 STEM education is inextricably linked to ongoing professional development of K-12 educators. The need for teacher continuing education in STEM education and the link between teacher effectiveness and student preparation in STEM was the impetus behind our i- STEM professional development summer institute. The i-STEM initiative is a collaborative effort between business, industry, government, K-12, and higher education. Although the organization is working on a number of projects, including policy, research, communication, and collaborations, the i-STEM group has directed significant resources toward K-12 educator professional development opportunities in STEM. Our report focuses on the structure and impact of the intensive four-day i-STEM residential professional development institute which we designed to increase the capacity of grade 4-9 teachers to teach STEM content. We structured the summer institute using the outcome of a survey we conducted of grade 4-9 teachers’ to assess their STEM professional development needs, the extant literature on teacher development, the increasing need for a STEM informed society, and our desire to use evidence based practices to enhance teacher capacity to teach STEM content. We developed this investigation to determine if our summer institute influenced the participating teachers

  3. Glycerol Affects Root Development through Regulation of Multiple Pathways in Arabidopsis

    OpenAIRE

    Jun Hu; Yonghong Zhang; Jinfang Wang; Yongming Zhou

    2014-01-01

    Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in se...

  4. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis.

    Science.gov (United States)

    Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo

    2015-01-01

    Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats.

  5. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  6. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    OpenAIRE

    Azarin, Samira M.; Palecek, Sean P.

    2010-01-01

    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and su...

  7. Gynoecium patterning in Arabidopsis thaliana : control of transmitting tract development by the HECATE genes

    OpenAIRE

    Gremski, Kristina

    2006-01-01

    The Arabidopsis gynoecium promotes the fertilization of ovules and subsequent seed development and dispersal. During fertilization, pollen adheres to the stigma and forms pollen tubes that grow through the stigma cells and the extracellular matrix of the transmitting tract toward the ovules. We have identified three genes, HECATE1 (HEC1), HECATE2 (HEC2), HECATE3 (HEC3, which have redundant roles in controlling transmitting tract and stigma development. The HEC genes encode closely related bas...

  8. Visualization of Uptake of Mineral Elements and the Dynamics of Photosynthates in Arabidopsis by a Newly Developed Real-Time Radioisotope Imaging System (RRIS).

    Science.gov (United States)

    Sugita, Ryohei; Kobayashi, Natsuko I; Hirose, Atsushi; Saito, Takayuki; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2016-04-01

    Minerals and photosynthates are essential for many plant processes, but their imaging in live plants is difficult. We have developed a method for their live imaging in Arabidopsis using a real-time radioisotope imaging system. When each radioisotope,(22)Na,(28)Mg,(32)P-phosphate,(35)S-sulfate,(42)K,(45)Ca,(54)Mn and(137)Cs, was employed as an ion tracer, ion movement from root to shoot over 24 h was clearly observed. The movements of(22)Na,(42)K,(32)P,(35)S and(137)Cs were fast so that they spread to the tip of stems. In contrast, high accumulation of(28)Mg,(45)Ca and(54)Mn was found in the basal part of the main stem. Based on this time-course analysis, the velocity of ion movement in the main stem was calculated, and found to be fastest for S and K among the ions we tested in this study. Furthermore, application of a heat-girdling treatment allowed determination of individual ion movement via xylem flow alone, excluding phloem flow, within the main stem of 43-day-old Arabidopsis inflorescences. We also successfully developed a new system for visualizing photosynthates using labeled carbon dioxide,(14)CO2 Using this system, the switching of source/sink organs and phloem flow direction could be monitored in parts of whole shoots and over time. In roots,(14)C photosynthates accumulated intensively in the growing root tip area, 200-800 µm behind the meristem. These results show that this real-time radioisotope imaging system allows visualization of many nuclides over a long time-course and thus constitutes a powerful tool for the analysis of various physiological phenomena.

  9. Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root developmentHormonal crosstalk in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2013-04-01

    Full Text Available Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS and the auxin efflux carrier PIN proteins in the crosstalk of three hormones (auxin, ethylene and cytokinin in Arabidopsis root development. In ethylene hypersignalling mutants such as polaris (pls, we show experimentally that expression of both PIN1 and PIN2 significantly increases. This relationship is analysed in the context of the crosstalk between auxin, ethylene and cytokinin: in pls, endogenous auxin, ethylene and cytokinin concentration decreases, approximately remains unchanged and increases, respectively. Experimental data are integrated into a hormonal crosstalk network through combination with information in literature. Network construction reveals that the regulation of both PIN1 and PIN2 is predominantly via ethylene signalling. In addition, it is deduced that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role of cytokinin in addition to its regulation to auxin, ethylene and PLS levels. We discuss how the network of hormones and genes coordinates plant growth by simultaneously regulating the activities of auxin, ethylene and cytokinin signalling pathways.

  10. From thin to thick: major transitions during stem development.

    Science.gov (United States)

    Sanchez, Pablo; Nehlin, Lilian; Greb, Thomas

    2012-02-01

    The variability of shoot architecture in plants is striking and one of the most extreme examples of adaptive growth in higher organisms. Mediated by the differential activity of apical and lateral meristems, flexibility in stem growth essentially contributes to this variability. In spite of this importance, the regulation of major events in stem development is largely unexplored. Recently, however, novel approaches exploiting knowledge from root and leaf development are starting to shed light on molecular mechanisms that regulate this essential plant organ. In this review, we summarize our understanding of initial patterning events in stems, discuss prerequisites for the initiation of lateral stem growth and highlight the burning questions in this context.

  11. Development of New Technologies for Stem Cell Research

    Directory of Open Access Journals (Sweden)

    Xibo Ma

    2012-01-01

    Full Text Available Since the 1960s, the stem cells have been extensively studied including embryonic stem cells, neural stem cells, bone marrow hematopoietic stem cells, and mesenchymal stem cells. In the recent years, several stem cells have been initially used in the treatment of diseases, such as in bone marrow transplant. At the same time, isolation and culture experimental technologies for stem cell research have been widely developed in recent years. In addition, molecular imaging technologies including optical molecular imaging, positron emission tomography, single-photon emission computed tomography, and computed tomography have been developed rapidly in recent the 10 years and have also been used in the research on disease mechanism and evaluation of treatment of disease related with stem cells. This paper will focus on recent typical isolation, culture, and observation techniques of stem cells followed by a concise introduction. Finally, the current challenges and the future applications of the new technologies in stem cells are given according to the understanding of the authors, and the paper is then concluded.

  12. Requirement of KNAT1/BP for the Development of Abscission Zones in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qun Wang; Wei-Hui Xu; Li-Geng Ma; Zhi-Ming Fu; Xing-Wang Deng; Jia-Yang Li; Yong-Hong Wang

    2006-01-01

    The KNAT1 gene is a member of the Class Ⅰ KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana.Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques,and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Microarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.

  13. Somatic Embryogenesis Receptor Kinases Control Root Development Mainly via Brassinosteroid Independent Actions in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Junbo Du; Hongju Yin; Shasha Zhang; ZhuoyunWei; Baolin Zhao; Jinghua Zhang; Xiaoping Gou; Honghui Lin; Jia Li

    2012-01-01

    Brassinosteroids (BRs),a group of plant steroidal hormones,play critical roles in many aspects of plant growth and development.Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones.Arabidopsis somatic embryogenesis receptor-like kinases (SERKs),as co-receptors of BRI1,were found to play a fundamental role in an early activation step of BR signaling pathway.Here we report a novel function of SERKs in regulating Arabidopsis root development.Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway.Although BR signaling pathway is completely disrupted in the serk1 bak1 bkk1 triple mutant,the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants.More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport,cell cycle,endodermis development and root meristem differentiation,which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bri1-701.

  14. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis1[W][OPEN

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J.; Saito, Kazuki

    2014-01-01

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/. PMID:24828308

  15. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots

    OpenAIRE

    Daneshkhah, R.; Cabello, S.; Rozanska, E.; Sobczak, M.; Grundler, F. M. W.; Wieczorek, K.; Hofmann, J.

    2013-01-01

    The beneficial endophytic fungus Piriformospora indica colonizes the roots of many plant species, including the model plant Arabidopsis thaliana. Its colonization promotes plant growth, development, and seed production as well as resistance to various biotic and abiotic stresses. In the present work, P. indica was tested as potential antagonist of the sedentary plant-parasitic nematode Heterodera schachtii. This biotrophic cyst-forming nematode induces severe host plant damage by changing the...

  16. Pluripotent stem cells for the study of CNS development

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2011-10-01

    Full Text Available The mammalian central nervous system is a complex neuronal meshwork consisting of a diverse array of cellular subtypes generated in a precise spatial and temporal pattern throughout development. Achieving a greater understanding of the molecular and genetic mechanisms that direct a relatively uniform population of neuroepithelial progenitors into the diverse neuronal subtypes remains a significant challenge. A firmer knowledge of the fundamental aspects of developmental neuroscience will allow us to better study the vast array of neurodevelopmental diseases. The advent of stem cell technologies has expedited our ability to generate and isolate populations of distinct interneuron subtypes. To date, researchers have successfully developed protocols to derive many types of neural cells from pluripotent stem cells, with varying degrees of efficiencies and reproducibility. The stem cell field is devoted to the potential of stem cell-derived neurons for the treatment of disease, highlighted by the ability to create patient specific induced pluripotent stem cells. However, another application that is often overlooked is the use of stem cell technology for studying normal neural development. This is especially important for human neurodevelopment, since obtaining embryonic tissue presents numerous technical and ethical challenges. In this review, we will explore the use of pluripotent stem cells for the study of neural development. We will review the different classes of pluripotent stem cells and focus on the types of neurodevelopmental questions that stem cell technologies can help address. In addition to covering the different neural cells derived from stem cells to date, we will detail the derivation and characterization of three of the more thoroughly studied cell groups. We hope that this review encourages researchers to develop innovative strategies for using pluripotent stem cells for the study of mammalian, and specifically human

  17. The Development of the STEM Career Interest Survey (STEM-CIS)

    Science.gov (United States)

    Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.

    2014-06-01

    Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.

  18. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    Science.gov (United States)

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  19. Multidrug Resistance–like Genes of Arabidopsis Required for Auxin Transport and Auxin-Mediated Development

    Science.gov (United States)

    Noh, Bosl; Murphy, Angus S.; Spalding, Edgar P.

    2001-01-01

    Arabidopsis possesses several genes related to the multidrug resistance (MDR) genes of animals, one of which, AtMDR1, was shown to be induced by the hormone auxin. Plants having mutations in AtMDR1 or its closest relative, AtPGP1, were isolated by a reverse genetic strategy. Auxin transport activity was greatly impaired in atmdr1 and atmdr1 atpgp1 double mutant plants. Epinastic cotyledons and reduced apical dominance were mutant phenotypes consistent with the disrupted basipetal flow of auxin. The auxin transport inhibitor 1-naphthylphthalamic acid was shown to bind tightly and specifically to AtMDR1 and AtPGP1 proteins. The results indicate that these two MDR-like genes of Arabidopsis encode 1-naphthylphthalamic acid binding proteins that are required for normal auxin distribution and auxin-mediated development. PMID:11701880

  20. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection.

    Directory of Open Access Journals (Sweden)

    Jungan Park

    Full Text Available BACKGROUND: Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV. Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. METHODOLOGY/PRINCIPAL FINDINGS: Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were

  1. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  2. Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Directory of Open Access Journals (Sweden)

    Byeong-ha Lee

    2012-03-01

    Full Text Available Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE and phosphatidylcholine (PC in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to L-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1. The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue.

  3. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  4. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  5. Analysis of Gene Expression Patterns during Seed Coat Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Gillian Dean; George Haughn; YoncgGuo Cao; DaoQuan Xiang; Nicholas J. Provart; Larissa Ramsay; Abdul Ahada; Rick White; Gopalan Selvaraj; Raju Datla

    2011-01-01

    The seed coat is important for embryo protection,seed hydration,and dispersal.Seed coat composition is also of interest to the agricultural sector,since it impacts the nutritional value for humans and livestock alike.Although some seed coat genes have been identified,the developmental pathways controlling seed coat development are not completely elucidated,and a global genetic program associated with seed coat development has not been reported.This study uses a combination of genetic and genomic approaches in Arabidopsis thaliana to begin to address these knowledge gaps.Seed coat development is a complex process whereby the integuments of the ovule differentiate into specialized cell types.In Arabidopsis,the outermost layer of cells secretes mucilage into the apoplast and develops a secondary cell wall known as a columella.The layer beneath the epidermis,the palisade,synthesizes a secondary cell wall on its inner tangential side.The innermost layer (the pigmented layer or endothelium) produces proanthocyanidins that condense into tannins and oxidize,giving a brown color to mature seeds.Genetic separation of these cell layers was achieved using the ap2-7 and tt16-1 mutants,where the epidermis/palisade and the endothelium do not develop respectively.This genetic ablation was exploited to examine the developmental programs of these cell types by isolating and collecting seed coats at key transitions during development and performing global gene expression analysis.The data indicate that the developmental programs of the epidermis and the pigmented layer proceed relatively independently.Global expression datasets that can be used for identification of new gene candidates for seed coat development were generated.These dataset provide a comprehensive expression profile for developing seed coats in Arabidopsis,and should provide a useful resource and reference for other seed systems.

  6. Genetic analysis of seed development in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.

    1997-01-01

    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection procedures. The mutants have been analyzed genetically, physiologically,

  7. Transcriptional networks of TCP transcription factors in Arabidopsis development

    NARCIS (Netherlands)

    Danisman, S.D.

    2011-01-01

    Leaves are a plant’s main organs of photosynthesis and hence the development of this organ is under strict control. The different phases of leaf development are under the control of both endogenous and exogenous influences. In this work we were interested in a particular class of

  8. Individual Leaf Development in Arabidopsis thaliana: a Stable Thermal‐time‐based Programme

    OpenAIRE

    GRANIER, CHRISTINE; Massonnet, Catherine; TURC, OLIVIER; Muller, Bertrand; Chenu, Karine; Tardieu, François

    2002-01-01

    In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non‐crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant‐to‐plant variability in the studied isogenic line of the Columbia ecotype: 100‐fold differences in leaf area among plants sown on the same date ...

  9. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana

    OpenAIRE

    Li, Jisjeng; Jia, Honglei

    2013-01-01

    3′,5′-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H2O2) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H2O2 production. In addition, the decrease of endogenous H2O2 also inhibited the effect of cGMP on the lateral root development. Thus, H2O2 maybe act as a downstream signaling of cGMP molecule wh...

  10. NCP1/AtMOB1A Plays Key Roles in Auxin-Mediated Arabidopsis Development

    Science.gov (United States)

    Song, Lizhen; Wang, Yanli; Cheng, Youfa

    2016-01-01

    MOB1 protein is a core component of the Hippo signaling pathway in animals where it is involved in controlling tissue growth and tumor suppression. Plant MOB1 proteins display high sequence homology to animal MOB1 proteins, but little is known regarding their role in plant growth and development. Herein we report the critical roles of Arabidopsis MOB1 (AtMOB1A) in auxin-mediated development in Arabidopsis. We found that loss-of-function mutations in AtMOB1A completely eliminated the formation of cotyledons when combined with mutations in PINOID (PID), which encodes a Ser/Thr protein kinase that participates in auxin signaling and transport. We showed that atmob1a was fully rescued by its Drosophila counterpart, suggesting functional conservation. The atmob1a pid double mutants phenocopied several well-characterized mutant combinations that are defective in auxin biosynthesis or transport. Moreover, we demonstrated that atmob1a greatly enhanced several other known auxin mutants, suggesting that AtMOB1A plays a key role in auxin-mediated plant development. The atmob1a single mutant displayed defects in early embryogenesis and had shorter root and smaller flowers than wild type plants. AtMOB1A is uniformly expressed in embryos and suspensor cells during embryogenesis, consistent with its role in embryo development. AtMOB1A protein is localized to nucleus, cytoplasm, and associated to plasma membrane, suggesting that it plays roles in these subcellular localizations. Furthermore, we showed that disruption of AtMOB1A led to a reduced sensitivity to exogenous auxin. Our results demonstrated that AtMOB1A plays an important role in Arabidopsis development by promoting auxin signaling. PMID:26942722

  11. Genetic analysis of seed development in Arabidopsis thaliana.

    OpenAIRE

    Léon-Kloosterziel, K.M.

    1997-01-01

    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection procedures. The mutants have been analyzed genetically, physiologically, and morphologically. Some of the mutants are impaired in the biosynthesis or sensitivity to the plant hormone, abscisic acid (ABA). All ABA-related mutants show reduced seed dormancy, indicating the...

  12. Development of gene and stem cell therapy for ocular neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Jing-Xue; Zhang; Ning-Li; Wang; Qing-Jun; Lu

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.

  13. An effective model of developing teacher leaders in STEM education

    Science.gov (United States)

    Sublette, Heidi

    In the last 5 years, industries have begun to recognize a growing gap in the production of college graduates in areas of STEM. Researchers in various industries believe this gap will create a significant loss of competitive edge in the STEM fields, which will leave the United States pursuing STEM graduates from foreign countries and may ultimately leave the US behind in the industry of science, technology and innovation. This qualitative study analyzes the value and impact of STEM teacher leaders in secondary education. A phenomenological study was conducted with 10 secondary school science and math teacher leaders in order to gain a better understanding of teacher leaders' perceptions, classroom practices and the role of a STEM teacher leader. This study addresses the following research questions: 1) What attributes define effective STEM teacher leaders, according to teacher leaders who have completed the Center for Math and Science Teaching system? 2) What success strategies, among teacher leaders of the Center for Math and Science Teaching program, have enabled further development of teacher leadership? 3) What is the best model in developing teacher leaders, according to literature from 2005 to present? 4) What is an optimal model of developing STEM (science, technology, engineering, and math) teacher leaders within secondary education? This research aims to explore teacher leaders' perceptions of their role as a teacher leader based on strategies learned from CMAST and past experiences. Findings from this study provide critical data for making informed decisions on including important elements when implementing an effective STEM teacher leader system or program, and the impact it can create on science and math teaching and learning in secondary education. The investigator concludes this study with the development of a STEM teacher leader model that merges these findings with existing research.

  14. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem

    Institute of Scientific and Technical Information of China (English)

    Yuji Tsutsumi

    2015-01-01

    Plant class III heme peroxidases catalyze lignin polymerization. Previous reports have shown that at least three Arabidopsis thaliana peroxidases, AtPrx2, AtPrx25 and AtPrx71, are involved in stem lignification using T-DNA insertion mutants, atprx2, atprx25, and atprx71. Here, we generated three double mutants, atprx2/atprx25, atprx2/atprx71, and atprx25/atprx71, and investigated the impact of the simultaneous deficiency of these peroxidases on lignins and plant growth. Stem tissue analysis using the acetyl bromide method and derivatization followed by reductive cleavage revealed improved lignin characteristics, such as lowered lignin content and increased arylglycerol-b-aryl (b-O-4) linkage type, especial y b-O-4 linked syringyl units, in lignin, supporting the roles of these genes in lignin polymerization. In addition, none of the double mutants exhibited severe growth defects, such as shorter plant stature, dwarfing, or sterility, and their stems had improved cell wal degradability. This study will contribute to progress in lignin bioengineering to improve lignocellulosic biomass.

  15. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Yue, Kun; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-09-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  16. Identification of a homolog of Arabidopsis DSP4 (SEX4) in chestnut: its induction and accumulation in stem amyloplasts during winter or in response to the cold.

    Science.gov (United States)

    Berrocal-Lobo, Marta; Ibañez, Cristian; Acebo, Paloma; Ramos, Alberto; Perez-Solis, Estefania; Collada, Carmen; Casado, Rosa; Aragoncillo, Cipriano; Allona, Isabel

    2011-10-01

    Oligosaccharide synthesis is an important cryoprotection strategy used by woody plants during winter dormancy. At the onset of autumn, starch stored in the stem and buds is broken down in response to the shorter days and lower temperatures resulting in the buildup of oligosaccharides. Given that the enzyme DSP4 is necessary for diurnal starch degradation in Arabidopsis leaves, this study was designed to address the role of DSP4 in this seasonal process in Castanea sativa Mill. The expression pattern of the CsDSP4 gene in cells of the chestnut stem was found to parallel starch catabolism. In this organ, DSP4 protein levels started to rise at the start of autumn and elevated levels persisted until the onset of spring. In addition, exposure of chestnut plantlets to 4 °C induced the expression of the CsDSP4 gene. In dormant trees or cold-stressed plantlets, the CsDSP4 protein was immunolocalized both in the amyloplast stroma and nucleus of stem cells, whereas in the conditions of vegetative growth, immunofluorescence was only detected in the nucleus. The studies indicate a potential role for DSP4 in starch degradation and cold acclimation following low temperature exposure during activity-dormancy transition.

  17. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-01-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  18. Conserved Functions of Arabidopsis and Rice CC-Type Glutaredoxins in Flower Development and Pathogen Response

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Shuping Xing; Rainer P. Birkenbihl; Sabine Zachgo

    2009-01-01

    Glutaredoxins (GRXs) are ubiquitous oxidoreductases that play a crucial role in response to oxidative stress by reducing disulfides in various organisms. In planta, three different GRX classes have been identified according to their active site motifs. CPYC and CGFS classes are found in all organisms, whereas the CC-type class is specific for higher land plants. Recently, two Arabidopsis CC-type GRXs, ROXY1 and ROXY2, were shown to exert crucial functions in petal and anther initiation and differentiation. To analyze the function of CC-type GRXs in the distantly related monocots, we iso-lated and characterized OsROXY1 and OsROXY2-two rice homologs of ROXY1. Both genes are expressed in vegetative and reproductive stages. Although rice flower morphology is distinct from eudicots, OsROXY1/2 floral expression patterns are similar to their Arabidopsis counterparts ROXY1/2. Complementation experiments demonstrate that OsROXY1 and OsROXY2 can fully rescue the roxy1 floral mutant phenotype. Overexpression of OsROXY1, OsROXY2, and ROXY1 in Ara-bidopsis causes similar vegetative and reproductive plant developmental defects. ROXY1 and its rice homologs thus exert a conserved function during eudicot and monocot flower development. Strikingly, overexpression of these CC-type GRXs also leads to an increased accumulation of hydrogen peroxide levels and hyper-susceptibility to infection from the necrotrophic pathogen Botrytis cinerea, revealing the importance of balanced redox processes in flower organ develop-ment and pathogen defence.

  19. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  20. Development of antibodies to human embryonic stem cell antigens

    OpenAIRE

    Stanley Marisa; Rao Mahendra S; Olson Judith M; Cai Jingli; Taylor Eva; Ni Hsiao-Tzu

    2005-01-01

    Abstract Background Using antibodies to specific protein antigens is the method of choice to assign and identify cell lineage through simultaneous analysis of surface molecules and intracellular markers. Embryonic stem cell research can be benefited from using antibodies specific to transcriptional factors/markers that contribute to the "stemness" phenotype or critical for cell lineage. Results In this report, we have developed and validated antibodies (either monoclonal or polyclonal) specif...

  1. Development of neural stem cell in the adult brain

    OpenAIRE

    Duan, Xin; Kang, Eunchai; Liu, Cindy Y.; Ming, Guo-li; Song, Hongjun

    2008-01-01

    New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechani...

  2. Mammary development and breast cancer: the role of stem cells

    OpenAIRE

    Ercan, C.; J. van Diest, P.; Vooijs, M.

    2011-01-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often fou...

  3. Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods

    Institute of Scientific and Technical Information of China (English)

    Anna Lepist(o); Eevi Rintam(a)ki

    2012-01-01

    Plants synchronize their cellular and physiological functions according to the photoperiod(the length of the light period)in the cycle of 24 h.Photoperiod adjusts several traits in the plant life cycle,including flowering and senescence in annuals and seasonal growth cessation in perennials.Photoperiodic development is controlled by the coordinated action of photoreceptors and the circadian clock.During the past 10 years,remarkable progress has been made in understanding the molecular mechanism of the circadian clock,especially with regard to the transition of Arabidopsis from the vegetative growth to the reproductive phase.Besides flowering photoperiod also modifies plant photosynthetic structures and traits.Light signals controlling biogenesis of chloroplasts and development of leaf photosynthetic structures are perceived both by photoreceptors and in chloroplasts.In this review,we provide evidence suggesting that the photoperiodic development of Arabidopsis leaves mimics the acclimation of plant to various light intensities.Furthermore,the chloroplast-to-nucleus retrograde signals that adjust acclimation to light intensity are proposed to contribute also to the signaling pathways that control photoperiodic acclimation of leaves.

  4. Building up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael

    2016-01-01

    Improving K-12 Science, Technology, Engineering, and Mathematics (STEM) education has a priority on numerous education reforms in the United States. To that end, developing and sustaining quality programs that focus on integrated STEM education is critical for educators. Successful implementation of any STEM program is related to the curriculum…

  5. Developing neural stem cell-based treatments for neurodegenerative diseases.

    Science.gov (United States)

    Byrne, James A

    2014-05-30

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.

  6. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis.

    Science.gov (United States)

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C

    2010-09-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and beta-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis.

  7. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W

    Science.gov (United States)

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and β-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis. PMID:20631316

  8. Fruit development is actively restricted in the absence of fertilization in Arabidopsis.

    Science.gov (United States)

    Vivian-Smith, A; Luo, M; Chaudhury, A; Koltunow, A

    2001-06-01

    Flowering plants usually require fertilization to form fruit and seed and to initiate floral organ abscission in structures that do not contribute to the fruit. An Arabidopsis mutant that initiates seedless fruit without fertilization (fwf) or parthenocarpy was isolated and characterized to understand the factors regulating the transition between the mature flower and the initiation of seed and fruit development. The fwf mutant is fertile and has normal plant growth and stature. It sets fertile seed following self-pollination and fertilization needs to be prevented to observe parthenocarpy. The initiation of parthenocarpic siliques (fruit) was found to be dependent upon carpel valve identity conferred by FRUITFULL but was independent of the perception of gibberellic acid, shown to stimulate parthenocarpy in Arabidopsis following exogenous application. The recessive nature of fwf is consistent with the involvement of FWF in processes that inhibit fruit growth and differentiation in the absence of fertilization. The enhanced cell division and expansion in the silique mesocarp layer, and increased lateral vascular bundle development imply FWF has roles also in modulating silique growth post-fertilization. Parthenocarpy was inhibited by the presence of other floral organs suggesting that both functional FWF activity and inter-organ communication act in concert to prevent fruit initiation in the absence of fertilization. PMID:11493551

  9. Risk factors in the development of stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hermsen Harm PH

    2011-03-01

    Full Text Available Abstract Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience or potential/theoretical risks (i.e. risks observed in animal studies include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC. Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC in

  10. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    Science.gov (United States)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  11. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development

    OpenAIRE

    Xiaozhen Yao; Haiyang Feng; Yu Yu; Aiwu Dong; Wen-Hui Shen

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell ...

  12. Engineering Hematopoietic Stem Cells: Lessons from Development.

    Science.gov (United States)

    Rowe, R Grant; Mandelbaum, Joseph; Zon, Leonard I; Daley, George Q

    2016-06-01

    Cell engineering has brought us tantalizingly close to the goal of deriving patient-specific hematopoietic stem cells (HSCs). While directed differentiation and transcription factor-mediated conversion strategies have generated progenitor cells with multilineage potential, to date, therapy-grade engineered HSCs remain elusive due to insufficient long-term self-renewal and inadequate differentiated progeny functionality. A cross-species approach involving zebrafish and mammalian systems offers complementary methodologies to improve understanding of native HSCs. Here, we discuss the role of conserved developmental timing processes in vertebrate hematopoiesis, highlighting how identification and manipulation of stage-specific factors that specify HSC developmental state must be harnessed to engineer HSCs for therapy. PMID:27257760

  13. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  14. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    Science.gov (United States)

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  15. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  16. Isolation of Promoters and Fragments of Genes Controlling Endosperm Development Without Fertilization in Arabidopsis and Engineering of the Antisense Constructions

    Directory of Open Access Journals (Sweden)

    Grigory A. Gerashchenkov

    2015-06-01

    Full Text Available Apomixis is asexual seed reproduction without both meiosis and fertilization based on the complex developmental processes such as apomeiosis, parthenogenesis and specific endosperm development. This investigation is aimed at engineering of apomixis in Arabidopsis thaliana with sexual seed reproduction. The fragments of known genes of endosperm formation MEA, FIE, FIS2 and gene of apomeiosis DYAD (as control were isolated using Q5 high fidelity DNA polymerase. These gene fragments of interest at the antisense orientation were fused with isolated constitutive and meiosis specific promoters of Arabidopsis at NcoI sites. The fused promoter-gene fragment modules were cloned in pCambia1301 at SalI cites. The engineered constructions will be used for the floral dip transformation of Arabidopsis and down regulation of these genes at engineering of apomixis.

  17. MADS on the move : a study on MADS domain protein function and movement during floral development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Urbanus, S.L.

    2010-01-01

    In this thesis we investigated the behaviour of fluorescently-tagged MADS domain proteins during floral development in the model plant Arabidopsis thaliana, and explored the importance of intercellular transport via plasmodesmata for MADS domain transcription factor functioning. The MADS domain tran

  18. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  19. DEVELOPMENT OF QUALITY STANDARDS OF BERBERIS ARISTATA STEM BARK

    Directory of Open Access Journals (Sweden)

    Javed Ahamad

    2012-02-01

    Full Text Available Berberis aristata is an important medicinal plant of family Berberidaceae. It is commonly known as Zarishk and Daruhaldi. It is mainly used for the treatment piles, liver diseases and diabetes. As the herb is used widely in the Indian traditional systems of medicine, it was thought worthwhile to develop the quality standards for its stem bark. The results of Pharmacognostic standardization of stem bark of B. aristata are very helpful in determination of quality and purity of the crude drug and its marketed formulation.

  20. The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development.

    Science.gov (United States)

    Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; Stonebloom, Solomon; Smith-Moritz, Andreia M; Pauly, Markus; Orellana, Ariel; Scheller, Henrik Vibe; Heazlewood, Joshua L

    2016-01-01

    Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development. PMID:27381418

  1. The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development.

    Science.gov (United States)

    Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; Stonebloom, Solomon; Smith-Moritz, Andreia M; Pauly, Markus; Orellana, Ariel; Scheller, Henrik Vibe; Heazlewood, Joshua L

    2016-07-06

    Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.

  2. A drug target that stimulates development of healthy stem cells

    Science.gov (United States)

    Scientists have overcome a major impediment to the development of effective stem cell therapies by studying mice that lack CD47, a protein found on the surface of both healthy and cancer cells. They discovered that cells obtained from the lungs of CD47-de

  3. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    Directory of Open Access Journals (Sweden)

    Hui eWEI

    2015-05-01

    Full Text Available Identifying the cell wall-ionically bound glycoside hydrolases (GHs in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360 and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3. Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16, AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31, AT1G12240 (invertase, GH32 and AT2G28470 (β-galactosidase 8, GH35, were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.

  4. The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zakir Hossain

    Full Text Available The eukaryotic translation elongation factor eEF-1Bβ1 (EF1Bβ is a guanine nucleotide exchange factor that plays an important role in translation elongation. In this study, we show that the EF1Bβ protein is localized in the plasma membrane and cytoplasm, and that the transcripts should be expressed in most tissue types in seedlings. Sectioning of the inflorescence stem revealed that EF1Bβ predominantly localizes to the xylem vessels and in the interfascicular cambium. EF1Bβ gene silencing in efβ caused a dwarf phenotype with 38% and 20% reduction in total lignin and crystalline cellulose, respectively. This loss-of-function mutant also had a lower S/G lignin monomer ratio relative to wild type plants, but no changes were detected in a gain-of-function mutant transformed with the EF1Bβ gene. Histochemical analysis showed a reduced vascular apparatus, including smaller xylem vessels in the inflorescence stem of the loss-of-function mutant. Over-expression of EF1Bβ in an eli1 mutant background restored a WT phenotype and abolished ectopic lignin deposition as well as cell expansion defects in the mutant. Taken together, these data strongly suggest a role for EF1Bβ in plant development and cell wall formation in Arabidopsis.

  5. Monkey hybrid stem cells develop cellular features of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Lorthongpanich Chanchao

    2010-02-01

    Full Text Available Abstract Background Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research. Results To test this hypothesis, a pluripotent Huntington's disease monkey hybrid cell line (TrES1 was established from a tetraploid Huntington's disease monkey blastocyst generated by the fusion of transgenic Huntington's monkey skin fibroblast and a wild-type non-transgenic monkey oocyte. The TrES1 developed key Huntington's disease cellular pathological features that paralleled neural development. It expressed mutant huntingtin and stem cell markers, was capable of differentiating to neural cells, and developed teratoma in severely compromised immune deficient (SCID mice. Interestingly, the expression of mutant htt, the accumulation of oligomeric mutant htt and the formation of intranuclear inclusions paralleled neural development in vitro , and even mutant htt was ubiquitously expressed. This suggests the development of Huntington's disease cellular features is influenced by neural developmental events. Conclusions Huntington's disease cellular features is influenced by neural developmental events. These results are the first to demonstrate that a pluripotent stem cell line is able to mimic Huntington's disease progression that parallels neural development, which could be a useful cell model for investigating the developmental impact on Huntington's disease pathogenesis.

  6. Violates stem wood burning sustainable development?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2008-01-01

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  7. Comparison of Leaf Plastochron Index and Allometric Analyses of Tooth Development in Arabidopsis thaliana.

    Science.gov (United States)

    Groot; Meicenheimer

    2000-03-01

    Two methods of analyses were used to investigate tooth development in serrate (se) mutant and wild-type Columbia-1 (Col-1) Arabidopsis thaliana leaves. There were almost twice as many teeth with deeper sinuses and two orders of toothing on the margins of serrate compared with Columbia-1 leaves. The main objective of this study was to test three hypotheses relative to the source of polymorphism in tooth development: (i) Teeth share similar growth rates and initial sizes, but the deeper teeth are initiated earlier in leaf development. (ii) Teeth share similar timing of initiation and growth rates, but the deeper teeth have a larger initial size. (iii) Teeth share similar timing of initiation and initial sizes, but the deeper teeth have a faster growth rate. Leaf plastochron index (LPI) was used as the time variable for leaf development. Results showed teeth in se were initiated at -27 LPI, 15 plastochrons earlier than those of Col-1. Serrate leaf expansion was biphasic, with the early phase expanding at half the relative plastochron rate of the later phase, which equaled the constant relative expansion rate of Col-1 leaves. Allometric analyses of tooth development obscured the interactions between time of tooth and leaf initiation and the early phase of leaf expansion characteristic of serrate leaves and teeth. Timing of developmental events that allometric analysis obscured can be readily detected with the LPI as a developmental index.

  8. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  9. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis

    OpenAIRE

    Durfee, Tim; Roe, Judith L.; Sessions, R. Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A.; Weigel, Detlef; Zambryski, Patricia C.

    2003-01-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO...

  10. Cancer stem cells: a new approach to tumor development

    Directory of Open Access Journals (Sweden)

    Natália Cristina Ciufa Kobayashi

    2015-02-01

    Full Text Available Many theories have been proposed to explain the origins of cancer. Currently, evidences show that not every tumor cell is capable of initiating a tumor. Only a small part of the cancer cells, called cancer stem cells (CSCs, can generate a tumor identical to the original one, when removed from human tumors and transplanted into immunosuppressed mice. The name given to these cells comes from the resemblance to normal stem cells, except for the fact that their ability to divide is infinite. These cells are also affected by their microenvironment. Many of the signaling pathways, such as Wnt, Notch and Hedgehog, are altered in this tumoral subpopulation, which also contributes to abnormal proliferation. Researchers have found several markers for CSCs; however, much remains to be studied, or perhaps a universal marker does not even exist, since they vary among tumor types and even from patient to patient. It was also found that cancer stem cells are resistant to radiotherapy and chemotherapy. This may explain the re-emergence of the disease, since they are not completely eliminated and minimal amounts of CSCs can repopulate a tumor. Once the diagnosis in the early stages greatly increases the chances of curing cancer, identifying CSCs in tumors is a goal for the development of more effective treatments. The objective of this article is to discuss the origin of cancer according to the theory of stem cell cancer, as well as its markers and therapies used for treatment.

  11. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  12. AtMYB103 is a crucial regulator of several pathways affecting Arabidopsis anther development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Previous reports indicated that AtMYB103 has an important role in tapetum development,callose dissolution,and exine formation in A.thaliana anthers.Here,we further characterized its function in anther development by expression pattern analysis,transmission electron microscopy observation of the knockout mutant,and microarray analysis of downstream genes.A total of 818 genes differentially expressed between ms188 and the wild-type were identified by global expression profiling analysis.Functional classification showed that loss-of-function of AtMYB103 impairs cell wall modification,lipid metabolic pathways,and signal transduction throughout anther development.RNA in situ hybridization confirmed that transcription factors acting downstream of AtMYB103 (At1g06280 and At1g02040) were expressed in the tapetum and microspores at later stages,suggesting that they might have important roles in microsporogenesis.These results indicated that AtMYB103 is a crucial regulator of Arabidopsis anther development.

  13. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development

    Institute of Scientific and Technical Information of China (English)

    Yu Xin HU; Yong Hong WANG; Xin Fang LIU; Jia Yang LI

    2004-01-01

    RAV1 is a novel DNA-binding protein with two distinct DNA-binding domains unique in higher plants,but its role in plant growth and development remains unknown. Using cDNA array,we found that transcription of RAV1 is downregulated by epibrassinolide (epiBL) in Arabidopsis suspension cells. RNA gel blot analysis revealed that epiBL-regulated RAV1 transcription involves neither protein phosphorylation/dephosphorylation nor newly synthesized protein,and does not require the functional BRI1,suggesting that this regulation might be through a new BR signaling pathway.Overexpressing RAV1 in Arabidopsis results in a retardation of lateral root and rosette leaf development,and the underexpression causes an earlier flowering phenotype,implying that RAV1 may function as a negative regulatory component of growth and development.

  14. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiaozhen Huang; Xiaoyan Zhang; Shuhua Yang

    2009-01-01

    @@ The corresponding author is sorry for the following errors. 1. The first sentence of the Results section is corrected to read: The albino mutant (SALK_016097) was obtained from Arabidopsis Biological Resource Center (ABRC).

  15. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiaozhen Huang; Xiaoyan Zhang; Shuhua Yang

    2009-01-01

    To understand the molecular mechanisms underlying chloroplast development, we isolated and characterized the albino mutant emb1303-1 in Arabidopsis. The mutant displayed a severe dwarf phenotype with small albino rosette leaves and short roots on a synthetic medium containing sucrose. It is pigment-deficient and seedling lethal when grown in soil. Embryo development was delayed in the mutant, although seed germination was not significantly im-paired. The plastids of emb1303-1 were arrested in early developmental stages without the classical stack of thylakoid membrane. Genetic and molecular analyses uncovered that the EMB1303 gene encodes a novel chloroplast-localized protein. Mieroarray and RT-PCR analyses revealed that a number of nuclear-and plastid-encoded genes involved in photosynthesis and chloroplast biogenesis were substantially downregulated in the mutant. Moreover, the accu-mulation of several major chloroplast proteins was severely compromised in emb1303-1. These results suggest that EMBI303 is essential for chloroplast development.

  16. Identification and genetic mapping of four novel genes that regulate leaf development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    SUNYUE; YingLiGuo; 等

    2000-01-01

    Molecular and genetic characterizations of mutants have led to a better understanding of many developmental processes in the model system Arabidopsis thaliana.However,the leaf development that is specific to plants has been little studies.With the aim of contributing to the genetic dissection of leaf development,we have performed a large-scare screening for mutants with abnormal leaves.Among a great number of leaf mutants we have generated by T-DNA and transposon tagging and ethylmethae sulfonate (EMS) mutagenesis,four independent mutant lines have been identified and studied genetically.Phenotypes of these mutant lines represent the defects of four novel muclear genes designated LL1(LOTUS LEAF 1),LL2(LOTUS LEAF2),URO(UPRIGHT ROSETTE),and EIL(ENVIRONMENT CONDITION INDUCED LESION).The phenotypic analysis indicates that these genes play important roles during leaf development.For the further genetic analysis of these genes and the map-based cloning of LL1 and LL2,we have mapped these genes to chromosome regions with an efficient and rapid mapping method.

  17. An auxin-responsive endogenous peptide regulates root development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fengxi Yang; Yu Song; Hao Yang; Zhibin Liu; Genfa Zhu; Yi Yang

    2014-01-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, rootmorphology, including lateral root number and adventitious roots, differed greatly between transgenic and wildtype plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wildtype plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxinmediated root development.

  18. Gene regulatory networks in embryonic stem cells and brain development

    OpenAIRE

    Ghosh, Dhimankrishna; Yan, Xiaowei; Tian, Qiang

    2009-01-01

    Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carries great therapeutic potentials in regenerative medicines. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here we discuss how the finite ESC components mediate the intriguing task of brain development and exhibits biomedical potentials to cure diverse neurological disorders.

  19. Development of gene and stem cell therapy for ocular neurodegeneration

    OpenAIRE

    Zhang, Jing-Xue; Wang, Ning-Li; Lu, Qing-Jun

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews t...

  20. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    Science.gov (United States)

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  1. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  2. Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Krizek Beth A

    2011-06-01

    Full Text Available Abstract Background Two related genes encoding AP2/ERF-type transcription factors, AINTEGUMENTA (ANT and AINTEGUMENTA-LIKE6 (AIL6, are important regulators of floral growth and patterning in Arabidopsis. Evidence suggests that these genes promote several aspects of flower development in response to auxin. To investigate the interplay of ANT, AIL6 and auxin during floral development, I have examined the phenotypic consequences of disrupting polar auxin transport in ant, ail6 and ant ail6 mutants by either genetic or chemical means. Results Plants containing mutations in ANT or AIL6 alone or in both genes together exhibit increased sensitivity to disruptions in polar auxin transport. Both genes promote shoot growth, floral meristem initiation and floral meristem patterning in combination with auxin transport. However, differences in the responses of ant and ail6 single mutants to perturbations in auxin transport suggest that these two genes also have non-overlapping activities in each of these developmental processes. Conclusions The enhanced sensitivity of ant and ail6 mutants to alterations in polar auxin transport suggests that these mutants have defects in some aspect of auxin physiology. The inability of ant ail6 double mutants to initiate flowers in backgrounds disrupted for auxin transport confirm the proposed roles for these two genes in floral meristem initiation.

  3. Effects of host plant development and genetic determinants on the long-distance movement of cauliflower mosaic virus in Arabidopsis.

    Science.gov (United States)

    Leisner, S M; Turgeon, R; Howell, S H

    1993-02-01

    During systemic infections, viruses move long distances through the plant vascular system. The long-distance movement of cauliflower mosaic virus (CaMV) in Arabidopsis has been examined using a whole plant in situ hybridization technique called plant skeleton hybridization. CaMV moves long distance through the phloem largely following the flow of photoassimilates from source to sink leaves. During the course of plant development, sink-source relationships change and the region of the plant that CaMV can invade is progressively reduced. In Arabidopsis, we have found that conditions that influence the rate of plant development dramatically impact the long-distance movement of CaMV, because under normal conditions the rate of plant development is closely matched to the kinetics of virus movement. Ecotypes and mutants of Arabidopsis that flower early show a form of resistance to systemic CaMV infection, which we call "developmental resistance." Developmental resistance results from the fact that the rosette leaves mature early in the life of an early flowering plant and become inaccessible to virus. On the other hand, if the development of early flowering plants is retarded by suboptimal growth conditions, inoculated plants appear more susceptible to the virus and systemic infections become more widespread. We have found that other Arabidopsis ecotypes, such as Enkheim-2 (En-2), show another form of resistance to virus movement that is not based on developmental or growth conditions. The virus resistance in ecotype En-2 is largely conditioned by a dominant trait at a single locus. PMID:8453301

  4. Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    OpenAIRE

    Guilan Gao; Shengchun Zhang; Chengfeng Wang; Xiang Yang; Yaqin Wang; Xiaojun Su; Jinju Du; Chengwei Yang

    2011-01-01

    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downst...

  5. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.

    Science.gov (United States)

    Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M

    1998-06-01

    In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.

  6. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings

    Institute of Scientific and Technical Information of China (English)

    Fengying An; Xing Zhang; Ziqiang Zhu; Yusi Ji; Wenrong He; Zhiqiang Jiang; Mingzhe Li; Hongwei Guo

    2012-01-01

    Dark-grown Arabidopsis seedlings develop an apical hook when germinating in soil,which protects the cotyledons and apical meristematic tissues when protruding through the soil.Several hormones are reported to distinctly modulate this process.Previous studies have shown that ethylene and gibberellins (GAs) coordinately regulate the hook development,although the underlying molecular mechanism is largely unknown.Here we showed that GA3 enhanced while paclobutrazol repressed ethylene- and EIN3-overexpression (EIN3ox)-induced hook curvature,and della mutant exhibited exaggerated hook curvature,which required an intact ethylene signaling pathway.Genetic study revealed that GA-enhanced hook development was dependent on HOOKLESS 1 (HLS1),a central regulator mediating the input of the multiple signaling pathways during apical hook development.We further found that GA3 induced (and DELLA proteins repressed) HLS1 expression in an ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1)-dependent manner,whereby EIN3/EIL1 activated HLS1 transcription by directly binding to its promoter.Additionally,DELLA proteins were found to interact with the DNA-binding domains of EIN3/EIL1 and repress EIN3/EIL1-regulated HLS1 expression.Treatment with naphthylphthalamic acid,a polar auxin transport inhibitor,repressed the constitutively exaggerated hook curvature of EIN3ox line and della mutant,supporting that auxin functions downstream of the ethylene and GA pathways in hook development.Taken together,our results identify EIN3/EIL1 as a new class of DELLA-associated transcription factors and demonstrate that GA promotes apical hook formation in cooperation with ethylene partly by inducing the expression of HLS1 via derepression of EIN3/EIL1 functions.

  7. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  8. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development

    NARCIS (Netherlands)

    Barker, N.; Rookmaaker, M.B.; Kujala, P.; Ng, A.; Leushacke, M.; Snippert, H.; van de Wetering, M.; Tan, S.; van Es, J.H.; Huch, M.; Poulsom, R.; Verhaar, M.C.; Peters, P.J.; Clevers, H.

    2012-01-01

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appea

  9. Lgr5(+ve) Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    NARCIS (Netherlands)

    Barker, Nick; Rookmaaker, Maarten B.; Kujala, Pekka; Ng, Annie; Leushacke, Marc; Snippert, Hugo; van de Wetering, Marc; Tan, Shawna; Van Es, Johan H.; Huch, Meritxell; Poulsom, Richard; Verhaar, Marianne C.; Peters, Peter J.; Clevers, Hans

    2012-01-01

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appea

  10. The role of mesenchymal stem cells and serotonin in the development of experimental pancreatitis.

    Science.gov (United States)

    Lazebnic, L B; Lychkova, A E; Knyazev, O V

    2013-08-01

    Pancreatitis was modeled before and after preliminary transplantation of stem cells and serotonin. It was demonstrated that transplantation of mesenchymal stem cells and activation of serotoninergic system prevent the development of pancreatitis. PMID:24143388

  11. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development.

    Directory of Open Access Journals (Sweden)

    Danhua Jiang

    2011-03-01

    Full Text Available Histone H3 lysine-4 (H3K4 methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC, and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3

  12. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Science.gov (United States)

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  13. Cinnamate-4-hydroxylase expression in arabidopsis. Regulation in response to development and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Bell-Lelong, D.A.; Cusumano, J.C.; Meyer, K.; Chapple, C. [Purdue Univ., West Lafayette, IN (United States)

    1997-03-01

    Cinnamate-r-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic clone. The entire C4H coding sequence plus 2.9 kb of its promoter were isolated on a 5.4-kb HindIII fragment of this cosmid. Inspection of the promoter sequence revealed the presence of a number of putative regulatory motifs previously identified in the promoters of other phenylpropanoid pathway genes. The expression of C4H was analyzed by RNA blot hybridization analysis and in transgenic Arabidopsis carrying a C4H-{beta}-glucuronidase transcriptional fusion. C4H message accumulation was light-dependent, but was detectable even in dark-grown seedlings. Consistent with these data, C4H mRNA was accumulated to light-grown levels in etiolated det1-1 mutant seedlings. C4H is widely expressed in various Arabidopsis tissues, particularly in roots and cells undergoing lignification. The C4H-driven {beta}-glucuronidase expression accurately reflected the tissue-specificity and wound-inducibility of the C4H promoter indicated by RNA blot hybridization analysis. A modest increase in C4H expression was observed in the tt8 mutant of Arabidopsis. 77 refs., 5 figs.

  14. Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis.

    Science.gov (United States)

    Jia, Weiyan; Li, Baohua; Li, Shujia; Liang, Yan; Wu, Xiaowei; Ma, Mei; Wang, Jiyao; Gao, Jin; Cai, Yueyue; Zhang, Yuanya; Wang, Yingchun; Li, Jiayang; Wang, Yonghong

    2016-09-01

    Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development. PMID:27618482

  15. The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis.

    Science.gov (United States)

    Lee, Kwang-Hee; Minami, Atsushi; Marshall, Richard S; Book, Adam J; Farmer, Lisa M; Walker, Joseph M; Vierstra, Richard D

    2011-12-01

    The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly. PMID:22158466

  16. SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat

    Science.gov (United States)

    Paolo, Dario; Rueda-Romero, Paloma; Guerra, Rosalinda Fiorella; Battaglia, Raffaella; Rogachev, Ilana; Aharoni, Asaph; Kater, Martin M.; Caporali, Elisabetta; Colombo, Lucia

    2014-01-01

    The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. PMID:25521508

  17. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    Directory of Open Access Journals (Sweden)

    Chiara Mizzotti

    2014-12-01

    Full Text Available The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR, which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

  18. The effect of oil sands process-affected water and naphthenic acids on the germination and development of Arabidopsis.

    Science.gov (United States)

    Leishman, Chelsea; Widdup, Ellen E; Quesnel, Dean M; Chua, Gordon; Gieg, Lisa M; Samuel, Marcus A; Muench, Douglas G

    2013-09-01

    Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50mgL(-1) AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10mgL(-1), whereas inhibition of germination by the diamondoid model NA was observed only at 50mgL(-1). Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10mgL(-1) severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50mgL(-1). At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation.

  19. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  20. DELAYED FLOWERING, an Arabidopsis Gene That Acts in the Autonomous Flowering Promotion Pathway and Is Required for Normal Development

    Institute of Scientific and Technical Information of China (English)

    Ming-Jie Chen; Zheng Yuan; Hai Huang

    2006-01-01

    The control of flowering time in higher plants is one of the most important physiological processes and is critical for their reproductive success. To investigate the mechanisms controlling flowering time, we screened for Arabidopsis mutants with late-flowering phenotypes. One mutant, designated delayed flowering (dfr) in the Landsberg erecta (Ler) ecotype, was identified with delayed flowering time. Genetic analysis revealed that dfr is a single gene recessive nuclear mutant and the mutation was mapped to a locus tightly linked to UFO on chromosome 1. To our knowledge, no gene regulating flowering time has been reported yet in this region. The dfr mutant plant showed a delayed flowering time under the different growth conditions examined,including long- and short-day photoperiods and gibberellic acid GA3 treatments, suggesting that DFR is a gene involved in the autonomous flowering promotion pathway. The Arabidopsis gene FLOWERING LOCUS C (FLC) plays a central role in repressing flowering and its transcripts are undetectable in wild-type Ler.However, FLCexpression was upregulated in the dfrmutant, suggesting that DFR is a negative regulator of FLC. In addition, the dfr mutant plant displayed altered valve shapes of the silique and the number of trichomes and branches of each trichome were both reduced, indicating that the DRFgene is also required for normal plant development. Moreover, dfr leafy-5 (Ify-5) double mutant plants showed a much later flowering time than either dfr or Ify-5 single mutants, indicating that DFR and LFYact synergistically to promote flowering in Arabidopsis.

  1. Auxin transport in an auxin-resistant mutant of arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, C.; Benning, C.; Estelle, M.

    1987-04-01

    The authors are studying a group of allelic recessive mutations in Arabidopsis called axr-1. Homozygous axr-1 plants are resistant to exogenously applied auxin. In addition, axr-1 mutations all confer a number of development abnormalities including an apparent reduction in apical dominance, loss of normal geotropic response, and a failure to self-fertilize due to a decrease in stamen elongation. In order to determine whether this pleiotropic phenotype is due to an alteration in auxin transport they have adapted the agar block transport assay for use in Arabidopsis stem segments. Their results indicate that as in other plant species, auxin transport is strongly polar in Arabidopsis stem segments. In addition transport is inhibited by the well characterized auxin transport inhibitor N-1-naphthylphthalamic acid and the artificial auxin 2,4-D. These results as well as the characterization of transport in axr-1 plants will be presented.

  2. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    Science.gov (United States)

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved.

  3. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants

    Directory of Open Access Journals (Sweden)

    Hiroshi eMaeda

    2014-02-01

    Full Text Available Tocopherols (vitamin E are lipid-soluble antioxidants produced by all plants and algae, and many cyanobacteria, yet their functions in these photosynthetic organisms are still not fully understood. We have previously reported that the vitamin E deficient 2 (vte2 mutant of Arabidopsis thaliana is sensitive to low temperature (LT due to impaired transfer cell wall (TCW development and photoassimilate export, associated with massive callose deposition in transfer cells of the phloem. To further understand the role of tocopherols in LT induced TCW development we compared global transcript profiles of vte2 and wild type leaves during LT treatment. Tocopherol deficiency had no impact on global gene expression in permissive conditions, but affected expression of 77 genes after 48 hours of LT treatment. In vte2 relative to wild type, genes related with solute transport were repressed, while those involved in various pathogen responses and cell wall modifications, such as GLUCAN SYNTHASE LIKE genes (GSL4 and GSL11, were induced. However, introduction of gsl4 or gsl11 mutations into the vte2 background did not suppress callose deposition or the overall LT-induced phenotypes of vte2. Intriguingly, introduction of a mutation of GSL5, the major GSL responsible for pathogen-induced callose deposition, into vte2 substantially reduced vascular callose deposition at LT, but again had no effect on the photoassimilate export phenotype of LT-treated vte2. These results suggest that GSL5 plays a major role in TCW callose deposition in LT-treated vte2 but that this GSL5-dependent callose deposition is not the primary cause of the impaired photoassimilate export phenotype.

  4. Temporal and Spatial Requirement of EMF1 Activity for Arabidopsis Vegetative and Reproductive Development

    Institute of Scientific and Technical Information of China (English)

    Rosario Sánchez; Minjung Y.Kim; Myriam Calonje; Yong-Hwan Moon; Z.Renee Sung

    2009-01-01

    EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development via repression of flower homeotic genes in Arabidopsis.Removal of EMF gene function caused plants to flower upon germination,producing abnormal and sterile flowers.The pleiotropic effect of emf1 mutation suggests its requirement for gene programs involved in diverse developmental processes.Transgenic plants harboring EMF1 promoter::glucuronidase (GUS) reporter gene were generated to investigate the temporal and spatial expression pattern of EMF1.These plants displayed differential GUS activity in vegetative and flower tissues,consistent with the role of EMF1 in regulating multiple gene programs.EMF1::GUS expression pattern in emf mutants suggests organ-specific auto-regulation.Sense- and antisense (as) EMF1 cDNA were expressed under the control of stage- and tissue-specific promoters in transgenic plants.Characterization of these transgenic plants showed that EMF1 activity is required in meristematic as well as differentiating tissues to rescue emf mutant phenotype.Temporal removal or reduction of EMF1 activity in the embryo or shoot apex of wild-type seedlings was sufficient to cause early flowering and terminal flower formation in adult plants.Such reproductive cell memory is reflected in the flower MADS-box gene activity expressed prior to flowering in these early flowering plants.However,temporal removal of EMF1 activity in flower meristem did not affect flower development.Our results are consistent with EMF1's primary role in repressing flowering in order to allow for vegetative growth.

  5. Individual Leaf Development in Arabidopsis thaliana: a Stable Thermal‐time‐based Programme

    Science.gov (United States)

    GRANIER, CHRISTINE; MASSONNET, CATHERINE; TURC, OLIVIER; MULLER, BERTRAND; CHENU, KARINE; TARDIEU, FRANÇOIS

    2002-01-01

    In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non‐crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant‐to‐plant variability in the studied isogenic line of the Columbia ecotype: 100‐fold differences in leaf area among plants sown on the same date were commonly observed at a given date. These differences disappeared in mature leaves, suggesting that they were due to a variability in plant developmental stage. The whole population could therefore be represented by any group of synchronous plants labelled at the two‐leaf stage and followed during their development. Leaf initiation rate, duration of leaf expansion and maximal relative leaf expansion rate varied considerably among experiments performed at different temperatures (from 6 to 26 °C) but they were linearly related to temperature in the range 6–26 °C, with a common x‐intercept of 3 °C. Expressing time in thermal time with a threshold temperature of 3 °C unified the time courses of leaf initiation and of individual leaf development for plants grown at different temperatures and experimental conditions. The two leaves studied (leaf 2 and leaf 6) had a two‐phase development, with an exponential phase followed by a phase with decreasing relative elongation rate. Both phases had constant durations for a given leaf position if expressed in thermal time. Changes in temperature caused changes in both the rate of development and in the expansion rate which mutually compensated such that they had no consequence on leaf area at a given thermal time. The resulting model of leaf development was applied to ten experiments carried out in a glasshouse or in a growth chamber, with plants grown in soil or hydroponically. Because it predicts accurately the stage

  6. Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions.

    Science.gov (United States)

    Monihan, Shea M; Magness, Courtney A; Yadegari, Ramin; Smith, Steven E; Schumaker, Karen S

    2016-05-01

    The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development.

  7. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  8. Glycerol affects root development through regulation of multiple pathways in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data

  9. Glycerol affects root development through regulation of multiple pathways in Arabidopsis.

    Science.gov (United States)

    Hu, Jun; Zhang, Yonghong; Wang, Jinfang; Zhou, Yongming

    2014-01-01

    Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA) content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS) staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP) fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data demonstrated that glycerol

  10. Impact of elevated CO2 on growth and development of Arabidopsis thaliana L

    NARCIS (Netherlands)

    van der Kooij, T.A W; De Kok, L.J.

    1996-01-01

    After germination, Arabidopsis thaliana L (cv. Landsberg) was grown at 350 mu l l(-1) (control) or 700 mu l l(-1) (elevated) CO2. Total shoot biomass at the end of the vegetative growth period was increased by 56% due to a short transient stimulation of the relative growth rate by elevated CO2 at th

  11. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

    NARCIS (Netherlands)

    Xuan, Wei; Band, Leah R.; Kumpf, Robert P.; Rybel, De Bert

    2016-01-01

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that t

  12. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development

    NARCIS (Netherlands)

    Coluccio Leskow, Carla; Kamenetzky, Laura; Dominguez, Pia Guadalupe; Díaz Zirpolo, José Antonio; Obata, Toshihiro; Costa, Hernán; Martí, Marcelo; Taboga, Oscar; Keurentjes, Joost; Sulpice, Ronan; Ishihara, Hirofumi; Stitt, Mark; Fernie, Alisdair Robert; Carrari, Fernando

    2016-01-01

    Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-In

  13. Nucleoporin MOS7/Nup88 is required for mitosis in gametogenesis and seed development in Arabidopsis.

    Science.gov (United States)

    Park, Guen Tae; Frost, Jennifer M; Park, Jin-Sup; Kim, Tae Ho; Lee, Jong Seob; Oh, Sung Aeong; Twell, David; Brooks, Janie Sue; Fischer, Robert L; Choi, Yeonhee

    2014-12-23

    Angiosperm reproduction is characterized by alternate diploid sporophytic and haploid gametophytic generations. Gametogenesis shares similarities with that of animals except for the formation of the gametophyte, whereby haploid cells undergo several rounds of postmeiotic mitosis to form gametes and the accessory cells required for successful reproduction. The mechanisms regulating gametophyte development in angiosperms are incompletely understood. Here, we show that the nucleoporin Nup88-homolog MOS7 (Modifier of Snc1,7) plays a crucial role in mitosis during both male and female gametophyte formation in Arabidopsis thaliana. Using a mutagenesis screen, we identify the mos7-5 mutant allele, which causes ovule and pollen abortion in MOS7/mos7-5 heterozygous plants, and preglobular stage embryonic lethality in homozygous mos7-5 seeds. During interphase, we show that MOS7 is localized to the nuclear membrane but, like many nucleoporins, is associated with the spindle apparatus during mitosis. We detect interactions between MOS7 and several nucleoporins known to control spindle dynamics, and find that in pollen from MOS7/mos7-5 heterozygotes, abortion is accompanied by a failure of spindle formation, cell fate specification, and phragmoplast activity. Most intriguingly, we show that following gamete formation by MOS7/mos7-5 heterozygous spores, inheritance of either the MOS7 or the mos7-5 allele by a given gamete does not correlate with its respective survival or abortion. Instead, we suggest a model whereby MOS7, which is highly expressed in the Pollen- and Megaspore Mother Cells, enacts a dosage-limiting effect on the gametes to enable their progression through subsequent mitoses.

  14. Mimicking Retinal Development and Disease With Human Pluripotent Stem Cells.

    Science.gov (United States)

    Sinha, Divya; Phillips, Jenny; Joseph Phillips, M; Gamm, David M

    2016-04-01

    As applications of human pluripotent stem cells (hPSCs) continue to be refined and pursued, it is important to keep in mind that the strengths and weaknesses of this technology lie with its developmental origins. The remarkable capacity of differentiating hPSCs to recapitulate cell and tissue genesis has provided a model system to study stages of human development that were not previously amenable to investigation and experimentation. Furthermore, demonstration of developmentally appropriate, stepwise differentiation of hPSCs to specific cell types offers support for their authenticity and their suitability for use in disease modeling and cell replacement therapies. However, limitations to farming cells and tissues in an artificial culture environment, as well as the length of time required for most cells to mature, are some of the many issues to consider before using hPSCs to study or treat a particular disease. Given the overarching need to understand and modulate the dynamics of lineage-specific differentiation in stem cell cultures, this review will first examine the capacity of hPSCs to serve as models of retinal development. Thereafter, we will discuss efforts to model retinal disorders with hPSCs and present challenges that face investigators who aspire to use such systems to study disease pathophysiology and/or screen for therapeutics. We also refer readers to recent publications that provide additional insight and details on these rapidly evolving topics. PMID:27116663

  15. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.

    Science.gov (United States)

    Shimazaki, Takuya

    2016-03-25

    Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans. PMID:26853878

  16. Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis.

    Science.gov (United States)

    Gangappa, Sreeramaiah N; Prasad, V Babu Rajendra; Chattopadhyay, Sudip

    2010-11-01

    MYC2 is a basic helix-loop-helix transcription factor that cross talks with light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. Here, we have shown that Arabidopsis (Arabidopsis thaliana) MYC2 directly binds to the G-box present in the SUPPRESSOR OF PHYTOCHROME A1 (SPA1) promoter and that it controls the expression of SPA1 in a COP1-dependent manner. Analyses of atmyc2 spa1 double mutants suggest that whereas MYC2 and SPA1 act redundantly to suppress photomorphogenic growth in the dark, they function synergistically for the suppression of photomorphogenic growth in the light. Our studies have also revealed that MYC2-mediated ABA and JA responses are further modulated by SPA1. Taken together, this study demonstrates the molecular and physiological interrelations of MYC2 and SPA1 in light, ABA, and JA signaling pathways.

  17. The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development

    OpenAIRE

    Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; Stonebloom, Solomon; Smith-Moritz, Andreia M.; Pauly, Markus; Orellana, Ariel; Scheller, Henrik Vibe; Heazlewood, Joshua L.

    2016-01-01

    Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rh...

  18. Laminin regulates PDGFRβ(+) cell stemness and muscle development.

    Science.gov (United States)

    Yao, Yao; Norris, Erin H; E Mason, Christopher; Strickland, Sidney

    2016-01-01

    Muscle-resident PDGFRβ(+) cells, which include pericytes and PW1(+) interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ(+) cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ(+) cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ(+) cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ(+) cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. PMID:27138650

  19. STEM, STEM Education, STEMmania

    OpenAIRE

    Sanders, Mark E.

    2008-01-01

    A series of circumstances has once more created an opportunity for technology educators to develop and implement new integrative approaches to STEM education championed by STEM education reform doctrine over the past two decades.

  20. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Lynette Fulton

    2009-01-01

    Full Text Available Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB. Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ, QUIRKY (QKY, and ZERZAUST (ZET show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C(2 domains, suggesting that QKY may function in membrane trafficking in a Ca(2+-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on

  1. Genetic control of intestinal stem cell specification and development: a comparative view.

    Science.gov (United States)

    Takashima, Shigeo; Hartenstein, Volker

    2012-06-01

    Stem cells of the adult vertebrate intestine (ISCs) are responsible for the continuous replacement of intestinal cells, but also serve as site of origin of intestinal neoplasms. The interaction between multiple signaling pathways, including Wnt/Wg, Shh/Hh, BMP, and Notch, orchestrate mitosis, motility, and differentiation of ISCs. Many fundamental questions of how these pathways carry out their function remain unanswered. One approach to gain more insight is to look at the development of stem cells, to analyze the "programming" process which these cells undergo as they emerge from the large populations of embryonic progenitors. This review intends to summarize pertinent data on vertebrate intestinal stem cell biology, to then take a closer look at recent studies of intestinal stem cell development in Drosophila. Here, stem cell pools and their niche environment consist of relatively small numbers of cells, and questions concerning the pattern of cell division, niche-stem cell contacts, or differentiation can be addressed at the single cell level. Likewise, it is possible to analyze the emergence of stem cells during development more easily than in vertebrate systems: where in the embryo do stem cells arise, what structures in their environment do they interact with, and what signaling pathways are active sequentially as a result of these interactions. Given the high degree of conservation among genetic mechanisms controlling stem cell behavior in all animals, findings in Drosophila will provide answers that inform research in the vertebrate stem cell field. PMID:22529012

  2. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis.

    Science.gov (United States)

    Fabre, Guillaume; Garroum, Imène; Mazurek, Sylwester; Daraspe, Jean; Mucciolo, Antonio; Sankar, Martial; Humbel, Bruno M; Nawrath, Christiane

    2016-01-01

    The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.

  3. Developing a National STEM Workforce Strategy: A Workshop Summary

    Science.gov (United States)

    Alper, Joe

    2016-01-01

    The future competitiveness of the United States in an increasingly interconnected global economy depends on the nation fostering a workforce with strong capabilities and skills in science, technology, engineering, and mathematics (STEM). STEM knowledge and skills enable both individual opportunity and national competitiveness, and the nation needs…

  4. Beyond the Pipeline: STEM Pathways for Youth Development

    Science.gov (United States)

    Lyon, Gabrielle H.; Jafri, Jameela; St. Louis, Kathleen

    2012-01-01

    As framed by national education policy priorities, the dominant metaphor describing participation and achievement in science, technology, engineering, and mathematics (STEM) is a "pipeline." The STEM workforce requires a "pipeline" of future scientists, engineers, and mathematicians. This pipeline begins in childhood and carries students through…

  5. Key developments in stem cell therapy in cardiology.

    Science.gov (United States)

    Schulman, Ivonne H; Hare, Joshua M

    2012-11-01

    A novel therapeutic strategy to prevent or reverse ventricular remodeling, the substrate for heart failure and arrhythmias following a myocardial infarction, is the use of cell-based therapy. Successful cell-based tissue regeneration involves a complex orchestration of cellular and molecular events that include stem cell engraftment and differentiation, secretion of anti-inflammatory and angiogenic mediators, and proliferation of endogenous cardiac stem cells. Recent therapeutic approaches involve bone marrow-derived mononuclear cells and mesenchymal stem cells, adipose tissue-derived stem cells, cardiac-derived stem cells and cell combinations. Clinical trials employing mesenchymal stem cells and cardiac- derived stem cells have demonstrated efficacy in infarct size reduction and regional wall contractility improvement. Regarding delivery methods, the safety of catheter-based, transendocardial stem cell injection has been established. These proof-of-concept studies have paved the way for ongoing pivotal trials. Future studies will focus on determining the most efficacious cell type(s) and/or cell combinations and the mechanisms underlying their therapeutic effects.

  6. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  7. LATERAL ORGAN BOUNDARIES DOMAIN (LBD)10 interacts with SIDECAR POLLEN/LBD27 to control pollen development in Arabidopsis.

    Science.gov (United States)

    Kim, Min-Jung; Kim, Mirim; Lee, Mi Rha; Park, Soon Ki; Kim, Jungmook

    2015-03-01

    During male gametophyte development in Arabidopsis thaliana, the microspores undergo an asymmetric division to produce a vegetative cell and a generative cell, which undergoes a second division to give rise to two sperm cells. SIDECAR POLLEN/LATERAL ORGAN BOUNDARIES DOMAIN (LBD) 27 plays a key role in the asymmetric division of microspores. Here we provide molecular genetic evidence that a combinatorial role of LBD10 with LBD27 is crucial for male gametophyte development in Arabidopsis. Expression analysis, genetic transmission and pollen viability assays, and pollen development analysis demonstrated that LBD10 plays a role in the male gametophyte function primarily at germ cell mitosis. In the mature pollen of lbd10 and lbd10 expressing a dominant negative version of LBD10, LBD10:SRDX, aberrant microspores such as bicellular and smaller tricellular pollen appeared at a ratio of 10-15% with a correspondingly decreased ratio of normal tricellular pollen, whereas in lbd27 mutants, 70% of the pollen was aborted. All pollen in the lbd10 lbd27 double mutants was aborted and severely shrivelled compared with that of the single mutants, indicating that LBD10 and LBD27 are essential for pollen development. Gene expression and subcellular localization analyses of LBD10:GFP and LBD27:RFP during pollen development indicated that posttranscriptional and/or posttranslational controls are involved in differential accumulation and subcellular localization of LBD10 and LBD27 during pollen development, which may contribute in part to combinatorial and distinct roles of LBD10 with LBD27 in microspore development. In addition, we showed that LBD10 and LBD27 interact to form a heterodimer for nuclear localization.

  8. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis.

    Science.gov (United States)

    Jeon, Jin; Cho, Chuloh; Lee, Mi Rha; Van Binh, Nguyen; Kim, Jungmook

    2016-08-01

    Lateral roots (LRs) are a major determinant of the root system architecture in plants, and developmental plasticity of LR formation is critical for the survival of plants in changing environmental conditions. In Arabidopsis thaliana, genetic pathways have been identified that regulate LR branching in response to numerous environmental cues, including some nutrients, salt, and gravity. However, it is not known how genetic components are involved in the LR adaptation response to cold. Here, we demonstrate that CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3, encoding APETALA2 transcription factors, play an important role in regulating Arabidopsis LR initiation under cold stress. Analysis of LR developmental kinetics demonstrated that both CRF2 and CRF3 regulate LR initiation. crf2 and crf3 single mutants exhibited decreased LR initiation under cold stress compared with the wild type, and the crf2 crf3 double mutants showed additively decreased LR densities compared with the single mutants. Conversely, CRF2 or CRF3 overexpression caused increased LR densities. CRF2 was induced by cold via a subset of the cytokinin two-component signaling (TCS) pathway, whereas CRF3 was upregulated by cold via TCS-independent pathways. Our results suggest that CRF2 and CRF3 respond to cold via TCS-dependent and TCS-independent pathways and control LR initiation and development, contributing to LR adaptation to cold stress. PMID:27432872

  9. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  10. Development of Bioartificial Myocardium Using Stem Cells and Nanobiotechnology Templates

    Directory of Open Access Journals (Sweden)

    Juan Carlos Chachques

    2011-01-01

    Full Text Available Cell-based regenerative therapy is undergoing experimental and clinical trials in cardiology, in order to limit the consequences of decreased contractile function and compliance of damaged ventricles following myocardial infarction. Over 1000 patients have been treated worldwide with cell-based procedures for myocardial regeneration. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit adverse postischemic remodelling, and improve diastolic function. The development of a bioartificial myocardium is a new challenge; in this approach, tissue-engineered procedures are associated with cell therapy. Organ decellularization for bioscaffolds fabrication is a new investigated concept. Nanomaterials are emerging as the main candidates to ensure the achievement of a proper instructive cellular niche with good drug release/administration properties. Investigating the electrophysiological properties of bioartificial myocardium is the challenging objective of future research, associating a multielectrode network to provide electrical stimulation could improve the coupling of grafted cells and scaffolds with host cardiomyocytes. In summary, until now stem cell transplantation has not achieved clear hemodynamic benefits for myocardial diseases. Supported by relevant scientific background, the development of myocardial tissue engineering may constitute a new avenue and hope for the treatment of myocardial diseases.

  11. Development of new stem cell-based technologies for carnivore reproduction research

    OpenAIRE

    Alexander J Travis; Kim, Yeunhee; Meyers-Wallen, Vicki

    2009-01-01

    New reproductive technologies based on stem cells offer several potential benefits to carnivore species. For example, development of lines of embryonic stem cells in cats and dogs would allow for the generation of transgenic animal models, which could be used to advance both veterinary and human health. Techniques such as spermatogonial stem cell transplantation and testis xenografting offer new approaches to propagate genetically valuable individual males, even if they should die before prod...

  12. STEM professional development: What's going on from the presenters' and participants' perspectives?

    Science.gov (United States)

    Williams, Randi

    This study was designed to explore elementary STEM professional development viewed from the presenters' and participants' perspectives. Numerous committees and educational organizations recommend investing in STEM professional development at the local, state, and national level. This investment must begin with research that inquires how STEM professional development is structured and what is needed for teacher and student success. Since there is a recent STEM education push in schools, elementary teachers need effective professional development in order to gain the necessary content, skills, confidence, and pedagogy required for those changing demands. This qualitative study embraced. Yin's case study methodology by observing short-duration STEM professional development for elementary teachers within a large metropolitan school system and an educational professional development agency. The study discussed the analysis and findings in the context of Bandura's sources of efficacy and Desimone's critical features of professional development. Data were gathered form professional development observations, presenter interviews, and participant interviews. The research questions for this study included: (a) based on Desimone's (2009) framework for professional development, what does content focused, active learning, coherence, duration, and collective participation look like in initial STEM professional development for elementary teachers? (b) are Bandura's (1997) four sources of self- efficacy: mastery experiences, vicarious experiences, social persuasion, and affective states evidenced within the short duration professional development? and (c) how do these two frameworks align between presenter and participant thoughts and actions? This study uncovered additional sources of efficacy are present in short-duration STEM professional development. These found sources include coherence, content, and active learning delivered in a definitive order. The findings of this study

  13. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum.

    Science.gov (United States)

    Ingram, G C; Goodrich, J; Wilkinson, M D; Simon, R; Haughn, G W; Coen, E S

    1995-09-01

    The unusual floral organs (ufo) mutant of Arabidopsis has flowers with variable homeotic organ transformations and inflorescence-like characteristics. To determine the relationship between UFO and previously characterized meristem and organ identity genes, we cloned UFO and determined its expression pattern. The UFO gene shows extensive homology with FIMBRIATA (FIM), a gene mediating between meristem and organ identity genes in Antirrhinum. All three UFO mutant alleles that we sequenced are predicted to produce truncated proteins. UFO transcripts were first detected in early floral meristems, before organ identity genes had been activated. At later developmental stages, UFO expression is restricted to the junction between sepal and petal primordia. Phenotypic, genetic, and expression pattern comparisons between UFO and FIM suggest that they are cognate homologs and play a similar role in mediating between meristem and organ identity genes. However, some differences in the functions and genetic interactions of UFO and FIM were apparent, indicating that changes in partially redundant pathways have occurred during the evolutionary divergence of Arabidopsis and Antirrhinum.

  14. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    Science.gov (United States)

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.

  15. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  16. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development

    Science.gov (United States)

    Cervantes, Emilio; Tocino, Angel

    2005-01-01

    Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.

  17. Expansion of intestinal epithelial stem cells during murine development.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Dehmer

    Full Text Available Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs. Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points.

  18. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    Energy Technology Data Exchange (ETDEWEB)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  19. Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean.

    Science.gov (United States)

    Wong, Chui E; Singh, Mohan B; Bhalla, Prem L

    2013-12-01

    CLAVATA3 (CLV3), a stem cell marker in Arabidopsis thaliana, encodes a secreted peptide that maintains the stem cell population within the shoot apical meristem. This work investigated the CLV3 orthologue in a major legume crop, soybean (GmCLV3). Instead of being expressed in the three outermost layers of the meristem as in Arabidopsis, GmCLV3 was expressed deeper in the central zone beneath the fourth layer (L4) of the meristem, overlapping with the expression of soybean WUSCHEL. Subsequent investigation using an alternative stem cell marker (GmLOG1) revealed its expression within layers L2-L4, indicating that GmCLV3 is not a stem cell marker. Overexpression studies of GmCLV3 in Arabidopsis and complementation of clv3-2 mutant suggest similar functional capacity to that of Arabidopsis CLV3. The expression of soybean CLV1, which encodes a receptor for CLV3 in Arabidopsis, was not detectable in the central zone of the meristem via reverse-transcription PCR analysis of amplified RNA from laser-microdissected samples or in situ, implicating a diverged pathway in soybean. This study also reports the novel expression of GmLOG1 in initials of axillary meristem in the boundary region between the SAM and developing leaf primordia, before the expression of GmWUS or GmCLV3, indicating cytokinin as one of the earliest signals in initiating and specifying the stem cell population. PMID:24179098

  20. Development and application of human adult stem or progenitor cell organoids

    NARCIS (Netherlands)

    Rookmaaker, Maarten B; Schutgens, Frans; Verhaar, Marianne C; Clevers, Hans

    2015-01-01

    Adult stem or progenitor cell organoids are 3D adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells. This organoid culture system was first established in murine intestine and subsequently developed for sever

  1. The Role of Identity Development, Values, and Costs in College STEM Retention

    Science.gov (United States)

    Perez, Tony; Cromley, Jennifer G.; Kaplan, Avi

    2014-01-01

    The current short-term longitudinal study investigated the role of college students' identity development and motivational beliefs in predicting their chemistry achievement and intentions to leave science, technology, engineering, and math (STEM) majors. We collected 4 waves of data over 1 semester from 363 diverse undergraduate STEM students…

  2. Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Shanklin, J.; Yu, X.-H.; Zhang, K.; Shi, J.; De Oliveira, S.; Schreiber, L.; Zhang, D.

    2011-10-01

    Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30 C), MS2 exhibits a K{sub m} for 16:0-Acyl Carrier Protein of 23.3 {+-} 4.0 {mu}m, a V{sub max} of 38.3 {+-} 4.5 nmol mg{sup -1} min{sup -1}, and a catalytic efficiency/K{sub m} of 1,873 m{sup -1} s{sup -1}. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.

  3. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  4. Arabidopsis VARIEGATED 3 encodes a chloroplasttargeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, A.; Jenkins, T.;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  5. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  6. Switching on flowers: transient LEAFY induction reveals novel aspects of the regulation of reproductive development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Doris eWagner

    2011-10-01

    Full Text Available Developmental fate decisions in cell populations fundamentally depend on at least two parameters: a signal that is perceived by the cell and the intrinsic ability of the cell to respond to the signal. The same regulatory logic holds for phase transitions in the lifecycle of an organism, for example the switch to reproductive development in flowering plants. Here we have tested the response of the monocarpic plant species Arabidopsis thaliana to a signal that directs flower formation, the plant specific transcription factor LEAFY (LFY. Using transient steroid-dependent LEAFY (LFY activation in lfy null mutant Arabidopsis plants, we show that the plant’s competence to respond to the LFY signal changes during development. Very early in the life cycle, the plant is not competent to respond to the signal. Subsequently, transient LFY activation can direct primordia at the flanks of the shoot apical meristem to adopt a floral fate. Finally, the plants acquire competence to initiate the flower-patterning program in response to transient LFY activation. Similar to a perennial life strategy, we did not observe reprogramming of all primordia after perception of the transient signal, instead only a small number of meristems responded, followed by reversion to the prior developmental program. The ability to initiate flower formation and to direct flower patterning in response to transient LFY upregulation was dependent on the known direct LFY target APETALA1 (AP1. Prolonged LFY or activation could alter the developmental gradient and bypass the requirement for AP1. Prolonged high AP1 levels, in turn, can also alter the plants’ competence. Our findings shed light on how plants can fine-tune important phase transitions and developmental responses.

  7. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Truyen N Quach

    Full Text Available In Arabidopsis, NAC (NAM, ATAF and CUC transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA. They showed a slight response to treatment with 2,4-dichlorophenoxyacetic acid (2,4-D. The transgenic Arabidopsis plants overexpressing GmNAC004 showed an increase in lateral root number and length under non-stress conditions and maintained higher lateral root number and length under mild water stress conditions compared to the wild-type (WT, while the transgenic plants overexpressing GmNAC003 did not show any response. However, LR development of GmNAC004 transgenic Arabidopsis plants was not enhanced in the water-stressed compared to the well-watered treatment. In the treatment with ABA, LR density of the GmNAC004 transgenic Arabidopsis was less suppressed than that of the WT, suggesting that GmNAC004 counteracts ABA-induced inhibition of lateral root development. In the treatment with 2,4-D, lateral root density was enhanced in both GmNAC004 transgenic Arabidopsis and WT plants but the promotion was higher in the transgenic plants. Conversely, in the treatment with naphthylphthalamic acid (NPA, lateral root density was inhibited and there was no difference in the phenotype of the GmNAC004 transgenic Arabidopsis and WT plants, indicating that auxin is required for the action of GmNAC004. Transcript analysis for a number of known auxin and ABA related genes showed that GmNAC004's role may suppress ABA signaling but promote auxin signaling to increase lateral root development in the Arabidopsis heterologous system.

  8. Specialized mouse embryonic stem cells for studying vascular development

    Directory of Open Access Journals (Sweden)

    Glaser DE

    2014-10-01

    Full Text Available Drew E Glaser,1 Andrew B Burns,2 Rachel Hatano,2 Magdalena Medrzycki,3 Yuhong Fan,3 Kara E McCloskey1 1School of Engineering, University of California, Merced, CA, USA; 2School of Natural Sciences, University of California, Merced, CA, USA; 3School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USAAbstract: Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP under the promoter for alpha-smooth muscle actin (α-SMA. The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a

  9. Stem cells: a model for screening, discovery and development of drugs

    Directory of Open Access Journals (Sweden)

    Kitambi SS

    2011-09-01

    Full Text Available Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.Keywords: therapeutics, stem cells, cancer stem cells, screening models, drug development, high throughput screening

  10. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana.

    Science.gov (United States)

    Puga-Freitas, Ruben; Barot, Sébastien; Taconnat, Ludivine; Renou, Jean-Pierre; Blouin, Manuel

    2012-01-01

    Earthworms have generally a positive impact on plant growth, which is often attributed to a trophic mechanism: namely, earthworms increase the release of mineral nutrients from soil litter and organic matter. An alternative hypothesis has been proposed since the discovery of a signal molecule (Indole Acetic Acid) in earthworm faeces. In this study, we used methodologies developed in plant science to gain information on ecological mechanisms involved in plant-earthworm interaction, by looking at plant response to earthworm presence at a molecular level. First, we looked at plant overall response to earthworm faeces in an in vitro device where only signal molecules could have an effect on plant growth; we observed that earthworms were inducing positive or negative effects on different plant species. Then, using an Arabidopsis thaliana mutant with an impaired auxin transport, we demonstrated the potential of earthworms to stimulate root growth and to revert the dwarf mutant phenotype. Finally, we performed a comparative transcriptomic analysis of Arabidopsis thaliana in the presence and absence of earthworms; we found that genes modulated in the presence of earthworms are known to respond to biotic and abiotic stresses, or to the application of exogenous hormones. A comparison of our results with other studies found in databases revealed strong analogies with systemic resistance, induced by signal molecules emitted by Plant Growth Promoting Rhizobacteria and/or elicitors emitted by non-virulent pathogens. Signal molecules such as auxin and ethylene, which are considered as major in plant-microorganisms interactions, can also be of prior importance to explain plant-macroinvertebrates interactions. This could imply revisiting ecological theories which generally stress on the role of trophic relationships. PMID:23226498

  11. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruben Puga-Freitas

    Full Text Available Earthworms have generally a positive impact on plant growth, which is often attributed to a trophic mechanism: namely, earthworms increase the release of mineral nutrients from soil litter and organic matter. An alternative hypothesis has been proposed since the discovery of a signal molecule (Indole Acetic Acid in earthworm faeces. In this study, we used methodologies developed in plant science to gain information on ecological mechanisms involved in plant-earthworm interaction, by looking at plant response to earthworm presence at a molecular level. First, we looked at plant overall response to earthworm faeces in an in vitro device where only signal molecules could have an effect on plant growth; we observed that earthworms were inducing positive or negative effects on different plant species. Then, using an Arabidopsis thaliana mutant with an impaired auxin transport, we demonstrated the potential of earthworms to stimulate root growth and to revert the dwarf mutant phenotype. Finally, we performed a comparative transcriptomic analysis of Arabidopsis thaliana in the presence and absence of earthworms; we found that genes modulated in the presence of earthworms are known to respond to biotic and abiotic stresses, or to the application of exogenous hormones. A comparison of our results with other studies found in databases revealed strong analogies with systemic resistance, induced by signal molecules emitted by Plant Growth Promoting Rhizobacteria and/or elicitors emitted by non-virulent pathogens. Signal molecules such as auxin and ethylene, which are considered as major in plant-microorganisms interactions, can also be of prior importance to explain plant-macroinvertebrates interactions. This could imply revisiting ecological theories which generally stress on the role of trophic relationships.

  12. Promising Practices for Strengthening the Regional STEM Workforce Development Ecosystem

    Science.gov (United States)

    National Academies Press, 2016

    2016-01-01

    U.S. strength in science, technology, engineering, and mathematics (STEM) disciplines has formed the basis of innovations, technologies, and industries that have spurred the nation's economic growth throughout the last 150 years. Universities are essential to the creation and transfer of new knowledge that drives innovation. This knowledge moves…

  13. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress. PMID:24502519

  14. The S-Domain Receptor Kinase Arabidopsis Receptor Kinase2 and the U Box/Armadillo Repeat-Containing E3 Ubiquitin Ligase9 Module Mediates Lateral Root Development under Phosphate Starvation in Arabidopsis.

    Science.gov (United States)

    Deb, Srijani; Sankaranarayanan, Subramanian; Wewala, Gayathri; Widdup, Ellen; Samuel, Marcus A

    2014-06-25

    When plants encounter nutrient-limiting conditions in the soil, the root architecture is redesigned to generate numerous lateral roots (LRs) that increase the surface area of roots, promoting efficient uptake of these deficient nutrients. Of the many essential nutrients, reduced availability of inorganic phosphate has a major impact on plant growth because of the requirement of inorganic phosphate for synthesis of organic molecules, such as nucleic acids, ATP, and phospholipids, that function in various crucial metabolic activities. In our screens to identify a potential role for the S-domain receptor kinase1-6 and its interacting downstream signaling partner, the Arabidopsis (Arabidopsis thaliana) plant U box/armadillo repeat-containing E3 ligase9 (AtPUB9), we identified a role for this module in regulating LR development under phosphate-starved conditions. Our results show that Arabidopsis double mutant plants lacking AtPUB9 and Arabidopsis Receptor Kinase2 (AtARK2; ark2-1/pub9-1) display severely reduced LRs when grown under phosphate-starved conditions. Under these starvation conditions, these plants accumulated very low to no auxin in their primary root and LR tips as observed through expression of the auxin reporter DR5::uidA transgene. Exogenous auxin was sufficient to rescue the LR developmental defects in the ark2-1/pub9-1 lines, indicating a requirement of auxin accumulation for this process. Our subcellular localization studies with tobacco (Nicotiana tabacum) suspension-cultured cells indicate that interaction between ARK2 and AtPUB9 results in accumulation of AtPUB9 in the autophagosomes. Inhibition of autophagy in wild-type plants resulted in reduction of LR development and auxin accumulation under phosphate-starved conditions, suggesting a role for autophagy in regulating LR development. Thus, our study has uncovered a previously unknown signaling module (ARK2-PUB9) that is required for auxin-mediated LR development under phosphate-starved conditions

  15. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [University of British Columbia, Vancouver; Chang, Ying [Northeast Agricultural University; Guo, Jianjun [Harvard University; Zeng, Qingning [University of British Columbia, Vancouver; Ellis, Brian [University of British Columbia, Vancouver; Chen, Jay [ORNL

    2011-01-01

    BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  16. Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development.

    Directory of Open Access Journals (Sweden)

    Shucai Wang

    Full Text Available BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs, a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7, and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the

  17. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.

    Science.gov (United States)

    Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho

    2015-06-01

    Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana.

  18. Investigation of the effect of phosphogypsum amendment on two Arabidopsis thaliana ecotype growth and development.

    Science.gov (United States)

    Ayadi, Amal; Chorriba, Amal; Fourati, Amine; Gargouri-Bouzid, Radhia

    2015-01-01

    The production of phosphoric acid from natural phosphate rock leads to an industrial waste called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid produced. This acidic waste (pH 2.2) is mostly disposed of by dumping into large stockpiles close to fertilizer production units, where they occupy large land areas that can cause serious environmental damages. Several attempts were made to test PG valorization via soil amendment because of its phosphate, sulphate and calcium content. The aim of the this study was to evaluate the potential use of PG as phosphate amendment in soil using two wild-type Arabidopsis thaliana ecotypes (Wassilewskija and Colombia) as model plants. Plants were grown in a greenhouse for 30 days, on substrates containing various PG concentrations (0%, 15%, 25%, 40% and 50%). The growth rate and physiological parameters (fresh weight, phosphate and chlorophyll content) were determined. The data revealed that 15% PG did not alter plant survival and leaf's dry weight, and the inorganic phosphate (Pi) uptake by plant seemed to be efficient. However, some alterations in Chlorophyll a/Chlorophyll b ratio were noticed. Higher PG concentrations (40 and 50% PG) exhibited an enhanced negative effect on plant growth, survival and Pi uptake. These inhibitory effects of the substrates may be related to the acidity of the medium in addition to its Cd content.

  19. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  20. The Problem about Technology in STEM Education: Some Findings from Action Research on the Professional Development & Integrated STEM Lessons in Informal Fields

    Directory of Open Access Journals (Sweden)

    Tomoki Saito

    2015-04-01

    Full Text Available Since 2013, the authors’ Japanese team in the Department of Science Education at Shizuoka University has held trials of STEM Education in informal fields as participatory action research (e.g., Science museum in Shizuoka, Lifelong Learning Center in Fujieda City, and STEM Summer camp for the preparation for implementing STEM education in public schools and for proposing science education reform in a Japanese context. Problems in preparing STEM lessons include numerous new instructional materials and programs and emerging specialized schools. In addition, while most of these initiatives address one or more of the STEM subjects separately, there are increasing calls for emphasizing connections between and among the subjects (Honey, Pearson and Schweingruber, 2014. Unfamiliar problems for Japanese teachers are, What is Engineering? What is Design? and How can they be implemented in lessons? While gathering STEM learning materials to implement in their STEM Summer Camp, the authors noticed a pattern with which to develop a STEM lesson and developed a template “T-SM-E” in reference to prior STEM studies. After the STEM Summer Camp, the authors introduced the model in the pre-service teacher preparation program. As a result, the authors received suggestions about how teachers can develop integrated STEM lessons, how undergraduate (UG teachers can implement it in their lessons, and how teachers can assess student learning in their STEM lessons. From standard based student assessments and reflections written by the UG teachers, the authors found that it was difficult for the UG teachers to include technology in their lessons, and their assessment also indicated that the students did not show performance proficiency in technology. The authors discuss this existing problem in the Japanese education system.

  1. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.

    Science.gov (United States)

    Durfee, Tim; Roe, Judith L; Sessions, R Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A; Weigel, Detlef; Zambryski, Patricia C

    2003-07-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO-dependent pathway is required regardless of the second whorl organ to be formed, arguing that it affects a basic process acting in parallel with those establishing organ identity. However, the pathway is dispensable in the absence of AGAMOUS (AG), a known inhibitor of petal development. In situ hybridization results argue that AG is not transcribed in the petal region, suggesting that it acts non-cell-autonomously to inhibit second whorl development in ufo mutants. These results are combined into a genetic model explaining early second whorl initiation/proliferation, in which UFO functions to inhibit an AG-dependent activity. PMID:12826617

  2. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.

    Science.gov (United States)

    Durfee, Tim; Roe, Judith L; Sessions, R Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A; Weigel, Detlef; Zambryski, Patricia C

    2003-07-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO-dependent pathway is required regardless of the second whorl organ to be formed, arguing that it affects a basic process acting in parallel with those establishing organ identity. However, the pathway is dispensable in the absence of AGAMOUS (AG), a known inhibitor of petal development. In situ hybridization results argue that AG is not transcribed in the petal region, suggesting that it acts non-cell-autonomously to inhibit second whorl development in ufo mutants. These results are combined into a genetic model explaining early second whorl initiation/proliferation, in which UFO functions to inhibit an AG-dependent activity.

  3. Insights into kidney stem cell development and regeneration using zebrafish

    OpenAIRE

    Drummond, Bridgette E; Wingert, Rebecca A

    2016-01-01

    Kidney disease is an escalating global health problem, for which the formulation of therapeutic approaches using stem cells has received increasing research attention. The complexity of kidney anatomy and function, which includes the diversity of renal cell types, poses formidable challenges in the identification of methods to generate replacement structures. Recent work using the zebrafish has revealed their high capacity to regenerate the integral working units of the kidney, known as nephr...

  4. The ASH1 HOMOLOG 2 (ASHH2 histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Paul E Grini

    Full Text Available BACKGROUND: SET-domain proteins are histone lysine (K methyltransferases (HMTase implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2 protein (also called SDG8, EFS and CCR1 has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99 we observed a reduction of H3K36 trimethylation (me3, but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to

  5. Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase 2 is required for seed coat development

    Institute of Scientific and Technical Information of China (English)

    Yong Tang; Shutang Tan; Hongwei Xue

    2013-01-01

    Inositol 1,3,4-trisphosphate 5/6 kinase (ITPK) phosphorylates inositol 1,3,4-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate which can be finally transferred to inositoi hexaphosphate (IP6) and play important roles during plant growth and development.There are 4 putative ITPK members in Arabidopsis.Expression pattern analysis showed that ITPK2 is constitutively expressed in various tissues.A TDNA knockout mutant of ITPK2 was identified and scanning electron microscopy (SEM) analysis showed that the epidermis structure of seed coat was irregularly formed in seeds of itpk2-1 mutant,resulting in the increased permeability of seed coat to tetrazolium salts.Further analysis by gas chromatography coupled with mass spectrometry of lipid polyester monomers in cell wall confirmed a dramatic decrease in composition of suberin and cutin,which relate to the permeability of seed coat and the formation of which is accompanied with seed coat development.These results indicate that ITPK2 plays an essential role in seed coat development and lipid polyester barrier formation.

  6. DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Javier Gallego-Bartolomé

    Full Text Available The hormones gibberellins (GAs control a wide variety of processes in plants, including stress and developmental responses. This task largely relies on the activity of the DELLA proteins, nuclear-localized transcriptional regulators that do not seem to have DNA binding capacity. The identification of early target genes of DELLA action is key not only to understand how GAs regulate physiological responses, but also to get clues about the molecular mechanisms by which DELLAs regulate gene expression. Here, we have investigated the global, early transcriptional response triggered by the Arabidopsis DELLA protein GAI during skotomorphogenesis, a developmental program tightly regulated by GAs. Our results show that the induction of GAI activity has an almost immediate effect on gene expression. Although this transcriptional regulation is largely mediated by the PIFs and HY5 transcription factors based on target meta-analysis, additional evidence points to other transcription factors that would be directly involved in DELLA regulation of gene expression. First, we have identified cis elements recognized by Dofs and type-B ARRs among the sequences enriched in the promoters of GAI targets; and second, an enrichment in additional cis elements appeared when this analysis was extended to a dataset of early targets of the DELLA protein RGA: CArG boxes, bound by MADS-box proteins, and the E-box CACATG that links the activity of DELLAs to circadian transcriptional regulation. Finally, Gene Ontology analysis highlights the impact of DELLA regulation upon the homeostasis of the GA, auxin, and ethylene pathways, as well as upon pre-existing transcriptional networks.

  7. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana.

    Science.gov (United States)

    Brioudes, Florian; Joly, Caroline; Szécsi, Judit; Varaud, Emilie; Leroux, Julie; Bellvert, Floriant; Bertrand, Cédric; Bendahmane, Mohammed

    2009-12-01

    In Arabidopsis, four homeotic gene classes, A, B, C and E, are required for the patterning of floral organs. However, very little is known about how the activity of these master genes is translated into regulatory processes leading to specific growth patterns and the formation of organs with specific shapes and sizes. Previously we showed that the transcript variant BPEp encodes a bHLH transcription factor that is involved in limiting petal size by controlling post-mitotic cell expansion. Here we show that the phytohormone jasmonate is required for control of BPEp expression. Expression of BPEp was negatively regulated in opr3 mutant flowers that are deficient in jasmonate synthesis. Moreover, the expression of BPEp was restored in opr3 flowers following exogenous jasmonate treatments. Expression of the second transcript variant BPEub, which originates from the same gene as BPEp via an alternative splicing event, was not affected, indicating that BPEp accumulation triggered by jasmonate occurs at the post-transcriptional level. Consistent with these data, opr3 exhibited an increase in petal size as a result of increased cell size, as well as a modified vein pattern, phenotypes that are similar to those of the bpe-1 mutant. Furthermore, exogenous treatments with jasmonate rescued petal phenotypes associated with loss of function of OPR3. Our data demonstrate that jasmonate signaling downstream of OPR3 is involved in the control of cell expansion and in limiting petal size, and that BPEp is a downstream target that functions as a component mediating jasmonate signaling during petal growth. PMID:19765234

  8. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development.

    Science.gov (United States)

    Leskow, Carla Coluccio; Kamenetzky, Laura; Dominguez, Pia Guadalupe; Díaz Zirpolo, José Antonio; Obata, Toshihiro; Costa, Hernán; Martí, Marcelo; Taboga, Oscar; Keurentjes, Joost; Sulpice, Ronan; Ishihara, Hirofumi; Stitt, Mark; Fernie, Alisdair Robert; Carrari, Fernando

    2016-07-01

    Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level. PMID:27194734

  9. Stem Cells

    OpenAIRE

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  10. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice

    Directory of Open Access Journals (Sweden)

    Van Anh Le Thi

    2011-08-01

    Full Text Available Abstract Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR. Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1 is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM/FAS1 (FASCIATA1, GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4 and MAP (MICROTUBULE-ASSOCIATED PROTEIN were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless

  11. ASYMMETRIC-LEAVES2 and an ortholog of eukaryotic NudC domain proteins repress expression of AUXIN-RESPONSE-FACTOR and class 1 KNOX homeobox genes for development of flat symmetric leaves in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nanako Ishibashi

    2012-01-01

    Leaf primordia form around the shoot apical meristem, which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for appropriate lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many genes that specify such patterning have been identified, but regulation by upstream factors of the expression of relevant effector genes remains poorly understood. In Arabidopsis thaliana, ASYMMETRIC LEAVES2 (AS2 and AS1 play important roles in repressing transcription of class 1 KNOTTED1-like homeobox (KNOX genes and leaf abaxial-determinant effector genes. We report here a mutation, designated enhancer of asymmetric leaves2 and asymmetric leaves1 (eal, that is associated with efficient generation of abaxialized filamentous leaves on the as2 or as1 background. Levels of transcripts of many abaxial-determinant genes, including ETTIN (ETT/AUXIN RESPONSE FACTOR3 (ARF3, and all four class 1 KNOX genes were markedly elevated in as2 eal shoot apices. Rudimentary patterning in as2 eal leaves was suppressed by the ett mutation. EAL encodes BOBBER1 (BOB1, an Arabidopsis ortholog of eukaryotic NudC domain proteins. BOB1 was expressed in plant tissues with division potential and bob1 mutations resulted in lowered levels of transcripts of some cell-cycle genes and decreased rates of cell division in shoot and root apices. Coordinated cellular proliferation, supported by BOB1, and repression of all class 1 KNOX genes, ETT/ARF3 by AS2 (AS1 and BOB1 might be critical for repression of the indeterminate state and of aberrant abaxialization in the presumptive adaxial domain of leaf primordia, which might ensure the formation of flat symmetric leaves.

  12. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin.

    Science.gov (United States)

    Locascio, Antonella; Roig-Villanova, Irma; Bernardi, Jamila; Varotto, Serena

    2014-01-01

    The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals; gradients of hormones are generated in the different seed compartments, and their ratios comprise the signals that induce/inhibit particular processes in seed development. Among the hormones, auxin seems to exert a central role, as it is the only one in maintaining high levels of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exist during seed maturation between Monocots and Eudicots species. For instance, in Monocots the endosperm persists until maturation, and constitutes an important compartment for nutrients storage, while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation. This review provides an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana, for Eudicots and Zea mays L., for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species.

  13. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin

    Directory of Open Access Journals (Sweden)

    Antonella eLocascio

    2014-08-01

    Full Text Available The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals, gradients of hormones are generated in the different seed compartments, and the ratios of which constitute the signals that induce/inhibit a particular process in seed development. Among the hormones, auxin seems to exert a pivotal role; since it is the unique hormone that maintains high level of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers, affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exists during seed maturation between Monocots and Eudicots species. For instance, in Monocots, the endosperm persists until maturation, and constitutes an important compartment for nutrients storage; while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation.This review will provide an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana,for Eudicots, and Zea mays, for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species.

  14. Genetic control of intestinal stem cell specification and development: a comparative view

    OpenAIRE

    Takashima, Shigeo; Hartenstein, Volker

    2012-01-01

    Stem cells of the adult vertebrate intestine (ISCs) are responsible for the continuous replacement of intestinal cells, but also serve as site of origin of intestinal neoplasms. The interaction between multiple signaling pathways, including Wnt/Wg, Shh/Hh, BMP, and Notch, orchestrate mitosis, motility, and differentiation of ISCs. Many fundamental questions of how these pathways carry out their function remain unanswered. One approach to gain more insight is to look at the development of stem...

  15. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals

    OpenAIRE

    Hall, V; Hinrichs, K; Lazzari, G.; Betts, D. H.; Hyttel, P

    2013-01-01

    Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to creat...

  16. Thyroid Hormone Regulation of Adult Intestinal Stem Cell Development: Mechanisms and Evolutionary Conservations

    OpenAIRE

    Sun, Guihong; Shi, Yun-Bo

    2012-01-01

    The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved ...

  17. The DnaJ-like zinc finger domain protein PSA2 affects light acclimation and chloroplast development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yan-Wen eWang

    2016-03-01

    Full Text Available The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.

  18. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development.

    Science.gov (United States)

    Xu, Jing; Zhang, Lin; Yang, Dong-Lei; Li, Qun; He, Zuhua

    2015-12-01

    Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development.

  19. Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development.

    Science.gov (United States)

    Pillitteri, Lynn Jo; Bemis, Shannon M; Shpak, Elena D; Torii, Keiko U

    2007-09-01

    The Arabidopsis genome contains three ERECTA-family genes, ERECTA (ER), ERECTA-LIKE 1 (ERL1) and ERL2 that encode leucine-rich repeat receptor-like kinases. This gene family acts synergistically to coordinate cell proliferation and growth during above-ground organogenesis with the major player, ER, masking the loss-of-function phenotypes of the other two members. To uncover the specific developmental consequence and minimum threshold requirement for signaling, ER-family gene function was successively eliminated. We report here that ERL2 is haploinsufficient for maintaining female fertility in the absence of ER and ERL1. Ovules of the haploinsufficient er-105 erl1-2 erl2-1/+ mutant exhibit abnormal development with reduced cell proliferation in the integuments and gametophyte abortion. Our analysis indicates that progression of integument growth requires ER-family signaling in a dosage-dependent manner and that transcriptional compensation among ER-family members occurs to maintain the required signaling threshold. The specific misregulation of cyclin A genes in the er-105 erl1-2 erl2-1/+ mutant suggests that downstream targets of the ER-signaling pathway might include these core cell-cycle regulators. Finally, genetic interaction of the ER family and the WOX-family gene, PFS2, reveals their contribution to integument development through interrelated mechanisms. PMID:17652352

  20. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.

    OpenAIRE

    Levin, J Z; Fletcher, J C; Chen, X.; Meyerowitz, E M

    1998-01-01

    In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting b...

  1. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells

    Science.gov (United States)

    Mei, Ying; Saha, Krishanu; Bogatyrev, Said R.; Yang, Jing; Hook, Andrew L.; Kalcioglu, Z. Ilke; Cho, Seung-Woo; Mitalipova, Maisam; Pyzocha, Neena; Rojas, Fredrick; van Vliet, Krystyn J.; Davies, Martyn C.; Alexander, Morgan R.; Langer, Robert; Jaenisch, Rudolf; Anderson, Daniel G.

    2010-09-01

    Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure-function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin αvβ3 and αvβ5 engagement with adsorbed vitronectin to promote colony formation. The structure-function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.

  2. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.

    Science.gov (United States)

    Groszmann, Michael; Paicu, Teodora; Alvarez, John P; Swain, Steve M; Smyth, David R

    2011-12-01

    The Arabidopsis gynoecium is a complex organ that facilitates fertilization, later developing into a dehiscent silique that protects seeds until their dispersal. Identifying genes important for development is often hampered by functional redundancy. We report unequal redundancy between two closely related genes, SPATULA (SPT) and ALCATRAZ (ALC), revealing previously unknown developmental roles for each. SPT is known to support septum, style and stigma development in the flower, whereas ALC is involved in dehiscence zone development in the fruit. ALC diverged from a SPT-like ancestor following gene duplication coinciding with the At-β polyploidy event. Here we show that ALC is also involved in early gynoecium development, and SPT in later valve margin generation in the silique. Evidence includes the increased severity of early gynoecium disruption, and of later valve margin defects, in spt-alc double mutants. In addition, a repressive version of SPT (35S:SPT-SRDX) disrupts both structures. Consistent with redundancy, ALC and SPT expression patterns overlap in these tissues, and the ALC promoter carries two atypical E-box elements identical to one in SPT required for valve margin expression. Further, SPT can heterodimerize with ALC, and 35S:SPT can fully complement dehiscence defects in alc mutants, although 35S:ALC can only partly complement spt gynoecium disruptions, perhaps associated with its sequence simplification. Interactions with FRUITFULL and SHATTERPROOF genes differ somewhat between SPT and ALC, reflecting their different specializations. These two genes are apparently undergoing subfunctionalization, with SPT essential for earlier carpel margin tissues, and ALC specializing in later dehiscence zone development. PMID:21801252

  3. Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells.

    Science.gov (United States)

    Woudstra, L; Krijnen, P A J; Bogaards, S J P; Meinster, E; Emmens, R W; Kokhuis, T J A; Bollen, I A E; Baltzer, H; Baart, S M T; Parbhudayal, R; Helder, M N; van Hinsbergh, V W M; Musters, R J P; de Jong, N; Kamp, O; Niessen, H W M; van Dijk, A; Juffermans, L J M

    2016-07-01

    Successful stem cell therapy after acute myocardial infarction (AMI) is hindered by lack of engraftment of sufficient stem cells at the site of injury. We designed a novel technique to overcome this problem by assembling stem cell-microbubble complexes, named 'StemBells'. StemBells were assembled through binding of dual-targeted microbubbles (~3μm) to adipose-derived stem cells (ASCs) via a CD90 antibody. StemBells were targeted to the infarct area via an ICAM-1 antibody on the microbubbles. StemBells were characterized microscopically and by flow cytometry. The effect of ultrasound on directing StemBells towards the vessel wall was demonstrated in an in vitro flow model. In a rat AMI-reperfusion model, StemBells or ASCs were injected one week post-infarction. A pilot study demonstrated feasibility of intravenous StemBell injection, resulting in localization in ICAM-1-positive infarct area three hours post-injection. In a functional study five weeks after injection of StemBells cardiac function was significantly improved compared with controls, as monitored by 2D-echocardiography. This functional improvement neither coincided with a reduction in infarct size as determined by histochemical analysis, nor with a change in anti- and pro-inflammatory macrophages. In conclusion, the StemBell technique is a novel and feasible method, able to improve cardiac function post-AMI in rats. PMID:27186654

  4. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    Science.gov (United States)

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species. PMID:18287201

  5. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    Science.gov (United States)

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.

  6. Amino acid substitution converts WEREWOLF function from an activator to a repressor of Arabidopsis non-hair cell development.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji

    2012-02-01

    Root hair cell or non-hair cell fate determination in Arabidopsis thaliana root epidermis is model system for plant cell development. Two types of MYB transcription factors, the R2R3-type MYB, WEREWOLF (WER), and an R3-type MYB, CAPRICE (CPC), are involved in this cell fate determination process. To study the molecular basis of this process, we analyzed the functional relationship of WER and CPC. WER-CPC chimeric constructs were made from WER where all or parts of the MYB R3 region were replaced with the corresponding regions from CPC R3, and the constructs were introduced into the cpc-2 mutant. Although, the WER gene did not rescue the cpc-2 mutant 'small number of root hairs' phenotype, the WER-CPC chimera with two amino acids substitution (WC6) completely rescued the cpc-2 mutant phenotype. Furthermore, the WER-CPC chimera with 37 amino acids substitution (WC5) excessively rescued the cpc-2 mutant and induced 2.5 times more root hairs than wild-type. Consistent with this phenotype, GL2 gene expression was strongly reduced in WC5 in a cpc-2 background. Our results suggest that swapping at least two amino acids is sufficient to convert WER to CPC function. Therefore, these key residues may have strongly contributed to the selection of these important functions over evolution.

  7. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis.

    Science.gov (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D; Browning, Luke W; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2014-05-01

    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.

  8. Factors affecting UV-B-induced changes in Arabidopsis thaliana L. gene expression: The role of development, protective pigments and the chloroplast signal

    International Nuclear Information System (INIS)

    Gene expression is known to change in response to UV-B radiation. In this paper, we have investigated three factors in Arabidopsis leaves that are likely to influence these changes: development, protective pigments and the 'chloroplast signal'. During late leaf development the major change in pigment composition, after exposure to UV-B radiation, is an increase in UV-absorbing pigments. Chl and Chl a/b ratio do not change substantially. Similarly Chl fluorescence is not altered. In contrast, RNA transcripts of photosynthetic proteins are reduced more in older leaves than in young leaves. To determine the role of flavonoids in UV-B protection, plants of Arabidopsis mutant tt-5, which have reduced flavonoids and sinapic esters, were exposed to UV-B and RNA transcript levels determined. The tt-mutants were more sensitive to UV-B radiation than wild-type. To examine the role of the chloroplast signal in regulating UV-B induced changes in gene expression, Arabidopsis gun mutants (genome uncoupled) have been used. The results show that UV-B-induced down-regulation still takes place in gun mutants and strongly suggests that the chloroplast signal is not required. Overall, this study clearly demonstrates that UV-B-induced changes in gene expression are influenced by both developmental and cellular factors but not chloroplastic factors

  9. Chromosomal Location of Tail-Fins-on-Stem Gene in Arabidopsis thaliana%拟南芥尾翼茎突变体tfos基因的分子标记定位

    Institute of Scientific and Technical Information of China (English)

    李红英; 杨海峰; 赵树堂; 唐芳; 戚晓利; 陈军; 卢孟柱

    2012-01-01

    Arabidopsis thaliana undergoes to a certain degree secondary growth under short day conditions, thus it can be used to study wood formation. In our previous work, we screened a mutant (tail-ftns-on-stem, tfoi) that displayed unique characteristics under short day conditions, such as shorter stem with a few ridge-like structures on the middle and the basal stem, slower growth and twisted rosette leaves with serrated margin, in comparison with the wild type. Microscopic observation showed that there was vascular structure in the middle of the ridge, likely due to abnormal differentiation of the cells in the stem. Genetic analysis indicated that the mutant trait was controlled by a single recessive nuclear gene. Further analysis, with molecular markers, showed that the mutant gene was mapped on the Chromosome I and displayed co-separation with the SSLP marker Fll A17- 48074. This study paved a way for cloning the gene controlling the phenotypes.%在短日照生长条件下,拟南芥维管发育有一定量的次生生长,可模拟林木木材的形成过程.前期研究中,筛选到1个突变体,在短日照生长条件下,相对于野生型,该突变体植株矮化且茎中下部有脊状结构附着,并伴随有发育迟缓、营养生长时期延长和莲座叶叶片边缘呈锯齿状等性状,将其命名为尾翼茎突变体(tfos).切片显微观察表明,尾翼组织具有明显维管结构,推测为茎内部细胞不正常分化导致该表型;遗传分析显示,突变性状受隐性单基因控制.进一步利用分子标记技术对该基因进行定位分析,结果将其定位到1号染色体上,与SSLP标记F11A17-48074紧密连锁.

  10. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  11. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis

    Directory of Open Access Journals (Sweden)

    Kazuki Saito

    2013-04-01

    Full Text Available Plants produce various volatile organic compounds (VOCs, which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS. We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions.

  12. Evolutionary pattern of the regulatory network for flower development:Insights gained from a comparison of two Arabidopsis species

    Institute of Scientific and Technical Information of China (English)

    yang LIU; Chun-Ce GUO; Gui-Xia XU; Hong-Yan SHAN; Hong-Zhi KONG

    2011-01-01

    Previous studies on Arabidopsis thaliana and other model plants have indicated that the development of a flower is controlled by a regulatory network composed of genes and the interactions among them.Studies on the evolution of this network will therefore help understand the genetic basis that underlies flower evolution.In this study,by reviewing the most recent published work,we added 31 genes into the previously proposed regulatory network for flower development.Thus,the number of genes reached 60.We then compared the composition,structure,and evolutionary rate of these genes between A.thaliana and one of its allies,A.lyrata.We found that two genes (FLC and MAF2) show 1∶ 2 and 2∶ 2 relationships between the two species,suggesting that they have experienced independent,post-speciation duplications.Of the remaining 58 genes,35 (60.3%) have diverged in exon-intron structure and,consequently,code for proteins with different sequence features and functions.Molecular evolutionary analyses further revealed that,although most floral genes have evolved under strong purifying selection,some have evolved under relaxed or changed constraints,as evidenced by the elevation of nonsynonymous substitution rates and/or the presence of positively selected sites.Taken together,these results suggest that the regulatory network for flower development has evolved rather rapidly,with changes in the composition,structure,and functional constraint of genes,as well as the interactions among them,being the most important contributors.

  13. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  14. Recent developments in StemBase: a tool to study gene expression in human and murine stem cells

    OpenAIRE

    Krzyzanowski Paul M; Porter Christopher J; Huska Matthew R; Palidwor Gareth A; Sandie Reatha; Muro Enrique M; Perez-Iratxeta Carolina; Andrade-Navarro Miguel A

    2009-01-01

    Abstract Background Currently one of the largest online repositories for human and mouse stem cell gene expression data, StemBase was first designed as a simple web-interface to DNA microarray data generated by the Canadian Stem Cell Network to facilitate the discovery of gene functions relevant to stem cell control and differentiation. Findings Since its creation, StemBase has grown in both size and scope into a system with analysis tools that examine either the whole database at once, or sl...

  15. Examining Urban Students' Constructions of a STEM/Career Development Intervention over Time

    Science.gov (United States)

    Blustein, David L.; Barnett, Michael; Mark, Sheron; Depot, Mark; Lovering, Meghan; Lee, Youjin; Hu, Qin; Kim, James; Backus, Faedra; Dillon-Lieberman, Kristin; DeBay, Dennis

    2013-01-01

    Using consensual qualitative research, the study examines urban high school students' reactions to a science, technology, engineering, and math (STEM) enrichment/career development program, their resources and barriers, their perspectives on the impact of race and gender on their career development, and their overall views of work and their…

  16. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  17. Microscopy and Bioinformatic Analyses of Lipid Metabolism Implicate a Sporophytic Signaling Network Supporting Pollen Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yixing Wang; Hong Wu; Ming Yang

    2008-01-01

    The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development.However,the molecular mechanism regulating the degeneration process is unknown.To gain insight into this molecular mechanism,we first determined that the most critical period for tapetal secretion to support pollen development iS from the vacuolate microspore stage to the early binucleate pollen stage.We then analyzed the expression of enzymes responsible for lipid biosynthesis and degradation with available in-silico data.The genes for these enzymes that are expressed in the stamen but not in the concurrent uninucleate microspore and binucleate pollen are of particular interest,as they presumably hold the clues to unique molecular processes in the sporophytic tissues compared to the gametophytic tissue.No gene for lipid biosynthesis but a single gene encoding a patatin-like protein likely for lipid mobilization was identified based on the selection criterion.A search for genes co-expressed with this gene identified additional genes encoding typical signal transduction components such as a leucine-rich repeat receptor kinase,an extra-large G-protein,other protein kinases,and transcription factors.In addition,proteases,cell wall degradation enzymes,and other proteins were also identified.These proteins thus may be components of a signaling network leading to degradation of a broad range of cellular components.Since a broad range of degradation activities is expected to occur only in the tapetal degeneration process at this stage in the stamen,it iS further hypothesized that the signaling network acts in the tapetal degeneration process.

  18. Policy, Equity and Priority: Ethical Issues of Stem Cell in Developing Countries

    Directory of Open Access Journals (Sweden)

    B Larijani

    2008-06-01

    Full Text Available Ever-increasing advances in the field of bioethics have been encouraged by recent developments of biomedical technolo-gies. Stem cell research and therapy are among the most promising approaches in medicine of which are raised some ethical chal¬lenges. Likewise, the therapeutic potential of stem cell-based therapies created new policy concerns for health care sys¬tems, particularly the issue of equity, priority in resource allocation and justice. There are arguments against and in favor of funding for stem cell research. Governments have also diverse policies in en¬couraging private sector sponsorship to support researches. Iran is one of the pioneers in the field of human embry¬onic stem cell research in the region. The religious de¬crees per¬mitting therapeutic purposes have paved the way for wide-ranging researches. Indeed, the researchers have an obli¬gation to observe moral values. Therefore, the national specific guideline for gamete and embryo research, com¬piled in 2005, is followed in this issue. In this paper, we will discuss the major ethical concerns relating to the issue of equity and justice, and will review the regulatory policies for stem cell research and therapy. On the whole, stem cell research is a global enterprise about which there is a need to think in the context of glob¬alisation and also from the perspective of the developing countries. Stem cell based therapies are expensive and tech¬nologically demanding, the low-resource healthcare systems need to consider a specific national policy and to weigh up costs and benefits to consider making such treatments available. We must ensure that rights, values and wel¬fare of the donor, recipient and the community are respected.

  19. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Hinrichs, K.; Lazzari, G.;

    2013-01-01

    production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects......Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved...... of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed. © 2013 Elsevier Ltd....

  20. Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis

    OpenAIRE

    Ma, Xuan; Sukiran, Noor Liyana; Ma, Hong; Su, Zhao

    2014-01-01

    Background Drought is a major constraint that leads to extensive losses to agricultural yield worldwide. The potential yield is largely determined during inflorescence development. However, to date, most investigations on plant response to drought have focused on vegetative development. This study describes the morphological changes of reproductive development and the comparison of transcriptomes under various drought conditions. Results The plants grown were studied under two drought conditi...

  1. Liver Development and In vitro Differentiation of Embryonic Stem Cells to Hepatocytes

    Directory of Open Access Journals (Sweden)

    Behshad Pournasr

    2010-01-01

    Full Text Available Embryonic stem cells are characterized with two specific properties: self renewal and differentiationpotential. Embryonic stem cells are pluripotent cells that can be differentiatedinto three kind of germ layers; ectoderm, endoderm, mesoderm. These properties makethem ideal for developmental research, toxicology and transplantation in animal model ofhuman diseases. These cells can be differentiated spontaneously into three germ layercells, but in direct differentiation, molecules and growth factors involved in natural developmentof desired cells must well characterized to gain a proper differentiation in vitro.There are increasing numbers of death because of liver disease and failure of organtransplantation in our country and the world. This made stem cell scientists to work onembryonic stem cell differentiation to hepatocyte like cells to create an accessible cellsource in regenerative medicine of liver disease in the future, and also to establish stemcell derived hepatocyte for in vitro screening of drugs.In this review we will summarize the process of liver development including moleculesand growth factors incorporate in the liver development as a template for in vitro differentiationof mouse and human embryonic stem cells and then we will discuss the relatedstudies and techniques for analyzing functionality of differentiated cells.

  2. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development.

    Science.gov (United States)

    Fan, Lusheng; Hao, Huaiqing; Xue, Yiqun; Zhang, Liang; Song, Kai; Ding, Zhaojun; Botella, Miguel A; Wang, Haiyang; Lin, Jinxing

    2013-09-01

    Clathrin-mediated endocytosis, which depends on the AP2 complex, plays an essential role in many cellular and developmental processes in mammalian cells. However, the function of the AP2 complex in plants remains largely unexplored. Here, we show in Arabidopsis that the AP2 σ subunit mutant (ap2 σ) displays various developmental defects that are similar to those of mutants defective in auxin transport and/or signaling, including single, trumpet-shaped and triple cotyledons, impaired vascular pattern, reduced vegetative growth, defective silique development and drastically reduced fertility. We demonstrate that AP2 σ is closely associated and physically interacts with the clathrin light chain (CLC) in vivo using fluorescence cross-correlation spectroscopy (FCCS), protein proximity analyses and co-immunoprecipitation assays. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), we show that AP2 σ-mCherry spots colocalize with CLC-EGFP at the plasma membrane, and that AP2 σ-mCherry fluorescence appears and disappears before CLC-EGFP fluorescence. The density and turnover rate of the CLC-EGFP spots are significantly reduced in the ap2 σ mutant. The internalization and recycling of the endocytic tracer FM4-64 and the auxin efflux carrier protein PIN1 are also significantly reduced in the ap2 σ mutant. Further, the polar localization of PIN1-GFP is significantly disrupted during embryogenesis in the ap2 σ mutant. Taken together, our results support an essential role of AP2 σ in the assembly of a functional AP2 complex in plants, which is required for clathrin-mediated endocytosis, polar auxin transport and plant growth regulation. PMID:23924631

  3. Characterization of a small auxin-up RNA (SAUR-like gene involved in Arabidopsis thaliana development.

    Directory of Open Access Journals (Sweden)

    Marios Nektarios Markakis

    Full Text Available The root of Arabidopsis thaliana is used as a model system to unravel the molecular nature of cell elongation and its arrest. From a micro-array performed on roots that were treated with aminocyclopropane-1-carboxylic acid (ACC, the precursor of ethylene, a Small auxin-up RNA (SAUR-like gene was found to be up regulated. As it appeared as the 76th gene in the family, it was named SAUR76. Root and leaf growth of overexpression lines ectopically expressing SAUR76 indicated the possible involvement of the gene in the division process. Using promoter::GUS and GFP lines strong expression was seen in endodermal and pericycle cells at the end of the elongation zone and during several stages of lateral root primordia development. ACC and IAA/NAA were able to induce a strong up regulation of the gene and changed the expression towards cortical and even epidermal cells at the beginning of the elongation zone. Confirmation of this up regulation of expression was delivered using qPCR, which also indicated that the expression quickly returned to normal levels when the inducing IAA-stimulus was removed, a behaviour also seen in other SAUR genes. Furthermore, confocal analysis of protein-GFP fusions localized the protein in the nucleus, cytoplasm and plasma membrane. SAUR76 expression was quantified in several mutants in ethylene and auxin-related pathways, which led to the conclusion that the expression of SAUR76 is mainly regulated by the increase in auxin that results from the addition of ACC, rather than by ACC itself.

  4. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  5. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    OpenAIRE

    Guo, Hongyan; Zhang, Wei; Tian, Hainan; Zheng, Kaijie; Dai, Xuemei; Liu, Shanda; Hu, Qingnan; Wang, Xianling; Liu, Bao; Wang, Shucai

    2015-01-01

    Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa) CL...

  6. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    OpenAIRE

    Hongyan eGuo; Wei eZhang; Hainan eTian; Kaijie eZheng; Xuemei eDai; Shanda eLiu; Qingnan eHu; Xianling eWang; Bao eLiu; Shucai eWang

    2015-01-01

    Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa) CLE...

  7. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis thaliana Seedlings Root Growth and Development

    OpenAIRE

    Mishra, Bhuwaneshwar S.; Manjul Singh; Priyanka Aggrawal; Ashverya Laxmi

    2009-01-01

    BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root ...

  8. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  9. Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.

    Science.gov (United States)

    Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira

    2011-10-01

    Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.

  10. Development of the Fibulin-3 protein therapeutics of non small cell lung cancer stem cells

    International Nuclear Information System (INIS)

    This study focuses on developing an efficient bioprocess for large-scale production of fibulin-3 using Chinese Hamster Ovary cell expression system and evaluating its therapeutic potential for the treatment of cancer. The specific aims are as follows: Isolation and establishment of CSCs using FACS based on cell surface markers and high ALDH1 activity. Identification and characterization of lung cancer stem cells that acquire features of CSC upon exposure to ionizing radiation. Evaluation of the fibulin-3 effects on the stem traits and signaling pathways required for the generation and maintenance of CSCs. In vivo validation of fivulin-3 for tumor prognosis and therapeutic efficacy against lung cancer using animal model

  11. Development of the Fibulin-3 protein therapeutics of non small cell lung cancer stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kugchan; Jung, Il Lae; Kim, Seo Yeon; Choi, Su Im; Lee, Jae Ha

    2013-09-15

    This study focuses on developing an efficient bioprocess for large-scale production of fibulin-3 using Chinese Hamster Ovary cell expression system and evaluating its therapeutic potential for the treatment of cancer. The specific aims are as follows: Isolation and establishment of CSCs using FACS based on cell surface markers and high ALDH1 activity. Identification and characterization of lung cancer stem cells that acquire features of CSC upon exposure to ionizing radiation. Evaluation of the fibulin-3 effects on the stem traits and signaling pathways required for the generation and maintenance of CSCs. In vivo validation of fivulin-3 for tumor prognosis and therapeutic efficacy against lung cancer using animal model.

  12. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  13. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  14. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.

    Science.gov (United States)

    Fang, Zheng-wu; Qi, Rui; Li, Xiao-fang; Liu, Zhi-xiong

    2014-10-25

    Arabidopsis thaliana APETALA3 (AP3) and Antirrhinum majus DEFICIENS (DEF) MADS box genes are required to specify petal and stamen identity. AP3 and DEF are members of the euAP3 lineage, which arose by gene duplication coincident with radiation of the core eudicots. In order to investigate the molecular mechanisms underlying organ development in early diverging clades of core eudicots, we isolated and identified an AP3 homolog, FaesAP3, from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analyses revealed that FaesAP3 grouped into the euAP3 lineage. Expression analysis showed that FaesAP3 was transcribed only in developing stamens, and differed from AP3 and DEF, which expressed in developing petals and stamens. Moreover, ectopic expression of FaesAP3 rescued stamen development without complementation of petal development in an Arabidopsis ap3 mutant. Our results suggest that FaesAP3 is involved in the development of stamens in buckwheat. These results also suggest that FaesAP3 holds some potential for biotechnical engineering to create a male sterile line of F. esculentum. PMID:25149019

  15. Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development

    NARCIS (Netherlands)

    C. Robin (Catherine); K. Bollerot (Karine); S.C. Mendes (Sandra); E. Haak (Esther); M. Crisan (Mihaela); F. Cerisoli (Francesco); I. Lauw (Ivoune); P. Kaimakis (Polynikis); R.J.J. Jorna (Ruud); M. Vermeulen (Mark); M.H. Kayser (Manfred); R. van der Linden (Reinier); P. Imanirad (Parisa); M.M.A. Verstegen (Monique); H. Nawaz-Yousaf (Humaira); N. Papazian (Natalie); E.A.P. Steegers (Eric); T. Cupedo (Tom); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractHematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emerg

  16. Of lineage and legacy: The development of mammalian hematopoietic stem cells

    NARCIS (Netherlands)

    E.A. Dzierzak (Elaine); N.A. Speck (Nancy)

    2008-01-01

    textabstractThe hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobil

  17. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  18. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  19. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    Science.gov (United States)

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  20. LifeMap Discovery™: the embryonic development, stem cells, and regenerative medicine research portal.

    Directory of Open Access Journals (Sweden)

    Ron Edgar

    Full Text Available LifeMap Discovery™ provides investigators with an integrated database of embryonic development, stem cell biology and regenerative medicine. The hand-curated reconstruction of cell ontology with stem cell biology; including molecular, cellular, anatomical and disease-related information, provides efficient and easy-to-use, searchable research tools. The database collates in vivo and in vitro gene expression and guides translation from in vitro data to the clinical utility, and thus can be utilized as a powerful tool for research and discovery in stem cell biology, developmental biology, disease mechanisms and therapeutic discovery. LifeMap Discovery is freely available to academic nonprofit institutions at http://discovery.lifemapsc.com.

  1. Role of SCHIZORIZA in asymmetric cell division, cell fate segregation and specification in Arabidopsis root development

    NARCIS (Netherlands)

    Jansweijer, V.M.A.

    2013-01-01

    Multicellular organisms develop their large variety of cell types from just one single cell, the zygote. Both plants and animals use asymmetric cell division to establish a multicellular body plan How different cell and tissue types are determined, how patterns are created and maintained, and which

  2. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

    Science.gov (United States)

    Xie, Q; Frugis, G; Colgan, D; Chua, N H

    2000-12-01

    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  3. Information extraction from articles for the elaboration of the regulatory networks involved in Arabidopsis seed development

    OpenAIRE

    Dubreucq, Bertrand; Valsamou, Dialekti; Fatihi, Abdelhak; Chaix, Estelle; Bossy, Robert; Bessieres, Philippe; Deleger, Louise; Zweigenbaum, Pierre; Nédellec, Claire; Lepiniec, Loic

    2015-01-01

    Seed is the main vector for breeding and production of annual field crops, and the accumulation of seed storage compounds (sugars, lipids, proteins) is of primary importance for food, feed and industrial uses. Seed development requires the coordinated growth of different tissues and involves complex genetics and environmental regulations. A comprehensive understanding of the molecular network underlying these regulations remains a major scientific challenge with important potential impact for...

  4. WOX5-1AA17 Feedback Circuit-Mediated CellularAuxin Response Is Crucial for the Patterning ofRoot Stem Cell Niches in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum thatemerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxinresponse machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell mainte-nance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5)transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thusprovides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is bal-anced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biol-ogy, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediatedauxin production to IAA17-dependent repression of auxin responses. This WOX5-1AA17 feedback circuit further assuresthe maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stemcell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-iAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSCdifferentiation.

  5. Reciprocal chromosome translocation associated with TDNA-insertion mutation in Arabidopsis: genetic and cytological analyses of consequences for gametophyte development and for construction of doubly mutant lines

    OpenAIRE

    Curtis, Marc J.; Belcram, Katia; Stephanie R Bollmann; Tominey, Colin M.; Hoffman, Peter D.; Mercier, Raphael; Hays, John B.

    2008-01-01

    Chromosomal rearrangements may complicate construction of Arabidopsis with multiple TDNA-insertion mutations. Here, crossing two lines homozygous for insertions in AtREV3 and AtPOLH (chromosomes I and V, respectively) and selfing F1 plants yielded non-Mendelian F2 genotype distributions: frequencies of +/++/+ and 1/1 2/2 progeny were only 0.42 and 0.25%. However, the normal development and fertility of double mutants showed AtPOLH-1 and AtREV3-2 gametes and 1/1 2/2 embryos to be fully viable....

  6. PPP1, a plant-specific regulator of transcription controls Arabidopsis development and PIN expression.

    Science.gov (United States)

    Benjamins, René; Barbez, Elke; Ortbauer, Martina; Terpstra, Inez; Lucyshyn, Doris; Moulinier-Anzola, Jeanette; Khan, Muhammad Asaf; Leitner, Johannes; Malenica, Nenad; Butt, Haroon; Korbei, Barbara; Scheres, Ben; Kleine-Vehn, Jürgen; Luschnig, Christian

    2016-01-01

    Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular. PMID:27553690

  7. STEM development: A study of 6th--12th grade girls' interest and confidence in mathematics and science

    Science.gov (United States)

    Heaverlo, Carol Ann

    Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.

  8. The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana

    OpenAIRE

    Cnops, Gerda; Neyt, Pia; Raes, Jeroen; Petrarulo, Marica; Nelissen, Hilde; Malenica, Nenad; Luschnig, Christian; Tietz, Olaf; Ditengou, Franck; Palme, Klaus; Azmi, Abdelkrim; Prinsen, Els; Van Lijsebettens, Maria

    2006-01-01

    In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or quaternary veins...

  9. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    Science.gov (United States)

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.

    2016-01-01

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906

  10. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development

    Science.gov (United States)

    Smaczniak, Cezary; Immink, Richard G. H.; Muiño, Jose M.; Blanvillain, Robert; Busscher, Marco; Busscher-Lange, Jacqueline; Dinh, Q. D. (Peter); Liu, Shujing; Westphal, Adrie H.; Boeren, Sjef; Parcy, François; Xu, Lin; Carles, Cristel C.; Angenent, Gerco C.; Kaufmann, Kerstin

    2012-01-01

    Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the “floral quartet” model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action. PMID:22238427

  11. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    Directory of Open Access Journals (Sweden)

    Halsey Leah E

    2011-02-01

    Full Text Available Abstract Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  12. Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development.

    Science.gov (United States)

    Casanova-Sáez, Rubén; Mateo-Bonmatí, Eduardo; Kangasjärvi, Saijaliisa; Candela, Héctor; Micol, José Luis

    2014-06-01

    The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development.

  13. Assessing faculty professional development in STEM higher education: Sustainability of outcomes

    OpenAIRE

    Derting, Terry L.; Ebert-May, Diane; Henkel, Timothy P.; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A.

    2016-01-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we m...

  14. Involvement of hormones and KNOXI genes in early Arabidopsis seedling development.

    Science.gov (United States)

    Soucek, Premysl; Klíma, Petr; Reková, Alena; Brzobohatý, Bretislav

    2007-01-01

    Plant hormones control plant development by modulating the expression of regulatory genes, including homeobox-containing KNOXI genes. However, much remains to be elucidated about the interactions involved. Therefore, hormonal regulation of KNOXI gene expression was investigated using hormone applications and an inducible transgenic ipt expression system to increase endogenous cytokinin (CK) levels. Treatments with auxin, abscisic acid (ABA), cytokinins, ethylene, and gibberellin (GA) did not result in ectopic expression of the BP (BREVIPEDICELLUS) gene. However, BP expression was strongly reduced by ABA, increased by auxin treatment (correlating with the initiation of lateral root meristems, which strongly express BP), and did not significantly respond to short-term treatments with the other hormones in whole seedlings. Following short-term ipt activation, organ-specific differential regulation of KNOXI gene expression was observed. While several KNOXI genes were transiently up-regulated to low levels, STM was selectively repressed (especially at low light) in hypocotyls. In cotyledons, activation of CK-responsive genes preceded ipt induction, suggesting that CKs are transported more rapidly than the inducing agent (dexamethasone). Long-term increases in CK levels induced raised levels of several KNOXI transcripts in hypocotyls, correlating with the radial expansion of vascular tissues, the main domains of KNOXI gene expression, suggesting that CKs had little effect on KNOXI promoter activity. No alterations in hormone sensitivity were observed in a bp null mutant. Constitutive BP overexpression caused reductions in the length and number of lateral roots, while the primary root remained unaffected. The transgenic seedlings displayed weak, but significant, alterations in sensitivity to ABA, CK, and 1-amino-cyclopropane-1-carboxylic acid. PMID:17951601

  15. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.

    Science.gov (United States)

    Huang, Yun; Feng, Cui-Zhu; Ye, Qing; Wu, Wei-Hua; Chen, Yi-Fang

    2016-02-01

    The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression.

  16. Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schmuke Jon J

    2005-06-01

    Full Text Available Abstract Background Gal4 enhancer trap systems driving expression of LacZ and GFP reporters have been characterized and widely used in Drosophila. However, a Gal4 enhancer trap system in Arabidopsis has not been described in the primary literature. In Drosophila, the reporters possess a Gal4 upstream activation sequence (UAS as five repeats (5XUAS and lines that express Gal4 from tissue specific enhancers have also been used for the ectopic expression of any transgene (driven by a 5XUAS. While Gal4 transactivation has been demonstrated in Arabidopsis, wide use of a trap has not emerged in part because of the lack of detailed analysis, which is the purpose of the present study. Results A key feature of this study is the use of luciferase (LUC as the primary reporter and rsGFP-GUS as secondary reporters. Reporters driven by a 5XUAS are better suited in Arabidopsis than those containing a 1X or 2X UAS. A 5XUAS-LUC reporter is expressed at high levels in Arabidopsis lines transformed with Gal4 driven by the full, enhanced 35S promoter. In contrast, a minimum 35S (containing the TATA region upstream of Gal4 acts as an enhancer trap system. Luciferase expression in trap lines of the T1, T2, and T3 generations are generally stable but by the T4 generation approximately 25% of the lines are significantly silenced. This silencing is reversed by growing plants on media containing 5-aza-2'-deoxycytidine. Quantitative multiplex RT-PCR on the Gal4 and LUC mRNA indicate that this silencing can occur at the level of Gal4 or LUC transcription. Production of a 10,000 event library and observations on screening, along with the potential for a Gal4 driver system in other plant species are discussed. Conclusion The Gal4 trap system described here uses the 5XUAS-LUC and 5XUAS rsGFP-GUS as reporters and allows for in planta quantitative screening, including the rapid monitoring for silencing. We conclude that in about 75% of the cases silencing is at the level of

  17. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies.

    Science.gov (United States)

    Brouwer, Marinka; Zhou, Huiqing; Nadif Kasri, Nael

    2016-02-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer. PMID:26424535

  18. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells.

    Science.gov (United States)

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  19. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development

    Directory of Open Access Journals (Sweden)

    Emily J Lodge

    2016-03-01

    Full Text Available The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumours. Multiple signalling pathways, including WNT, BMP, FGF and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridisation method (RNAscope to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

  20. Rapid Selection and Proliferation of Cancer Stem Cells in a NASA Developed Microgravity Bioreactor

    Science.gov (United States)

    Kelly, S. E.; Di Benedetto, A.; Valluri, J. V.; Claudio, P. P.

    2008-06-01

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Saos-2 is a human sarcoma cell line that is used as a model for osteoblastic cells, which contains 10% of CD133(+) cells. CD133 is a transmembrane pentameric glycoprotein. It is a cell surface marker expressed by hematopoietic stem cells but not mature blood cells. It has also been found to be a marker for other stem and progenitor cells including neural and embryonic stem cells, and it is expressed in cancers, including some leukemias and brain tumors. We isolated CD133(+) CSCs from the Saos-2 cell line by using a MACsorting system which consists of magnetic beads conjugated to an antibody against CD133 (Miltenyi, Auburn, CA). Saos-2 positivity to CD133 was assessed by Facs analysis using the BD FacsAria (Franklin Lakes, NJ). The Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX) which was developed by NASA at the Johnson Space Center selected and proliferated CD133(+).

  1. Bridging the Gap between Engineering Design and PK-12 Curriculum Development through the Use of the STEM Education Quality Framework

    Science.gov (United States)

    Pinnell, Margaret; Rowly, James; Preiss, Sandi; Franco, Suzanne; Blust, Rebecca; Beach, Renee

    2013-01-01

    This paper will describe a unique partnership among the Department of Teacher Education and School of Engineering at the University of Dayton (UD) and the Dayton Regional STEM Center (DRSC). This partnership resulted in the development of the STEM Education Quality Framework (SQF), a tool to guide educators in teaching, learning and refining STEM…

  2. Strategic Future Directions for Developing STEM Education in Higher Education in Egypt as a Driver of Innovation Economy

    Science.gov (United States)

    Ahmed, Hanaa Ouda Khadri

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…

  3. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  4. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  5. Development of stem cell-based therapies for Parkinson's disease.

    Science.gov (United States)

    Zhu, Bangfu; Caldwell, Maeve; Song, Bing

    2016-11-01

    Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta in the brain with an unknown cause. Current pharmacological treatments for PD are only symptomatic and there is still no cure for this disease nowadays. In fact, transplantation of human fetal ventral midbrain cells into PD brains has provided a proof of concept that cell replacement therapy can be used for some PD patients, beneficial for improving their symptoms. However, the ethical and practical issues of human fetal tissue will inevitably limit its widespread clinical use. Therefore, it is essential to find alternative cell sources for the future cell transplantation for PD patients. With recent development in stem cell technology, here, we review the different types of stem cells and their main properties currently explored, which could be developed as a possible cell therapy for PD treatment. PMID:26824870

  6. DEVELOPMENT AND PERFORMANCE EVALUATION OF TRACTOR FRONT MOUNTED PIGEON PEA STEM CUTTER

    OpenAIRE

    Atul R. Dange; S.K.Thakare

    2010-01-01

    Pigeon pea or tur (Cajanus cajan L. Mills.) is one of the important pulse crops of India and ranks second to chickpea in area and production. Traditionally the harvesting of pigeon pea is done manually by sickle, which demands considerable amount of labour, drudgery, time and cost to harvest, which reflects on total production cost of the crop. In view of this a tractor operated front mounted pigeon pea stem cutter was developed and being front mounted implement it facilitated better visibil...

  7. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies

    OpenAIRE

    Brouwer, Marinka; Zhou, Huiqing; Nadif Kasri, Nael

    2015-01-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Develo...

  8. Emergence of Human Angiohematopoietic Cells in Normal Development and from Cultured Embryonic Stem Cells

    OpenAIRE

    Zambidis, Elias T.; Sinka, Lidia; Tavian, Manuela; Jokubaitis, Venta; Park, Tea Soon; Simmons, Paul; Peault, Bruno

    2007-01-01

    Human hematopoiesis proceeds transiently in the extraembryonic yolk sac and embryonic, then fetal liver before being stabilized in the bone marrow during the third month of gestation. In addition to this classic developmental sequence, we have previously shown that the aorta-gonad-mesonephros (AGM) embryonic territory produces stem cells for definitive hematopoiesis from 27 to 40 days of human development, through an intermediate blood-forming endothelium stage. These studies have relied on t...

  9. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    OpenAIRE

    Piya Prajumwongs; Oratai Weeranantanapan; Thiranut Jaroonwitchawan; Parinya Noisa

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in unders...

  10. Adult neurogenesis, neural stem cells and Alzheimer's disease: developments, limitations, problems and promises.

    Science.gov (United States)

    Taupin, Philippe

    2009-12-01

    Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease, leading to severe incapacity and death. It is the most common form of dementia among older people. AD is characterized in the brain by amyloid plaques, neurofibrillary tangles, neuronal degeneration, aneuploidy and enhanced neurogenesis and by cognitive, behavioral and physical impairments. Inherited mutations in several genes and genetic, acquired and environmental risk factors have been reported as causes for developing the disease, for which there is currently no cure. Current treatments for AD involve drugs and occupational therapies, and future developments involve early diagnosis and stem cell therapy. In this manuscript, we will review and discuss the recent developments, limitations, problems and promises on AD, particularly related to aneuploidy, adult neurogenesis, neural stem cells (NSCs) and cellular therapy. Though adult neurogenesis may be beneficial for regeneration of the nervous system, it may underly the pathogenesis of AD. Cellular therapy is a promising strategy for AD. Limitations in protocols to establish homogeneous populations of neural progenitor and stem cells and niches for neurogenesis need to be resolved and unlocked, for the full potential of adult NSCs to be realized for therapy.

  11. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (Ptomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  12. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development.

    Science.gov (United States)

    Li, Ruili; Liu, Peng; Wan, Yinglang; Chen, Tong; Wang, Qinli; Mettbach, Ursula; Baluska, Frantisek; Samaj, Jozef; Fang, Xiaohong; Lucas, William J; Lin, Jinxing

    2012-05-01

    Endocytosis is essential for the maintenance of protein and lipid compositions in the plasma membrane and for the acquisition of materials from the extracellular space. Clathrin-dependent and -independent endocytic processes are well established in yeast and animals; however, endocytic pathways involved in cargo internalization and intracellular trafficking remain to be fully elucidated for plants. Here, we used transgenic green fluorescent protein-flotillin1 (GFP-Flot1) Arabidopsis thaliana plants in combination with confocal microscopy analysis and transmission electron microscopy immunogold labeling to study the spatial and dynamic aspects of GFP-Flot1-positive vesicle formation. Vesicle size, as outlined by the gold particles, was ∼100 nm, which is larger than the 30-nm size of clathrin-coated vesicles. GFP-Flot1 also did not colocalize with clathrin light chain-mOrange. Variable-angle total internal reflection fluorescence microscopy also revealed that the dynamic behavior of GFP-Flot1-positive puncta was different from that of clathrin light chain-mOrange puncta. Furthermore, disruption of membrane microdomains caused a significant alteration in the dynamics of Flot1-positive puncta. Analysis of artificial microRNA Flot1 transgenic Arabidopsis lines established that a reduction in Flot1 transcript levels gave rise to a reduction in shoot and root meristem size plus retardation in seedling growth. Taken together, these findings support the hypothesis that, in plant cells, Flot1 is involved in a clathrin-independent endocytic pathway and functions in seedling development.

  13. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    Wei Gong; Kun He; Mike Covington; S.R Dinesh-Kumar; Michael Snyder; Stacey L.Harmer; Yu-Xian Zhu; Xing Wang Deng

    2008-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to constructprotein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and proteinprotein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale.

  14. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Science.gov (United States)

    Ali, Muhammad Amjad; Wieczorek, Krzysztof; Kreil, David P; Bohlmann, Holger

    2014-01-01

    Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  15. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  16. Carbonylation and Loss-of-Function Analyses of SBPase Reveal Its Metabolic Interface Role in Oxidative Stress, Carbon Assimilation, and Multiple Aspects of Growth and Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xun-Liang Liu; Hai-Dong Yu; Yuan Guan; Ji-Kai Li; Fang-Qing Guo

    2012-01-01

    Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin cycle enzyme and functions in photosynthetic carbon fixation.We found that SBPase was rapidly carbonylated in response to methyl viologen (MV) treatments in detached leaves of Arabidopsis plants.In vitro activity analysis of the purified recombinant SBPase showed that SBPase was carbonylated by hydroxyl radicals,which led to enzyme inactivation in an H2O2 dose-dependent manner.To determine the conformity with carbonylation-caused loss in enzymatic activity in response to stresses,we isolated a loss-of-function mutant sbp,which is deficient in SBPase-dependent carbon assimilation and starch biosynthesis,sbp mutant exhibited a severe growth retardation phenotype,especially for the developmental defects in leaves and flowers where SBPASE is highly expressed.The mutation of SBPASE caused growth retardation mainly through inhibition of cell division and expansion,which can be partially rescued by exogenous application of sucrose.Our findings demonstrate that ROS-induced oxidative damage to SBPase affects growth,development,and chloroplast biogenesis in Arabidopsis through inhibiting carbon assimilation efficiency.The data presented here provide a case study that such inactivation of SBPase caused by carbonyl modification may be a kind of adaptation for plants to restrict the operation of the reductive pentose phosphate pathway under stress conditions.

  17. Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis

    OpenAIRE

    Schmuke Jon J; Fitzsimmons Karen C; Engineer Cawas B; Dotson Stan B; Kranz Robert G

    2005-01-01

    Abstract Background Gal4 enhancer trap systems driving expression of LacZ and GFP reporters have been characterized and widely used in Drosophila. However, a Gal4 enhancer trap system in Arabidopsis has not been described in the primary literature. In Drosophila, the reporters possess a Gal4 upstream activation sequence (UAS) as five repeats (5XUAS) and lines that express Gal4 from tissue specific enhancers have also been used for the ectopic expression of any transgene (driven by a 5XUAS). W...

  18. Immunologically related lectins from stems and roots of developing seedlings of Cucurbita ficifolia: purification and some properties of root and stem lectins

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-02-01

    Full Text Available Hemagglutinating activity has been found in acetate extracts from roots and stems of squash seedlings (Cucurbita ficifolia. The hemaglutinating activity changes during seeds germination and seedling development. Dot blot and Western blot techniques have shown that proteins from these vegetative tissues cross-reacted with antibodies raised against endogenous cotyledons lectin CLBa and Con A.Lectins were isolated from stems and roots of 6-day old seedlings by precipitation with ethanol, affinity chromatography on Con A-Sepharose, gel filtration on Bio-gel P100 and separated by electrophoresis on polyacrylamide gel. Three purified lectins (RLA1, RLA2, RLA3 were obtained from roots and four from stems (SLA1, SLA2, SLA3, SLA4. The purified lectins from roots and stems agglutinated all human red blood cells, but sheep erythrocytes were most sensitive to agglutination. The hemagglutination of the root lectins RLA2 and RLA3 was inhibited by a very low concentration of arabinose, while RLA1, of xylose and Ga1NAc. Arabinose and Xylose were also found to be the most effective inhibitors of all stem lectins.

  19. The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis.

    Science.gov (United States)

    Gardiner, John; Collings, David A; Harper, John D I; Marc, Jan

    2003-07-01

    The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed seeds and young seedlings of Arabidopsis to 1-butanol, a specific inhibitor of PLD-dependent production of the signalling molecule phosphatidic acid (PA). When added to agar growth media, 0.2% 1-butanol strongly inhibited the emergence of the radicle and cotyledons, while 0.4% 1-butanol effectively blocked germination. When normal seedlings were transferred onto media containing 0.2% and 0.4% 1-butanol, the inhibitor retarded root growth by about 40% and 90%, respectively, by reducing cell elongation. Inhibited plants showed significant swelling in the root elongation zone, bulbous or branched root hairs, and modified cotyledon morphology. Confocal immunofluorescence microscopy of root tips revealed that 1-butanol disrupted the organisation of interphase cortical microtubules. Butanol isomers that do not inhibit PLD-dependent PA production, 2- and 3-butanol, had no effect on seed germination, seedling growth, or microtubule organisation. We propose that production of PA by PLD may be required for normal microtubule organisation and hence normal growth in Arabidopsis.

  20. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis.

    Science.gov (United States)

    Aloni, Roni; Schwalm, Katja; Langhans, Markus; Ullrich, Cornelia I

    2003-03-01

    The major regulatory shoot signal is auxin, whose synthesis in young leaves has been a mystery. To test the leaf-venation hypothesis [R. Aloni (2001) J Plant Growth Regul 20: 22-34], the patterns of free-auxin production, movement and accumulation in developing leaf primordia of DR5::GUS-transformed Arabidopsis thaliana (L.) Heynh. were visualized. DR5::GUS expression was regarded to reflect sites of free auxin, while immunolocalization with specific monoclonal antibodies indicated total auxin distribution. The mRNA expression of key enzymes involved in the synthesis, conjugate hydrolysis, accumulation and basipetal transport of auxin, namely indole-3-glycerol-phosphate-synthase, nitrilase, IAA-amino acid hydrolase, chalcone synthase and PIN1 as an essential component of the basipetal IAA carrier, was investigated by reverse transcription-polymerase chain reaction. Near the shoot apex, stipules were the earliest sites of high free-auxin production. During early stages of primordium development, leaf apical dominance was evident from strong beta-glucuronidase activity in the elongating tip, possibly suppressing the production of free auxin in the leaf tissues below it. Hydathodes, which develop in the tip and later in the lobes, were apparently primary sites of high free-auxin production, the latter supported by auxin-conjugate hydrolysis, auxin retention by the chalcone synthase-dependent action of flavonoids and also by the PIN1-component of the carrier-mediated basipetal transport. Trichomes and mesophyll cells were secondary sites of free-auxin production. During primordium development there are gradual shifts in sites and concentrations of free-auxin production occurring first in the tip of a leaf primordium, then progressing basipetally along the margins, and finally appearing also in the central regions of the lamina. This developmental pattern of free-auxin production is suggested to control the basipetal maturation sequence of leaf development and vascular

  1. The CIRTL Network: A Professional Development Network for Future STEM Faculty

    Science.gov (United States)

    Herbert, B. E.

    2011-12-01

    The Center for the Integration of Research, Teaching, and Learning (CIRTL) is an NSF Center for Learning and Teaching in higher education using the professional development of graduate students and post-doctoral scholars as the leverage point to develop a national STEM faculty committed to implementing and advancing effective teaching practices for diverse student audiences as part of successful professional careers. The goal of CIRTL is to improve the STEM learning of all students at every college and university, and thereby to increase the diversity in STEM fields and the STEM literacy of the nation. The CIRTL network seeks to support change at a number of levels to support its goals: individual, classroom, institutional, and national. To bring about change, which is never easy, the CIRTL network has developed a conceptual model or change model that is thought to support the program objectives. Three central concepts, Teaching-as-Research, Learning Communities, and Learning-through-Diversity, underlie the design of all CIRTL activities. STEM faculty use research methods to systematically and reflectively improve learning outcomes. This work is done within a community of shared learning and discovery, and explicitly recognizes that effective teaching capitalizes on the rich array of experiences, backgrounds, and skills among the students and instructors to enhance the learning of all. This model is being refined and tested through a networked-design experiment, where the model is tested in diverse settings. Established in fall 2006, the CIRTL Network comprises the University of Colorado at Boulder (CU), Howard University, Michigan State University, Texas A&M University, Vanderbilt University, and the University of Wisconsin-Madison. The diversity of these institutions is by design: private/public; large/moderate size; majority-/minority-serving; geographic location. This talk will describe the theoretical constructs and efficacy of Teaching-as Research as a

  2. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  3. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  4. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Piya Prajumwongs

    2016-01-01

    Full Text Available Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

  5. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    Directory of Open Access Journals (Sweden)

    Alistair E. Cole

    2016-01-01

    Full Text Available Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS. The bone morphogenetic proteins (BMPs, in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.

  6. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Carina Lund

    2016-08-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.

  7. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  8. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli

    2016-08-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. PMID:27426041

  9. Autonomous Extracellular Matrix Remodeling Controls a Progressive Adaptation in Muscle Stem Cell Regenerative Capacity during Development

    Directory of Open Access Journals (Sweden)

    Matthew Timothy Tierney

    2016-03-01

    Full Text Available Muscle stem cells (MuSCs exhibit distinct behavior during successive phases of developmental myogenesis. However, how their transition to adulthood is regulated is poorly understood. Here, we show that fetal MuSCs resist progenitor specification and exhibit altered division dynamics, intrinsic features that are progressively lost postnatally. After transplantation, fetal MuSCs expand more efficiently and contribute to muscle repair. Conversely, niche colonization efficiency increases in adulthood, indicating a balance between muscle growth and stem cell pool repopulation. Gene expression profiling identified several extracellular matrix (ECM molecules preferentially expressed in fetal MuSCs, including tenascin-C, fibronectin, and collagen VI. Loss-of-function experiments confirmed their essential and stage-specific role in regulating MuSC function. Finally, fetal-derived paracrine factors were able to enhance adult MuSC regenerative potential. Together, these findings demonstrate that MuSCs change the way in which they remodel their microenvironment to direct stem cell behavior and support the unique demands of muscle development or repair.

  10. Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin

    Directory of Open Access Journals (Sweden)

    Rodney K. Chan

    2012-01-01

    Full Text Available Large body surface area burns pose significant therapeutic challenges. Clinically, the extent and depth of burn injury may mandate the use of allograft for temporary wound coverage while autografts are serially harvested from the same donor areas. The paucity of donor sites in patients with burns involving large surface areas highlights the need for better skin substitutes that can achieve early and complete coverage and retain normal skin durability with minimal donor requirements. We have isolated autologous stem cells from the adipose layer of surgically debrided burned skin (dsASCs, using a point-of-care stem cell isolation device. These cells, in a collagen—polyethylene glycol fibrin-based bilayer hydrogel, differentiate into an epithelial layer, a vascularized dermal layer, and a hypodermal layer. All-trans-retinoic acid and fenofibrate were used to differentiate dsASCs into epithelial-like cells. Immunocytochemical analysis showed a matrix- and time-dependent change in the expression of stromal, vascular, and epithelial cell markers. These results indicate that stem cells isolated from debrided skin can be used as a single autologous cell source to develop a vascularized skin construct without culture expansion or addition of exogenous growth factors. This technique may provide an alternative approach for cutaneous coverage after extensive burn injuries.

  11. Lessons from development: A role for asymmetric stem cell division in cancer

    OpenAIRE

    Powell, Anne E.; Shung, Chia-Yi; Saylor, Katherine W.; Müllendorf, Karin A.; Weiss, Joseph B.; Wong, Melissa H.

    2009-01-01

    Asymmetric stem cell division has emerged as a major regulatory mechanism for physiologic control of stem cell numbers. Reinvigoration of the cancer stem cell theory suggests that tumorigenesis may be regulated by maintaining the balance between asymmetric and symmetric cell division. Therefore, mutations affecting this balance could result in aberrant expansion of stem cells. Although a number of molecules have been implicated in regulation of asymmetric stem cell division, here, we highligh...

  12. The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gilkerson Jonathan

    2012-07-01

    Full Text Available Abstract Background Transcription of plastid-encoded genes requires two different DNA-dependent RNA polymerases, a nuclear-encoded polymerase (NEP and plastid-encoded polymerase (PEP. Recent studies identified two related pfkB-type carbohydrate kinases, named FRUCTOKINASE-LIKE PROTEIN (FLN1 and FLN2, as components of the thylakoid bound PEP complex in both Arabidopsis thaliana and Sinapis alba (mustard. Additional work demonstrated that RNAi-mediated reduction in FLN expression specifically diminished transcription of PEP-dependent genes. Results Here, we report the characterization of Arabidopsis FLN knockout alleles to examine the contribution of each gene in plant growth, chloroplast development, and in mediating PEP-dependent transcription. We show that fln plants have severe phenotypes with fln1 resulting in an albino phenotype that is seedling lethal without a source of exogenous carbon. In contrast, fln2 plants display chlorosis prior to leaf expansion, but exhibit slow greening, remain autotrophic, can grow to maturity, and set viable seed. fln1 fln2 double mutant analysis reveals haplo-insufficiency, and fln1 fln2 plants have a similar, but more severe phenotype than either single mutant. Normal plastid development in both light and dark requires the FLNs, but surprisingly skotomorphogenesis is unaffected in fln seedlings. Seedlings genetically fln1-1 with dexamethasone-inducible FLN1-HA expression at germination are phenotypically indistinguishable from wild-type. Induction of FLN-HA after 24 hours of germination cannot rescue the mutant phenotype, indicating that the effects of loss of FLN are not always reversible. Examination of chloroplast gene expression in fln1-1 and fln2-1 by qRT-PCR reveals that transcripts of PEP-dependent genes were specifically reduced compared to NEP-dependent genes in both single mutants. Conclusions Our results demonstrate that each FLN protein contributes to wild type growth, and acting additively are

  13. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    OpenAIRE

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to pro...

  14. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    Directory of Open Access Journals (Sweden)

    Binghua Xue

    Full Text Available Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  15. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo

    Science.gov (United States)

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs. PMID:26991423

  16. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  17. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    Science.gov (United States)

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2016-05-01

    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development. PMID:27001427

  18. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development.

    Science.gov (United States)

    Fan, Xinping; Yang, Caiyun; Klisch, Doris; Ferguson, Alison; Bhaellero, Rishi P; Niu, Xiwu; Wilson, Zoe A

    2014-03-01

    The trans-Golgi network (TGN) plays a central role in cellular secretion and has been implicated in sorting cargo destined for the plasma membrane. Previously, the Arabidopsis (Arabidopsis thaliana) echidna (ech) mutant was shown to exhibit a dwarf phenotype due to impaired cell expansion. However, ech also has a previously uncharacterized phenotype of reduced male fertility. This semisterility is due to decreased anther size and reduced amounts of pollen but also to decreased pollen viability, impaired anther opening, and pollen tube growth. An ECH translational fusion (ECHPro:ECH-yellow fluorescent protein) revealed developmentally regulated tissue-specific expression, with expression in the tapetum during early anther development and microspore release and subsequent expression in the pollen, pollen tube, and stylar tissues. Pollen viability and production, along with germination and pollen tube growth, were all impaired. The ech anther endothecium secondary wall thickening also appeared reduced and disorganized, resulting in incomplete anther opening. This did not appear to be due to anther secondary thickening regulatory genes but perhaps to altered secretion of wall materials through the TGN as a consequence of the absence of the ECH protein. ECH expression is critical for a variety of aspects of male reproduction, including the production of functional pollen grains, their effective release, germination, and tube formation. These stages of pollen development are fundamentally influenced by TGN trafficking of hormones and wall components. Overall, this suggests that the fertility defect is multifaceted, with the TGN trafficking playing a significant role in the process of both pollen formation and subsequent fertilization.

  19. Embryonic stem cell as nuclear donor could promote in vitro development of the heterogeneous reconstructed embryo

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nucleus of a somatic cell could be dedifferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellucida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic stem cells was 16.1%, which was significantly higher than that of both the adult mouse fibroblast cells (0%-3.1%, P < 0.05) and fetus mouse fibroblast cells (2.1%-3.7%, P < 0.05). Chromosome analysis confirmed that blastocyst cells were derived from ES donor cell. These observations show that reprogramming is easier in interspecific embryos reconstructed with ES cells than that reconstructed with somatic cells, and that ES cells have the higher ability to direct the reconstructed embryos development normally than fibroblast cells.

  20. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.

  1. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease.

    Science.gov (United States)

    Horii, Mariko; Li, Yingchun; Wakeland, Anna K; Pizzo, Donald P; Nelson, Katharine K; Sabatini, Karen; Laurent, Louise Chang; Liu, Ying; Parast, Mana M

    2016-07-01

    Trophoblast is the primary epithelial cell type in the placenta, a transient organ required for proper fetal growth and development. Different trophoblast subtypes are responsible for gas/nutrient exchange (syncytiotrophoblasts, STBs) and invasion and maternal vascular remodeling (extravillous trophoblasts, EVTs). Studies of early human placental development are severely hampered by the lack of a representative trophoblast stem cell (TSC) model with the capacity for self-renewal and the ability to differentiate into both STBs and EVTs. Primary cytotrophoblasts (CTBs) isolated from early-gestation (6-8 wk) human placentas are bipotential, a phenotype that is lost with increasing gestational age. We have identified a CDX2(+)/p63(+) CTB subpopulation in the early postimplantation human placenta that is significantly reduced later in gestation. We describe a reproducible protocol, using defined medium containing bone morphogenetic protein 4 by which human pluripotent stem cells (hPSCs) can be differentiated into CDX2(+)/p63(+) CTB stem-like cells. These cells can be replated and further differentiated into STB- and EVT-like cells, based on marker expression, hormone secretion, and invasive ability. As in primary CTBs, differentiation of hPSC-derived CTBs in low oxygen leads to reduced human chorionic gonadotropin secretion and STB-associated gene expression, instead promoting differentiation into HLA-G(+) EVTs in an hypoxia-inducible, factor-dependent manner. To validate further the utility of hPSC-derived CTBs, we demonstrated that differentiation of trisomy 21 (T21) hPSCs recapitulates the delayed CTB maturation and blunted STB differentiation seen in T21 placentae. Collectively, our data suggest that hPSCs are a valuable model of human placental development, enabling us to recapitulate processes that result in both normal and diseased pregnancies. PMID:27325764

  2. Development of a Xeno-Free Substrate for Human Embryonic Stem Cell Growth

    OpenAIRE

    Hailin Zhu; Jinliang Yang; Yuquan Wei; Harry Huimin Chen

    2015-01-01

    Traditionally, human embryonic stem cells (hESCs) are cultured on inactivated live feeder cells. For clinical application using hESCs, there is a requirement to minimize the risk of contamination with animal components. Extracellular matrix (ECM) derived from feeder cells is the most natural way to provide xeno-free substrates for hESC growth. In this study, we optimized the step-by-step procedure for ECM processing to develop a xeno-free ECM that supports the growth of undifferentiated hESCs...

  3. Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    ZHANG ShengChun; WANG XiaoJing

    2008-01-01

    Separation and functional research of related components involved in gibberellins (GAs) signaling are important to clarify the mechanism of GA functioning. Research on the downstream components of DELLA, the key factor of the GA signaling pathway, is limited at present. GASA (GA-Stimulated in Arabidopsis) family contains 15 genes usually regulated by GA in Arabidopsis thaliana. All GASA proteins have a cleavable signal peptide in N terminus and a conserved GASA domain including 12 cysteines in C terminus. RT-PCR analysis revealed that the expression of GASA4 and GASA6 were down-regulated, but GASA1 and GASA9were up-regulated in the DELLA mutants, gai-t6 and rga-24, as well as the double mutant, consisting with the results that GASA4 and GASA6 were induced, but GASA1 and GASA9 were inhibited by exogenous GA3. In addition, the expression patterns of other GASA genes were regulated by GA and ABA, separately or cooperatively. Most of GASA genes were expressed in roots, stems, leaves, flowers and developing siliques. GUS gene driven by the promoters of GASA6, GASA7, GASAS, GASA9, GASA10, GASA11 and GASA12were used as reporters and it was found that all GASA genes expressed in the growing and differentiating organs and abscission zones,suggesting the role of these genes in cell growth and differentiation. This study provided an important basis for functional study of the GASA gene family in the GA and ABA signaling pathway.

  4. EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers

    OpenAIRE

    Manuela Baccarini; Christian Rupp; Eszter Doma

    2013-01-01

    The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review,...

  5. An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development

    OpenAIRE

    Matsuda, Hiroki; Shi, Yun-Bo

    2010-01-01

    Organ-specific adult stem cells are critical for the homeostasis of adult organs and organ repair and regeneration. Unfortunately, it has been difficult to investigate the origins of these stem cells and the mechanisms of their development, especially in mammals. Intestinal remodeling during frog metamorphosis offers a unique opportunity for such studies. During the transition from an herbivorous tadpole to a carnivorous frog, the intestine is completely remodeled with the larval epithelial c...

  6. DEVELOPMENT AND PERFORMANCE EVALUATION OF TRACTOR FRONT MOUNTED PIGEON PEA STEM CUTTER

    Directory of Open Access Journals (Sweden)

    Atul R. Dange

    2010-07-01

    Full Text Available Pigeon pea or tur (Cajanus cajan L. Mills. is one of the important pulse crops of India and ranks second to chickpea in area and production. Traditionally the harvesting of pigeon pea is done manually by sickle, which demands considerable amount of labour, drudgery, time and cost to harvest, which reflects on total production cost of the crop. In view of this a tractor operated front mounted pigeon pea stem cutter was developed and being front mounted implement it facilitated better visibility and control to operator. The power was transmitted from pto to gear box. Arrangement of hydraulic cylinder and hydraulic motor was provided on the equipment to facilitate the height of cut and to rotate the conveyer belt. During comparative performance evaluation of developed equipment, the average cutting efficiency and field capacity was found 96.30 % and 0.176 ha/hr respectively. There was increase in fuel consumption and plant damage with increase in speed of operation. The average operation cost of newly developed tractor operated front mounted pigeon pea stem cutter was 64.71% less as compared with manual harvesting of pigeon pea crop. The time saved was almost 1/3rd to that of manual harvesting.

  7. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    Science.gov (United States)

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-01-01

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients. PMID:27107715

  8. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  9. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development.

    Science.gov (United States)

    Guo, Hui-Shan; Xie, Qi; Fei, Ji-Feng; Chua, Nam-Hai

    2005-05-01

    Although several plant microRNAs (miRNAs) have been shown to play a role in plant development, no phenotype has yet been associated with a reduction or loss of expression of any plant miRNA. Arabidopsis thaliana miR164 was predicted to target five NAM/ATAF/CUC (NAC) domain-encoding mRNAs, including NAC1, which transduces auxin signals for lateral root emergence. Here, we show that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 3'-specific fragments. Cleavage was blocked by NAC1 mutations that disrupt base pairing with miR164. Compared with wild-type plants, Arabidopsis mir164a and mir164b mutant plants expressed less miR164 and more NAC1 mRNA and produced more lateral roots. These mutant phenotypes can be complemented by expression of the appropriate MIR164a and MIR164b genomic sequences. By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence. Auxin induction of miR164 was mirrored by an increase in the NAC1 mRNA 3' fragment, which was not observed in the auxin-insensitive mutants auxin resistant1 (axr1-12), axr2-1, and transport inhibitor response1. Moreover, the cleavage-resistant form of NAC1 mRNA was unaffected by auxin treatment. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.

  10. Epigenetic modifications of embryonic stem cells: current trends and relevance in developing regenerative medicine

    OpenAIRE

    Henry Chung; Kuldip S Sidhu

    2008-01-01

    Henry Chung, Kuldip S SidhuStem Cell Lab, Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, AustraliaAbstract: Epigenetics is a growing field not only in the area of cancer research but recently in stem cells including human embryonic stem cell (hESC) research. The hallmark of profiling epigenetic changes in stem cells lies in maintaining pluripotency or multipotency and in attaining lineage specifications that are relevant for regenerative medicine. Epige...

  11. Documentation on the development of the Swiss TIMES Electricity Model (STEM-E)

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, R.; Turton, H.

    2011-10-15

    This comprehensive report by the Paul Scherrer Institute PSI in Switzerland documents the development of the Swiss TIMES Electricity Model (STEM-E). This is a flexible model which explicitly depicts plausible pathways for the development of the Swiss electricity sector, while dealing with inter-temporal variations in demand and supply. TIMES is quoted as having the capability to portray the entire energy system from resource supply, through fuel processing, representation of infrastructures, conversion to secondary energy carriers, end-use technologies and energy service demands at end-use sectors. The background of the model's development and a reference energy system are described. Also, electricity end-use sectors and generating systems are examined, including hydropower, nuclear power, thermal generation and renewables. Environmental factors and the calibration of the model are discussed, as is the application of the model. The document is completed with an outlook, references and six appendices

  12. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  13. Beyond Knowledge and Skills: Rethinking the Development of Professional Identity during the STEM Doctorate

    Science.gov (United States)

    Hancock, Sally; Walsh, Elaine

    2016-01-01

    The science, technology, engineering, mathematics (STEM) doctorate is the established entry qualification for a scientific research career. However, contemporary STEM doctoral graduates assume increasingly diverse professional paths, with many forging non-academic careers. Using the UK as an example, the authors suggest that the STEM PhD fails to…

  14. Study choice and career development in STEM fields: an overview and integration of the research

    NARCIS (Netherlands)

    Tuijl, van Cathy; Walma van der Molen, Juliette H.

    2015-01-01

    Although science, technology, engineering and mathematics (STEM) study paths and STEM work fields may be relatively difficult and therefore not appropriate for everyone, too many children prematurely exclude STEM-related study and work options, based on negative images of the field or negative abili

  15. EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers

    Directory of Open Access Journals (Sweden)

    Manuela Baccarini

    2013-09-01

    Full Text Available The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions.

  16. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  17. Lateral Root Development of Related Genes in Arabidopsis thaliana%拟南芥侧根生长发育相关的基因

    Institute of Scientific and Technical Information of China (English)

    张方亮; 高亚梅; 王占斌; 韩毅强; 郑殿峰; 何俊华

    2015-01-01

    侧根是植物吸收水分和养分的重要器官,随着人们对植物侧根研究的不断深入,在植物中发现了大量与侧根发育相关的基因.不完全统计了从2000至2014年发表的与拟南芥侧根生长发育相关的69个基因,按照突变体表型分为三类,结果显示,在69个基因中有57个基因与侧根数目相关,7个基因与侧根长度有关,5个基因影响侧根形态.这些基因中有48个基因与激素相关,其中生长素相关基因36个,说明生长素对侧根发育具有重要作用.从侧根数目、侧根长度、侧根形态3个方面论述了基因对侧根生长发育的作用,为系统揭示拟南芥侧根形成的调控网络提供参考.%Lateral roots are important organs of plant to absorb water and nutrients,a lot of genes associated with lateral root development were found in the plant with more and more researches. 69 lateral root development of related genes in Arabidopsis thaliana were incompletely got from 2000 to 2014,and classified into three categories according to the mutant phenotype. The results showed that 56 genes of 69 genes were associated with the number of lateral roots,7 genes were associated with the lateral root length,and 6 genes affected lateral root morphology. There were 48 hormone-related genes,including 36 auxin-related genes,which indicated that auxin played an important role in lateral root development. This article summarized lateral root growth and development genes from lateral roots number,lateral root length,lateral root morphology,which provided the basis for further study of regulatory network of Arabidopsis lateral root development.

  18. Exploring Your Universe at UCLA: Steps to Developing and Sustaining a Large STEM Event

    Science.gov (United States)

    Curren, I. S.; Vican, L.; Sitarski, B.; Jewitt, D. C.

    2015-12-01

    Public STEM events are an excellent method to implement informal education and for scientists and educators to interact with their community. The benefits of such events are twofold. First and foremost, science enthusiasts and students both young and old, in particular, are exposed to STEM in a way that is accessible, fun, and not as stringent as may be presented in classrooms where testing is an underlying goal. Second, scientists and educators are given the opportunity to engage with the public and share their science to an audience who may not have a scientific background, thereby encouraging scientists to develop good communication practices and skills. In 2009 graduate student members of Astronomy Live!, an outreach organization in the UCLA Department of Physics and Astronomy, started a free and public event on the campus that featured a dozen hands-on outreach activities. The event, though small at the time, was a success and it was decided to make it an annual occurrence. Thus, Exploring Your Universe (EYU) was born. Primarily through word of mouth, the event has grown every year, both in number of attendees and number of volunteers. In 2009, approximately 1000 people attended and 20 students volunteered over the course of an eight-hour day. In 2014, participation was at an all-time high with close to 6000 attendees and over 400 volunteers from all departments in the Division of Physical Sciences (plus many non-divisional departments and institutes, as well as non-UCLA organizations). The event, which is the largest STEM event at UCLA and one of the largest in Los Angeles, now features near 100 hands-on activities that span many STEM fields. EYU has been featured by the UCLA news outlets, Daily Bruin and UCLA Today, and is often lauded as their favorite event of the year by attendees and volunteers alike. The event is entirely student-run, though volunteers include faculty, staff, researchers and students alike. As the event has grown, new systems for

  19. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress.

    Science.gov (United States)

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.

  20. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin Tiede; Yibin Kang

    2011-01-01

    Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy, in recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer, in particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ERJPR(-) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/ PR(+) tumors.

  1. Asparagine Metabolic Pathways in Arabidopsis.

    Science.gov (United States)

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  2. The origin and development of the immune system with a view to stem cell therapy.

    Science.gov (United States)

    Anastassova-Kristeva, Marlene

    2003-04-01

    Careful study of the phylogeny and ontogeny of the three components of the immune system reveals that the macrophage, lymphatic, and hematopoietic systems originate independently of each other. Chronologically, the most ancient is the macrophage system, which arises in the coelomic cavity as mesenchymal ameboid cells having the properties to recognize self from non-self and to ingest foreign particles. The lymphatic system later develops from the endoderm of pharyngeal pouches, where the thymic anlage differentiates. The lymphocytes that originate here seed all lymphatic organs and retain the ability to divide and thereby form multiple colonies (lymphatic nodules) in the respiratory and digestive tract; further diversification of lymphocytes follows after confrontation with antigens. The last component of the immune system to appear is the hematopoietic system, which originates from the splanchnic mesoderm of the yolk sac as hematogenic tissue, containing hemangioblasts. The hematogenic tissue remains attached to the outer wall of the vitelline vessels, which provides an efficient mechanism for introducing the hematogenic tissue into the embryo. In an appropriate microenvironment, the hemangioblasts give rise to sinusoidal endothelium and to hemocytoblasts - the bone marrow stem cells for erythrocytes, myeloid cells, and megakaryocytes. The facts and opinions presented in this article are not in agreement with the currently accepted dogma that a common "hematolymphatic stem cell" localized in the marrow generates all of the cellular components of blood and the immune system.

  3. Expression Profiling of Intestinal Tissues Implicates Tissue-Specific Genes and Pathways Essential for Thyroid Hormone-Induced Adult Stem Cell Development

    OpenAIRE

    Sun, Guihong; Heimeier, Rachel A; Fu, Liezhen; Hasebe, Takashi; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo

    2013-01-01

    The study of the epithelium during development in the vertebrate intestine touches upon many contemporary aspects of biology: to name a few, the formation of the adult stem cells (ASCs) essential for the life-long self-renewal and the balance of stem cell activity for renewal vs cancer development. Although extensive analyses have been carried out on the property and functions of the adult intestinal stem cells in mammals, little is known about their formation during development due to the di...

  4. Comparative Study on Effects of Low Energy N+ Implantation and γ-ray Radiation on Heredity and Development of Arabidopsis Thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhang Genfa; Li Ke; Shi Xiaoming; Nie Yanli; Zhang Jun; Zhou Hongyu; Lu Ting

    2005-01-01

    In order to compare the contemporary and genetic variation effect on Arabidopsis thaliana treated with N+ implantation and γ-ray radiation, the authors did some statistical comparison on the germinating rate and the development period, and analyzed the content of soluble proteins, the activity of some enzymes, isoenzymes profile, and along with the variation in genome DNA of two generations by RAPD. With N+ implantation there was an analogical "saddle model" relationship between doses and the plant development, soluble proteins, the activity of some enzymes and isoenzymes profile. A certain connection might exist between the similar dose-effect relations among enzymes activity, isoenzymes profile and content of soluble proteins.Maybe, there also exists a certain connection between the mutants of development period and that of DNA variations, between the hereditability of the effect of N+ implantation on the isoenzymes,the activities of enzymes and the hereditability of DNA variations. So it is presumed that the implanted ions, maybe, have participated in metabolism process of organism including that of genome DNA, to consequently affect vital process, such as the changes of gene structure, gene expression manner and gene repair mechanism, and finally result in mutation on phenotype and molecular level. Furthermore, the results definitely showed that mutagenic mechanism induced by N+ implantation is very complicated and is much different from that induced by traditional γ-ray radiation.

  5. Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in Arabidopsis.

    Science.gov (United States)

    Xie, Hong-Tao; Wan, Zhi-Yuan; Li, Sha; Zhang, Yan

    2014-05-01

    Male sterility in angiosperms has wide applications in agriculture, particularly in hybrid crop breeding and gene flow control. Microspores develop adjacent to the tapetum, a layer of cells that provides nutrients for pollen development and materials for pollen wall formation. Proper pollen development requires programmed cell death (PCD) of the tapetum, which requires transcriptional cascades and proteolytic enzymes. Reactive oxygen species (ROS) also affect tapetal PCD, and failures in ROS scavenging cause male sterility. However, many aspects of tapetal PCD remain unclear, including what sources generate ROS, whether ROS production has a temporal pattern, and how the ROS-producing system interacts with the tapetal transcriptional network. We report here that stage-specific expression of NADPH oxidases in the Arabidopsis thaliana tapetum contributes to a temporal peak of ROS production. Genetic interference with the temporal ROS pattern, by manipulating RESPIRATORY-BURST OXIDASE HOMOLOG (RBOH) genes, affected the timing of tapetal PCD and resulted in aborted male gametophytes. We further show that the tapetal transcriptional network regulates RBOH expression, indicating that the temporal pattern of ROS production intimately connects to other signaling pathways regulated by the tapetal transcriptional network to ensure the proper timing of tapetal PCD.

  6. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2011-09-01

    Full Text Available Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17, which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. Results The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. Conclusions Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for

  7. "It's worth our time": a model of culturally and linguistically supportive professional development for K-12 STEM educators

    Science.gov (United States)

    Charity Hudley, Anne H.; Mallinson, Christine

    2016-08-01

    Professional development on issues of language and culture is often separate from professional development on issues related to STEM education, resulting in linguistic and cultural gaps in K-12 STEM pedagogy and practice. To address this issue, we have designed a model of professional development in which we work with educators to build cultural and linguistic competence and to disseminate information about how educators view the relevance of language, communication, and culture to STEM teaching and learning. We describe the design and facilitation of our model of culturally and linguistically responsive professional development, grounded in theories of multicultural education and culturally supportive teaching, through professional development workshops to 60 K-12 STEM educators from schools in Maryland and Virginia that serve African American students. Participants noted that culturally and linguistically responsive approaches had yet to permeate their K-12 STEM settings, which they identified as a critical challenge to effectively teaching and engaging African-American students. Based on pre-surveys, workshops were tailored to participants' stated needs for information on literacy (e.g., disciplinary literacies and discipline-specific jargon), cultural conflict and mismatch (e.g., student-teacher miscommunication), and linguistic bias in student assessment (e.g., test design). Educators shared feedback via post-workshop surveys, and a subset of 28 participants completed in-depth interviews and a focus group. Results indicate the need for further implementation of professional development such as ours that address linguistic and cultural issues, tailored for K-12 STEM educators. Although participants in this study enumerated several challenges to meeting this need, they also identified opportunities for collaborative solutions that draw upon teacher expertise and are integrated with curricula across content areas.

  8. Development of novel monoclonal antibodies that define differentiation stages of human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kortesidis, Angela; Zannettino, Andrew C W;

    2011-01-01

    Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing...... differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation. In relation to this, we found that STRO-1(+/-)/Collagen VI(-) sorted hMSC contained...... fewer differentiated alkaline phosphatase(+) cells compared to STRO-1(+/-)/Collagen VI(+) hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated a panel of high quality antibodies to be used for characterization of MSCs, and in...

  9. Identification of Multipotent Progenitors that Emerge Prior to Hematopoietic Stem Cells in Embryonic Development

    Directory of Open Access Journals (Sweden)

    Matthew A. Inlay

    2014-04-01

    Full Text Available Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability gradually arise. Whereas self-renewal and engraftability have previously been examined in the embryo, multipotency has not been thoroughly addressed, especially at the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryogenesis, we developed a single-cell multipotency assay. We find that, during the initiation of definitive hematopoiesis in the embryo, a defined population of multipotent, engraftable progenitors emerges that is much more abundant within the yolk sac (YS than the aorta-gonad-mesonephros (AGM or fetal liver. These experiments indicate that multipotent cells appear in concert within both the YS and AGM and strongly implicate YS-derived progenitors as contributors to definitive hematopoiesis.

  10. In vivo imaging of hematopoietic stem cell development in the zebrafish

    Institute of Scientific and Technical Information of China (English)

    Panpan Zhang; Feng Liu

    2011-01-01

    In vivo imaging is crucial for developmental biology and can further help to follow cell development/differentiation in normal and pathological conditions.Recent advances in optical imaging techniques has facilitated tracing of the developmental dynamics of a specific organ,tissue,or even a single cell.The zebrafish is an excellent model for imaging of hematopoiesis due to its transparent embryo at early stage; moreover,different zebrafish hematopoietic stem cells (HSCs) transgenic lines have been demonstrated as very useful tools for illustrating the details of the HSC developmental process.In this review,we summarize recent studies related to the non-invasive in vivo imaging of HSC transgenics,to show that zebrafish transgenic lines are powerful tools for developmental biology and disease.At the end of the review,the perspective and some open questions in this field will be discussed.

  11. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.

    Science.gov (United States)

    Zhong, Linlin; Zhou, Wen; Wang, Haijun; Ding, Shunhua; Lu, Qingtao; Wen, Xiaogang; Peng, Lianwei; Zhang, Lixin; Lu, Congming

    2013-08-01

    Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)-dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.

  12. Post-Translational Regulation of AtFER2 Ferritin in Response to Intracellular Iron Trafficking during Fruit Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Karl Ravet; Brigitte Touraine; Sun A. Kim; Francoise Cellier; Sébastien Thomine; Mary Lou Guerinot; Jean-Francois Briat; Frédéric Gaymard

    2009-01-01

    Ferritins are major players in plant iron homeostasis. Surprisingly, their overexpression in transgenic plants led only to a moderate increase in seed iron content, suggesting the existence of control checkpoints for iron loading and storage in seeds. This work reports the identification of two of these checkpoints. First, measurement of seed metal con-tent during fruit development in Arabidopsis thaliana reveals a similar dynamic of loading for Fe, Mn, Cu, and Zn. The step controlling metal loading into the seed occurs by the regulation of transport from the hull to the seed. Second, metal loading and ferritin abundance were monitored in different genetic backgrounds affected in vacuolar iron transport (AtVIT1, AtNRAMP3, AtNRAMP4) or plastid iron storage (AtFER1 to 4). This approach revealed (1) a post-translational reg-ulation of ferritin accumulation in seeds, and (2) that ferritin stability depends on the balance of iron allocation between vacuoles and plastids. Thus, the success of ferritin overexpression strategies for iron biofortification, a promising approach to reduce iron-deficiency anemia in developing countries, would strongly benefit from the identification and engineering of mechanisms enabling the translocation of high amounts of iron into seed plastids.

  13. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.

    Science.gov (United States)

    Yoon, Eun Kyung; Dhar, Souvik; Lee, Mi-Hyun; Song, Jae Hyo; Lee, Shin Ae; Kim, Gyuree; Jang, Sejeong; Choi, Ji Won; Choe, Jeong-Eun; Kim, Jeong Hoe; Lee, Myeong Min; Lim, Jun

    2016-08-01

    Development of the functional endodermis of Arabidopsis thaliana roots is controlled, in part, by GRAS transcription factors, namely SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE 23 (SCL23). Recently, it has been shown that the SHR-SCR-SCL23 regulatory module is also essential for specification of the endodermis (known as the bundle sheath) in leaves. Nevertheless, compared with what is known about the role of the SHR-SCR-SCL23 regulatory network in roots, the molecular interactions of SHR, SCR, and SCL23 are much less understood in shoots. Here, we show that SHR forms protein complexes with SCL23 to regulate transcription of SCL23 in shoots, similar to the regulation mode of SCR expression. Our results indicate that SHR acts as master regulator to directly activate the expression of SCR and SCL23. In the SHR-SCR-SCL23 network, we found a previously uncharacterized negative feedback loop whereby SCL23 modulates SHR levels. Through molecular, genetic, physiological, and morphological analyses, we also reveal that the SHR-SCR-SCL23 module plays a key role in the formation of the endodermis (known as the starch sheath) in hypocotyls. Taken together, our results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots. PMID:27353361

  14. Transcriptome Analysis of Arabidopsis Wild-Type and g13-sst sim Trichomes Identifies Four Additional Genes Required for Trichome Development

    Institute of Scientific and Technical Information of China (English)

    M.David Marks; Jonathan R Wenger; Edward Gilding; Ross Jilk; Richard A.Dixon

    2009-01-01

    Transcriptome analyses have been performed on mature trichomes isolated from wild-type Arabidopsis leaves and on leaf trichomes isolated from the g13-sst sire double mutant,which exhibit many attributes of immature trichomes.The mature trichome profile contained many highly expressed genes involved in cell wall synthesis,protein turnover,and abiotic stress response.The most highly expressed genes in the g13-sst sim profile encoded ribosomal proteins and other proteins involved in translation.Comparative analyses showed that all but one of the genes encoding transcription factors previously found to be important for trichome formation,and many other trichome-important genes,were preferentially expressed in g13-sstsim trichomes.The analysis of genes preferentially expressed in g13-sstsim led to the identification of four additional genes required for normal trichome development.One of these was the HDG2 gene,which is a member of the HD-ZIP IV transcription factor gene family.Mutations in this gene did not alter trichome expansion,but did alter mature trichome cell walls.Mutations in BLT resulted in a loss of trichome branch formation.The relationship between bit and the phenotypically identical mutant,sti,was explored.Mutations in PEL3,which was previously shown to be required for development of the leaf cuticle,resulted in the occasional tangling of expanding trichomes.Mutations in another gene encoding a protein with an unknown function altered trichome branch formation.

  15. Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development.

    Science.gov (United States)

    Lin, Lin; Zhong, Si-Hui; Cui, Xiao-Feng; Li, Jianming; He, Zu-Hua

    2012-12-01

    The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor-like kinase gene whose functions in leaf development have not been demonstrated. The sub-2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB-mediated developmental stage-specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.

  16. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.

    Science.gov (United States)

    Yoon, Eun Kyung; Dhar, Souvik; Lee, Mi-Hyun; Song, Jae Hyo; Lee, Shin Ae; Kim, Gyuree; Jang, Sejeong; Choi, Ji Won; Choe, Jeong-Eun; Kim, Jeong Hoe; Lee, Myeong Min; Lim, Jun

    2016-08-01

    Development of the functional endodermis of Arabidopsis thaliana roots is controlled, in part, by GRAS transcription factors, namely SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE 23 (SCL23). Recently, it has been shown that the SHR-SCR-SCL23 regulatory module is also essential for specification of the endodermis (known as the bundle sheath) in leaves. Nevertheless, compared with what is known about the role of the SHR-SCR-SCL23 regulatory network in roots, the molecular interactions of SHR, SCR, and SCL23 are much less understood in shoots. Here, we show that SHR forms protein complexes with SCL23 to regulate transcription of SCL23 in shoots, similar to the regulation mode of SCR expression. Our results indicate that SHR acts as master regulator to directly activate the expression of SCR and SCL23. In the SHR-SCR-SCL23 network, we found a previously uncharacterized negative feedback loop whereby SCL23 modulates SHR levels. Through molecular, genetic, physiological, and morphological analyses, we also reveal that the SHR-SCR-SCL23 module plays a key role in the formation of the endodermis (known as the starch sheath) in hypocotyls. Taken together, our results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.

  17. Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression.

    Science.gov (United States)

    Anderson, Heidi; Patch, Taylor C; Reddy, Pavankumar N G; Hagedorn, Elliott J; Kim, Peter G; Soltis, Kathleen A; Chen, Michael J; Tamplin, Owen J; Frye, Maike; MacLean, Glenn A; Hübner, Kathleen; Bauer, Daniel E; Kanki, John P; Vogin, Guillaume; Huston, Nicholas C; Nguyen, Minh; Fujiwara, Yuko; Paw, Barry H; Vestweber, Dietmar; Zon, Leonard I; Orkin, Stuart H; Daley, George Q; Shah, Dhvanit I

    2015-12-24

    Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs. PMID:26385351

  18. Puerarin Facilitates T-Tubule Development of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-07-01

    Full Text Available Aims: The embryonic stem cell-derived cardiomyocytes (ES-CM is one of the promising cell sources for repopulation of damaged myocardium. However, ES-CMs present immature structure, which impairs their integration with host tissue and functional regeneration. This study used murine ES-CMs as an in vitro model of cardiomyogenesis to elucidate the effect of puerarin, the main compound found in the traditional Chinese medicine the herb Radix puerariae, on t-tubule development of murine ES-CMs. Methods: Electron microscope was employed to examine the ultrastructure. The investigation of transverse-tubules (t-tubules was performed by Di-8-ANEPPS staining. Quantitative real-time PCR was utilized to study the transcript level of genes related to t-tubule development. Results: We found that long-term application of puerarin throughout cardiac differentiation improved myofibril array and sarcomeres formation, and significantly facilitated t-tubules development of ES-CMs. The transcript levels of caveolin-3, amphiphysin-2 and junctophinlin-2, which are crucial for the formation and development of t-tubules, were significantly upregulated by puerarin treatment. Furthermore, puerarin repressed the expression of miR-22, which targets to caveolin-3. Conclusion: Our data showed that puerarin facilitates t-tubule development of murine ES-CMs. This might be related to the repression of miR-22 by puerarin and upregulation of Cav3, Bin1 and JP2 transcripts.

  19. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  20. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  1. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    OpenAIRE

    Mattu Chetana Shivaraj; Guillaume Marcy; Guoliang Low; Jae Ryun Ryu; Xianfeng Zhao; Rosales, Francisco J.; Goh, Eyleen L.K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippoc...

  2. Potential gene interactions in the cell cycles of gametes, zygotes and embryonic stem cells and the development of cancer

    Directory of Open Access Journals (Sweden)

    Gregor ePrindull

    2015-09-01

    Full Text Available Objectives: This review is to explore whether potential gene interactions in the cell cycles of gametes, zygotes, and embryonic stem cells are associated with the development of cancer.Methods: MEDPILOT at the Central Library of the University of Cologne, Germany (Zentralbibliothek Köln that covers 5,800 international medical journals and 4,300 E-journals was used to collect data. The initial searches were done in December 2012 and additional searches in October 2013 to May 2015. The search terms included cancer development, gene interaction, and embryonic stem cells and the time period was between 1998 and 2015. A total of 148 articles in English language only were included in this review.Results: Transgenerational gene translation is implemented in the zygote through interactions of epigenetic isoforms of transcription factors from parental gametes, predominantly during the first two zygote cleavages. Pluripotent transcription factors may provide interacting links with mutated genes during zygote-to-embryonic stem cell switches. Translation of post-transcriptional carcinogenic genes is implemented by abnormally spliced, tumor-specific isoforms of gene-encoded mRNA/non-coding RNA variants of transcription factors employing de novo gene synthesis and neofunctionalization. Post-translationally, mutated genes are preserved in pre-neoplastic embryonic stem cell subpopulations that can give rise to overt cancer stem cells. Thus, transcription factors

  3. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  4. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  5. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shibai Li

    2016-01-01

    Full Text Available The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1 and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

  6. Mentor preparation: A qualitative study of STEM master teacher professional development

    Science.gov (United States)

    Click-Cuellar, Heather Lynn

    The No Child Left Behind Act of 2001 has required districts to staff all classrooms with highly qualified teachers. Yet, retaining certified teachers in the profession has been a national concern, especially among new teachers who leave at alarming rates within their first three years. This comes at a heavy cost to districts financially and in trying to maintain highly qualified status, but also to the continuity and effective education of students. Mentoring has been identified by many researchers as a plausible solution to reducing attrition rates for beginning teachers. In this dissertation, I conducted qualitative research to explore and understand the perceptions of STEM (science, technology, engineering, and mathematics) Master Teachers' mentoring professional development in the context of the Master Teacher Academies program situated at Desert State University (pseudonym), a large institution located on the Texas-Mexico border. Additionally, I examined the reported teaching self-efficacy of STEM Master Teachers (mentors), as well as that of their novice teachers (mentees). Another purpose of the study was to investigate the forms and elements of interactions between these mentors and their mentees. Participants of this study were Texas certified Master Mathematics or Master Science Teachers, and their novice mathematics or science teacher mentees; all of whom teach in a high need U.S. Mexico border city school district serving a student population that is over 93% Hispanic. A grounded theory approach was used in examining and analyzing mentor and mentee perceptions and experiences through case studies. A constructivist framework was utilized to derive findings from interviews and the review of documents and contribute a diverse context and population to the literature. The study reveals conclusions and recommendations that will benefit educators, universities, school districts, and policy makers in regard to teacher mentor preparation.

  7. Loss of the Arabidopsis thaliana P₄-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development.

    Directory of Open Access Journals (Sweden)

    Stephen C McDowell

    Full Text Available Members of the P4 subfamily of P-type ATPases are thought to help create asymmetry in lipid bilayers by flipping specific lipids between the leaflets of a membrane. This asymmetry is believed to be central to the formation of vesicles in the secretory and endocytic pathways. In Arabidopsis thaliana, a P4-ATPase associated with the trans-Golgi network (ALA3 was previously reported to be important for vegetative growth and reproductive success. Here we show that multiple phenotypes for ala3 knockouts are sensitive to growth conditions. For example, ala3 rosette size was observed to be dependent upon both temperature and soil, and varied between 40% and 80% that of wild-type under different conditions. We also demonstrate that ala3 mutants have reduced fecundity resulting from a combination of decreased ovule production and pollen tube growth defects. In-vitro pollen tube growth assays showed that ala3 pollen germinated ∼2 h slower than wild-type and had approximately 2-fold reductions in both maximal growth rate and overall length. In genetic crosses under conditions of hot days and cold nights, pollen fitness was reduced by at least 90-fold; from ∼18% transmission efficiency (unstressed to less than 0.2% (stressed. Together, these results support a model in which ALA3 functions to modify endomembranes in multiple cell types, enabling structural changes, or signaling functions that are critical in plants for normal development and adaptation to varied growth environments.

  8. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth.

    Science.gov (United States)

    Klimaszewska, Krystyna; Pelletier, Gervais; Overton, Catherine; Stewart, Don; Rutledge, Robert G

    2010-07-01

    Adult conifers are still recalcitrant in clonal propagation despite significant advances in forest tree biotechnology. Plant regeneration through somatic embryogenesis from explants older than mature zygotic embryos is either difficult or impossible to achieve. To investigate if ectopic expression of transcription factors involved in the induction of the embryogenic process would induce somatic embryogenesis in Picea glauca (white spruce) somatic plants, we used the LEAFY-COTYLEDON1 homolog cloned from Picea mariana, CHAP3A, and Arabidopsis thaliana WUS to transform embryonal mass of P. glauca. Ectopic gene expression was induced by 17-beta-estradiol during stages of somatic embryogenesis (early embryogenesis and late embryogenesis) and somatic seedling growth in the transgenics. Of the two transcription factors, only WUS produced severe phenotypes by disrupting the development of somatic embryos on the maturation medium and inhibiting germination. However, none of the transgenes induced ectopic somatic embryogenesis even in the presence of plant growth regulators. Absolute quantitative PCR confirmed the expression of both CHAP3A and WUS in transgenic embryonal mass and in all parts of somatic seedlings. A high expression of the transgenes did not influence expression profiles of any of the ten other transcription factors tested, some of which have been known to be involved in the process of embryogenesis. Implications of these results for further work are discussed. PMID:20424847

  9. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.

    Science.gov (United States)

    Wu, Zhe; Zhu, Danling; Lin, Xiaoya; Miao, Jin; Gu, Lianfeng; Deng, Xian; Yang, Qian; Sun, Kangtai; Zhu, Danmeng; Cao, Xiaofeng; Tsuge, Tomohiko; Dean, Caroline; Aoyama, Takashi; Gu, Hongya; Qu, Li-Jia

    2016-01-01

    Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.

  10. Arabidopsis CDS blastp result: AK100613 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100613 J023107M18 At4g10180.1 light-mediated development protein 1 / deetiolated1... (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  11. Arabidopsis CDS blastp result: AK058683 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058683 001-019-A06 At4g10180.1 light-mediated development protein 1 / deetiolated...1 (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  12. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  13. Facilitating Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields in Program Development

    Science.gov (United States)

    Ejiwale, James A.

    2014-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  14. Genetic analysis of the Arabidopsis protein kinases MAP3Kε1 and MAP3Kε2 indicates roles in cell expansion and embryo development.

    Science.gov (United States)

    Chaiwongsar, Suraphon; Strohm, Allison K; Su, Shih-Heng; Krysan, Patrick J

    2012-01-01

    MAP3Kε1 and MAP3Kε2 are a pair of Arabidopsis thaliana genes that encode protein kinases related to cdc7p from Saccharomyces cerevisiae. We have previously shown that the map3kε1;map3kε2 double-mutant combination causes pollen lethality. In this study, we have used an ethanol-inducible promoter construct to rescue this lethal phenotype and create map3kε1(-/-);map3kε2(-/-) double-mutant plants in order to examine the function of these genes in the sporophyte. These rescued double-mutant plants carry a yellow fluorescent protein (YFP)-MAP3Kε1 transgene under the control of the alcohol-inducible AlcA promoter from Aspergillus nidulans. The double-mutant plants were significantly smaller and had shorter roots than wild-type when grown in the absence of ethanol treatment. Microscopic analysis indicated that cell elongation was reduced in the roots of the double-mutant plants and cell expansion was reduced in rosette leaves. Treatment with ethanol to induce expression of YFP-MAP3Kε1 largely rescued the leaf phenotypes. The double-mutant combination also caused embryos to arrest in the early stages of development. Through the use of YFP reporter constructs we determined that MAP3Kε1 and MAP3Kε2 are expressed during embryo development, and also in root tissue. Our results indicate that MAP3Kε1 and MAP3Kε2 have roles outside of pollen development and that these genes affect several aspects of sporophyte development.

  15. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078.

    Science.gov (United States)

    Tang, Yong; Zhao, Chun-Yan; Tan, Shu-Tang; Xue, Hong-Wei

    2016-08-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5-1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5-1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5-1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5-1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  16. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  17. HIGH INFORMATION CONTENT TOXICITY SCREENING USING MOUSE AND HUMAN STEM CELL MODELS OF ENDOCRINE DEVELOPMENT AND FUNCTION

    Science.gov (United States)

    The project will result in the rapid assessment of chemicals for adverse effects on the development of gametes, adipocytes, and islet B-cells; and on the adipocyte and B-cell endocrine signaling function in human and murine embryonic stem cells. Based on the data, hierarchical...

  18. Co-opting functions of cholinesterases in neural, limb and stem cell development.

    Science.gov (United States)

    Vogel-Hopker, Astrid; Sperling, Laura E; Layer, Paul G

    2012-02-01

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. As revealed by sensitive histochemical procedures, AChE is expressed specifically in many tissues during development and in many mature organisms, as well as in healthy and diseased states. Therefore it is not surprising that there has been a long-standing search for additional, "non-classical" functions of cholinesterases (ChEs). In principle, AChE could either act nonenzymatically, e.g. exerting cell adhesive roles, or, alternatively, it could work within the frame of classic cholinergic systems, but in non-neural tissues. AChE might be considered a highly co-opting protein, since possibly it combines such various functions within one molecule. By presenting four different developmental cases, we here review i) the expression of ChEs in the neural tube and their close relation to cell proliferation and differentiation, ii) that AChE expression reflects a polycentric brain development, iii) the retina as a model for AChE functioning in neural network formation, and iv) nonneural ChEs in limb development and mature bones. Also, possible roles of AChE in neuritic growth and of cholinergic regulations in stem cells are briefly outlined. PMID:21933123

  19. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  20. Development of a distance education program by a Land-Grant University augments the 2-year to 4-year STEM pipeline and increases diversity in STEM.

    Science.gov (United States)

    Drew, Jennifer C; Oli, Monika W; Rice, Kelly C; Ardissone, Alexandria N; Galindo-Gonzalez, Sebastian; Sacasa, Pablo R; Belmont, Heather J; Wysocki, Allen F; Rieger, Mark; Triplett, Eric W

    2015-01-01

    Although initial interest in science, technology, engineering and mathematics (STEM) is high, recruitment and retention remains a challenge, and some populations are disproportionately underrepresented in STEM fields. To address these challenges, the Microbiology and Cell Science Department in the College of Agricultural and Life Sciences at the University of Florida has developed an innovative 2+2 degree program. Typical 2+2 programs begin with a student earning an associate's degree at a local community college and then transferring to a 4-year institution to complete a bachelor's degree. However, many universities in the United States, particularly land-grant universities, are located in rural regions that are distantly located from their respective states' highly populated urban centers. This geographical and cultural distance could be an impediment to recruiting otherwise highly qualified and diverse students. Here, a new model of a 2+2 program is described that uses distance education as the vehicle to bring a research-intensive university's life sciences curriculum to students rather than the oft-tried model of a university attempting to recruit underrepresented minority students to its location. In this paradigm, community college graduates transfer into the Microbiology and Cell Science program as distance education students to complete their Bachelor of Science degree. The distance education students' experiences are similar to the on-campus students' experiences in that both groups of students take the same department courses taught by the same instructors, take required laboratory courses in a face-to-face format, take only proctored exams, and have the same availability to instructors. Data suggests that a hybrid online transfer program may be a viable approach to increasing STEM participation (as defined by enrollment) and diversity. This approach is particularly compelling as the distance education cohort has comparable grade point averages and

  1. Development of a distance education program by a Land-Grant University augments the 2-year to 4-year STEM pipeline and increases diversity in STEM.

    Directory of Open Access Journals (Sweden)

    Jennifer C Drew

    Full Text Available Although initial interest in science, technology, engineering and mathematics (STEM is high, recruitment and retention remains a challenge, and some populations are disproportionately underrepresented in STEM fields. To address these challenges, the Microbiology and Cell Science Department in the College of Agricultural and Life Sciences at the University of Florida has developed an innovative 2+2 degree program. Typical 2+2 programs begin with a student earning an associate's degree at a local community college and then transferring to a 4-year institution to complete a bachelor's degree. However, many universities in the United States, particularly land-grant universities, are located in rural regions that are distantly located from their respective states' highly populated urban centers. This geographical and cultural distance could be an impediment to recruiting otherwise highly qualified and diverse students. Here, a new model of a 2+2 program is described that uses distance education as the vehicle to bring a research-intensive university's life sciences curriculum to students rather than the oft-tried model of a university attempting to recruit underrepresented minority students to its location. In this paradigm, community college graduates transfer into the Microbiology and Cell Science program as distance education students to complete their Bachelor of Science degree. The distance education students' experiences are similar to the on-campus students' experiences in that both groups of students take the same department courses taught by the same instructors, take required laboratory courses in a face-to-face format, take only proctored exams, and have the same availability to instructors. Data suggests that a hybrid online transfer program may be a viable approach to increasing STEM participation (as defined by enrollment and diversity. This approach is particularly compelling as the distance education cohort has comparable grade point

  2. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  3. Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2015-11-01

    Full Text Available Androgen deprivation therapy (ADT has been the standard care for patients with advanced prostate cancer (PC since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR signaling under castration levels of serum testosterone (<50 ng/mL contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.

  4. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  5. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development

    Science.gov (United States)

    Stergiopoulos, Athanasios; Politis, Panagiotis K.

    2016-01-01

    The enormous complexity of mammalian central nervous system (CNS) is generated by highly synchronized actions of diverse factors and signalling molecules in neural stem/progenitor cells (NSCs). However, the molecular mechanisms that integrate extrinsic and intrinsic signals to control proliferation versus differentiation decisions of NSCs are not well-understood. Here we identify nuclear receptor NR5A2 as a central node in these regulatory networks and key player in neural development. Overexpression and loss-of-function experiments in primary NSCs and mouse embryos suggest that NR5A2 synchronizes cell-cycle exit with induction of neurogenesis and inhibition of astrogliogenesis by direct regulatory effects on Ink4/Arf locus, Prox1, a downstream target of proneural genes, as well as Notch1 and JAK/STAT signalling pathways. Upstream of NR5a2, proneural genes, as well as Notch1 and JAK/STAT pathways control NR5a2 endogenous expression. Collectively, these observations render NR5A2 a critical regulator of neural development and target gene for NSC-based treatments of CNS-related diseases. PMID:27447294

  6. Development and evaluation of a specifically designed website for haematopoietic stem cell transplant patients in Leeds.

    Science.gov (United States)

    Horne, B; Newsham, A; Velikova, G; Liebersbach, S; Gilleece, M; Wright, P

    2016-05-01

    The purpose of this project was to develop and evaluate a specifically designed website (ALLograft INformation EXchange - ALLINEX) for adult allogeneic haematopoietic stem cell transplant (allo-HSCT) patients in Leeds. Specifications included information on the transplant journey and supportive care services, discussion forum and patient-clinical team electronic messaging service. The method followed a participatory action research approach in a five-phase project involving stakeholders. Phase 1 involved information gathering; Phase 2 development of content; Phase 3 building of website and usability testing; Phase 4 preliminary evaluation; and Phase 5 clinical implementation. Results concluded that Phase 1 patients were unaware of all services and reported unmet needs; gaps in support services were identified from a service evaluation; Phase 2 content was collected from experts, collated and synthesised; Phase 3 patient and staff feedback was positive and constructive resulting in more than 50 changes; Phase 4 ALLINEX evaluation demonstrated acceptable usability with good layout, content and aesthetics reported; Phase 5, over 15 weeks, ALLINEX had 6630 page hits, 9 new forum topics posted and received 3 clinical messages. The clinical team embraced responsibility for reviewing and monitoring ALLINEX. Financial and indemnity cover was secured for 3 years. ALLINEX, adopted locally, is sustainable and has functionality to roll-out to other UK allo-HSCT centres. PMID:26215187

  7. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana.

    Science.gov (United States)

    Arsova, Borjana; Hoja, Ursula; Wimmelbacher, Matthias; Greiner, Eva; Ustün, Suayib; Melzer, Michael; Petersen, Kerstin; Lein, Wolfgang; Börnke, Frederik

    2010-05-01

    Here, we characterize a plastidial thioredoxin (TRX) isoform from Arabidopsis thaliana that defines a previously unknown branch of plastidial TRXs lying between x- and y-type TRXs and thus was named TRX z. An Arabidopsis knockout mutant of TRX z had a severe albino phenotype and was inhibited in chloroplast development. Quantitative real-time RT-PCR analysis of the mutant suggested that the expressions of genes that depend on a plastid-encoded RNA polymerase (PEP) were specifically decreased. Similar results were obtained upon virus-induced gene silencing (VIGS) of the TRX z ortholog in Nicotiana benthamiana. We found that two fructokinase-like proteins (FLN1 and FLN2), members of the pfkB-carbohydrate kinase family, were potential TRX z target proteins and identified conserved Cys residues mediating the FLN-TRX z interaction. VIGS in N. benthamiana and inducible RNA interference in Arabidopsis of FLNs also led to a repression of PEP-dependent gene transcription. Remarkably, recombinant FLNs displayed no detectable sugar-phosphorylating activity, and amino acid substitutions within the predicted active site imply that the FLNs have acquired a new function, which might be regulatory rather than metabolic. We were able to show that the FLN2 redox state changes in vivo during light/dark transitions and that this change is mediated by TRX z. Taken together, our data strongly suggest an important role for TRX z and both FLNs in the regulation of PEP-dependent transcription in chloroplasts. PMID:20511297

  8. Early Events in Xenograft Development from the Human Embryonic Stem Cell Line HS181 - Resemblance with an Initial Multiple Epiblast Formation

    OpenAIRE

    Karin Gertow; Jessica Cedervall; Seema Jamil; Rouknuddin Ali; Imreh, Marta P.; Miklos Gulyas; Bengt Sandstedt; Lars Ahrlund-Richter

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structure...

  9. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    Science.gov (United States)

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and

  10. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    International Nuclear Information System (INIS)

    Highlights: ► We induced renal lineages from mESCs by following the in vivo developmental cues. ► We induced nephrogenic intermediate mesoderm by stepwise addition of factors. ► We induced two types of renal progenitor cells by reciprocal conditioned media. ► We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0–2, A plus BMP-4 (4) during days 2–4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4–6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6–8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was effective in inducing MM and UB markers, respectively. We also observed the emergence and

  11. Organoids: Modeling Development and the Stem Cell Niche in a Dish.

    Science.gov (United States)

    Kretzschmar, Kai; Clevers, Hans

    2016-09-26

    Organoids are three-dimensional in-vitro-grown cell clusters with near-native microanatomy that arise from self-organizing mammalian pluripotent or adult stem cells. Although monolayer stem cell cultures were established more than 40 years ago, organoid technology has recently emerged as an essential tool for both fundamental and biomedical research. For developmental biologists, organoids provide powerful means for ex vivo modeling of tissue morphogenesis and organogenesis. Here we discuss how organoid cultures of the intestine and other tissues have been established and how they are utilized as an in vitro model system for stem cell research and developmental biology. PMID:27676432

  12. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana.

    Science.gov (United States)

    Di Giorgio, Juliana Andrea Pérez; Bienert, Gerd Patrick; Ayub, Nicolás Daniel; Yaneff, Agustín; Barberini, María Laura; Mecchia, Martín Alejandro; Amodeo, Gabriela; Soto, Gabriela Cynthia; Muschietti, Jorge Prometeo

    2016-05-01

    In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2 Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination.

  13. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana.

    Science.gov (United States)

    Di Giorgio, Juliana Andrea Pérez; Bienert, Gerd Patrick; Ayub, Nicolás Daniel; Yaneff, Agustín; Barberini, María Laura; Mecchia, Martín Alejandro; Amodeo, Gabriela; Soto, Gabriela Cynthia; Muschietti, Jorge Prometeo

    2016-05-01

    In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2 Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination. PMID:27095837

  14. Arabidopsis Transcription Factor Genes NF-YA1,5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development

    Institute of Scientific and Technical Information of China (English)

    Jinye Mu; Helin Tan; Sulei Hong; Yan Liang; Jianru Zuo

    2013-01-01

    Nuclear factor Y (NF-Y) is a highly conserved transcription factor presented in all eukaryotic organisms,and is a heterotrimer consisting of three subunits:NF-YA,NF-YB,and NF-YC.In Arabidopsis,these three subunits are encoded by multigene families.The best-studied member of the NF-Y transcription factors is LEAFY COTYLEDON1 (LEC1),a NF-YB family member,which plays a critical role in embryogenesis and seed maturation.However,the function of most NF-Y genes remains elusive.Here,we report the characterization of four genes in the NF-YA family.We found that a gainof-function mutant of NF-YA1 showed defects in male gametogenesis and embryogenesis.Consistently,overexpression of NF-YA1,5,6,and 9 affects male gametogenesis,embryogenesis,seed morphology,and seed germination,with a stronger phenotype when overexpressing NF-YA1 and NF-YA9.Moreover,overexpression of these NF-YA genes also causes hypersensitivity to abscisic acid (ABA) during seed germination,retarded seedling growth,and late flowering at different degrees.Intriguingly,overexpmssion of NF-YA1,5,6,and 9 is sufficient to induce the formation of somatic embryos from the vegetative tissues.However,single or double mutants of these NF-YA genes do not have detectable phenotype.Collectively,these results provide evidence that NF-YA1,5,6,and 9 play redundant roles in male gametophyte development,embryogenesis,seed development,and post-germinative growth.

  15. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes.

    Science.gov (United States)

    De Assuncao, Thiago M; Sun, Yan; Jalan-Sakrikar, Nidhi; Drinane, Mary C; Huang, Bing Q; Li, Ying; Davila, Jaime I; Wang, Ruisi; O'Hara, Steven P; Lomberk, Gwen A; Urrutia, Raul A; Ikeda, Yasuhiro; Huebert, Robert C

    2015-06-01

    Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore, the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs, using precise temporal exposure to key biliary morphogens, and we characterized the cells, using a variety of morphologic, molecular, cell biologic, functional, and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC, definitive endoderm, hepatic specification, hepatic progenitors, and ultimately cholangiocytes. Immunostaining, western blotting, and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP, form intact primary cilia, and self-assemble into duct-like structures in three-dimensional culture. In vivo, the cells engraft within mouse liver, following retrograde intrabiliary infusion. In summary, we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation, iDCs represent a platform for in vitro disease modeling, pharmacologic testing, and individualized, cell-based, regenerative therapies for the cholangiopathies. PMID:25867762

  16. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang

    2007-01-01

    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  17. Partial functional conservation of IRX10 homologs in physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants

    Directory of Open Access Journals (Sweden)

    Hörnblad Emma

    2013-01-01

    Full Text Available Abstract Background Plant cell walls are complex multicomponent structures that have evolved to fulfil an essential function in providing strength and protection to cells. Hemicelluloses constitute a key component of the cell wall and recently a number of the genes thought to encode the enzymes required for its synthesis have been identified in Arabidopsis. The acquisition of hemicellulose synthesis capability is hypothesised to have been an important step in the evolution of higher plants. Results Analysis of the Physcomitrella patens genome has revealed the presence of homologs for all of the Arabidopsis glycosyltransferases including IRX9, IRX10 and IRX14 required for the synthesis of the glucuronoxylan backbone. The Physcomitrella IRX10 homolog is expressed in a variety of moss tissues which were newly formed or undergoing expansion. There is a high degree of sequence conservation between the Physcomitrella IRX10 and Arabidopsis IRX10 and IRX10-L. Despite this sequence similarity, the Physcomitrella IRX10 gene is only able to partially rescue the Arabidopsis irx10 irx10-L double mutant indicating that there has been a neo- or sub-functionalisation during the evolution of higher plants. Analysis of the monosaccharide composition of stems from the partially rescued Arabidopsis plants does not show any significant change in xylose content compared to the irx10 irx10-L double mutant. Likewise, knockout mutants of the Physcomitrella IRX10 gene do not result in any visible phenotype and there is no significant change in monosaccharide composition of the cell walls. Conclusions The fact that the Physcomitrella IRX10 (PpGT47A protein can partially complement an Arabidopsis irx10 irx10-L double mutant suggests that it shares some function with the Arabidopsis proteins, but the lack of a phenotype in knockout lines shows that the function is not required for growth or development under normal conditions in Physcomitrella. In contrast, the Arabidopsis

  18. What are Stem Cells?

    OpenAIRE

    Ahmadshah Farhat; Ashraf Mohammadzadeh; M. Rezaie

    2014-01-01

      Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem ...

  19. Development of Hematopoietic and Endothelial Cells from Human Embryonic Stem Cells: Lessons from the Studies using Mouse as a Model

    OpenAIRE

    Anna Jezierski; Albert Swedani; Lisheng Wang

    2007-01-01

    The current progress using the human embryonic stem cell (hESC) model system has provided much insight into the early origins of the hematopoietic and endothelial lineages, particularly the elusive hemangioblast. Recently, the cellular hierarchy and molecular regulation controlling hematopoietic commitment have been further elucidated. These findings not only provide new insights into early human development, but also advance the knowledge required to develop techniques capable of generating ...

  20. Evaluation of Proliferation and Development of Mesenchymal Stem Cell on Nanoporous PLLA Membrane Scaffold

    Directory of Open Access Journals (Sweden)

    MH Porghara

    2015-08-01

    Conclusion: Due to the biodegradable and non-toxic properties of nano PLLA membrane, it could increase the adhesion and proliferation of mesenchymal stem cells and these effects will exacerbated over time.

  1. Trace concentrations of imazethapyr (IM) affect floral organs development and reproduction in Arabidopsis thaliana: IM-induced inhibition of key genes regulating anther and pollen biosynthesis.

    Science.gov (United States)

    Qian, Haifeng; Li, Yali; Sun, Chongchong; Lavoie, Michel; Xie, Jun; Bai, Xiaocui; Fu, Zhengwei

    2015-01-01

    Understanding how herbicides affect plant reproduction and growth is critical to develop herbicide toxicity model and refine herbicide risk assessment. Although our knowledge of herbicides toxicity mechanisms at the physiological and molecular level in plant vegetative phase has increased substantially in the last decades, few studies have addressed the herbicide toxicity problematic on plant reproduction. Here, we determined the long-term (4-8 weeks) effect of a chiral herbicide, imazethapyr (IM), which has been increasingly used in plant crops, on floral organ development and reproduction in the model plant Arabidopsis thaliana. More specifically, we followed the effect of two IM enantiomers (R- and S-IM) on floral organ structure, seed production, pollen viability and the transcription of key genes involved in anther and pollen development. The results showed that IM strongly inhibited the transcripts of genes regulating A. thaliana tapetum development (DYT1: DYSFUNCTIONAL TAPETUM 1), tapetal differentiation and function (TDF1: TAPETAL DEVELOPMENT AND FUNCTION1), and pollen wall formation and developments (AMS: ABORTED MICROSPORES, MYB103: MYB DOMAIN PROTEIN 103, MS1: MALE STERILITY 1, MS2: MALE STERILITY 2). Since DYT1 positively regulates 33 genes involved in cell-wall modification (such as, TDF1, AMS, MYB103, MS1, MS2) that can catalyze the breakdown of polysaccharides to facilitate anther dehiscence, the consistent decrease in the transcription of these genes after IM exposure should hamper anther opening as observed under scanning electron microscopy. The toxicity of IM on anther opening further lead to a decrease in pollen production and pollen viability. Furthermore, long-term IM exposure increased the number of apurinic/apyrimidinic sites (AP sites) in the DNA of A. thaliana and also altered the DNA of A. thaliana offspring grown in IM-free soils. Toxicity of IM on floral organs development and reproduction was generally higher in the presence of the R

  2. Development of functional human embryonic stem cell-derived neurons in mouse brain

    OpenAIRE

    Muotri, Alysson R.; Nakashima, Kinichi; Toni, Nicolas; Sandler, Vladislav M.; Gage, Fred H

    2005-01-01

    Human embryonic stem cells are pluripotent entities, theoretically capable of generating a whole-body spectrum of distinct cell types. However, differentiation of these cells has been observed only in culture or during teratoma formation. Our results show that human embryonic stem cells implanted in the brain ventricles of embryonic mice can differentiate into functional neural lineages and generate mature, active human neurons that successfully integrate into the adult mouse forebrain. Moreo...

  3. The Glandular Stem/Progenitor Cell Niche in Airway Development and Repair

    OpenAIRE

    Liu, Xiaoming; Engelhardt, John F.

    2008-01-01

    Airway submucosal glands (SMGs) are major secretory structures that lie beneath the epithelium of the cartilaginous airway. These glands are believed to play important roles in normal lung function and airway innate immunity by secreting antibacterial factors, mucus, and fluid into the airway lumen. Recent studies have suggested that SMGs may additionally serve as a protective niche for adult epithelial stem/progenitor cells of the proximal airways. As in the case of other adult stem cell nic...

  4. Stem cells: a model for screening, discovery and development of drugs

    OpenAIRE

    Kitambi SS; Chandrasekar G

    2011-01-01

    Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficac...

  5. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration

    OpenAIRE

    Maruyama, Takamitsu; Jeong, Jaeim; Sheu, Tzong-jen; Hsu, Wei

    2016-01-01

    The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressin...

  6. Development of an Interdisciplinary STEM Classroom Activity for Radio Receiver Technology

    Science.gov (United States)

    Davis, Kristina

    2015-01-01

    Introduction The development of a mini STEM-based classroom activity designed to integrate these two fields into one project for middle school aged students is presented here. This lesson involves small groups of students constructing a small AM radio receivers. The lesson surrounding the activity focuses on both the physical nature of electromagnetic and AC waves, circuit design, practical applications to AM radio broadcasting, and research applications of radio telescopes. These tools have shown a significant increase in the lesson's primary concept understanding among 6th grade students, as well as net positive STEM awareness and enthusiasm.Content The primary teaching point for the students to consider and learn during this lesson is 'How does scientific application influence engineering design, and vice versa?' The lesson surrounds the hands-on activity of having students construct their own AM radio receiver. Wave theory and the use of radio instruments for astronomy research are also taught in a traditional lecture format. The activity is designed to complement middle school curriculum, although it has been tested and found suitable for high school and older students as well as the general public.Evaluation and ImpactThe evaluation tool that used for the student groups in this project was a Fryer chart, which is a four panel chart with the main topic listed in the center and a single question in each of the four panels. The students are asked to answer the questions in the chart before and after they participate in the lesson activity, each time in a different colored pencil so that the scores can be given to each student before and after they participated in the activity. Student scores improved from 4.5 to 17.9 out of a total of 20 possible points. This is an overall increase of 67% of the total possible points. The questions asked on the quiz cover the range of wave theory, circuit design, and scientific explanation. This factor of improvement shows that

  7. HYDROPONIC METHOD FOR CULTURING POPULATIONS OF ARABIDOPSIS

    Science.gov (United States)

    A plant life-cycle bioassay using Arabidopsis thaliana (L.) Heynh. was developed to detect potential chemical phytotoxicity. The bioassay requires large numbers of plants to maximize the probability of detecting deleterious effect and to avoid any bias that could occur if only a ...

  8. Increasing Hematopoietic Stem Cell Yield to Develop Mice with Human Immune Systems

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Biancotti

    2013-01-01

    Full Text Available Hematopoietic stem cells (HSCs are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.

  9. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology.

    Science.gov (United States)

    Masjkur, Jimmy; Poser, Steven W; Nikolakopoulou, Polyxeni; Chrousos, George; McKay, Ronald D; Bornstein, Stefan R; Jones, Peter M; Androutsellis-Theotokis, Andreas

    2016-02-01

    Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways. PMID:26798118

  10. Rat embryonic stem cells create new era in development of genetically manipulated rat models

    Institute of Scientific and Technical Information of China (English)

    Kazushi; Kawaharada; Masaki; Kawamata; Takahiro; Ochiya

    2015-01-01

    Embryonic stem(ES) cells are isolated from theinner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer genemodified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.

  11. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    Science.gov (United States)

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals. PMID:25749914

  12. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Vincent C. Chen

    2015-09-01

    Full Text Available To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2 × 109 CM/L at scales up to 1 L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  13. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Vincent C; Ye, Jingjing; Shukla, Praveen; Hua, Giau; Chen, Danlin; Lin, Ziguang; Liu, Jian-chang; Chai, Jing; Gold, Joseph; Wu, Joseph; Hsu, David; Couture, Larry A

    2015-09-01

    To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM) for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC) aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2×10(9) CM/L at scales up to 1L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  14. Assessing faculty professional development in STEM higher education: Sustainability of outcomes

    Science.gov (United States)

    Derting, Terry L.; Ebert-May, Diane; Henkel, Timothy P.; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A.

    2016-01-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we matched a FIRST alumnus employed in a tenure-track position with a non-FIRST faculty member at the same institution. The members of a pair taught courses that were of similar size and level. To determine whether teaching practices of FIRST participants were more learner-centered than those of non-FIRST faculty, we compared faculty perceptions of their teaching strategies, perceptions of environmental factors that influence teaching, and actual teaching practice. Non-FIRST and FIRST faculty reported similar perceptions of their teaching strategies and teaching environment. FIRST faculty reported using active learning and interactive engagement in lecture sessions more frequently compared with non-FIRST faculty. Ratings from external reviewers also documented that FIRST faculty taught class sessions that were learner-centered, contrasting with the teacher-centered class sessions of most non-FIRST faculty. Despite marked differences in teaching practice, FIRST and non-FIRST participants used assessments that targeted lower-level cognitive skills. Our study demonstrated the effectiveness of the FIRST program and the empirical utility of comparison groups, where groups are well matched and controlled for contextual variables (for example, departments), for evaluating the effectiveness of professional development for subsequent teaching practices. PMID:27034985

  15. Assessing faculty professional development in STEM higher education: Sustainability of outcomes.

    Science.gov (United States)

    Derting, Terry L; Ebert-May, Diane; Henkel, Timothy P; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A

    2016-03-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we matched a FIRST alumnus employed in a tenure-track position with a non-FIRST faculty member at the same institution. The members of a pair taught courses that were of similar size and level. To determine whether teaching practices of FIRST participants were more learner-centered than those of non-FIRST faculty, we compared faculty perceptions of their teaching strategies, perceptions of environmental factors that influence teaching, and actual teaching practice. Non-FIRST and FIRST faculty reported similar perceptions of their teaching strategies and teaching environment. FIRST faculty reported using active learning and interactive engagement in lecture sessions more frequently compared with non-FIRST faculty. Ratings from external reviewers also documented that FIRST faculty taught class sessions that were learner-centered, contrasting with the teacher-centered class sessions of most non-FIRST faculty. Despite marked differences in teaching practice, FIRST and non-FIRST participants used assessments that targeted lower-level cognitive skills. Our study demonstrated the effectiveness of the FIRST program and the empirical utility of comparison groups, where groups are well matched and controlled for contextual variables (for example, departments), for evaluating the effectiveness of professional development for subsequent teaching practices.

  16. Activity-dependent development of cortical axon terminations in the spinal cord and brain stem.

    Science.gov (United States)

    Martin, J H; Kably, B; Hacking, A

    1999-03-01

    Corticospinal (CS) axon terminations in several species are widespread early in development but are subsequently refined into a spatially more restricted distribution. We studied the role of neural activity in sensorimotor cortex in shaping postnatal development of CS terminations in cats. We continuously infused muscimol unilaterally into sensorimotor cortex to silence neurons during the postnatal CS refinement period (weeks 3-7). Using anterograde transport of WGA-HRP, we examined the laterality of terminations from the muscimol-infused (i.e., silenced) and active sides in the spinal cord, as well as in the cuneate nucleus and red nucleus. We found that CS terminations from the muscimol-infused cortex were very sparse and limited to the contralateral side, while those from the active cortex maintained an immature bilateral topography. Controls (saline infusion, noninfusion) had dense, predominantly contralateral, CS terminations. There was a substantial decrease in the spinal gray matter area occupied by terminations from the side receiving the blockade and a concomitant increase in the area occupied by ipsilateral terminations from the active cortex. Optical density measurements of HRP reaction product from the active cortex in muscimol-infused animals showed substantial increases over controls in the ratio of ipsilateral to contralateral CS terminations for all laminae examined (IV-V, VI, VII). Our findings suggest that ipsilateral dorsal horn terminations reflect new axon growth during the refinement period because they are not present there earlier in development. Those in the ventral horn are present earlier in development and thus could reflect maintenance of transient terminations. Increased ipsilateral terminations from active cortex were due to recrossing of CS axons in lamina X and not to an increase in labeled CS axons in the ipsilateral white matter. Examination of brain stem terminations suggested that, between postnatal weeks 3 and 7, development of

  17. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  18. The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development.

    Science.gov (United States)

    Van Son, Le; Tiedemann, Jens; Rutten, Twan; Hillmer, Stefan; Hinz, Giselbert; Zank, Thorsten; Manteuffel, Renate; Bäumlein, Helmut

    2009-11-01

    BURP domain proteins comprise a broadly distributed, plant-specific family of functionally poorly understood proteins. VfUSP (Vicia faba Unknown Seed Protein) is the founding member of this family. The BURP proteins are characterized by a highly conserved C-terminal protein domain with a characteristic cysteine-histidine pattern. The Arabidopsis genome contains five BURP-domain encoding genes. Three of them are similar to the non-catalytic beta-subunit of the polygalacturonase of tomato and form a distinct subgroup. The remaining two genes are AtRD22 and AtUSPL1. The deduced product of AtUSPL1 is similar in size and sequence to VfUSP and that of the Brassica napus BNM2 gene which is expressed during microspore-derived embryogenesis. The protein products of BURP genes have not been found, especially that of VfUSP despite a great deal of interest arising from copious transcription of the gene in seeds. Here, we demonstrate that VfUSP and AtUSPL1 occur in cellular compartments essential for seed protein synthesis and storage, like the Golgi cisternae, dense vesicles, prevaculoar vesicles and the protein storage vacuoles in the parenchyma cells of cotyledons. Ectopic expression of AtUSPL1 leads to a shrunken seed phenotype; these seeds show structural alterations in their protein storage vacuoles and lipid vesicles. Furthermore, there is a reduction in the storage protein content and a perturbation in the seed fatty acid composition. However, loss of AtUSP1 gene function due to T-DNA insertions does not lead to a phenotypic change under laboratory conditions even though the seeds have less storage proteins. Thus, USP is pertinent to seed development but its role is likely shared by other proteins that function well enough under the laboratory growth conditions. PMID:19639386

  19. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Gui-Zhi; Jin, Shang-Hui; Jiang, Xiao-Yi; Dong, Rui-Rui; Li, Pan; Li, Yan-Jie; Hou, Bing-Kai

    2016-01-01

    The formation of auxin glucose conjugate is proposed to be one of the molecular modifications controlling auxin homeostasis. However, the involved mechanisms and relevant physiological significances are largely unknown or poorly understood. In this study, Arabidopsis UGT75D1 was at the first time identified to be an indole-3-butyric acid (IBA) preferring glycosyltransferase. Assessment of enzyme activity and IBA conjugates in transgenic plants ectopically expressing UGT75D1 indicated that the UGT75D1 catalytic specificity was maintained in planta. It was found that the expression pattern of UGT75D1 was specific in germinating seeds. Consistently, we found that transgenic seedlings with over-produced UGT75D1 exhibited smaller cotyledons and cotyledon epidermal cells than the wild type. In addition, UGT75D1 was found to be up-regulated under mannitol, salt and ABA treatments and the over-expression lines were tolerant to osmotic and salt stresses during germination, resulting in an increased germination rate. Quantitative RT-PCR analysis revealed that the mRNA levels of ABA INSENSITIVE 3 (ABI3) and ABI5 gene in ABA signaling were substantially down-regulated in the transgenic lines under stress treatments. Interestingly, AUXIN RESPONSE FACTOR 16 (ARF16) gene of transgenic lines was also dramatically down-regulated under the same stress conditions. Since ARF16 functions as an activator of ABI3 transcription, we supposed that UGT75D1 might play a role in stress tolerance during germination through modulating ARF16-ABI3 signaling. Taken together, our work indicated that, serving as the IBA preferring glycosyltransferase but distinct from other auxin glycosyltransferases identified so far, UGT75D1 might be a very important player mediating a crosstalk between cotyledon development and stress tolerance of germination at the early stage of plant growth.

  20. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  1. Osteoblastic and Vascular Endothelial Niches, Their Control on Normal Hematopoietic Stem Cells, and Their Consequences on the Development of Leukemia

    Directory of Open Access Journals (Sweden)

    Bella S. Guerrouahen

    2011-01-01

    Full Text Available Stem cell self-renewal is regulated by intrinsic mechanisms and extrinsic signals mediated via specialized microenvironments called “niches.” The best-characterized stem cell is the hematopoietic stem cell (HSC. Self-renewal and differentiation ability of HSC are regulated by two major elements: endosteal and vascular regulatory elements. The osteoblastic niche localized at the inner surface of the bone cavity might serve as a reservoir for long-term HSC storage in a quiescent state. Whereas the vascular niche, which consists of sinusoidal endothelial cell lining blood vessel, provides an environment for short-term HSC proliferation and differentiation. Both niches act together to maintain hematopoietic homeostasis. In this paper, we provide some principles applying to the hematopoietic niches, which will be useful in the study and understanding of other stem cell niches. We will discuss altered microenvironment signaling leading to myeloid lineage disease. And finally, we will review some data on the development of acute myeloid leukemia from a subpopulation called leukemia-initiating cells (LIC, and we will discuss on the emerging evidences supporting the influence of the microenvironment on chemotherapy resistance.

  2. The development of cassava stem returning crushing machine%木薯杆粉碎还田机的研制

    Institute of Scientific and Technical Information of China (English)

    吴锡毅; 关意昭; 周世英; 黄正文; 邵仁清

    2014-01-01

    针对木薯收获的需要,研究开发一款木薯茎杆(以下统称木薯杆)粉碎还田机械。根据木薯杆砍伐、收集、粉碎作业的特点,该机器采用拖拉机前悬挂布置方式,由液压系统传递动力,集合木薯杆砍伐、收集、粉碎功能,是木薯全程机械化种植的重要组成部分。%Aiming at the need of cassava harvest, research and development a cassava stem (hereinafter generally referred to as the cassava stem) returning grinding machine. According to the characteristics of cassava stem deforestation, collection, crushing homework, the machine adopts the tractor front suspension arrangement, by the hydraulic system transfer the power, the collection of cassava stem cutting, collection, crushing function, is an important part of cassava full mechanization planting.

  3. Presenilins are required for maintenance of neural stem cells in the developing brain

    Directory of Open Access Journals (Sweden)

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  4. Developing and applying quantitative skills maps for STEM curricula, with a focus on different modes of learning

    Science.gov (United States)

    Reid, Jackie; Wilkes, Janelle

    2016-08-01

    Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional university that offers both on-campus and distance modes of study. Key elements of the mapping project included the identification of key graduate quantitative skills, the development of curriculum mapping tools to record in which unit(s) and at what level of attainment each quantitative skill is taught, practised and assessed, and identification of differences in the way quantitative skills are developed for on-campus and distance students. Particular attention is given to the differences that are associated with intensive schools, which consist of concentrated periods of face-to-face learning over a three-four day period, and are available to distance education students enrolled in STEM units. The detailed quantitative skills mapping process has had an impact on the review of first-year mathematics units, resulted in crucial changes to the curriculum in a number of courses, and contributed to a more integrated approach, and a collective responsibility, to the development of students' quantitative skills for both face-to-face and online modes of learning.

  5. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signalling.

    Directory of Open Access Journals (Sweden)

    Javier eCabrera

    2014-03-01

    Full Text Available Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs in their hosts, termed syncytia and giant cells (GCs for cyst and root-knot nematodes, respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC characteristics. Regulatory signals for TC differentiation are not still well known. The two-component signalling system (2CS and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Additionally, transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of cell wall ingrowths is described for most of them. Thus we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

  6. Plastid ribosomal protein S5 plays a critical role in photosynthesis, plant development, and cold stress tolerance in arabidopsis

    Science.gov (United States)

    Plastid ribosomal proteins (RPs) are essential components for protein synthesis machinery and exert diverse roles in plant growth and development. Mutations in plastid RPs lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood and th...

  7. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  8. Intraoperative Stem Cell Therapy

    OpenAIRE

    Coelho, Mónica Beato; Cabral, Joaquim M. S.; Karp, Jeffrey M.

    2012-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the poten...

  9. Development of a Piggybac based direct reprogramming system for derivation of integration free induced pluripotent stem cells

    OpenAIRE

    Matias, Dino Emanuel Santos

    2013-01-01

    Induced pluripotent stem cells (iPSc) have great potential for applications in regenerative medicine, disease modeling and basic research. Several methods have been developed for their derivation. The original method of Takahashi and Yamanaka involved the use of retroviral vectors which result in insertional mutagenesis, presence in the genome of potential oncogenes and effects of residual transgene expression on differentiation bias of each particular iPSc line. Other methods have been devel...

  10. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    OpenAIRE

    Jonathan Göke; Marc Jung; Sarah Behrens; Lukas Chavez; Sean O'Keeffe; Bernd Timmermann; Hans Lehrach; James Adjaye; Martin Vingron

    2011-01-01

    Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES) cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-lo...

  11. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  12. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Masaki, E-mail: masakiwestriver@gmail.com [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Yanagawa, Naomi [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Kojima, Nobuhiko [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yuri, Shunsuke; Hauser, Peter V.; Jo, Oak D.; Yanagawa, Norimoto [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was

  13. Development of 3D in vitro platform technology to engineer mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hosseinkhani H

    2012-06-01

    Full Text Available Hossein Hosseinkhani,1 Po-Da Hong,1 Dah-Shyong Yu,2 Yi-Ru Chen,3 Diana Ickowicz,4 Ira-Yudovin Farber,4 Abraham J Domb41Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (TAIWANTECH, 2Nanomedicine Research Center, National Defense Medical Center, Taipei, Taiwan, 3Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, IsraelAbstract: This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.Keywords: 3D culture, nanoparticles, nanofibers, polycations, tissue engineering

  14. Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice

    Institute of Scientific and Technical Information of China (English)

    Kei Moriya; Masahide Yoshikawa; Ko Saito; Yukiteru Ouji; Mariko Nishiofuku; Noriko Hayashi; Shigeaki Ishizaka; Hiroshi Fukui

    2007-01-01

    AIM: To transplant undifferentiated embryonic stem (ES) cells into the spleens of carbon tetrachloride (CCl4)-treated mice to determine their ability to differentiate into hepatocytes in the liver.METHODS: CCU, 0.5 mL/kg body weight, was injected into the peritoneum of C57BL/6 mice twice a week for 5 wk. In group 1 (n = 12), 1 x 105 undifferentiated ES cells (0.1 mL of 1 x 106/mL solution), genetically labeled with GFP, were transplanted into the spleens 1 d after the second injection. Group 2 mice (n = 12) were injected with 0.2 mL of saline twice a week, instead of CCU, and the same amount of ES cells was transplanted into the spleens. Group 3 mice (n = 6) were treated with CCU and injected with 0.1 mL of saline into the spleen, instead of ES cells. Histochemical analyses of the livers were performed on post-transplantation d (PD) 10, 20, and 30.RESULTS: Considerable numbers of GFP-immunopositive cells were found in the periportal regions in group 1 mice (CCl4-treated) on PD 10, however, not in those untreated with CCl4 (group 2). The GFP-positive cells were also immunopositive for albumin (ALB), alpha-1 antitrypsin, cytokeratin 18, and hepatocyte nuclear factor 4 alpha on PD 20. Interestingly, most of the GFP-positive cells were immunopositive for DLK, a hepatoblast marker, on PD 10. Although very few ES-derived cells were demonstrated immunohistologically in the livers of group 1 mice on PD 30, improvements in liver fibrosis were observed. Unexpectedly, liver tumor formation was not observed in any of the mice that received ES cell transplantation during the experimental period.CONCLUSION: Undifferentiated ES cells developed into hepatocyte-like cells with appropriate integration into tissue, without uncontrolled cell growth.

  15. Two Hydroxyproline Galactosyltransferases, GALT5 and GALT2, Function in Arabinogalactan-Protein Glycosylation, Growth and Development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Debarati Basu

    Full Text Available Hydroxyproline-O-galactosyltransferase (GALT initiates O-glycosylation of arabinogalactan-proteins (AGPs. We previously characterized GALT2 (At4g21060, and now report on functional characterization of GALT5 (At1g74800. GALT5 was identified using heterologous expression in Pichia and an in vitro GALT assay. Product characterization showed GALT5 specifically adds galactose to hydroxyproline in AGP protein backbones. Functions of GALT2 and GALT5 were elucidated by phenotypic analysis of single and double mutant plants. Allelic galt5 and galt2 mutants, and particularly galt2 galt5 double mutants, demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared to wild type. Mutant plants showed pleiotropic growth and development phenotypes (defects in root hair growth, root elongation, pollen tube growth, flowering time, leaf development, silique length, and inflorescence growth, which were most severe in the double mutants. Conditional mutant phenotypes were also observed, including salt-hypersensitive root growth and root tip swelling as well as reduced inhibition of pollen tube growth and root growth in response to β-Yariv reagent. These mutants also phenocopy mutants for an AGP, SOS5, and two cell wall receptor-like kinases, FEI1 and FEI2, which exist in a genetic signaling pathway. In summary, GALT5 and GALT2 function as redundant GALTs that control AGP O-glycosylation, which is essential for normal growth and development.

  16. Suppressor Screens in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  17. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    Directory of Open Access Journals (Sweden)

    Soner Solmaz

    2015-12-01

    Full Text Available Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature.

  18. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    Science.gov (United States)

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  19. Growth and Development Symposium: Stem cell therapy in equine tendon injury.

    Science.gov (United States)

    Reed, S A; Leahy, E R

    2013-01-01

    Tendon injuries affect all levels of athletic horses and represent a significant loss to the equine industry. Accumulation of microdamage within the tendon architecture leads to formation of core lesions. Traditional approaches to tendon repair are based on an initial period of rest to limit the inflammatory process followed by a controlled reloading program designed to promote the maturation and linear arrangement of scar tissue within the lesion. However, these treatment protocols are inefficient, resulting in prolonged recovery periods and frequent recurrence. Current alternative therapies include the use of bone marrow-derived mesenchymal stem cells (BMSC) and a population of nucleated cells from adipose containing adipose-derived mesenchymal stem cells (AdMSC). Umbilical cord blood-derived stem cells (UCB) have recently received attention for their increased plasticity in vitro and potential as a therapeutic aid. Both BMSC and AdMSC require expansion in culture before implantation to obtain a pure stem cell population, limiting the time frame for implantation. Collected at parturition, UCB can be cryopreserved for future use. Furthermore, the low immunogenicity of the UCB population allows for allogeneic implantation. Current research indicates that BMSC, AdMSC, and UCB can differentiate into tenocyte-like cells in vitro, increasing expression of scleraxis, tenascin c, and extracellular matrix proteins. When implanted, BMSC and AdMSC engraft into the tendon and improve tendon architecture. However, treatment with these stem cells does not decrease recovery period. Furthermore, the resulting regeneration is not optimal, as the resulting tissue is still inferior to native tendon. Umbilical cord blood-derived stem cells may provide an alternate source of stem cells that promote improved regeneration of tendon tissue. A more naïve cell population, these cells may have a greater rate of engraftment as well as an increased ability to secrete bioactive factors and

  20. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment

    International Nuclear Information System (INIS)

    toxicity assay will need to mimic these conditions in vitro. More specifically, while tissues contain a few stem cells, many progenitor/transit cells and terminally differentiated cells, it should be obvious that both embryonic and adult stem cells would be critical 'target' cells for toxicity testing. The ultimate potential for in vitro testing of human stem cells will to try to mimic a 3-D in vitro micro-environment on multiple 'organ-specific and multiple genotypic/gender 'adult stem cells. The role of stem cells in many chronic diseases, such as cancer, birth defects, and possibly adult diseases after pre-natal and early post-natal exposures (Barker hypothesis), demands toxicity studies of stem cells. While alteration of gene expression ('toxico-epigenomics') is a legitimate endpoint of these toxicity studies, alteration of the quantity of stem cells during development must be serious considered. If the future utility of human stem cells proves to be valid, the elimination of less relevant, expensive and time-consuming rodent and 2-D human in vitro assays will be eliminated.

  1. Systems biology approach to developing S2RM-based "systemstherapeutics" and naturally induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The degree to, and the mechanisms through, whichstem cells are able to build, maintain, and heal the bodyhave only recently begun to be understood. Much of thestem cell's power resides in the release of a multitudeof molecules, called stem cell released molecules (SRM).A fundamentally new type of therapeutic, namely"systems therapeutic", can be realized by reverseengineering the mechanisms of the SRM processes.Recent data demonstrates that the composition of theSRM is different for each type of stem cell, as well asfor different states of each cell type. Although systemsbiology has been successfully used to analyze multiplepathways, the approach is often used to develop a smallmolecule interacting at only one pathway in the system.A new model is emerging in biology where systemsbiology is used to develop a new technology actingat multiple pathways called "systems therapeutics". Anatural set of healing pathways in the human that usesSRM is instructive and of practical use in developingsystems therapeutics. Endogenous SRM processes inthe human body use a combination of SRM from twoor more stem cell types, designated as S2RM, doing sounder various state dependent conditions for each celltype. Here we describe our approach in using statedependentSRM from two or more stem cell types,S2RM technology, to develop a new class of therapeuticscalled "systems therapeutics." Given the ubiquitous andpowerful nature of innate S2RM-based healing in thehuman body, this "systems therapeutic" approach usingS2RM technology will be important for the developmentof anti-cancer therapeutics, antimicrobials, woundcare products and procedures, and a number of othertherapeutics for many indications.

  2. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mauren eJaudal

    2015-02-01

    Full Text Available The timing of the transition to flowering is carefully controlled by plants in order to optimise sexual reproduction and the ensuing production of seeds, grains and fruits. The genetic networks that regulate floral induction are best characterised in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago, a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalisation followed by long day lengths (LD. Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL MADS transcription factors, MtFULa, MtFULb and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.

  3. A contextual perspective on talented female participants and their development in extracurricular STEM programs.

    Science.gov (United States)

    Stoeger, Heidrun; Schirner, Sigrun; Laemmle, Lena; Obergriesser, Stefanie; Heilemann, Michael; Ziegler, Albert

    2016-08-01

    We advocate a more contextual perspective in giftedness research. In our view, doing so opens up three particularly interesting research areas, which we refer to as the participation issue, the effectiveness issue, and the interaction issue. To illustrate their utility, we examined characteristics of females participating in German high achiever-track secondary education who had applied for participation in a 1-year extracurricular e-mentoring program in science, technology, engineering, and mathematics (STEM) (n = 1237). Their characteristics were compared with male and female random-sample control groups. We assessed the effectiveness of the mentoring program by comparing the developmental trajectories of program participants with those of three control groups: applicants who were randomly chosen for later participation (waiting-list control group) and a female and a male control group. Finally, we examined whether differences in program effectiveness could be partially explained by characteristics of the interaction with the domain. Program applicants possessed more advantageous individual characteristics but, unexpectedly, less advantageous home and school environments than female and male members of the control groups. Program participation affected positive changes in certainty about career goals (independent of STEM) and in the number of STEM activities. The amount of STEM communication partially explained differences in program effectiveness.

  4. Immunohistochemical markers for corneal stem cells in the early developing human eye

    DEFF Research Database (Denmark)

    Lyngholm, Mikkel; Høyer, Poul E; Vorum, Henrik;

    2008-01-01

    The corneal epithelium is continuously being renewed. Differentiated epithelial cells originate from limbal stem cells (LSCs) located in the periphery of the cornea, the corneoscleral limbus. We have recently identified superoxide dismutase 2 (SOD2) and cytokeratin (CK) 15 as limbal basal cell...

  5. Development of Bimolecular Fluorescence Complementation reagents for the detection of Arabidopsis thaliana KAT1 protein-protein interactions using the Golden Braid cloning system

    OpenAIRE

    MOSSI ALBIACH, ALEJANDRO

    2016-01-01

    [EN] KAT1 is an Arabidopsis thaliana potassium voltage-gated channel of the Shaker family. This ion channel is fundamental for the control of membrane conductance in guard cells, leading to stomatal opening or closing in response to environmental changes. The stomatal movement controls the gas exchange, as well as the amount of water lost due to transpiration. Therefore, the underlying mechanisms of these stomatal movements will likely be influenced by proteins that regulate KAT1 ...

  6. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development

    Science.gov (United States)

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Chen, Qin-Fang; Sooriyaarachchi, Sanjeewani; Mowbray, Sherry L.; Napier, Johnathan A.; Tanner, Julian A.; Chye, Mee-Len

    2014-01-01

    Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. PMID:25423293

  7. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes.

    Science.gov (United States)

    van den Heuvel, Nikki H L; van Veen, Toon A B; Lim, Bing; Jonsson, Malin K B

    2014-02-01

    The ability of human pluripotent stem cells (hPSCs) to differentiate into any cell type of the three germ layers makes them a very promising cell source for multiple purposes, including regenerative medicine, drug discovery, and as a model to study disease mechanisms and progression. One of the first specialized cell types to be generated from hPSC was cardiomyocytes (CM), and differentiation protocols have evolved over the years and now allow for robust and large-scale production of hPSC-CM. Still, scientists are struggling to achieve the same, mainly ventricular, phenotype of the hPSC-CM in vitro as their adult counterpart in vivo. In vitro generated cardiomyocytes are generally described as fetal-like rather than adult. In this review, we compare the in vivo development of cardiomyocytes to the in vitro differentiation of hPSC into CM with focus on electrophysiology, structure and contractility. Furthermore, known epigenetic changes underlying the differences between adult human CM and CM differentiated from pluripotent stem cells are described. This should provide the reader with an extensive overview of the current status of human stem cell-derived cardiomyocyte phenotype and function. Additionally, the reader will gain insight into the underlying signaling pathways and mechanisms responsible for cardiomyocyte development.

  8. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Brault

    2016-08-01

    Full Text Available The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV, can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4. We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV.

  9. Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map

    Science.gov (United States)

    Seno, Akimasa; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Masuda, Junko; Mizutani, Akifumi; Murakami, Hiroshi; Ishikawa, Tetsuya; Seno, Masaharu

    2016-01-01

    We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.

  10. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex.

    Science.gov (United States)

    Brault, Jean-Baptiste; Khou, Cécile; Basset, Justine; Coquand, Laure; Fraisier, Vincent; Frenkiel, Marie-Pascale; Goud, Bruno; Manuguerra, Jean-Claude; Pardigon, Nathalie; Baffet, Alexandre D

    2016-08-01

    The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV. PMID:27453325

  11. Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map.

    Science.gov (United States)

    Seno, Akimasa; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Masuda, Junko; Mizutani, Akifumi; Murakami, Hiroshi; Ishikawa, Tetsuya; Seno, Masaharu

    2016-01-01

    We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs. PMID:27559294

  12. Tissues development in stems of Aristolochia clematitis L. in the point of view of multicellular complexes formation

    Directory of Open Access Journals (Sweden)

    Zofia Puławska

    2014-02-01

    Full Text Available After cytokinesis the cells do not separate but remain within the wall of the mother cell. After a series of divisions a multicellular complex arises. In the stems of Aristolochia clematitis procambium is closer related to protoxylem than to protophloem, and metaphloem is closer related to metaxylem than to protophloem. Since protophloem has a closer common origin with fibre primordia than with the remaining tissues, it cannot be decided unequivocally what is the origin of the fibres or when procambium differentiates. The common origin of the primary vascular tissues is visible in the pattern of the multicellular complexes, whereas the common origin of the secondary vascular tissue developing in the underground several-year-old parts of the stem can be traced in the arrangement of the single radial tiers. Some characteristics of symplastic growth are discussed.

  13. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana.

    Science.gov (United States)

    Aceves-García, Pamela; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz

    2016-01-01

    Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions. PMID:27379140

  14. Pluripotent Embryonic Stem Cells Developed into Medulloepithelioma in Nude Mice Eyes

    Institute of Scientific and Technical Information of China (English)

    Yongping Li; Xiufeng Zhong; Jianhua Yan; Jianxian Lin; Song Tang; Xuan Wu; Shulong Li; Guanguang Feng; Yuzhen Yi

    2002-01-01

    Purpose: The pluripotent embryonic stem cells can differentiate into various kinds offormal tissues. There is no previous report on the differentiation of embryonic stem cellin the intraocular environment. In this paper, the authors tried to investigate theintraocular growth character of mice embryonic stem cells in nude mice.Methods: Murine embryonic stem cells were cultured and maintained in anundifferentiated state in vitro. They were transplanted into the right eyes of 20 nude miceby microinjection under operating microscope. Animal eye observation, light microscopeand immunohistochemical examinations were implemented.Results: Two to three days after transplantation, small pieces of gray-white materialcould be viewed in the vitreous cavity. Between the 15th and 20th day, the gray-whitemass grew into the anterior chamber in 4 nude mice eyes. Then, the mass at the anteriorchamber extended extraocularly. On the 30th day, a remarkable proptosis was observedin two of the four nude mice. In 6 to 45 days, the mice were executed for morphologicalexamination which showed the following typical structures: (1) Undifferentiated cellswith prominent nucleolius. (2) Flexner-Wintersteiner-like rosettes. (3) Medulloepithe-lioma-like structure: the cells were arranged in sheets, cords, tubes, and cysts. (4) Large,spindle-or astrocyte-like cells. (5) Cartilage-like structure. Immunohistochemically, mostof the cells were highly positive in NSE staining and a few cells were moderately positivein GFAP staining.Conclusions: Both animal eye findings and morphologic examinations certificated thatthe transplanted embryonic stem cells could grow in the eyes of nude mice anddifferentiate into intraocular medulloepithelioma.

  15. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  16. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  17. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available BACKGROUND: Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. METHODOLOGY/PRINCIPAL FINDINGS: ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. CONCLUSIONS/SIGNIFICANCE: We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo

  18. Effect of temperature on reproduction and embryonic development of the cabbage stem flea beetle, Psylliodes chrysocephala L., (Coleoptera: Chrysomelidae)

    DEFF Research Database (Denmark)

    Mathiasen, Helle; Sørensen, Helle; Bligaard, J.;

    2015-01-01

    The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. Despite the importance of this pest, detailed information on reproduction to predict risk of crop damage is lacking. This study investigates the effect of temperature...... on parameters of reproduction, egg development and viability at five constant temperatures. Significant temperature effects were found on the pre-oviposition period, total number of eggs laid, daily oviposition rate, female longevity, egg-development rate and viability. The mean length of the pre...

  19. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  20. Arabidopsis Plants Having Defects in Nonsense-mediated mRNA Decay Factors UPF1,UPF2, and UPF3 Show Photoperiod-dependent Phenotypes in Development and Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Chuan Shi; lan T. Baldwin; Jianqiang Wu

    2012-01-01

    Nonsense-mediated mRNA decay (NMD) is an important mRNA quality surveillance pathway in all eukaryotes that eliminates aberrant mRNAs derived from various sources.Three NMD factor proteins,UPF1,UPF2,and UPF3 are required for the NMD process and were found to be also involved in certain stress responses in mammalian and yeast cells.Using Arabidopsis thaliana mutants of UPF1 and UPF3 and UPF2-silenced lines (irUPF2),we examined the involvement of UPF1,UPF2,and UPF3 in development and in response to stresses,wounding and infection by Pseudomonas syringae pv.tomato strain DC3000.Under the long (16 h) photoperiod condition,Arabidopsis having a defect in NMD factors exhibited altered morphologies of various organs,disturbed homeostasis of wounding-induced jasmonic acid and pathogen-elicited salicylic acid,and abnormal wounding- and methyl jasmonate-induced changes in the transcript levels of two defense-related genes,LOX2 and VSP2.Importantly,when plants were cultivated under the short (10 h) photoperiod condition,mutants of UPF1 and UPF3 and irUPF2 showed smaller differences from the wild-type plants in growth and stress-induced responses.These data suggest a complex regulatory network,likely composed of light signaling and NMD factor-mediated pathways,in influencing plant development and adaption to environmental stresses.

  1. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    Science.gov (United States)

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  2. Nitrogen deficiency hinders etioplast development in stems of dark-grown pea (Pisum sativum) shoot cultures.

    Science.gov (United States)

    Kósa, Annamária; Preininger, Éva; Böddi, Béla

    2015-11-01

    The effects of nitrogen (N) deprivation were studied in etiolated pea plants (Pisum sativum cv. Zsuzsi) grown in shoot cultures. The average shoot lengths decreased and the stems significantly altered considering their pigment contents, 77 K fluorescence spectra and ultrastructural properties. The protochlorophyllide (Pchlide) content and the relative contribution of the 654-655 nm emitting flash-photoactive Pchlide form significantly decreased. The etioplast inner membrane structure characteristically changed: N deprivation correlated with a decrease in the size and number of prolamellar bodies (PLBs). These results show that N deficiency directly hinders the pigment production, as well as the synthesis of other etioplast inner membrane components in etiolated pea stems.

  3. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    OpenAIRE

    Francesco Dovana; Marco Mucciarelli; Maurizio Mascarello; Anna Fusconi

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 i...

  4. Ectopic Expression of the Chinese Cabbage Malate Dehydrogenase Gene Promotes Growth and Aluminum Resistance in Arabidopsis.

    Science.gov (United States)

    Li, Qing-Fei; Zhao, Jing; Zhang, Jing; Dai, Zi-Hui; Zhang, Lu-Gang

    2016-01-01

    Malate dehydrogenases (MDHs) are key metabolic enzymes that play important roles in plant growth and development. In the present study, we isolated the full-length and coding sequences of BraMDH from Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour) Olsson]. We conducted bioinformatics analysis and a subcellular localization assay, which revealed that the BraMDH gene sequence contained no introns and that BraMDH is localized to the chloroplast. In addition, the expression pattern of BraMDH in Chinese cabbage was investigated, which revealed that BraMDH was heavily expressed in inflorescence apical meristems, as well as the effect of BraMDH overexpression in two homozygous transgenic Arabidopsis lines, which resulted in early bolting and taller inflorescence stems. Furthermore, the fresh and dry weights of aerial tissue from the transgenic Arabidopsis plants were significantly higher than those from the corresponding wild-type plants, as were plant height, the number of rosette leaves, and the number of siliques produced, and the transgenic plants also exhibited stronger aluminum resistance when treated with AlCl3. Therefore, our results suggest that BraMDH has a dramatic effect on plant growth and that the gene is involved in both plant growth and aluminum resistance. PMID:27536317

  5. Interactions between Axillary Branches of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Veronica Ongaro; Katherine Bainbridge; Lisa Williamson; Ottoline Leyser

    2008-01-01

    Studies of apical dominance have benefited greatly from two-branch assays in pea and bean,in which the shoot system is trimmed back to leave only two active cotyledonary axillary branches.In these two-branch shoots,a large body of evidence shows that one actively growing branch is able to inhibit the growth of the other,prompting studies on the nature of the inhibitory signals,which are still poorly understood.Here,we describe the establishment of two-branch assays in Arabidopsis,using consecutive branches on the bolting stem.As with the classical studies in pea and bean,these consecutive branches are able to inhibit one another's growth.Not only can the upper branch inhibit the lower branch,but also the lower branch can inhibit the upper branch,illustrating the bi-directional action of the inhibitory signals.Using mutants,we show that the inhibition is partially dependent on the MAX pathway and that while the inhibition is clearly transmitted across the stem from the active to the inhibited branch,the vascular connectivity of the two branches is weak,and the MAX pathway is capable of acting unilaterally in the stem.

  6. An Investigation of Mechanically Tunable and Nanostructured Polymer Scaffolds for Directing Human Mesenchymal Stem Cell Development

    Science.gov (United States)

    Jaafar, Israd Hakim

    This work investigated the use of biomedically relevant, polymer substrates for in vitro human mesenchymal stem cell (hMSC)-substrate surface interaction. Two materials were identified: (i) Poly(glycerol-sebacate) (PGS), a novel biocompatible and biodegradable thermosetting rubber-like elastomer, and (ii) injection molded polystyrene (PS). PGS was selected because it has tunable mechanical properties within the range of biological tissue, and thus provides a useful model to determine the types of substrate mechanical cues that would elicit specific hMSC lineage specification and possible differentiation outcomes. PS is a relevant material for in vitro cell-substrate surface interaction analysis since it is typically the base material of cell culture dishes. Both these materials have also shown micro to nanoscale molding capabilities. Hence these materials would also serve as a model in determining topographical properties (and related mechanical properties) at the dimension-scale of the extracellular environment that modulates hMSC state and fate. The work characterized, designed, and manufactured substrates made of these materials, for in vitro hMSC culture. Micro/nanoscale PGS and PS surface features were manufactured using silicon (Si) based tooling technology. The response of hMSCs to PGS substrates of various Young.s moduli was examined. hMSC response to a nanoscale array of PS pegs was also investigated. PGS was observed to be a semi-crystalline thermosetting elastomer that is fully amorphous above 35°C. The material acquired increasing stiffness and density of photoresist-coated with increasing levels of curing temperature and duration of cure. hMSCs were observed to respond differently on PGS with elastic modulii of 0.11, 1.11, and 2.30 MPa. The cells spread and proliferate more, and develop a stretched cytoskeleton on the stiffer substrates. On the softest substrate (0.11 MPa) the cells developed a branched and filopodia-rich morphology with a diffused

  7. Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana

    NARCIS (Netherlands)

    Zandleven, J.S.; Sorensen, S.; Harbolt, J.; Beldman, G.; Schols, H.A.; Scheller, H.V.; Voragen, A.G.J.

    2007-01-01

    Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH)

  8. The Importance of MS PHD'S and SEEDS Mentoring and Professional Development Programs in the Retenion of Underrepresented Minorities in STEM Fields

    Science.gov (United States)

    Strickland, J.; Johnson, A.; Williamson Whitney, V.; Ricciardi, L.

    2012-12-01

    According to a recent study by the National Academy of Sciences, underrepresented minority (URM) participation in STEM disciplines represents approximately one third of the URM population in the U.S. Thus, the proportion of URM in STEM disciplines would need to triple in order to reflect the demographic makeup in the U.S. Individual programs targeting the recruitment and retention of URM students in STEM have demonstrated that principles of mentoring, community building, networking, and professional skill development are crucial in encouraging URM students to remain in STEM disciplines thereby reducing this disparity in representation. However, to paraphrase an old African proverb, "it takes a village to nurture and develop a URM student entering into the STEM community." Through programs such as the Institute for Broadening Participation's Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development Program in Earth system science and the Ecological Society of America's Strategies for Ecology Education, Diversity and Sustainability (SEEDS), URM students are successfully identifying and benefitting from meaningful opportunities to develop the professional skills and strategies needed to achieve their academic and career goals. Both programs share a philosophy of professional development, reciprocal mentoring, field trips, internships, employment, research partnerships, collaborations, fellowships, scholarships, grants, and professional meeting travel awards to support URM student retention in STEM. Both programs share a mission to bring more diversity and inclusivity into STEM fields. Both programs share a history of success at facilitating the preparation and advancement of URM students. This success has been documented with the multitude of URM students that have matriculated through the programs and are now actively engaged in the pursuit of advanced degrees in STEM or entering the STEM workforce. Anonymous surveys from

  9. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  10. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development

    OpenAIRE

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Chen, Qin-Fang; Sooriyaarachchi, Sanjeewani; Mowbray, Sherry L.; Napier, Johnathan A.; Tanner, Julian A.; Chye, Mee-Len

    2014-01-01

    Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein-lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isot...

  11. Double-aberration corrected TEM/STEM of solid acid nanocatalysts in the development of pharmaceutical NSAIDS

    Science.gov (United States)

    Yoshida, K.; Shiju, N.; Brown, R.; Wright, I.; Boyes, E. D.; Gai, P. L.

    2012-07-01

    We report nanostructural and physico-chemical studies in the development of an efficient low temperature heterogeneous catalytic process for nonsteroidal anti-inflammatory drugs (NSAIDS) such as N-acetyl-p-aminophenol (paracetamol or acetaminophen) on tungstated zirconia nanocatalysts. Using a double-aberration corrected TEM/STEM, modified in-house for in-situ studies at the sub-Angstrom level, we directly observed in real-time, the dynamic precursor transformation to the active catalyst. We quantified the observations with catalytic activity studies for the NSAIDS. The studies have provided the direct evidence for single tungsten promoter atoms and surface WOx species of pharmaceuticals.

  12. On the importance of targeting parasite stem cells in anti-echinococcosis drug development

    Directory of Open Access Journals (Sweden)

    Brehm Klaus

    2014-01-01

    Full Text Available The life-threatening diseases alveolar and cystic echinococcoses are caused by larvae of the tapeworms Echinococcus multilocularis and E. granulosus, respectively. In both cases, intermediate hosts, such as humans, are infected by oral uptake of oncosphere larvae, followed by asexual multiplication and almost unrestricted growth of the metacestode within host organs. Besides surgery, echinococcosis treatment relies on benzimidazole-based chemotherapy, directed against parasite beta-tubulin. However, since beta-tubulins are highly similar between cestodes and humans, benzimidazoles can only be applied at parasitostatic doses and are associated with adverse side effects. Mostly aiming at identifying alternative drug targets, the nuclear genome sequences of E. multilocularis and E. granulosus have recently been characterized, revealing a large number of druggable targets that are expressed by the metacestode. Furthermore, recent cell biological investigations have demonstrated that E. multilocularis employs pluripotent stem cells, called germinative cells, which are the only parasite cells capable of proliferation and which give rise to all differentiated cells. Hence, the germinative cells are the crucial cell type mediating proliferation of E. multilocularis, and most likely also E. granulosus, within host organs and should also be responsible for parasite recurrence upon discontinuation of chemotherapy. Interestingly, recent investigations have also indicated that germinative cells might be less sensitive to chemotherapy because they express a beta-tubulin isoform with limited affinity to benzimidazoles. In this article, we briefly review the recent findings concerning Echinococcus genomics and stem cell research and propose that future research into anti-echinococcosis drugs should also focus on the parasite’s stem cell population.

  13. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells

    Directory of Open Access Journals (Sweden)

    Alain Carpentier

    2012-06-01

    Full Text Available Electrostimulation (ES can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 x 25 x 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002 and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01. Immunocytochemistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and bio- chemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  14. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells.

    Science.gov (United States)

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C

    2012-06-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  15. Development of Hydrogel with Anti-Inflammatory Properties Permissive for the Growth of Human Adipose Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    R. Sánchez-Sánchez

    2016-01-01

    Full Text Available Skin wound repair requires the development of different kinds of biomaterials that must be capable of restoring the damaged tissue. Type I collagen and chitosan have been widely used to develop scaffolds for skin engineering because of their cell-related signaling properties such as proliferation, migration, and survival. Collagen is the major component of the skin extracellular matrix (ECM, while chitosan mimics the structure of the native polysaccharides and glycosaminoglycans in the ECM. Chitosan and its derivatives are also widely used as drug delivery vehicles since they are biodegradable and noncytotoxic. Regulation of the inflammatory response is crucial for wound healing and tissue regeneration processes; and, consequently, the development of biomaterials such as hydrogels with anti-inflammatory properties is very important and permissive for the growth of cells. In the last years, it has been shown that mesenchymal stem cells have clinical importance in the treatment of different pathologies, for example, skin injuries. In this paper, we describe the anti-inflammatory activity of collagen type 1/chitosan/dexamethasone hydrogel, which is permissive for the culture of human adipose-derived mesenchymal stem cells (hADMSC. Our results show that hADMSC cultured in the hydrogel are viable, proliferate, and secrete the anti-inflammatory cytokine interleukin-10 (IL-10 but not the inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α.

  16. Teratogenic potential in cultures optimized for oligodendrocyte development from mouse embryonic stem cells.

    Science.gov (United States)

    Sadowski, Dorota; Kiel, Mary E; Apicella, Marisa; Arriola, Aileen G; Chen, Cui Ping; McKinnon, Randall D

    2010-09-01

    We describe a rapid and efficient 5-step program of defined factors for the genesis of brain myelin-forming oligodendrocytes (OLs) from embryonic stem cells (ESCs). The OLs emerge on the same time frame in vitro as seen in vivo. Factors promoting neural induction (retinoids, noggin) are required, while exogenous Sonic hedgehog is not. In contrast we were unable to generate OLs by trans-differentiation of ethically neutral mesenchymal stem cells, indicating a requirement for cis-differentiation via neural ectoderm for OL genesis. In the ESC-derived cultures, our optimized protocol generated a mixed population with 49% O4(+), Olig2(+) OL lineage cells. These cultures also retained pluripotential markers including Oct4, and an analysis of embryoid body formation in vitro, and allogeneic grafts in vivo, revealed that the ESC-derived cultures also retained teratogenic cells. The frequency of embryoid body formation from terminal differentiated OL cultures was 0.001%, 100-fold lower than that from ESCs. Our results provide the first quantitative measurement of teratogenicity in ESC-derived, exhaustively differentiated allogeneic grafts, and demonstrate the unequivocal need to purify ESC-derived cells in order to generate a safe population for regenerative therapy. PMID:20131970

  17. A mex3 homolog is required for differentiation during planarian stem cell lineage development.

    Science.gov (United States)

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-01-01

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment. PMID:26114597

  18. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  19. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  20. Physical and Mechanical Properties of Palm Oil Frond and Stem Bunch for Developing Pruner and Harvester Machinery Design

    Directory of Open Access Journals (Sweden)

    Yazid Ismi Intara

    2013-06-01

    Full Text Available A development of oil palm pruner and harvester machinery design implemented in the field still faces a problem due to the lack of effective and efficient design which is need to be solved. It was noted that in order to develop the design, an early data and information of physical and mechanical properties of palm oil frond and