WorldWideScience

Sample records for arabidopsis adp-ribosylation factor

  1. Class I ADP-ribosylation factors are involved in enterovirus 71 replication.

    Jianmin Wang

    Full Text Available Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.

  2. Class I ADP-ribosylation factors are involved in enterovirus 71 replication.

    Wang, Jianmin; Du, Jiang; Jin, Qi

    2014-01-01

    Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.

  3. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    Fendrick, J.L.; Iglewski, W.J. (Univ. of Rochester, NY (USA))

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  4. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    Fendrick, J.L.; Iglewski, W.J.

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing [ 32 P]orthophosphate and 105 (vol/vol) fetal bovine serum. A 32 P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The 32 P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The 32 P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as [ 32 P]AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the 32 P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and [ 32 P]NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When 32 P-labeled cultures were incubated in medium containing unlabeled phosphate, the 32 P label was lost from the EF-2 within 30 min

  5. Diversity and distribution of cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae.

    Purdy, Alexandra E; Balch, Deborah; Lizárraga-Partida, Marcial Leonardo; Islam, Mohammad Sirajul; Martinez-Urtaza, Jaime; Huq, Anwar; Colwell, Rita R; Bartlett, Douglas H

    2010-02-01

    Non-toxigenic non-O1, non-O139 Vibrio cholerae strains isolated from both environmental and clinical settings carry a suite of virulence factors aside from cholera toxin. Among V. cholerae strains isolated from coastal waters of southern California, this includes cholix toxin, an ADP-ribosylating factor that is capable of halting protein synthesis in eukaryotic cells. The prevalence of the gene encoding cholix toxin, chxA, was assessed among a collection of 155 diverse V. cholerae strains originating from both clinical and environmental settings in Bangladesh and Mexico and other countries around the globe. The chxA gene was present in 47% of 83 non-O1, non-O139 strains and 16% of 72 O1/O139 strains screened as part of this study. A total of 86 chxA gene sequences were obtained, and phylogenetic analysis revealed that they fall into two distinct clades. These two clades were also observed in the phylogenies of several housekeeping genes, suggesting that the divergence observed in chxA extends to other regions of the V. cholerae genome, and most likely has arisen from vertical descent rather than horizontal transfer. Our results clearly indicate that ChxA is a major toxin of V. cholerae with a worldwide distribution that is preferentially associated with non-pandemic strains. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Suppression of breast cancer metastasis through the inactivation of ADP-ribosylation factor 1.

    Xie, Xiayang; Tang, Shou-Ching; Cai, Yafei; Pi, Wenhu; Deng, Libin; Wu, Guangyu; Chavanieu, Alain; Teng, Yong

    2016-09-06

    Metastasis is the major cause of cancer-related death in breast cancer patients, which is controlled by specific sets of genes. Targeting these genes may provide a means to delay cancer progression and allow local treatment to be more effective. We report for the first time that ADP-ribosylation factor 1 (ARF1) is the most amplified gene in ARF gene family in breast cancer, and high-level amplification of ARF1 is associated with increased mRNA expression and poor outcomes of patients with breast cancer. Knockdown of ARF1 leads to significant suppression of migration and invasion in breast cancer cells. Using the orthotopic xenograft model in NSG mice, we demonstrate that loss of ARF1 expression in breast cancer cells inhibits pulmonary metastasis. The zebrafish-metastasis model confirms that the ARF1 gene depletion suppresses breast cancer cells to metastatic disseminate throughout fish body, indicating that ARF1 is a very compelling target to limit metastasis. ARF1 function largely dependents on its activation and LM11, a cell-active inhibitor that specifically inhibits ARF1 activation through targeting the ARF1-GDP/ARNO complex at the Golgi, significantly impairs metastatic capability of breast cancer cell in zebrafish. These findings underline the importance of ARF1 in promoting metastasis and suggest that LM11 that inhibits ARF1 activation may represent a potential therapeutic approach to prevent or treat breast cancer metastasis.

  7. ADP-ribosylation of nonhistone proteins from metaphase and interphase HeLa cells: factors responsible for differences

    Adolph, K.W.

    1986-01-01

    A striking reduction was previously detected for HeLa metaphase chromosomes, compared to interphase nuclei, in the number of modified nonhistone species. Several factors which could contribute to this cell cycle change in ADP-ribosylation have therefore been examined. In these experiments, mitotic or interphase cells were incubated with [ 32 P]NAD, chromosomes and nuclei were prepared, and the proteins were resolved by polyacrylamide gel electrophoresis. The level of incorporation of 32 P label was found to be substantially influenced by chromosome expansion, DNA nicking, disruption of chromosomes or nuclei, and the growth activity of cells. The level of ADP-ribosylation was not greatly affected by the presence of inhibitors of RNA, DNA, and protein synthesis. NAD concentration influenced the extent of labelling but not the pattern of labeled species. A similar change in the pattern from interphase to mitosis was observed for whole cells as well as for isolated chromosomes and nuclei. The procedure used to arrest cells in mitosis was not artifactually responsible for the results. The difference in metaphase and interphase ADP-ribosylation is not confined to HeLa cells, since comparable patterns were found for chromosomes and nuclei from Novikoff rat hepatoma cells

  8. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus, ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37 0 C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl 2 , and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and [U- 14 C] nicotinaide adenine dinucleotide ([ 14 C]NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of [ 14 C] ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film

  9. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.; Price, S.R.; Moss, J.; Vaughan, M.

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A) + RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A) + RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs

  10. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. Copyright 2010 Elsevier GmbH. All rights reserved.

  11. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  12. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    Fujita, Atsushi

    2008-01-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6 + , encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6Δ cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast

  13. Studying Catabolism of Protein ADP-Ribosylation.

    Palazzo, Luca; James, Dominic I; Waddell, Ian D; Ahel, Ivan

    2017-01-01

    Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD + ) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.

  14. ADP-ribosyl-N₃: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds.

    Li, Lingjun; Li, Qianqian; Ding, Shengqiang; Xin, Pengyang; Zhang, Yuqin; Huang, Shenlong; Zhang, Guisheng

    2017-08-14

    Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of ADP-ribosylated compounds is currently difficult due to structural complexity, easily broken pyrophosphate bond and high hydrophilicity. In this paper, ADP-ribosyl-N₃ was designed and synthesized for the first time. With ADP-ribosyl-N₃ as the key precursor, a divergent post-modification strategy was developed to prepare structurally diverse ADP-ribosylated compounds including novel nucleotides and peptides bearing ADP-ribosyl moieties.

  15. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha.

    Morimoto, H; Bonavida, B

    1992-09-15

    We have reported that diphtheria toxin (DTX) mediates target cell lysis and intranucleosomal DNA fragmentation (apoptosis) and also synergizes with TNF-alpha. In this paper, we examined which step in the pathway of DTX-mediated inhibition of protein synthesis was important for induction of cytolytic activity and for synergy. Using a DTX-sensitive tumor cell line, we first examined the activity of the mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2). CRM 197 was not cytolytic for target cells and did not mediate intranucleosomal DNA fragmentation of viable cells. The failure of CRM 197 to mediate target cell lysis suggested that the catalytic activity of DTX is prerequisite for target cell lysis. This was corroborated by demonstrating that MeSAdo, which blocks the biosynthesis of diphthamide, inhibited DTX-mediated protein synthesis inhibition and also blocked target cell lysis. Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis. These findings suggest that ADP-ribosylation of EF-2 may be a necessary step in the pathway leading to target cell lysis. In contrast to the sensitive line, the SKOV-3 tumor cell line is sensitive to protein synthesis inhibition by DTX but is not susceptible to cytolysis and apoptosis by DTX. Thus, protein synthesis inhibition by DTX is not sufficient to mediate target cell lysis. The synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined in order to determine the pathway mediated by DTX in synergy. Like the direct lysis by DTX, synergy was significantly reduced by MeSAdo and by nicotinamide. Furthermore, synergy was not observed with combination of CRM 197 and TNF-alpha. These results demonstrate that, in synergy, DTX may utilize the same pathway required for its cytolytic activity. Pseudomonas aeruginosa exotoxin shared most the properties shown for DTX. Altogether, these findings

  16. Poly-ADP-ribosylation of proteins responds to cellular perturbations

    Schneeweiss, F.H.A.; Sharan, R.N.

    1999-01-01

    From the results presented above it is quite obvious that poly-ADP-ribosylation reaction is a sensitive parameter to monitor cellular responses to a wide variety of perturbations. Having developed a monolayer assay system using 32 P-NAD + as a marker, it has become possible to measure levels of cellular ADP-ribosylation more precisely. It has been demonstrated that the trigger of poly-ADP-ribosylation reaction may involve different cellular components for different perturbations. In this, membrane has been found to be important. The study has been particularly informative in the realm of DNA damage and repair following qualitatively different radiation assaults. As poly-ADP-ribosylation in eukaryotic cells primarily affects chromosomal proteins, notably histones, the reaction is strongly triggered in response to single and double strand breaks in DNA. Therefore, level of cellular poly-ADP-ribosylation can potentially be used as a biosensor of radiation induced strand breaks and can be specially useful in clinical monitoring of progress of radiotherapy. The assay of poly-ADP-ribosylation, however, requires use of radiolabelled tracer, e.g. 32 P-NAD + . Due to this, study of poly-ADP-ribosylation can not be extended to monitor effects of incorporated radionuclides. In order to overcome this shortcoming and to make the assay more sensitive and quick, a Western blot immunoassay has been developed. The preliminary indications are that the immunoassay of poly-ADP-ribosylation will fulfil the requirements to use poly-ADP-ribosylation as a sensitive, convenient and clinically applicable biosensor of cell response not only to radiations but also to different perturbations. (orig.)

  17. Molecular characterization of a novel intracellular ADP-ribosyl cyclase.

    Dev Churamani

    2007-08-01

    Full Text Available ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates.Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1 is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained.Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized.

  18. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  19. ADP-ribosylation of transducin by pertussis toxin

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-01-01

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [ 32 P]ADP-ribosylated by pertussis toxin and [ 32 P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32 -kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32 -kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [ 32 P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [ 32 P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma

  20. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  1. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M.

    1989-01-01

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by 31 P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase

  2. NADP+ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-01-01

    Cholera or pertussis toxin-catalyzed [ 32 P]ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD + , by endogenous enzymes such as NAD + -glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP + . The effect is concentration dependent; with 20 μM [ 32 P]NAD + as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP + . The enhancement of [ 32 P]ADP-ribosylation by NADP + was much greater than that by other known effectors such as Mg 2+ , phosphate or isoniazid. The effect of NADP + on ADP-ribosylation may occur by inhibition of the degradation of NAD + probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP + , isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl 2 ) to suppress NADase activity, NADP + was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP + in the assay is necessary to obtain maximal ADP-ribosylation

  3. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  4. ADP-ribosylation of membrane components by pertussis and cholera toxin

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its α/sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its α; subunit. By using [ 32 P]NAD + and determining the transfer of its [ 32 P]ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin

  5. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    Scaife, R.M. (Fred Hutchinson Cancer Research Center, Seattle, WA (United States)); Wilson, L. (Univ. of California, Santa Barbara (United States)); Purich, D.L. (Univ. of Florida, Gainesville (United States))

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  6. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  7. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin.

    Alexander Belyy

    Full Text Available Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.

  8. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.

    Gagné, Jean-Philippe; Langelier, Marie-France; Pascal, John M; Poirier, Guy G

    2018-06-11

    Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.

  9. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells

    Mortusewicz, Oliver; Amé, Jean-Christophe; Leonhardt, Heinrich

    2007-01-01

    Genome integrity is constantly threatened by DNA lesions arising from numerous exogenous and endogenous sources. Survival depends on immediate recognition of these lesions and rapid recruitment of repair factors. Using laser microirradiation and live cell microscopy we found that the DNA-damage dependent poly(ADP-ribose) polymerases (PARP) PARP-1 and PARP-2 are recruited to DNA damage sites, however, with different kinetics and roles. With specific PARP inhibitors and mutations, we could show that the initial recruitment of PARP-1 is mediated by the DNA-binding domain. PARP-1 activation and localized poly(ADP-ribose) synthesis then generates binding sites for a second wave of PARP-1 recruitment and for the rapid accumulation of the loading platform XRCC1 at repair sites. Further PARP-1 poly(ADP-ribosyl)ation eventually initiates the release of PARP-1. We conclude that feedback regulated recruitment of PARP-1 and concomitant local poly(ADP-ribosyl)ation at DNA lesions amplifies a signal for rapid recruitment of repair factors enabling efficient restoration of genome integrity. PMID:17982172

  10. Regulation of chromatin structure by poly(ADP-ribosylation

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  11. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-01-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis

  12. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-01-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression

  13. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  14. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  15. Mono(ADP-ribosyl)ation of the N2 amino groups of guanine residues in DNA by pierisin-2, from the cabbage butterfly, Pieris brassicae

    Takamura-Enya, Takeji; Watanabe, Masahiko; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji

    2004-01-01

    Pierisin-2 is a cytotoxic and apoptosis-inducing protein present in Pieris brassicae with a 91% homology in the deduced amino acid sequences to pierisin-1 from Pieris rapae. We earlier showed pierisin-1 to catalyze mono(ADP-ribosyl)ation of 2'-deoxyguanosine (dG) in DNA to form N 2 -(ADP-ribos-1-yl)-2'-deoxyguanosine, this DNA modification appearing linked to its cytotoxicity and ability to induce apoptosis in mammalian cell lines. In this paper, we documented evidence that pierisin-2 also catalyzed ADP-ribosylation of dG in DNA to give the same reaction product as demonstrated for pierisin-1, with similar efficiency. With oligonucleotides as substrates, ADP-ribosylation by pierisin-2 was suggested to occur by one-side attack of the carbon atom at 1 position of the ribose moiety in NAD toward N 2 of dG. The presence of a unique ADP-ribosylation toxin targeting dG in DNA in two distinct species in a Pieris genus could be a quite important finding to better understand biological functions of pierisin-1 and -2 in Pieris butterflies and the generic evolution of these cabbage butterflies

  16. 211At-α-dose dependence of poly-ADP-ribosylation of human glioblastoma cells in vitro. Suitability in cancer therapy?

    Schneeweiss, F.H.A.

    1999-01-01

    Aim: It was intended to test the biological response (poly-ADP-ribosylation of cellular proteins) of α-particles from extracellular 211 At for enhanced damage to human glioblastoma cells in vitro and to discuss its suitability for potential application in therapy of high-grade gliomas. Materials and Methods: Confluent cultures of human glioblastoma cells were exposed to different doses of α-radiations from homogeneously distributed extracellular 211 At. Cellular poly-ADP-ribosylation of all proteins including histones was monitored since it is an indirect but sensitive indicator of chromatin damage and putative repair in both normal and malignant mammalian cells. Results: A significant diminution (average 85.6%) in poly-ADP-ribosylation of total cellular proteins relative to that for non-irradiated glioblastoma cells was observed following 0.025 to 1.0 Gy α-radiations. In the dose range of 0.0025 to 0.01 Gy there was an increase with a maximum value of approximately 119.0% at 0.0025 Gy. Below 0.0025 Gy no change in poly-ADP-ribosylation was observed. Conclusions: Level of cellular poly-ADP-ribosylation of proteins at 0.025 to 1.0 Gy of α-radiation dose from 211 At appears to cause enhanced damage by creating molecular conditions which are not conductive to repair of DNA damages in human glioblastoma cells in vitro. Therefore, it is assumed that clinical application of 211 At at least in this dose range might enhance clinical efficacy in radiotherapy of cancer. (orig.) [de

  17. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    Jones, J.; Schultz, R.M. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  18. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  19. Identification of a GTP-binding protein α subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.; Simon, M.I.

    1988-01-01

    Recent molecular cloning of cDNA for the α subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein α subunit, which they refer to as G/sub z/α, by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ α-subunit cDNA. The deduced amino acid sequence of G/sub z/α is 41-67% identical with those of other known G-protein α subunits. However, the 355-residue G/sub z/α lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein α subunits. They suggest that G/sub z/α, which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems

  20. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.

    Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo

    2017-10-27

    The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  2. ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymic activity of cholera toxin fragment A1

    Gill, D.M.; Coburn, J.

    1987-01-01

    The authors have clarified relationships between cholera toxin, cholera toxin substrates, a membrane protein S that is required for toxin activity, and a soluble protein CF that is needed for the function of S. The toxin has little intrinsic ability to catalyze ADP-ribosylations unless it encounters the active form of the S protein, which is S liganded to GTP or to a GTP analogue. In the presence of CF, S x GTP forms readily, though reversibly, but a more permanent active species, S-guanosine 5'-O-(3-thiotriphosphate) (S x GTPγS), forms over a period of 10-15 min at 37 0 C. Both guanosine 5'-O-(2-thiodiphosphate) and GTP block this quasi-permanent activation. Some S x GTPγS forms in membranes that are exposed to CF alone and then to GTPγS, with a wash in between, and it is possible that CF facilitates a G nucleotide exchange. S x GTPγS dissolved by nonionic detergents persists in solution and can be used to support the ADP-ribosylation of nucleotide-free substrates. In this circumstance, added guanyl nucleotides have no further effect. This active form of S is unstable, especially when heated, but the thermal inactivation above 45 0 C is decreased by GTPγS. Active S is required equally for the ADP-ribosylation of all of cholera toxin's protein substrates, regardless of whether they bind GTP or not. They suggest that active S interacts directly with the enzymic A 1 fragments of cholera toxin and not with any toxin substrate. The activation and activity of S are independent of the state, or even the presence, of adenylate cyclase and seem to be involved with the cyclase system only via cholera toxin. S is apparently not related by function to certain other GTP binding proteins, including p21/sup ras/, and appears to be a new GTP binding protein whose physiologic role remains to be identified

  3. ADP-ribosylation of actins in fibroblasts and myofibroblasts by botulinum C2 toxin: Influence on microfilament morphology and migratory behavior

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    botulinum C2 toxin. The substrate for C2 toxin is globular actin, which upon ribosylation cannot incorporate into microfilaments. The pattern of actin ADP-ribosylation in (myo)fibroblasts in the presence of [32P]NAD was analyzed by isoelectric focusing, fluorography and immunoblotting. The influence of C2...... toxin on microfilaments in intact cells was further assessed by immunofluorescence, and motility was measured in a mass migration assay and by computerized video time-lapse microscopy. We show here that C2 toxin specifically ribosylates - and -actin in both fibroblasts and myofibroblasts. Whereas...

  4. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated 32 P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingested ethanol in a liquid diet. 32 P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice

  5. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-01-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5'-[α- 32 P]triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an α subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera

  6. Molecular mechanism of the short-term cardiotoxicity caused by 2',3'-dideoxycytidine (ddC): modulation of reactive oxygen species levels and ADP-ribosylation reactions.

    Skuta, G; Fischer, G M; Janaky, T; Kele, Z; Szabo, P; Tozser, J; Sumegi, B

    1999-12-15

    The short-term cardiac side effects of 2',3'-dideoxycytidine (ddC, zalcitabine) were studied in rats in order to understand the biochemical events contributing to the development of ddC-induced cardiomyopathy. In developing animals, ddC treatment provoked a surprisingly rapid appearance of cardiac malfunctions characterized by prolonged RR, PR, and QT intervals and J point depression. The energy metabolism in the heart was compromised, characterized by a decreased creatine phosphate/creatine ratio (from 2.05 normal value to 0.75) and a decreased free ATP/ADP ratio (from 332 normal value to 121). The activity of respiratory complexes (NADH: cytochrome c oxidoreductase and cytochrome oxidase) also decreased significantly. Southern blot and polymerase chain reaction analysis did not show deletions or a decrease in the quantity of mitochondrial DNA (mtDNA) deriving from ddC-treated rat hearts, indicating that under our experimental conditions, ddC-induced heart abnormalities were not the direct consequence of mtDNA-related damage. The ddC treatment of rats significantly increased the formation of reactive oxygen species (ROS) in heart and skeletal muscle as determined by the oxidation of non-fluorescent dihydrorhodamine123 to fluorescent rhodamine123 and the oxidation of cellular proteins determined from protein carbonyl content. An activation of the nuclear poly-(ADP-ribose) polymerase (EC 2.4.2.30) and an increase in the mono-ADP-ribosylation of glucose-regulated protein and desmin were observed in the cardiac tissue from ddC-treated animals. A decrease in the quantity of heat shock protein (HSP)70s was also detected, while the level of HSP25 and HSP60 remained unchanged. Surprisingly, ddC treatment induced a skeletal muscle-specific decrease in the quantity of three proteins, one of which was identified by N-terminal sequencing as myoglobin, and another by tandem mass spectrometer sequencing as triosephosphate isomerase (EC 5.3.1.1). These data show that the short

  7. 2-Azido-( sup 32 P)NAD+, a photoactivatable probe for G-protein structure: Evidence for holotransducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both alpha and gamma subunits

    Vaillancourt, R.R.; Dhanasekaran, N.; Johnson, G.L.; Ruoho, A.E. (Univ. of Wisconsin Medical School, Madison (USA))

    1990-05-01

    A radioactive and photoactivatable derivative of NAD+, 2-azido-(adenylate-32P)NAD+, has been synthesized and used with pertussis toxin to ADP-ribosylate Cys347 of the alpha subunit (alpha T) of GT, the retinal guanine nucleotide-binding protein. ADP-ribosylation of alpha T followed by light activation of the azide moiety of 2-azido-(adenylate-32P)ADP-ribose produced four crosslinked species involving the alpha and gamma subunits of the GT heterotrimer: an alpha trimer (alpha-alpha-alpha), and alpha-alpha-gamma crosslink, an alpha dimer (alpha-alpha), and an alpha-gamma crosslink. The alpha trimer, alpha-alpha-gamma complex, alpha dimer, and alpha-gamma complexes were immunoreactive with alpha T antibodies. The alpha-alpha-gamma and the alpha-gamma complexes were immunoreactive with antisera recognizing gamma subunits. No evidence was found for crosslinking of alpha T to beta T subunits. Hydrolysis of the thioglycosidic bond between Cys347 and 2-azido-(adenylate-32P)ADP-ribose using mercuric acetate resulted in the transfer of radiolabel from Cys347 of alpha T in the crosslinked oligomers to alpha monomers, indicative of intermolecular photocrosslinking, and to gamma monomers, indicative of either intermolecular crosslinked complexes (between heterotrimers) or intramolecular crosslinked complexes (within the heterotrimer). These results demonstrate that GT exists as an oligomer and that ADP-ribosylated Cys347, which is four residues from the alpha T-carboxyl terminus, is oriented toward and in close proximity to the gamma subunit.

  8. Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation.

    Bommakanti, R K; Bokoch, G M; Tolley, J O; Schreiber, R E; Siemsen, D W; Klotz, K N; Jesaitis, A J

    1992-04-15

    Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.

  9. Activation of Telomerase by Ionizing Radiation: Differential Response to the Inhibition of DNA Double-Strand Break Repair by Abrogation of Poly(ADP-ribosyl)ation, by LY294002, or by Wortmannin

    Neuhof, Dirk; Zwicker, Felix; Kuepper, Jan-Heiner; Debus, Juergen; Weber, Klaus-Josef

    2007-01-01

    Purpose: Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. Methods and Materials: COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10 Gy. Phosphorylation status of PKB/Akt and of PKCα/β II was assessed by western blotting. Results: No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. Conclusions: Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than α/β II cannot be ruled out

  10. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    G. Smeenk (Godelieve); W.W. Wiegant (Wouter); J.A. Marteijn (Jurgen); M.S. Luijsterburg (Martijn); N. Sroczynski (Nicholas); T. Costelloe (Thomas); R. Romeijn (Ron); A. Pastink (Albert); N. Mailand (Niels); W. Vermeulen (Wim); H. van Attikum (Haico)

    2013-01-01

    textabstractIonizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains

  11. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    Smeenk, G.; Wiegant, W.W.; Luijsterburg, M.S.

    2013-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely...... unexplored. Here, we show that SMARCA5/SNF2H, the catalytic subunit of ISWI chromatin remodeling complexes, is recruited to DSBs in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner. Remarkably, PARP activity, although dispensable for the efficient spreading of νH2AX into damaged chromatin......, selectively promotes spreading of SMARCA5, the E3 ubiquitin ligase RNF168, ubiquitin conjugates and the ubiquitin-binding factors RAD18 and the RAP80-BRCA1 complex throughout DSB-flanking chromatin. This suggests that PARP regulates the spatial organization of the RNF168-driven ubiquitin response to DNA...

  12. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  13. The life and death of translation elongation factor 2

    Jørgensen, Rene; Merrill, A.R.; Andersen, Gregers Rom

    2006-01-01

    The eukaryotic elongation factor 2 (eEF2) occupies an essential role in protein synthesis where it catalyses the translocation of the two tRNAs and the mRNA after peptidyl transfer on the 80S ribosome. Recent crystal structures of eEF2 and the cryo-EM reconstruction of its 80S complex now provide...... diphthamide residue, which is ADP-ribosylated by diphtheria toxin from Corynebacterium diphtheriae and exotoxin A from Pseudomonas aeruginosa....

  14. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Markus Dahl

    Full Text Available Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling.A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference.TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1.Nuclear Smad function is negatively

  15. Functional characterisation of an Arabidopsis gene strongly induced by ionising radiation: the gene coding the poly(ADP-ribose)polymerase-1 (AthPARP-1)

    Doucet-Chabeaud, G.

    2000-01-01

    Arabidopsis thaliana, the model-system in plant genetics, has been used to study the responses to DNA damage, experimentally introduced by γ-irradiation. We have characterised a radiation-induced gene coding a 111 kDa protein, AthPARP-1, homologous to the human poly(ADP-ribose)polymerase-1 (hPARP-1). As hPARP-1 is composed by three functional domain with characteristic motifs, AthPARP-1 binds to DNA bearing single-strand breaks and shows DNA damage-dependent poly(ADP-ribosyl)ation. The preferential expression of AthPARP-1 in mitotically active tissues is in agreement with a potential role in the maintenance of genome integrity during DNA replication, as proposed for its human counterpart. Transcriptional gene activation by ionising radiation of AthPARP-1 and AthPARP-2 genes is to date plant specific activation. Our expression analyses after exposure to various stress indicate that 1) AthPARP-1 and AthPARP-2 play an important role in the response to DNA lesions, particularly they are activated by genotoxic agents implicating the BER DNA repair pathway 2) AthPARP-2 gene seems to play an additional role in the signal transduction induced by oxidative stress 3) the observed expression profile of AthPARP-1 is in favour of the regulation of AthPARP-1 gene expression at the level of transcription and translation. This mode of regulation of AthPARP-1 protein biosynthesis, clearly distinct from that observed in animals, needs the implication of a so far unidentified transcription factor that is activated by the presence of DNA lesions. The major outcome of this work resides in the isolation and characterisation of such new transcription factor, which will provide new insight on the regulation of plant gene expression by genotoxic stress. (author) [fr

  16. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana.

    Kim, Hyojin; Lee, Saet Buyl; Kim, Hae Jin; Min, Myung Ki; Hwang, Inhwan; Suh, Mi Chung

    2012-08-01

    Cuticular waxes are synthesized by the extensive export of intracellular lipids from epidermal cells. However, it is still not known how hydrophobic cuticular lipids are exported to the plant surface through the hydrophilic cell wall. The LTPG2 gene was isolated based on Arabidopsis microarray analysis; this gene is predominantly expressed in stem epidermal peels as compared with in stems. The expression of LTPG2 transcripts was observed in various organs, including stem epidermis and silique walls. The composition of the cuticular wax was significantly altered in the stems and siliques of the ltpg2 mutant and ltpg1 ltpg2 double mutant. In particular, the reduced level of the C29 alkane, which is the major component of cuticular waxes in ltpg1 ltpg2 stems and siliques, was similar to the sum of reduced values of either parent. The total cuticular wax load was reduced by approximately 13% and 20% in both ltpg2 and ltpg1 ltpg2 siliques, respectively, and by approximately 14% in ltpg1 ltpg2 stems when compared with the wild-type. Similarly, severe alterations in the cuticular layer structure of epidermal cells of ltpg2 and ltpg1 ltpg2 stems and silique walls were observed. In tobacco epidermal cells, intracellular trafficking of the fluorescent LTPG/LTPG1 and LTPG2 to the plasma membrane was prevented by a dominant-negative mutant form of ADP-ribosylation factor 1, ARF1(T31N). Taken together, these results indicate that LTPG2 is functionally overlapped with LTPG/LTPG1 during cuticular wax export or accumulation and LTPG/LTPG1 and LTPG2 are targeted to the plasma membrane via the vesicular trafficking system.

  17. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  18. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-01-01

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  19. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Wagner, Silvia [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany); Buerkle, Alexander [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Koenigsrainer, Alfred [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany)

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  20. Characterization of a Cytokinin Response Factor in Arabidopsis thaliana

    Ketelsen, Bernd

    2012-01-01

    The papers of this thesis are not available in Munin: 1. Bernd Ketelsen, Rainer Schwacke, Kirsten Krause and Karsten Fischer: 'Transcriptional activation by Cytokinin Response Factor 5 is governed by an acidic Cterminus containing two conserved domains' (manuscript) 2. Bernd Ketelsen, Stian Olsen, Kirsten Krause and Karsten Fischer: 'Cytokinin responsive factor 5 (CRF5) is involved in root development, hormonal crosstalk and sugar metabolism in Arabidopsis thaliana' (manuscript) 3. Bernd K...

  1. Modulation of energy homeostasis in maize and Arabidopsis to develop lines tolerant to drought, genotoxic and oxidative stresses

    Elizabeth Njuguna

    2018-02-01

    Full Text Available Abiotic stresses cause crop losses worldwide that reduce the average yield by more than 50%. Due to the high energy consumed to enhance the respiration rates, the excessive reactive oxygen species release provokes cell death and, ultimately, whole plant decay. A metabolic engineering approach in maize (Zea mays altered the expression of two poly(ADP-ribosylation metabolic pathway proteins, poly(ADP-ribose polymerase (PARP and ADP-ribose-specifIc Nudix hydrolase (NUDX genes that play a role in the maintenance of the energy homeostasis during stresses. By means of RNAi hairpin silencing and CRISPR/Cas9 gene editing strategies, the PARP expression in maize was downregulated or knocked down. The Arabidopsis NUDX7 gene and its two maize homologs, ZmNUDX2 and ZmNUDX8, were overexpressed in maize and Arabidopsis. Novel phenotypes were observed, such as significant tolerance to oxidative stress and improved yield in Arabidopsis and a trend of tolerance to mild drought stress in maize and in Arabidopsis. Key words: poly(ADP-ribose polymerase, Nudix hydrolase, CRISPR/Cas9, maize, oxidative stress, drought stress

  2. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  3. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  4. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba

    2003-01-01

    and contamination by other B12 binders. We tested the use of recombinant plants for large-scale production of pathogen-free human recombinant IF. Human IF was successfully expressed in the recombinant plant Arabidopsis thaliana. Extract from fresh plants possessed high B12-binding capacity corresponding to 70 mg...... to recombinant IF and gastric IF were alike, as was the interaction of recombinant and native IF with the specific receptor cubilin. The data presented show that recombinant plants have a great potential as a large-scale source of human IF for analytical and therapeutic purposes.......Intrinsic factor (IF) is the gastric protein that promotes the intestinal uptake of vitamin B12. Gastric IF from animal sources is used in diagnostic tests and in vitamin pills. However, administration of animal IF to humans becomes disadvantageous because of possible pathogenic transmission...

  5. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba

    2003-01-01

    and contamination by other B12 binders. We tested the use of recombinant plants for large-scale production of pathogen-free human recombinant IF. Human IF was successfully expressed in the recombinant plant Arabidopsis thaliana. Extract from fresh plants possessed high B12-binding capacity corresponding to 70 mg......Intrinsic factor (IF) is the gastric protein that promotes the intestinal uptake of vitamin B12. Gastric IF from animal sources is used in diagnostic tests and in vitamin pills. However, administration of animal IF to humans becomes disadvantageous because of possible pathogenic transmission...... IF per 1 kg wet weight. The dried plants still retained 60% of the IF activity. The purified IF preparation consisted of a 50-kDa glycosylated protein with the N-terminal sequence of mature IF. Approximately one-third of the protein was cleaved at the internal site em leader PSNP downward arrow GPGP...

  6. Arabidopsis Chromatin Assembly Factor 1 is required for occupancy and position of a subset of nucleosomes

    Munoz-Viana, R.; Wildhaber, T.; Trejo-Arellano, M.S.; Mozgová, Iva; Hennig, L.

    2017-01-01

    Roč. 92, č. 3 (2017), s. 363-374 ISSN 0960-7412 Institutional support: RVO:61388971 Keywords : Arabidopsis thaliana * chromatin * CAF-1 Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 5.901, year: 2016

  7. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana.

    Smet, De I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G.

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF)

  8. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  9. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  10. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  11. Reprogramming of metabolism by the Arabidopsis thaliana bZIP11 transcription factor

    Ma, J.

    2012-01-01

    The Arabidopsis bZIP11 transcription factor is known to regulate amino acid metabolism, and transcriptomic analysis suggests that bZIP11 has a broader regulatory effects in metabolism. Moreover, sucrose controls its translation via its uORF and all the available evidences point to the fact that

  12. Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis

    Poietti, S.; Bertini, L.; Ent, S. van der; Leon Reyes, H.A.; Pieterse, C.M.J.; Tucci, M.; Caporale, C.; Caruso, C.

    2011-01-01

    WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and

  13. JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

    Wu, A.; Devi Allu, A.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Amparo Asensi-Fabado, M.; Munne´ -Bosch, S.; Antonio, C.; Tohge, T.; Fernie, A.R.; Kaufmann, K.; Xue, G.P.; Mueller-Roeber, B.; Balazadeh, S.

    2012-01-01

    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1

  14. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis.

  15. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship.

    Chong, Anne; Malavasi, Fabio; Israel, Salomon; Khor, Chiea Chuen; Yap, Von Bing; Monakhov, Mikhail; Chew, Soo Hong; Lai, Poh San; Ebstein, Richard P

    2017-04-01

    Why some individuals seek social engagement while others shy away has profound implications for normal and pathological human behavior. Evidence suggests that oxytocin (OT), the paramount human social hormone, and CD38 that governs OT release, contribute to individual differences in social skills from intense social involvement to extreme avoidance that characterize autism. To explore the neurochemical underpinnings of sociality, CD38 expression of peripheral blood leukocytes (PBL) was measured in Han Chinese undergraduates. First, CD38 mRNA levels were correlated with lower Autism Quotient (AQ), indicating enhanced social skills. AQ assesses the extent of autistic-like traits including the propensity and dexterity needed for successful social engagement in the general population. Second, three CD157 eQTL SNPs in the CD38/CD157 gene region were associated with CD38 expression. CD157 is a paralogue of CD38 and is contiguous with it on chromosome 4p15. Third, association was also observed between the CD157 eQTL SNPs, CD38 expression and AQ. In the full model, CD38 expression and CD157 eQTL SNPs altogether account for a substantial 14% of the variance in sociality. Fourth, functionality of CD157 eQTL SNPs was suggested by a significant association with plasma oxytocin immunoreactivity products. Fifth, the ecological validity of these findings was demonstrated with subjects with higher PBL CD38 expression having more friends, especially for males. Furthermore, CD157 sequence variation predicts scores on the Friendship questionnaire. To summarize, this study by uniquely leveraging various measures reveals salient elements contributing to nonkin sociality and friendship, revealing a likely pathway underpinning the transition from normality to psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses

    Jungmichel, S.; Rosenthal, F.; Altmeyer, M.

    2013-01-01

    . Nuclear proteins encompassing nucleic acid binding properties are prominently PARylated upon genotoxic stress, consistent with the nuclear localization of ARTD1/PARP1 and ARTD2/PARP2. Distinct differences in proteins becoming PARylated upon various genotoxic insults are observed, exemplified...

  17. DEWAX Transcription Factor Is Involved in Resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa

    Seulgi Ju

    2017-07-01

    Full Text Available The cuticle of land plants is the first physical barrier to protect their aerial parts from biotic and abiotic stresses. DEWAX, an AP2/ERF-type transcription factor, negatively regulates cuticular wax biosynthesis. In this study, we investigated the resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa overexpressing DEWAX and in Arabidopsis dewax mutant. Compared to wild type (WT leaves, Arabidopsis DEWAX OX and dewax leaves were more and less permeable to toluidine blue dye, respectively. The ROS levels increased in DEWAX OX leaves, but decreased in dewax relative to WT leaves. Compared to WT, DEWAX OX was more resistant, while dewax was more sensitive to B. cinerea; however, defense responses to Pseudomonas syringae pv. tomato DC3000:GFP were inversely modulated. Microarray and RT-PCR analyses indicated that the expression of defense-related genes was upregulated in DEWAX OX, but downregulated in dewax relative to WT. Transactivation assay showed that DEWAX upregulated the expression of PDF1.2a, IGMT1, and PRX37. Chromatin immunoprecipitation assay revealed that DEWAX directly interacts with the GCC-box motifs of PDF1.2a promoter. In addition, ectopic expression of DEWAX increased the tolerance to B. cinerea in C. sativa. Taken together, we suggest that increased ROS accumulation and DEWAX-mediated upregulation of defense-related genes are closely associated with enhanced resistance to B. cinerea in Arabidopsis and C. sativa.

  18. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  19. Poly(ADP-ribose polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

    Dan Huang

    Full Text Available BACKGROUND: Transforming growth factor type-β (TGF-β/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose polymerase 1 (PARP1, a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB or N-(6-oxo-5,6-dihydrophenanthridin-2-yl-2-(N,N-dimethylaminoacetami (PJ34, or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosylation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosylation enhanced Smad-Smad binding element (SBE complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.

  20. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development

    Nordström, A.; Tarkowski, Petr; Tarkowská, Danuše; Norbaek, R.; Astot, C.; Doležal, Karel; Sandberg, G.

    2004-01-01

    Roč. 101, č. 21 (2004), s. 8039-8044 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z5038910 Keywords : Arabidopsis * auxin * cytokinin * biosynthesis Subject RIV: EF - Botanics Impact factor: 10.452, year: 2004

  1. Role of WRKY Transcription Factors in Arabidopsis Development and Stress Responses

    Li, Jing

    2014-01-01

    It has been well established that environmentally induced alterations in gene expression are mediated by transcription factors (TFs). One of the important plant-specific TF groups is the WRKY (TFs containing a highly conserved WRKY domain) family, which is involved in regulation of various physiological programs including biotic and abiotic defenses, senescence and trichome development. Two members of WRKY group III in Arabidopsis thaliana, WRKY54 and WRKY70, are demonstrated in this study to...

  2. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  3. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  4. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  5. Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana.

    Morikawa, Kazuya; Shiina, Takashi; Murakami, Shinya; Toyoshima, Yoshinori

    2002-03-13

    Sigma factor binding proteins are involved in modifying the promoter preferences of the RNA polymerase in bacteria. We found the nuclear encoded protein (SibI) that is transported into chloroplasts and interacts specifically with the region 4 of Sig1 in Arabidopsis. SibI and its homologue, T3K9.5 are novel proteins, which are not homologous to any protein of known function. The expression of sibI was tissue specific, light dependent, and developmentally timed. We suggest the transcriptional regulation by sigma factor binding proteins to function in the plastids of higher plant.

  6. Role of chromatin factors in Arabidopsis root stem cell maintenance

    Kornet, N.G.

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique

  7. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba

    2003-01-01

    Intrinsic factor (IF) is the gastric protein that promotes the intestinal uptake of vitamin B12. Gastric IF from animal sources is used in diagnostic tests and in vitamin pills. However, administration of animal IF to humans becomes disadvantageous because of possible pathogenic transmission...

  8. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling.

    Schluttenhofer, Craig; Pattanaik, Sitakanta; Patra, Barunava; Yuan, Ling

    2014-06-20

    To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment

  9. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  10. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  11. Protein intrinsic disorder in Arabidopsis NAC transcription factors

    O'Shea, Charlotte; Jensen, Mikael Kryger; Stender, Emil G.P.

    2015-01-01

    of differences in binding mechanisms. Although substitution of both hydrophobic and acidic residues of the ANAC046 MoRF region abolished binding, substitution of other residues, even with α-helix-breaking proline, was less disruptive. Together, the biophysical analyses suggest that RCD1-ANAC046 complex formation......Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis...

  12. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  13. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  14. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.

    Lotkowska, Magda E; Tohge, Takayuki; Fernie, Alisdair R; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-11-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  16. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  17. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains

    Anders, Nadine; Nielsen, Michael M.; Keicher, Jutta

    2008-01-01

    vesicle formation by activating ARF GTPases on specific membranes in animals, plants, and fungi. However, apart from the catalytic exchange activity of the SEC7 domain, the functional significance of other conserved domains is virtually unknown. Here, we show that a distinct N-terminal domain of GNOM......The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate...... mediates dimerization and in addition interacts heterotypically with two other conserved domains in vivo. In contrast with N-terminal dimerization, the heterotypic interaction is essential for GNOM function, as mutations abolishing this interaction inactivate the GNOM protein and compromise its membrane...

  19. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  20. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.

    Qiu, Jian; Sun, Shuquan; Luo, Shiqiao; Zhang, Jichuan; Xiao, Xianzhou; Zhang, Liqun; Wang, Feng; Liu, Shizhong

    2014-04-01

    This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.

  1. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  2. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana

    Li Maofu

    2016-01-01

    Full Text Available Flowering time is usually regulated by many environmental factors and endogenous signals. TGA family members are bZIP transcription factors that bind to the octopine synthase element, which has been closely linked to defense/stress responses. Most TGA factors interact with non-expressor of PR1 (NPR1 and plant defense responses are strengthened by this interaction. TGA1and TGA4factors bind to NPR1 only in salicylic acid (SA-induced leaves, suggesting that TGA4 has another function during plant development. Here, we isolated a bZIP transcription factor gene, TGA4, from Capsella rubella. TGA4transcripts were detected in most tissues, with high expression in leaves, low expression in stems and flowering buds, and undetectable in siliques. CruTGA4was over expressed in Arabidopsis thaliana wild typeCol-0 plants. Flowering time and total leaf number in the transgenic plants showed that overexpression of CruTGA4could delay flowering in A. thaliana. Our findings suggest that TGA4 may act as flowering regulator that controls plant flowering.

  3. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  4. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Expression of the Arabidopsis Sigma Factor SIG5 Is Photoreceptor and Photosynthesis Controlled

    Marina Mellenthin

    2014-08-01

    Full Text Available Two collections of Arabidopsis GAL4 enhancer trap lines were screened for light-intensity dependent reporter gene activation. Line N9313 was isolated for its strong light-intensity regulation. The T-DNA element trapped distant enhancers of the SIG5 promoter, which drives expression of a sigma factor involved in regulation of chloroplast genes for photosystem II core proteins. The T-DNA insertion 715 bp upstream of the transcription initiation site splits the promoter in a distal and proximal part. Both parts are sensitive to blue and red light and depend on photosynthetic electron transport activity between photosystem II and the plastoquinone pool. The mainblue-light sensitivity is localized within a 196-bp sequence (–887 to –691 bp in the proximal promoter region It is preferentially CRY1 and PHYB controlled. Type-I and type-II phytochromes mediate red-light sensitivity via various promoter elements spread over the proximal and distal upstream region. This work characterizes SIG5 as an anterograde control factor of chloroplast gene expression, which is controlled by chloroplast signals in a retrograde manner.

  6. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

    Giuntoli, Beatrice; Shukla, Vinay; Maggiorelli, Federica; Giorgi, Federico M; Lombardi, Lara; Perata, Pierdomenico; Licausi, Francesco

    2017-10-01

    The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions. © 2017 John Wiley & Sons Ltd.

  7. Unraveling the WRKY transcription factors network in Arabidopsis Thaliana by integrative approach

    Mouna Choura

    2015-06-01

    Full Text Available The WRKY transcription factors superfamily are involved in diverse biological processes in plants including response to biotic and abiotic stresses and plant immunity. Protein-protein interaction network is a useful approach for understanding these complex processes. The availability of Arabidopsis Thaliana interactome offers a good opportunity to do get a global view of protein network. In this work, we have constructed the WRKY transcription factor network by combining different sources of evidence and we characterized its topological features using computational tools. We found that WRKY network is a hub-based network involving multifunctional proteins denoted as hubs such as WRKY 70, WRKY40, WRKY 53, WRKY 60, WRKY 33 and WRKY 51. Functional annotation showed seven functional modules particularly involved in biotic stress and defense responses. Furthermore, the gene ontology and pathway enrichment analysis revealed that WRKY proteins are mainly involved in plant-pathogen interaction pathways and their functions are directly related to the stress response and immune system process.

  8. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  9. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  11. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  12. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  13. Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci

    Magdalena J. Mazur

    2017-11-01

    Full Text Available In Arabidopsis more than 400 proteins have been identified as SUMO targets, both in vivo and in vitro. Among others, transcription factors (TFs are common targets for SUMO conjugation. Here we aimed to exhaustively screen for TFs that interact with the SUMO machinery using an arrayed yeast two-hybrid library containing more than 1,100 TFs. We identified 76 interactors that foremost interact with the SUMO conjugation enzyme SCE1 and/or the SUMO E3 ligase SIZ1. These interactors belong to various TF families, which control a wide range of processes in plant development and stress signaling. Amongst these interactors, the TCP family was overrepresented with several TCPs interacting with different proteins of the SUMO conjugation cycle. For a subset of these TCPs we confirmed that the catalytic site of SCE1 is essential for this interaction. In agreement, TCP1, TCP3, TCP8, TCP14, and TCP15 were readily SUMO modified in an E. coli sumoylation assay. Strikingly, these TCP-SCE1 interactions were found to redistribute these TCPs into nuclear foci/speckles, suggesting that these TCP foci represent sites for SUMO (conjugation activity.

  14. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  15. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  17. The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis.

    Roth, Ohad; Alvarez, John; Levy, Matan; Bowman, John L; Ori, Naomi; Shani, Eilon

    2018-05-09

    Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of flower meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is a well-characterized regulator of shoot apical meristem maintenance. Arabidopsis thaliana stm loss-of-function mutants arrest shortly after germination, and therefore the knowledge on later roles of STM in later processes, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing STM in the APETALA1 (AP1) expression domain in the ap1-4 mutant background resulted in a leafy-flower phenotype, and an intermediate stm-2 allele enhanced the flower meristem identity phenotype of ap1-4. Transcriptional profiling of STM perturbation suggested that STM activity affects multiple floral fate genes, among them the F-Box protein-encoding gene UNUSUAL FLORAL ORGANS (UFO). In agreement with this notion, stm-2 enhanced the ufo-2 floral fate phenotype, and ectopic UFO expression rescued the leafy flowers in genetic backgrounds with compromised AP1 and STM activities. This work suggests a genetic mechanism that underlies the activity of STM in the specification of flower meristem identity. © 2018 American Society of Plant Biologists. All rights reserved.

  18. Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis.

    Man Liu

    Full Text Available The ability to integrate environmental and developmental signals with physiological responses is critical for plant survival. How this integration is done, particularly through posttranscriptional control of gene expression, is poorly understood. Previously, it was found that the 30 kD subunit of Arabidopsis cleavage and polyadenylation specificity factor (AtCPSF30 is a calmodulin-regulated RNA-binding protein. Here we demonstrated that mutant plants (oxt6 deficient in AtCPSF30 possess a novel range of phenotypes--reduced fertility, reduced lateral root formation, and altered sensitivities to oxidative stress and a number of plant hormones (auxin, cytokinin, gibberellic acid, and ACC. While the wild-type AtCPSF30 (C30G was able to restore normal growth and responses, a mutant AtCPSF30 protein incapable of interacting with calmodulin (C30GM could only restore wild-type fertility and responses to oxidative stress and ACC. Thus, the interaction with calmodulin is important for part of AtCPSF30 functions in the plant. Global poly(A site analysis showed that the C30G and C30GM proteins can restore wild-type poly(A site choice to the oxt6 mutant. Genes associated with hormone metabolism and auxin responses are also affected by the oxt6 mutation. Moreover, 19 genes that are linked with calmodulin-dependent CPSF30 functions, were identified through genome-wide expression analysis. These data, in conjunction with previous results from the analysis of the oxt6 mutant, indicate that the polyadenylation factor AtCPSF30 is a regulatory hub where different signaling cues are transduced, presumably via differential mRNA 3' end formation or alternative polyadenylation, into specified phenotypic outcomes. Our results suggest a novel function of a polyadenylation factor in environmental and developmental signal integration.

  19. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  20. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes

    Zi-Yu Li; Bin Li; Ai-Wu Dong

    2012-01-01

    Plant cells frequently undergo endoreduplication,a modified cell cycle in which genome is repeatedly replicated without cytokinesis.As the key step to achieve final size and function for cells,endoreduplication is prevalent during plant development.However,mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood.Here,we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes,as well as in rapidly dividing and vascular tissues.Expression of AtTCP15SRDX,AtTCP15 fused with a SRDX repressor domain,induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis.On the contrary,overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells.Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation.AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes,which play key roles in endoreduplication.Taken together,AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  1. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  3. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.

    Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3- and ABI3-ß, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-ß transcript

  4. Factors modifying 3-aminobenzamide cytotoxicity in normal and repair-deficient human fibroblasts

    Boorstein, R.J.; Pardee, A.B.

    1984-01-01

    3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribosylation), is lethal to human fibroblasts with damaged DNA. Its cytotoxicity was determined relative to a number of factors including the types of lesions, the kinetics of repair, and the availability of alternative repair systems. A variety of alkylating agent, UV or gamma irradiation, or antimetabolites were used to create DNA lesions. 3-AB enhanced lethality with monofunctional alkylating agents only. Within this class of compounds, methylmethanesulfonate (MMS) treatments made cells more sensitive to 3-AB than did treatment with methylnitrosourea (MNU) or methylnitronitrosoguanidine (MNNG). 3-AB interfered with a dynamic repair process lasting several days, since human fibroblasts remained sensitive to 3-AB for 36-48 hours following MMS treatment. During this same interval 3-AB caused these cells to arrest in G 2 phase. Alkaline elution analysis also revealed that this slow repair was delayed further by 3-AB. Human mutant cell defective in DNA repair differed in their responses to 3-AB. Greater lethality with 3-AB could be dependent on inability of the mutant cells to repair damage by other processes

  5. The polyadenylation factor subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A key factor of programmed cell death and a regulator of immunity in arabidopsis

    Bruggeman, Quentin

    2014-04-04

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. Indeed, incompatible plant-pathogen interactions are well known to induce the hypersensitive response, a localized cell death. Mutational analyses have identified several key PCD components, and we recently identified the mips1 mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for the key enzyme catalyzing the limiting step of myoinositol synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD by screening for mutants that display transcriptomic profiles opposing that of the mips1 mutant. Our screen identified the oxt6 mutant, which has been described previously as being tolerant to oxidative stress. In the oxt6 mutant, a transfer DNA is inserted in the CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30) gene, which encodes a polyadenylation factor subunit homolog. We show that CPSF30 is required for lesion formation in mips1 via SA-dependent signaling, that the prodeath function of CPSF30 is not mediated by changes in the glutathione status, and that CPSF30 activity is required for Pseudomonas syringae resistance. We also show that the oxt6 mutation suppresses cell death in other lesion-mimic mutants, including lesion-simulating disease1, mitogen-activated protein kinase4, constitutive expressor of pathogenesis-related genes5, and catalase2, suggesting that CPSF30 and, thus, the control of messenger RNA 3′ end processing, through the regulation of SA production, is a key component of plant immune responses. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.

    Yu, Lin-Hui; Wu, Jie; Zhang, Zi-Sheng; Miao, Zi-Qing; Zhao, Ping-Xia; Wang, Zhen; Xiang, Cheng-Bin

    2017-06-05

    Seed germination is a crucial checkpoint for plant survival under unfavorable environmental conditions. Abscisic acid (ABA) signaling plays a vital role in integrating environmental information to regulate seed germination. It has been well known that MCM1/AGAMOUS/DEFICIENS/SRF (MADS)-box transcription factors are key regulators of seed and flower development in Arabidopsis. However, little is known about their functions in seed germination. Here we report that MADS-box transcription factor AGL21 is a negative regulator of seed germination and post-germination growth by controlling the expression of ABA-INSENSITIVE 5 (ABI5) in Arabidopsis. The AGL21-overexpressing plants were hypersensitive to ABA, salt, and osmotic stresses during seed germination and early post-germination growth, whereas agl21 mutants were less sensitive. We found that AGL21 positively regulated ABI5 expression in seeds. Consistently, genetic analyses showed that AGL21 is epistatic to ABI5 in controlling seed germination. Chromatin immunoprecipitation assays further demonstrated that AGL21 could directly bind to the ABI5 promoter in plant cells. Moreover, we found that AGL21 responded to multiple environmental stresses and plant hormones during seed germination. Taken together, our results suggest that AGL21 acts as a surveillance integrator that incorporates environmental cues and endogenous hormonal signals into ABA signaling to regulate seed germination and early post-germination growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  7. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 → S transition

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1 → S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 → S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 → S arrest is discussed.

  8. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  9. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  10. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    De Lean, A.; Cantin, M.

    1986-01-01

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levels of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with [ 32 P] NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production

  11. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis.

    Li, Zhongfei; Li, Bin; Liu, Jian; Guo, Zhihao; Liu, Yuhao; Li, Yan; Shen, Wen-Hui; Huang, Ying; Huang, Hai; Zhang, Yijing; Dong, Aiwu

    2016-12-01

    Polycomb group proteins are important repressors of numerous genes in higher eukaryotes. However, the mechanism by which Polycomb group proteins are recruited to specific genes is poorly understood. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), also known as TERMINAL FLOWER 2, was originally proposed as a subunit of polycomb repressive complex 1 (PRC1) that could bind the tri-methylated lysine 27 of histone H3 (H3K27me3) established by the PRC2. In this work, we show that LHP1 mainly functions with PRC2 to establish H3K27me3, but not with PRC1 to catalyze monoubiquitination at lysine 119 of histone H2A. Our results show that complexes of the transcription factors ASYMMETRIC LEAVES 1 (AS1) and AS2 could help to establish the H3K27me3 modification at the chromatin regions of Class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS and KNAT2 via direct interactions with LHP1. Additionally, our transcriptome analysis indicated that there are probably more common target genes of AS1 and LHP1 besides Class-I KNOX genes during leaf development in Arabidopsis. © 2016 Institute of Botany, Chinese Academy of Sciences.

  12. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  13. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei

    Lorkovic, Zdravko J.; Hilscher, Julia; Barta, Andrea

    2008-01-01

    SR proteins are multidomain splicing factors which are important for spliceosome assembly and for regulation of alternative splicing. In mammalian nuclei these proteins localise to speckles from where they are recruited to transcription sites. By using fluorescent protein fusion technology and different experimental approaches it has been shown that Arabidopsis SR proteins, in addition to diffuse nucleoplasmic staining, localise into an irregular nucleoplasmic network resembling speckles in mammalian cells. As Arabidopsis SR proteins fall into seven conserved sub-families we investigated co-localisation of members of the different sub-families in transiently transformed tobacco protoplast. Here we demonstrate the new finding that members of different SR protein sub-families localise into distinct populations of nuclear speckles with no, partial or complete co-localisation. This is particularly interesting as we also show that these proteins do interact in a yeast two-hybrid assay as well as in pull-down and in co-immunopreciptiation assays. Our data raise the interesting possibility that SR proteins are partitioned into distinct populations of nuclear speckles to allow a more specific recruitment to the transcription/pre-mRNA processing sites of particular genes depending on cell type and developmental stage

  14. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response

    Tajima, Hiromi; Iwata, Yuji; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2008-01-01

    Among 75 bZIP transcription factors identified in Arabidopsis, 3 (AtbZIP17, AtbZIP28, and AtbZIP49) possess a putative transmembrane domain (TMD) in addition to AtbZIP60, which was characterized previously. In the present study, cDNAs of AtbZIP17 and AtbZIP28 were isolated. Truncated forms of AtbZIP17 and AtbZIP28 lacking the C-terminal domain including TMD were examined as putative active forms. One of them, AtbZIP28ΔC, activated BiP1 and BiP3 promoters through the cis-elements P-UPRE and ERSE responsible for the ER stress response. Subsequently, a fusion protein of green fluorescent protein (GFP) and AtbZIP28 was expressed in Arabidopsis cultured cells. Under non-stress conditions, GFP fluorescence localization almost overlapped with an ER marker; however, tunicamycin and dithiothreitol treatment clearly increased GFP fluorescence in the nucleus suggesting that the N-terminal fragment of AtbZIP28 translocates to the nucleus in response to ER stress

  15. Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (sbp) transcription factor family in gossypium raimondii and arabidopsis thaliana

    Ali, M.A.; Alia, K.B.; Atif, R.M.; Rasulj, I.; Nadeem, H.U.; Shahid, A.; Azeem, F

    2017-01-01

    SQUAMOSA-Promoter Binding Proteins (SBP) are class of transcription factors that play vital role in regulation of plant tissue growth and development. The genes encoding these proteins have not yet been identified in diploid cotton. Thus here, a comprehensive genome wide analysis of SBP genes/proteins was carried out to identify the genes encoding SBP proteins in Gossypium raimondii and Arabidopsis thaliana. We identified 17 SBP genes from Arabidopsis thaliana genome and 30 SBP genes from Gossypium raimondii. Chromosome localization studies revealed the uneven distribution of SBP encoding genes both in the genomes of A. thaliana and G. raimondii. In cotton, five SBP genes were located on chromosome no. 2, while no gene was found on chromosome 9. In A. thaliana, maximum seven SBP genes were identified on chromosome 9, while chromosome 4 did not have any SBP gene. Thus, the SBP gene family might have expanded as a result of segmental as well as tandem duplications in these species. The comparative phylogenetic analysis of Arabidopsis and cotton SBPs revealed the presence of eight groups. The gene structure analysis of SBP encoding genes revealed the presence of one to eleven inrons in both Arabidopsis and G. raimondii. The proteins sharing the same phyletic group mostly demonstrated the similar intron-exon occurrence pattern; and share the common conserved domains. The SBP DNA-binding domain shared 24 absolutely conserved residues in Arabidopsis. The present study can serve as a base for the functional characterization of SBP gene family in Gossypium raimondii. (author)

  16. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Xiaoping eWang

    2015-11-01

    Full Text Available Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene Response Factors (ERFs are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97 and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay results indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  17. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas.

    De-La-Peña, Clelia; Rangel-Cano, Alicia; Alvarez-Venegas, Raúl

    2012-05-01

    Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  18. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim

    2010-05-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.

  19. SIDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis

    Hichri, I.; Muhovski, Y.; Clippe, A.; Žižková, Eva; Dobrev, Petre; Motyka, Václav; Lutts, S.

    2016-01-01

    Roč. 39, č. 1 (2016), s. 62-79 ISSN 0140-7791 R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Solanum lycopersicum * DREB2 Subject RIV: EF - Botanics Impact factor: 6.173, year: 2016

  20. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae

    Onkokesung, N.; Reichelt, M.; Doorn, van A.; Schuurink, R.C.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin

  1. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms

    Park, Hyo-Young

    2017-04-21

    The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion. The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3\\' splice site during early spliceosome assembly. We have determined the subcellular localization and movement of these proteins\\' Arabidopsis homologs. It was found that Arabidopsis U2AF65 homologs, AtU2AF65a, and AtU2AF65b proteins interact with AtU2AF35a and AtU2AF35b, which are Arabidopsis U2AF35 homologs. We have examined the mobility of these proteins including AtSF1 using fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses. These proteins displayed dynamic movements in nuclei and their movements were affected by ATP depletion. We have also demonstrated that these proteins shuttle between nuclei and cytoplasms, suggesting that they may also function in cytoplasm. These results indicate that such splicing factors show very similar characteristics to their human counterparts, suggesting evolutionary conservation.

  2. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms

    Park, Hyo-Young; Lee, Keh Chien; Jang, Yun Hee; Kim, SoonKap; Thu, May Phyo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2017-01-01

    The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion. The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. We have determined the subcellular localization and movement of these proteins' Arabidopsis homologs. It was found that Arabidopsis U2AF65 homologs, AtU2AF65a, and AtU2AF65b proteins interact with AtU2AF35a and AtU2AF35b, which are Arabidopsis U2AF35 homologs. We have examined the mobility of these proteins including AtSF1 using fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses. These proteins displayed dynamic movements in nuclei and their movements were affected by ATP depletion. We have also demonstrated that these proteins shuttle between nuclei and cytoplasms, suggesting that they may also function in cytoplasm. These results indicate that such splicing factors show very similar characteristics to their human counterparts, suggesting evolutionary conservation.

  3. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling

    Jensen, Michael K; Kjaersgaard, Trine; Nielsen, Michael M.

    2010-01-01

    -termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show......TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators...... of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C...

  4. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

    Meyer, Heather M; Teles, José; Formosa-Jordan, Pau; Refahi, Yassin; San-Bento, Rita; Ingram, Gwyneth; Jönsson, Henrik; Locke, James C W; Roeder, Adrienne H K

    2017-01-01

    Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process. DOI: http://dx.doi.org/10.7554/eLife.19131.001 PMID:28145865

  5. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  6. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    Haishun Cao

    2017-11-01

    Full Text Available Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA treatment. Furthermore, the ectopic expression (EE of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops.

  7. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  8. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    Nora Gutsche

    Full Text Available The Arabidopsis TGA transcription factor (TF PERIANTHIA (PAN regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG, which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly

  9. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family.

    Weber, Henriette; Hellmann, Hanjo

    2009-11-01

    In Arabidopsis thaliana, the BTB/POZ-MATH (BPM) proteins comprise a small family of six members. They have been described previously to use their broad complex, tram track, bric-a-brac/POX virus and zinc finger (BTB/POZ) domain to assemble with CUL3a and CUL3b and potentially to serve as substrate adaptors to cullin-based E3-ligases in plants. In this article, we show that BPMs can also assemble with members of the ethylene response factor/Apetala2 transcription factor family, and that this is mediated by their meprin and TRAF (tumor necrosis factor receptor-associated factor) homology (MATH) domain. In addition, we provide a detailed description of BPM gene expression patterns in different tissues and on abiotic stress treatments, as well as their subcellular localization. This work connects, for the first time, BPM proteins with ethylene response factor/Apetala2 family members, which is likely to represent a novel regulatory mechanism of transcriptional control.

  10. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  11. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  12. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress

    Chen Zhixiang; Xiao Yong; Shi Junwei; Lai Zhibing; Chen Han; Xu Xinping

    2010-01-01

    Abstract Background WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed. Results We report that the three WRKYs are involved in plant responses to abscisic acid (ABA) and abiotic stress. Through analysis of single, double, and triple muta...

  13. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  14. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.

    Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-11-04

    NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and

  16. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  17. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory seq...

  18. Factors affecting UV-B-induced changes in Arabidopsis thaliana L. gene expression: The role of development, protective pigments and the chloroplast signal

    Jordan, B.R.; James, P.E.; Mackerness, S.A.H.

    1998-01-01

    Gene expression is known to change in response to UV-B radiation. In this paper, we have investigated three factors in Arabidopsis leaves that are likely to influence these changes: development, protective pigments and the 'chloroplast signal'. During late leaf development the major change in pigment composition, after exposure to UV-B radiation, is an increase in UV-absorbing pigments. Chl and Chl a/b ratio do not change substantially. Similarly Chl fluorescence is not altered. In contrast, RNA transcripts of photosynthetic proteins are reduced more in older leaves than in young leaves. To determine the role of flavonoids in UV-B protection, plants of Arabidopsis mutant tt-5, which have reduced flavonoids and sinapic esters, were exposed to UV-B and RNA transcript levels determined. The tt-mutants were more sensitive to UV-B radiation than wild-type. To examine the role of the chloroplast signal in regulating UV-B induced changes in gene expression, Arabidopsis gun mutants (genome uncoupled) have been used. The results show that UV-B-induced down-regulation still takes place in gun mutants and strongly suggests that the chloroplast signal is not required. Overall, this study clearly demonstrates that UV-B-induced changes in gene expression are influenced by both developmental and cellular factors but not chloroplastic factors

  19. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  20. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  1. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses.

    Duprat, Anne; Caranta, Carole; Revers, Frédéric; Menand, Benoît; Browning, Karen S; Robaglia, Christophe

    2002-12-01

    An Arabidopsis thaliana line bearing a transposon insertion in the gene coding for the isozyme form of the plant-specific cap-binding protein, eukaryotic initiation factor (iso) 4E (eIF (iso) 4E), has been isolated. This mutant line completely lacks both eIF(iso)4E mRNA and protein, but was found to have a phenotype and fertility indistinguishable from wild-type plants under standard laboratory conditions. In contrast, the amount of the related eIF4E protein was found to increase in seedling extracts. Furthermore, polysome analysis shows that the mRNA encoding eIF4E was being translated at increased levels. Given the known interaction between cap-binding proteins and potyviral genome-linked proteins (VPg), this plant line was challenged with two potyviruses, Turnip mosaic virus (TuMV) and Lettuce mosaic virus (LMV) and was found resistant to both, but not to the Nepovirus, Tomato black ring virus (TBRV) and the Cucumovirus, Cucumber mosaic virus (CMV). Together with previous data showing that the VPg-eIF4E interaction is necessary for virus infectivity and upregulates genome amplification, this shows that the eIF4E proteins are specifically recruited for the replication cycle of potyviruses.

  2. The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis

    Raines, T.; Shanks, C.; Cheng, C.Y.; McPherson, D.; Argueso, C.T.; Kim, H.J.; Franco-Zorrilla, J.M.; Lopez-Vidriero, I.; Solano, R.; Vaňková, Radomíra; Schaller, G.E.; Kieber, J.J.

    2016-01-01

    Roč. 85, č. 1 (2016), s. 134-147 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : cytokinin * two-component signaling * transcription factors Subject RIV: EF - Botanics Impact factor: 5.901, year: 2016

  3. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana.

    Bao, Wenqi; Wang, Xiaowei; Chen, Mo; Chai, Tuanyao; Wang, Hong

    2018-07-01

    PcWRKY33 is a transcription factor which can reduce salt tolerance by decreasing the expression of stress-related genes and increasing the cellular levels of reactive oxygen species (ROS). WRKY transcription factors play important roles in the regulation of biotic and abiotic stresses. Here, we report a group I WRKY gene from Polygonum cuspidatum, PcWRKY33, that encodes a nucleoprotein, which specifically binds to the W-box in the promoter of target genes to regulate their expression. The results from qPCR and promoter analysis show that expression of PcWRKY33 can be induced by various abiotic stresses, including NaCl and plant hormones. Overexpression of PcWRKY33 in Arabidopsis thaliana reduced tolerance to salt stress. More specifically, several physiological parameters (such as root length, seed germination rate, seedling survival rate, and chlorophyll concentration) of the transgenic lines were significantly lower than those of the wild type under salt stress. In addition, following exposure to salt stress, transgenic plants showed decreased expression of stress-related genes, a weakened ability to maintain Na + /K + homeostasis, decreased activities of reactive oxygen species- (ROS-) scavenging enzymes, and increased accumulation of ROS. Taken together, these results suggest that PcWRKY33 negatively regulates the salt tolerance in at least two ways: by down-regulating the induction of stress-related genes and by increasing the level of cellular ROS. In sum, our results indicate that PcWRKY33 is a group I WRKY transcription factor involved in abiotic stress regulation.

  4. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  5. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    Lizeth Núñez-López

    2015-03-01

    Full Text Available Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0, mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1, juvenile transition (SPL3-5 and meristematic identity (FUL, SOC1 but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production.

  6. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    Danisman, S.; Dijk, van A.D.J.; Bimbo, A.; Wal, van der F.; Hennig, L.; Folter, de S.; Angenent, G.C.; Immink, R.G.H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and ROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by

  7. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  8. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses

    Kashif Mahmood

    2016-10-01

    Full Text Available Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, high light and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX and positive regulatory (TT8 genes as demonstrated in overexpression line (35S:ANAC032 compared to wild-type under high light stress. The chimeric repressor line (35S:ANAC032-SRDX exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032 produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  9. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses.

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, José A; Rothstein, Steven J

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis ( DFR, ANS/LDOX) and positive regulatory ( TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9 . In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  10. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  11. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function.

    Lei, Rihua; Li, Xiaoli; Ma, Zhenbing; Lv, Yan; Hu, Yanru; Yu, Diqiu

    2017-09-01

    Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF.

    Elena García-Cano

    Full Text Available Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.

  13. Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors.

    Gabriel Castrillo

    Full Text Available Transcriptional regulation is an important mechanism underlying gene expression and has played a crucial role in evolution. The number, position and interactions between cis-elements and transcription factors (TFs determine the expression pattern of a gene. To identify functionally relevant cis-elements in gene promoters, a phylogenetic shadowing approach with a lipase gene (LIP1 was used. As a proof of concept, in silico analyses of several Brassicaceae LIP1 promoters identified a highly conserved sequence (LIP1 element that is sufficient to drive strong expression of a reporter gene in planta. A collection of ca. 1,200 Arabidopsis thaliana TF open reading frames (ORFs was arrayed in a 96-well format (RR library and a convenient mating based yeast one hybrid (Y1H screening procedure was established. We constructed an episomal plasmid (pTUY1H to clone the LIP1 element and used it as bait for Y1H screenings. A novel interaction with an HD-ZIP (AtML1 TF was identified and abolished by a 2 bp mutation in the LIP1 element. A role of this interaction in transcriptional regulation was confirmed in planta. In addition, we validated our strategy by reproducing the previously reported interaction between a MYB-CC (PHR1 TF, a central regulator of phosphate starvation responses, with a conserved promoter fragment (IPS1 element containing its cognate binding sequence. Finally, we established that the LIP1 and IPS1 elements were differentially bound by HD-ZIP and MYB-CC family members in agreement with their genetic redundancy in planta. In conclusion, combining in silico analyses of orthologous gene promoters with Y1H screening of the RR library represents a powerful approach to decipher cis- and trans-regulatory codes.

  14. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana.

    Wei Liu

    Full Text Available Iron (Fe deficiency is one of many conditions that can seriously damage crops. Low levels of photosynthesis can lead to the degradation of chlorophyll content and impaired respiration in affected plants, which together cause poor growth and reduce quality. Although ethylene plays an important role in responses to Fe deficiency, a limited number of studies have been carried out on ethylene response factor (ERFs as components of plant regulation mechanisms. Thus, this study aimed to investigate the role of AtERF4 in plant responses to Fe deficiency. Results collected when Arabidopsis thaliana was grown under Fe deficient conditions as well as in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC revealed that leaf chlorosis did not occur over short timescales and that chloroplast structural integrity was retained. At the same time, expression of the chlorophyll degradation-related genes AtPAO and AtCLH1 was inhibited and net H+ root flux was amplified. Our results show that chlorophyll content was enhanced in the mutant erf4, while expression of the chlorophyll degradation gene AtCLH1 was reduced. Ferric reductase activity in roots was also significantly higher in the mutant than in wild type plants, while erf4 caused high levels of expression of the genes AtIRT1 and AtHA2 under Fe deficient conditions. We also utilized yeast one-hybrid technology in this study to determine that AtERF4 binds directly to the AtCLH1 and AtITR1 promoter. Observations show that transient over-expression of AtERF4 resulted in rapid chlorophyll degradation in the leaves of Nicotiana tabacum and the up-regulation of gene AtCLH1 expression. In summary, AtERF4 plays an important role as a negative regulator of Fe deficiency responses, we hypothesize that AtERF4 may exert a balancing effect on plants subject to nutrition stress.

  15. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling

    Shahnejat-Bushehri, S.; Tarkowská, Danuše; Sakuraba, Y.; Balazadeh, S.

    2016-01-01

    Roč. 2, č. 3 (2016), č. článku 16013. ISSN 2055-026X R&D Projects: GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : gibberellins * brassinosteroids * signalling Subject RIV: EF - Botanics Impact factor: 10.300, year: 2016

  16. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  17. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  18. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.

    Bi, Chao; Ma, Yu; Wang, Xiao-Fang; Zhang, Da-Peng

    2017-11-01

    Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.

  19. Haploinsufficiency of the Sec7 guanine nucleotide exchange factor gea1 impairs septation in fission yeast.

    Alan M Eckler

    Full Text Available Membrane trafficking is essential to eukaryotic life and is controlled by a complex network of proteins that regulate movement of proteins and lipids between organelles. The GBF1/GEA family of Guanine nucleotide Exchange Factors (GEFs regulates trafficking between the endoplasmic reticulum and Golgi by catalyzing the exchange of GDP for GTP on ADP Ribosylation Factors (Arfs. Activated Arfs recruit coat protein complex 1 (COP-I to form vesicles that ferry cargo between these organelles. To further explore the function of the GBF1/GEA family, we have characterized a fission yeast mutant lacking one copy of the essential gene gea1 (gea1+/-, the Schizosaccharomyces pombe ortholog of GBF1. The haploinsufficient gea1+/- strain was shown to be sensitive to the GBF1 inhibitor brefeldin A (BFA and was rescued from BFA sensitivity by gea1p overexpression. No overt defects in localization of arf1p or arf6p were observed in gea1+/- cells, but the fission yeast homolog of the COP-I cargo sac1 was mislocalized, consistent with impaired COP-I trafficking. Although Golgi morphology appeared normal, a slight increase in vacuolar size was observed in the gea1+/- mutant strain. Importantly, gea1+/- cells exhibited dramatic cytokinesis-related defects, including disorganized contractile rings, an increased septation index, and alterations in septum morphology. Septation defects appear to result from altered secretion of enzymes required for septum dynamics, as decreased secretion of eng1p, a β-glucanase required for septum breakdown, was observed in gea1+/- cells, and overexpression of eng1p suppressed the increased septation phenotype. These observations implicate gea1 in regulation of septum breakdown and establish S. pombe as a model system to explore GBF1/GEA function in cytokinesis.

  20. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  2. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    Lee, Keh Chien

    2017-04-11

    The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3\\' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.

  3. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  4. [Identifying transcription factors involved in Arabidopsis adventious shoot regeneration by RNA-Seq technology].

    Wang, Xingchun; Chen, Zhao; Fan, Juan; He, Miaomiao; Han, Yuanhuai; Yang, Zhirong

    2015-04-01

    Transcriptional regulation is one of the major regulations in plant adventious shoot regeneration, but the exact mechanism remains unclear. In our study, the RNA-seq technology based on the IlluminaHiSeq 2000 sequencing platform was used to identify differentially expressed transcription factor (TF) encoding genes during callus formation stage and adventious shoot regeneration stage between wild type and adventious shoot formation defective mutant be1-3 and during the transition from dedifferentiation to redifferentiation stage in wildtype WS. Results show that 155 TFs were differentially expressed between be1-3 mutant and wild type during callus formation, of which 97 genes were up-regulated, and 58 genes were down-regulated; and that 68 genes were differentially expressed during redifferentiation stage, with 40 genes up-regulated and 28 genes down-regulated; whereas at the transition stage from dedifferentiation to redifferention in WS wild type explants, a total of 231 differentially expressed TF genes were identified, including 160 up-regualted genes and 71 down-regulated genes. Among these TF genes, the adventious shoot related transcription factor 1 (ART1) gene encoding a MYB-related (v-myb avian myeloblastosis viral oncogene homolog) TF, was up-regulated 3 217 folds, and was the highest up-regulated gene during be1-3 callus formation. Over expression of the ART1 gene caused defects in callus formation and shoot regeneration and inhibited seedling growth, indicating that the ART1 gene is a negative regulator of callus formation and shoot regeneration. This work not only enriches our knowledge about the transcriptional regulation mechanism of adventious shoot regeneration, but also provides valuable information on candidate TF genes associated with adventious shoot regeneration for future research.

  5. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy.

    Lee, Hong Gil; Lee, Kyounghee; Seo, Pil Joon

    2015-03-01

    Seed dormancy facilitates to endure environmental disadvantages by confining embryonic growth until the seeds encounter favorable environmental conditions for germination. Abscisic acid (ABA) and gibberellic acid (GA) play a pivotal role in the determination of the seed dormancy state. ABA establishes seed dormancy, while GA triggers seed germination. Here, we demonstrate that MYB96 contributes to the fine-tuning of seed dormancy regulation through the coordination of ABA and GA metabolism. The MYB96-deficient myb96-1 seeds germinated earlier than wild-type seeds, whereas delayed germination was observed in the activation-tagging myb96-1D seeds. The differences in germination rate disappeared after stratification or after-ripening. The MYB96 transcription factor positively regulates ABA biosynthesis genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2), NCED5, NCED6, and NCED9, and also affects GA biosynthetic genes GA3ox1 and GA20ox1. Notably, MYB96 directly binds to the promoters of NCED2 and NCED6, primarily modulating ABA biosynthesis, which subsequently influences GA metabolism. In agreement with this, hyperdormancy of myb96-1D seeds was recovered by an ABA biosynthesis inhibitor fluridone, while hypodormancy of myb96-1 seeds was suppressed by a GA biosynthesis inhibitor paclobutrazol (PAC). Taken together, the metabolic balance of ABA and GA underlies MYB96 control of primary seed dormancy.

  6. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.

    He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2016-05-23

    Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

  7. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  8. [MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress].

    Ding, Qing Qian; Wang, Xiao Ting; Hu, Li Qin; Qi, Xin; Ge, Lin Hao; Xu, Wei Ya; Xu, Zhao Shi; Zhou, Yong Bin; Jia, Guan Qing; Diao, Xian Min; Min, Dong Hong; Ma, You Zhi; Chen, Ming

    2018-04-20

    Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate

  9. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    Xu Fuyu

    2012-09-01

    Full Text Available Abstract Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa formed ten clusters of orthologous groups (COG with genes from the monocot sorghum (Sorghum bicolor and dicot Arabidopsis (Arabidopsis thaliana. The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in

  10. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature.

    Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia

    2012-01-27

    Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is

  11. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature

    Chiu Rex S

    2012-01-01

    Full Text Available Abstract Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3 is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying

  12. Application of HB17, an Arabidopsis class II homeodomain-leucine zipper transcription factor, to regulate chloroplast number and photosynthetic capacity.

    Hymus, Graham J; Cai, Suqin; Kohl, Elizabeth A; Holtan, Hans E; Marion, Colleen M; Tiwari, Shiv; Maszle, Don R; Lundgren, Marjorie R; Hong, Melissa C; Channa, Namitha; Loida, Paul; Thompson, Rebecca; Taylor, J Philip; Rice, Elena; Repetti, Peter P; Ratcliffe, Oliver J; Reuber, T Lynne; Creelman, Robert A

    2013-11-01

    Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.

  13. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  14. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Weiwei Guo

    Full Text Available Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  15. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  16. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Poly(ADP-ribosyl)ation as a fail-safe, transcription-independent, suicide mechanism in acutely DNA-damaged cells: a hypothesis

    Nagele, A.

    1995-01-01

    Poly(ADP-ribose) polymerase is an abundant nuclear protein that is higly conserved and consitutively expressed in all higher eukaryotic cells in investigated. Today, after about two decades of intensive research, we have a fairly comprehensive picture of its remarkable enzymatic functions and of its molecular structure. Its physiological role, however, remains controversial. The present hypothesis attempts to reconcile the different findings. By extending and earlier hypothesis, it is proposed that poly(ADP-ribosy)ation is primarily a mechanism to prevent survival of mutated, possibly apoptosis-incompetent, cells after acute DNA-damage. (orig.)

  18. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-01-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability

  19. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  20. Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis.

    Chen, Eryong; Zhang, Xueyan; Yang, Zhaoen; Wang, Xiaoqian; Yang, Zuoren; Zhang, Chaojun; Wu, Zhixia; Kong, Depei; Liu, Zhao; Zhao, Ge; Butt, Hamama Islam; Zhang, Xianlong; Li, Fuguang

    2017-06-01

    HD-ZIP IV proteins belong to the homeodomain-leucine zipper (HD-ZIP) transcription factor family and are involved in trichome development and drought stress in plants. Although some functions of the HD-ZIP IV group are well understood in Arabidopsis, little is known about their function in cotton. In this study, HD-ZIP genes were identified from three Gossypium species (G. arboreum, G. raimondii and G. hirsutum) and clustered into four families (HD-ZIP I, II, III and IV) to separate HD-ZIP IV from the other three families. Systematic analyses of phylogeny, gene structure, conserved domains, and expression profiles in different plant tissues and the expression patterns under osmotic stress in leaves were further conducted in G. arboreum. More importantly, ectopic overexpression of GaHDG11, a representative of the HD-ZIP IV family, confers enhanced osmotic tolerance in transgenic Arabidopsis plants, possibly due to elongated primary root length, lower water loss rates, high osmoprotectant proline levels, significant levels of antioxidants CAT, and/or SOD enzyme activity with reduced levels of MDA. Taken together, these observations may lay the foundation for future functional analysis of cotton HD-ZIP IV genes to unravel their biological roles in cotton.

  1. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  2. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  3. Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI.

    Růžička, Kamil; Zhang, Mi; Campilho, Ana; Bodi, Zsuzsanna; Kashif, Muhammad; Saleh, Mária; Eeckhout, Dominique; El-Showk, Sedeer; Li, Hongying; Zhong, Silin; De Jaeger, Geert; Mongan, Nigel P; Hejátko, Jan; Helariutta, Ykä; Fray, Rupert G

    2017-07-01

    N6-adenosine methylation (m 6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m 6 A writer proteins in Arabidopsis thaliana. The components required for m 6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m 6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m 6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m 6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  5. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  6. ARF6 Activated by the LHCG Receptor through the Cytohesin Family of Guanine Nucleotide Exchange Factors Mediates the Receptor Internalization and Signaling*

    Kanamarlapudi, Venkateswarlu; Thompson, Aiysha; Kelly, Eamonn; López Bernal, Andrés

    2012-01-01

    The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a Gs-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization. PMID:22523074

  7. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    Sarfstein, Rive; Belfiore, Antonino; Werner, Haim

    2010-01-01

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells

  8. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    Sarfstein, Rive [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Belfiore, Antonino [Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro 88100 (Italy); Werner, Haim, E-mail: hwerner@post.tau.ac.il [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-03-25

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells.

  9. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs.

    Hecker, Andreas; Brand, Luise H; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Harter, Klaus; Gaudin, Valérie; Wanke, Dierk

    2015-07-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus1[OPEN

    Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro

    2016-01-01

    Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1–ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus. PMID:26747284

  11. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  12. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis

    Gan Lijun

    2011-12-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors (single-repeat MYBs play important roles in controlling trichome patterning in Arabidopsis. It was proposed that single-repeat MYBs negatively regulate trichome formation by competing with GLABRA1 (GL1 for binding GLABRA3/ENHANCER OF GLABRA3 (GL3/EGL3, thus inhibiting the formation of activator complex TTG1(TRANSPARENT TESTA GLABRA1-GL3/EGL3-GL1 that is required for the activation of GLABRA2 (GL2, whose product is a positive regulator of trichome formation. Previously we identified a novel single-repeat MYB transcription factor, TRICHOMELESS1 (TCL1, which negatively regulates trichome formation on the inflorescence stems and pedicels by directly suppressing the expression of GL1. Results We analyzed here the role of TRICHOMELESS2 (TCL2, a previously-uncharacterized single-repeat MYB transcription factor in trichome patterning in Arabidopsis. We showed that TCL2 is closely related to TCL1, and like TCL1 and other single-repeat MYBs, TCL2 interacts with GL3. Overexpression of TCL2 conferred glabrous phenotype while knockdown of TCL2 via RNAi induced ectopic trichome formation on the inflorescence stems and pedicels, a phenotype that was previously observed in tcl1 mutants. These results suggested that TCL2 may have overlapping function with TCL1 in controlling trichome formation on inflorescences. On the other hand, although the transcription of TCL2, like TCL1, is not controlled by the activator complex formed by GL1 and GL3, and TCL2 and TCL1 proteins are more than 80% identical at the amino acid level, the expression of TCL2 under the control of TCL1 promoter only partially recovered the mutant phenotype of tcl1, implying that TCL2 and TCL1 are not fully functional equivalent. Conclusions TCL2 function redundantly with TCL1 in controlling trichome formation on inflorescences, but they are not fully functional equivalent. Transcription of TCL2 is not controlled by activator complex

  13. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain.

    Xue, Hui; Veit, Christiane; Abas, Lindy; Tryfona, Theodora; Maresch, Daniel; Ricardi, Martiniano M; Estevez, José Manuel; Strasser, Richard; Seifert, Georg J

    2017-08-01

    Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  14. Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity.

    Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June

    2016-05-01

    Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.

  15. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. DNA double-strand braks serve as a major factor for the expression of Arabidopsis Argonaute 2

    Lee, Sung Beom; Chung, Moon Soo; Lee, Gun Woong; Chung, Byung Yeoup [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-02-15

    Argonaute 2 (AtAGO2) is a well characterized effector protein in Arabidopsis for its functionalities associated with DNA double-strand break (DSB)-induced small RNAs (diRNAs) and for its inducible expression upon γ-irradiation. However, its transcriptional regulation depending on the recovery time after the irradiation and on the specific response to DSBs has been poorly understood. We analyzed the 1,313 bp promoter sequence of the AtAGO2 gene (1.3kb{sub pro}) to characterize the transcriptional regulation of AtAGO2 at various recovery times after γ-irradiation. A stable transformant harboring 1.3kbpro fused with GUS gene showed that the AtAGO2 is highly expressed in response to γ-irradiation, after which the expression of the gene is gradually decreased until 5 days of DNA damage recovery. We also confrm that the AtAGO2 expression patterns are similar to that of γ-irradiation after the treatments of radiomimetic genotoxins (bleomycin and zeocin). However, methyl methanesulfonate and mitomycin C, which are associated with the inhibition of DNA replication, do not induce the expression of the AtAGO2, suggesting that the expression of the AtAGO2 is closely related with DNA DSBs rather than DNA replication.

  17. Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants.

    Pashkovskiy, Pavel P; Kartashov, Alexander V; Zlobin, Ilya E; Pogosyan, Sergei I; Kuznetsov, Vladimir V

    2016-07-01

    The effect of blue LED (450 nm) on the photomorphogenesis of Arabidopsis thaliana Col-0 plants and the transcript levels of several genes, including miRNAs, photoreceptors and auxin response factors (ARF) was investigated. It was observed that blue light accelerated the generative development, reduced the rosette leaf number, significantly reduced the leaf area, dry biomass and led to the disruption of conductive tissue formation. The blue LED differentially influenced the transcript levels of several phytochromes (PHY a, b, c, d, and e), cryptochromes (CRY 1 and 2) and phototropins (PHOT 1 and 2). At the same time, the blue LED significantly increased miR167 expression compared to a fluorescent lamp or white LEDs. This increase likely resulted in the enhanced transcription of the auxin response factor genes ARF4 and ARF8, which are regulated by this miRNA. These findings support the hypothesis that the effects of blue light on A. thaliana are mediated by auxin signalling pathway involving miRNA-dependent regulation of ARF gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  19. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis.

    Hewezi, Tarek; Piya, Sarbottam; Richard, Geoffrey; Rice, J Hollis

    2014-09-01

    Plant-parasitic cyst nematodes induce the formation of a multinucleated feeding site in the infected root, termed the syncytium. Recent studies point to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription factors that mediate auxin transcriptional responses during syncytium formation is limited. Here, we provide a gene expression map of 22 auxin response factors (ARFs) during the initiation, formation and maintenance stages of the syncytium induced by the cyst nematode Heterodera schachtii in Arabidopsis. We observed distinct and overlapping expression patterns of ARFs throughout syncytium development phases. We identified a set of ARFs whose expression is predominantly located inside the developing syncytium, whereas others are expressed in the neighbouring cells, presumably to initiate specific transcriptional programmes required for their incorporation within the developing syncytium. Our analyses also point to a role of certain ARFs in determining the maximum size of the syncytium. In addition, several ARFs were found to be highly expressed in fully developed syncytia, suggesting a role in maintaining the functional phenotype of mature syncytia. The dynamic distribution and overlapping expression patterns of various ARFs seem to be essential characteristics of ARF activity during syncytium development. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  20. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  1. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases.

    Rudnik, Radoslaw; Bulcha, Jote Tafese; Reifschneider, Elena; Ellersiek, Ulrike; Baier, Margarete

    2017-08-23

    The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. The RAP2.4 transcription factors form an environmentally and

  2. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  3. The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.

    Kerchev, Pavel I; Pellny, Till K; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D; Foyer, Christine H

    2011-09-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.

  4. Translation initiation factor AteIF(iso4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings.

    Ana Valeria Martínez-Silva

    Full Text Available One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5'end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso4F complexes proposed to mediate selective translation. Using a microarray analysis of polyribosome- and non-polyribosome-purified mRNAs from 15 day-old Arabidopsis thaliana wild type [WT] and eIF(iso4E knockout mutant [(iso4E-1] seedlings we found 79 transcripts shifted from polyribosomes toward non-polyribosomes, and 47 mRNAs with the opposite behavior in the knockout mutant. The translationally decreased mRNAs were overrepresented in root-preferentially expressed genes and proteins from the endomembrane system, including several transporters such as the phosphate transporter PHOSPHATE1 (PHO1, Sucrose transporter 3 (SUC3, ABC transporter-like with ATPase activity (MRP11 and five electron transporters, as well as signal transduction-, protein modification- and transcription-related proteins. Under normal growth conditions, eIF(iso4E expression under the constitutive promoter 35 S enhanced the polyribosomal recruitment of PHO1 supporting its translational preference for eIF(iso4E. Furthermore, under phosphate deficiency, the PHO1 protein increased in the eIF(iso4E overexpressing plants and decreased in the knockout mutant as compared to wild type. In addition, the knockout mutant had larger root, whereas the 35 S directed expression of eIF(iso4E caused shorter root under normal growth conditions, but not under phosphate deficiency. These results indicate that selective translation mediated by eIF(iso4E is relevant for Arabidopsis root development under normal growth conditions.

  5. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  6. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  7. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    Pham Anh Tuan

    2014-08-01

    Full Text Available To improve the production of chlorogenic acid (CGA in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1 using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  8. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hyper-g, and to simulated and sounding rocket micro-g

    Hampp, R.; Babbick, M.

    Previous microarray studies with cell cultures of Arabidopsis thaliana cv Columbia have shown responses in gene expression which were partly specific to exposure to microgravity sounding rocket experiment TEXUS In order to get access to early responses upon changes in gravitational fields we used exposure times as short as 2 min For this purpose we selected a range of genes which code for different groups of transcription factors WRKY ERF MYB MADS Samples were taken in 5-min clinorotation 2- and 3-dimensional hypergravity 8g and 2-min intervals sounding rocket experiment Amounts of transcripts were determined by quantitative RT PCR Most transcripts showed a significant transient change in content within a time frame of up to 30 min after changing the external gravitational field strength They could be grouped into 1 basic stress responses which occurred under all conditions 2 clinorotation-related effects which were either identical or opposite between 2D 60 rpm 4x10 -2 g and 3D clinorotation random positioning machine and 3 alterations specific to the microgravity exposure under sounding rocket conditions MAXUS The data are discussed in relation to gravitation-dependent signalling chains and with regard to the simulation of microgravity by means of clinorotation Supported by a grant from the Deutsches Zentrum f u r Luft- und Raumfahrt e V grant no 50 WB 0143

  9. KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis

    Sawake, Shota [Saitama Univ. (Japan); Tajima, Noriaki [Saitama Univ. (Japan); Mortimer, Jenny C. [Univ. of Cambridge (United Kingdom); RIKEN Center for Sustainable Resource Science, Yokohama (Japan); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lao, Jeemeng [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Ishikawa, Toshiki [Saitama Univ. (Japan); Yu, Xiaolan [Univ. of Cambridge (United Kingdom); Yamanashi, Yukiko [Saitama Univ. (Japan); Yoshimi, Yoshihisa [Saitama Univ. (Japan); Kawai-Yamada, Maki [Saitama Univ. (Japan); Dupree, Paul [Saitama Univ. (Japan); Tsumuraya, Yoichi [Saitama Univ. (Japan); Kotake, Toshihisa [Saitama Univ. (Japan); Univ. of Cambridge (United Kingdom)

    2015-12-01

    Humans are unable to synthesize L-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.

  10. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. © 2014 Scandinavian Plant Physiology Society.

  11. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants.

    Cabello, Julieta V; Giacomelli, Jorge I; Gómez, María C; Chan, Raquel L

    2017-09-10

    Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom; members of subfamily I are known to be involved in abiotic stress responses. HaHB11 belongs to this subfamily and it was previously shown that it is able to confer improved yield and tolerance to flooding via a quiescent strategy. Here we show that HaHB11 expression is induced by ABA, NaCl and water deficit in sunflower seedlings and leaves. Arabidopsis transgenic plants expressing HaHB11, controlled either by its own promoter or by the constitutive 35S CaMV, presented rolled leaves and longer roots than WT when grown under standard conditions. In addition, these plants showed wider stems and more vascular bundles. To deal with drought, HaHB11 transgenic plants closed their stomata faster and lost less water than controls, triggering an enhanced tolerance to such stress condition and also to salinity stress. Concomitantly, ABA-synthesis and sensing related genes were differentially regulated in HaHB11 transgenic plants. Either under long-term salinity stress or mild drought stress, HaHB11 transgenic plants did not exhibit yield penalties. Moreover, alfalfa transgenic plants were generated which also showed enhanced drought tolerance. Altogether, the results indicated that HaHB11 was able to confer drought and salinity tolerance via a complex mechanism which involves morphological, physiological and molecular changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors

    Bang, Woo Young; Kim, Se Won; Jeong, In Sil; Koiwa, Hisashi; Bahk, Jeong Dong

    2008-01-01

    Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1

  13. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  14. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  15. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis.

    Shibai Li

    2016-01-01

    Full Text Available The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1 and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

  16. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana.

    Hauler, Aron; Jonietz, Christian; Stoll, Birgit; Stoll, Katrin; Braun, Hans-Peter; Binder, Stefan

    2013-05-01

    The 5' ends of many mitochondrial transcripts are generated post-transcriptionally. Recently, we identified three RNA PROCESSING FACTORs required for 5' end maturation of different mitochondrial mRNAs in Arabidopsis thaliana. All of these factors are pentatricopeptide repeat proteins (PPRPs), highly similar to RESTORERs OF FERTILTY (RF), that rescue male fertility in cytoplasmic male-sterile lines from different species. Therefore, we suggested a general role of these RF-like PPRPs in mitochondrial 5' processing. We now identified RNA PROCESSING FACTOR 5, a PPRP not classified as an RF-like protein, required for the efficient 5' maturation of the nad6 and atp9 mRNAs as well as 26S rRNA. The precursor molecules of these RNAs share conserved sequence elements, approximately ranging from positions -50 to +9 relative to mature 5' mRNA termini, suggesting these sequences to be at least part of the cis elements required for processing. The knockout of RPF5 has only a moderate influence on 5' processing of atp9 mRNA, whereas the generation of the mature nad6 mRNA and 26S rRNA is almost completely abolished in the mutant. The latter leads to a 50% decrease of total 26S rRNA species, resulting in an imbalance between the large rRNA and 18S rRNA. Despite these severe changes in RNA levels and in the proportion between the 26S and 18S rRNAs, mitochondrial protein levels appear to be unaltered in the mutant, whereas seed germination capacity is markedly reduced. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  17. Comparative analysis of drought resistance genes in Arabidopsis and rice

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  18. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  19. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  20. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    Liu, Zhi-Qiang; Yan, Lu; Wu, Zhen; Mei, Chao; Lu, Kai; Yu, Yong-Tao; Liang, Shan; Zhang, Xiao-Feng; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 a...

  1. A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana

    Jaške, K.; Mokroš, P.; Mozgová, I.; Fojtová, Miloslava; Fajkus, Jiří

    2013-01-01

    Roč. 122, č. 4 (2013), s. 285-293 ISSN 0009-5915 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:GA ČR(CZ) GAP501/11/0289 Institutional support: RVO:68081707 Keywords : FACTOR-I * GENOME INSTABILITY * MOLECULAR ANALYSIS Subject RIV: BO - Biophysics Impact factor: 3.260, year: 2013

  2. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis

    Reňák, David; Dupľáková, Nikoleta; Honys, David

    2012-01-01

    Roč. 25, č. 1 (2012), s. 39-60 ISSN 0934-0882 R&D Projects: GA AV ČR KJB600380701; GA ČR GA522/09/0858; GA MŠk(CZ) OC10054 Institutional research plan: CEZ:AV0Z50380511 Keywords : Male gametophyte * Transcription factor * T-DNA insertion line Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.070, year: 2012

  3. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease.

    Iwata, Yuji; Ashida, Makoto; Hasegawa, Chisa; Tabara, Kazuki; Mishiba, Kei-Ichiro; Koizumi, Nozomu

    2017-08-01

    The unfolded protein response (UPR) is a homeostatic cellular response conserved in eukaryotic cells to alleviate the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Arabidopsis bZIP28 is a membrane-bound transcription factor activated by proteolytic cleavage in response to ER stress, thereby releasing its cytosolic portion containing the bZIP domain from the membrane to translocate into the nucleus where it induces the transcription of genes encoding ER-resident molecular chaperones and folding enzymes. It has been widely recognized that the proteolytic activation of bZIP28 is mediated by the sequential cleavage of site-1 protease (S1P) and site-2 protease (S2P). In the present study we provide evidence that bZIP28 protein is cleaved by S2P, but not by S1P. We demonstrated that wild-type and s1p mutant plants produce the active, nuclear form of bZIP28 in response to the ER stress inducer tunicamycin. In contrast, tunicamycin-treated s2p mutants do not accumulate the active, nuclear form of bZIP28. Consistent with these observations, s2p mutants, but not s1p mutants, exhibited a defective transcriptional response of ER stress-responsive genes and significantly higher sensitivity to tunicamycin. Interestingly, s2p mutants accumulate two membrane-bound bZIP28 fragments with a shorter ER lumen-facing C-terminal domain. Importantly, the predicted cleavage sites are located far from the canonical S1P recognition motif previously described. We propose that ER stress-induced proteolytic activation of bZIP28 is mediated by the sequential actions of as-yet-unidentified protease(s) and S2P, and does not require S1P. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  6. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun

    2014-01-01

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  7. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis.

    Huang, Shaobai; Taylor, Nicolas L; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2013-02-01

    Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co-expressed with a number of genes encoding mitochondrial proteins, including SDH1-1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin-adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein-bound flavin-adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro-respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  8. KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis.

    Sawake, Shota; Tajima, Noriaki; Mortimer, Jenny C; Lao, Jeemeng; Ishikawa, Toshiki; Yu, Xiaolan; Yamanashi, Yukiko; Yoshimi, Yoshihisa; Kawai-Yamada, Maki; Dupree, Paul; Tsumuraya, Yoichi; Kotake, Toshihisa

    2015-12-01

    Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast.

    Zsolt Kelemen

    Full Text Available The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs. Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.

  10. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  11. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, Jos? A.; Rothstein, Steven J.

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous su...

  12. Phosphorylation and Dephosphorylation of the Presequence of Precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during Import into Mitochondria from Arabidopsis

    SUN, F; CHENG, S; GUAN, X; ZHANG, R; LAW, YS; Duncan, O; Murcha, M; Whelan, J; Lim, BL

    2015-01-01

    The nuclear-encoded mitochondrial-targeted proteins, multiple organellar RNA editing factors (MORF3, MORF5, MORF6) interact with AtPAP2 (Purple acid phosphatase 2) located on the chloroplast and mitochondrial outer membranes in a presequence dependent manner. Phosphorylation of the presequence of the precursor MORF3 (pMORF3) by endogenous kinases in wheat germ translation lysate, leaf extracts, or STY kinases, but not in rabbit reticulocyte translation lysate, resulted in the inhibition of pr...

  13. A Dehydration-Induced Eukaryotic Translation Initiation Factor iso4G Identified in a Slow Wilting Soybean Cultivar Enhances Abiotic Stress Tolerance in Arabidopsis

    Juan P. Gallino

    2018-03-01

    Full Text Available Water is usually the main limiting factor for soybean productivity worldwide and yet advances in genetic improvement for drought resistance in this crop are still limited. In the present study, we investigated the physiological and molecular responses to drought in two soybean contrasting genotypes, a slow wilting N7001 and a drought sensitive TJS2049 cultivars. Measurements of stomatal conductance, carbon isotope ratios and accumulated dry matter showed that N7001 responds to drought by employing mechanisms resulting in a more efficient water use than TJS2049. To provide an insight into the molecular mechanisms that these cultivars employ to deal with water stress, their early and late transcriptional responses to drought were analyzed by suppression subtractive hybridization. A number of differentially regulated genes from N7001 were identified and their expression pattern was compared between in this genotype and TJS2049. Overall, the data set indicated that N7001 responds to drought earlier than TJ2049 by up-regulating a larger number of genes, most of them encoding proteins with regulatory and signaling functions. The data supports the idea that at least some of the phenotypic differences between slow wilting and drought sensitive plants may rely on the regulation of the level and timing of expression of specific genes. One of the genes that exhibited a marked N7001-specific drought induction profile encoded a eukaryotic translation initiation factor iso4G (GmeIFiso4G-1a. GmeIFiso4G-1a is one of four members of this protein family in soybean, all of them sharing high sequence identity with each other. In silico analysis of GmeIFiso4G-1 promoter sequences suggested a possible functional specialization between distinct family members, which can attain differences at the transcriptional level. Conditional overexpression of GmeIFiso4G-1a in Arabidopsis conferred the transgenic plants increased tolerance to osmotic, salt, drought and low

  14. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    Kim, Hyungsae

    2010-10-05

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  15. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    Kim, Hyungsae; Kim, Sungjin; Abbasi, Nazia; Bressan, Ray Anthony; Yun, Daejin; Yoo, Sangdong; Kwon, SukYun; Choi, Sangbong

    2010-01-01

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  16. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  17. Overexpression of Grain Amaranth (Amaranthus hypochondriacus AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms.

    Julio A Massange-Sánchez

    Full Text Available Two grain amaranth transcription factor (TF genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII conferred tolerance to water-deficit stress (WS in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS. WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI provided salt-stress (SS tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.

  18. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors.

    Calvo, María; Martínez-Turiño, Sandra; García, Juan Antonio

    2014-11-01

    Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.

  19. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana.

    Duan, Shaowei; Wang, Jianjun; Gao, Chenhao; Jin, Changyu; Li, Dong; Peng, Danshuai; Du, Guomei; Li, Yiqian; Chen, Mingxun

    2018-03-01

    Previous studies have shown that a plant WRKY transcription factor, WRKY41, has multiple functions, and regulates seed dormancy, hormone signaling pathways, and both biotic and abiotic stress responses. However, it is not known about the roles of AtWRKY41 from the model plant, Arabidopsis thaliana, and its ortholog, BnWRKY41, from the closely related and important oil-producing crop, Brassica napus, in the regulation of anthocyanin biosynthesis. Here, we found that the wrky41 mutation in A. thaliana resulted in a significant increase in anthocyanin levels in rosette leaves, indicating that AtWRKY41 acts as repressor of anthocyanin biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed increased expression of three regulatory genes AtMYB75, AtMYB111, and AtMYBD, and two structural genes, AT1G68440 and AtGSTF12, all of which contribute to anthocyanin biosynthesis, in the sixth rosette leaves of wrky41-2 plants at 20 days after germination. We cloned the full length complementary DNA of BnWRKY41-1 from the C2 subgenome of the B. napus genotype Westar and observed that, when overexpressed in tobacco leaves as a fusion protein with green fluorescent protein, BnWRKY41-1 is localized to the nucleus. We further showed that overexpression of BnWRKY41-1 in the A. thaliana wrky41-2 mutant rescued the higher anthocyanin content phenotype in rosette leaves of the mutant. Moreover, the elevated expression levels in wrky41-2 rosette leaves of several important regulatory and structural genes regulating anthocyanin biosynthesis were not observed in the BnWRKY41-1 overexpressing lines. These results reveal that BnWRKY41-1 has a similar role with AtWRKY41 in regulating anthocyanin biosynthesis when overexpressed in A. thaliana. This gene represents a promising target for genetically manipulating B. napus to increase the amounts of anthocyanins in rosette leaves. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reference: 439 [Arabidopsis Phenome Database[Archive

    Full Text Available or IID (TFIID) complex. Overexpression of atTAF10 under the control of the 35S promoter in Arabidopsis impro...is TATA box-binding protein (TBP)-associated factor 10 (atTAF10), which constitutes the transcriptional fact

  1. Arabidopsis CDS blastp result: AK243131 [KOME

    Full Text Available AK243131 J100030A12 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 4e-46 ...

  2. Arabidopsis CDS blastp result: AK242412 [KOME

    Full Text Available AK242412 J080076J05 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 1e-36 ...

  3. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  4. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  5. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Wang, Liuqiang; Li, Zhen; Lu, Mengzhu; Wang, Yucheng

    2017-01-01

    NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC) binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD) and peroxidase (POD) activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS) and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential. PMID:28491072

  6. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Mengzhu Lu

    2017-04-01

    Full Text Available NAC (NAM, ATAF1/2, and CUC2 proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD and peroxidase (POD activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential.

  7. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  8. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae.

    Onkokesung, Nawaporn; Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C; van Loon, Joop J A; Dicke, Marcel

    2014-05-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.

  9. Programmed cell death in the leaves of the Arabidopsis spontaneous necrotic spots (sns-D mutant correlates with increased expression of the eukaryotic translation initiation factor eIF4B2

    Gwenael M.D.J.-M. Gaussand

    2011-04-01

    Full Text Available From a pool of transgenic Arabidopsis (Arabidopsis thaliana plants harboring an activator T-DNA construct, one mutant was identified that developed spontaneous necrotic spots (sns-D on the rosette leaves under aseptic conditions. The sns-D mutation is dominant and homozygous plants are embryo lethal. The mutant produced smaller rosettes with a different number of stomata than the wild-type. DNA fragmentation in the nuclei of cells in the necrotic spots and a significant increase of caspase-3 and caspase-6 like activities in sns-D leaf extracts indicated that the sns-D mutation caused programmed cell death (PCD. The integration of the activator T-DNA caused an increase of the expression level of At1g13020, which encodes the eukaryotic translation initiation factor eIF4B2. The expression level of eIF4B2 was positively correlated with the severity of sns-D mutant phenotype. Overexpression of the eIF4B2 cDNA mimicked phenotypic traits of the sns-D mutant indicating that the sns-D mutant phenotype is indeed caused by activation tagging of eIF4B2. Thus, incorrect regulation of translation initiation may result in PCD.

  10. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication

    Leonie Schnell

    2016-07-01

    Full Text Available Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenylsemicarbazone (EGA has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT. Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria.

  11. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.

    Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K

    2000-10-10

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

  12. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions

    Uno, Yuichi; Furihata, Takashi; Abe, Hiroshi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2000-01-01

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive ...

  13. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity. © 2013 Elsevier Inc. All rights reserved.

  14. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    Chen, Tao

    2013-10-17

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  15. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    Chen, Tao; Cui, Peng; Chen, Hao; Ali, Shahjahan; Zhang, ShouDong; Xiong, Liming

    2013-01-01

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  16. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  17. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  18. A Mutational Analysis of Residues in Cholera Toxin A1 Necessary for Interaction with Its Substrate, the Stimulatory G Protein Gsα

    Michael G. Jobling

    2015-03-01

    Full Text Available Pathogenesis of cholera diarrhea requires cholera toxin (CT-mediated adenosine diphosphate (ADP-ribosylation of stimulatory G protein (Gsα in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging “active-site” and “activation” loops in inactive CTA1 and an ADP ribosylating turn-turn (ARTT motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino-guanidine (DEABAG, a small substrate predicted to fit into the CTA1 active site. Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα.

  19. Arabidopsis thaliana peroxidase N

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...

  20. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  1. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  2. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.

    Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M

    2015-03-01

    Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR

  3. Comparative Analysis of the Arabidopsis Pollen Transcriptome

    Honys, David; Twell, D.

    2003-01-01

    Roč. 132, - (2003), s. 640ů652 ISSN 0032-0889 R&D Projects: GA AV ČR IAA5038207 Grant - others:Royal Society(GB) NATO Postdoctoral Fellowship (to D.H.) Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 113100003 Keywords : transcriptome profiling * Arabidopsis pollen * male gametophyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.634, year: 2003

  4. Arabidopsis CDS blastp result: AK119645 [KOME

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  5. Arabidopsis CDS blastp result: AK101133 [KOME

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  6. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.

    Maier, Alexander; Schrader, Andrea; Kokkelink, Leonie; Falke, Christian; Welter, Bastian; Iniesto, Elisa; Rubio, Vicente; Uhrig, Joachim F; Hülskamp, Martin; Hoecker, Ute

    2013-05-01

    Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  7. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  8. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis.

    Wang, Liuqiang; Qin, Liping; Liu, Wenjin; Zhang, Daoyuan; Wang, Yucheng

    2014-09-01

    Ethylene-responsive factor (ERF) family is one of the largest families of plant-specific transcription factor that can positively or negatively regulate abiotic stress tolerance. However, their functions in regulating abiotic stress tolerance are still not fully understood. In this study, we characterized the functions of an ERF gene from Tamarix hispida, ThERF1, which can negatively regulate abiotic stress tolerance. The expression of ThERF1 was induced by salinity, PEG-simulated drought and abscisic acid (ABA) treatments. ThERF1 can specifically bind to GCC-box and DRE motifs. Overexpression of ThERF1 in transgenic Arabidopsis plants showed inhibited seed germination, and decreased fresh weight gain and root growth compared with wild-type (WT) plants. In addition, the transcript levels of several superoxide dismutase (SOD) and peroxidase (POD) genes in transgenic plants were significantly inhibited compared with in WT plants, resulting in decreased SOD and POD activities in transgenic plants under salt and drought stress conditions. Furthermore, the reactive oxygen species (ROS) levels, malondialdehyde (MDA) contents and cell membrane damage in ThERF1-transformed plants were all highly increased relative to WT plants. Our results suggest that ThERF1 negatively regulates abiotic stress tolerance by strongly inhibiting the expression of SOD and POD genes, leading to decreased ROS-scavenging ability. © 2014 Scandinavian Plant Physiology Society.

  9. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis.

    Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Zheng, Lei; Nie, Xianguang; Wang, Yucheng

    2013-10-04

    Tamarix spp. are woody halophyte, which are very tolerant to abiotic stresses such as salinity and drought, but little is known about their specific stress response systems. Basic leucine zipper proteins (bZIPs) play important roles in the ability of plants to withstand adverse environmental conditions. However, their exact roles in abiotic stress tolerance are still not fully known. In the current study, we functionally characterized a bZIP gene (ThbZIP1) from Tamarix hispida in response to abiotic stresses. We addressed the regulatory network of ThbZIP1 in three levels, i.e. its upstream regulators, the cis-acting elements recognized by ThbZIP1, and its downstream target genes. Two MYCs were found to bind to E-box, in the promoter of ThbZIP1 to activate its expression. Expression of ThbZIP1 is induced by ABA, salt, drought, methyl viologen and cold. ThbZIP1 can specifically bind to ACGT elements, with the highest binding affinity to the C-box, followed by the G-box and lastly the A-box. Compared with wild-type (Col-0) Arabidopsis, transgenic plants expressing ThbZIP1 had an increased tolerance to drought and salt, but had an increased sensitivity to ABA during seed germination and root growth; meanwhile, ROS level, cell death and water loss rate in transgenic plants were significantly reduced. Microarray analyses showed that many ROS scavenging genes were up-regulated by ThbZIP1 under salt stress conditions. Based on these data, we suggest that ThbZIP1 confers abiotic stress tolerance through activating stress tolerance genes to modulate ROS scavenging ability and other physiological changes involved in stress tolerance, and plays an important role in the ABA-mediated stress response of T. hispida.

  10. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  11. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  12. An Arabidopsis callose synthase

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  13. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  14. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis.

    Li, Meng-Jun; Qiao, Yu; Li, Ya-Qing; Shi, Zhan-Liang; Zhang, Nan; Bi, Cai-Li; Guo, Jin-Kao

    2016-11-01

    We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants. The expression of three downstream genes (DREB2A, P5CS1 and RD29A) in TaMYBsm1-D transgenic plants was analyzed. The R2R3-MYB domains of the MYBsm1 proteins were highly conserved in plants. In addition, the TaMYBsm1 proteins were targeted to the nucleus and contained transcriptional activation domains (TADs). Gus assay and semi-quantitative RT-PCR analysis demonstrated that the TaMYBsm1 genes were up-regulated when the wheat was treated by PEG and mannitol. Compared with WT plants, the germination rates were much higher, but the water loss rates were much lower in TaMYBsm1-D overexpression plants. TaMYBsm1-D transgenic plants showed distinct higher proline contents but a lower MDA content than the WT plants. The three downstream genes were highly expressed in TaMYBsm1-D transgenic plants. We concluded from these results that TaMYBsm1 genes play an important role in plant drought stress tolerance through up-regulation of DREB2A, P5CS1 and RD29A. The increase of proline content and decrease of MDA content may also be involved in the drought response.

  15. Photorepair mutants of Arabidopsis

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  16. Arabidopsis peroxisome proteomics

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  17. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  18. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis.

    Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich

    2009-01-01

    In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.

  19. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics

    Rosero, A.; Oulehlová, Denisa; Stillerová, L.; Schiebertová, P.; Gunt, M.; Žárský, Viktor; Cvrčková, F.

    2016-01-01

    Roč. 57, č. 3 (2016), s. 488-504 ISSN 0032-0781 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Confocal microscopy * Cotyledon pavement cells Subject RIV: ED - Physiology Impact factor: 4.760, year: 2016

  20. Transgenic Arabidopsis Gene Expression System

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  1. The genome of Arabidopsis thaliana.

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  2. Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development

    Racca, S.; Welchen, E.; Gras, D. E.; Tarkowská, Danuše; Turečková, Veronika; Maurino, V. G.; Gonzalez, D. H.

    2018-01-01

    Roč. 94, č. 1 (2018), s. 105-121 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * cytochrome c * DELLA protein * gibberellin * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  3. Differential effects of carbohydrates on arabidopsis pollen germination

    Hirsche, J.; Fernández, J. M. G.; Stabentheiner, E.; Großkinsky, D.K.; Roitsch, Thomas

    2017-01-01

    Roč. 58, č. 4 (2017), s. 691-701 ISSN 0032-0781 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Arabidopsis thaliana * Carbohydrates * Metabolic regulation * Pollen germination * Signaling * Structure-function relationship Subject RIV: EF - Botanics OBOR OECD: Cell biology Impact factor: 4.760, year: 2016

  4. Ecology of Arabidopsis thaliana : local adaptation and interaction with herbivores

    Mosleh Arany, A.

    2006-01-01

    As first step the impact of herbivory and abiotic factors on population dynamics of Arabidopsis thaliana were studied. Ceutorhynchus atomus and C. contractus were identified as the major insect herbivores on A. thaliana population, reducing seed production by more than 40%. Mortality from February

  5. Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence

    Codrea, C. C.; Hakala-Yatkin, M.; Karlund-Marttila, A.; Nedbal, Ladislav; Aittokallio, T.; Nevalainen, O. S.; Tyystjärvi, E.

    2010-01-01

    Roč. 105, č. 3 (2010), s. 273-283 ISSN 0166-8595 Institutional research plan: CEZ:AV0Z60870520 Keywords : arabidopsis thaliana * chlorophyll fluorescence * fluorescence imaging * mutant detection * outlier detection Subject RIV: EH - Ecology, Behaviour Impact factor: 2.410, year: 2010 http://www.springerlink.com/content/x3586512462pn006/

  6. Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana

    Kolář, Jan; Seňková, J.

    2008-01-01

    Roč. 165, č. 15 (2008), s. 1601-1609 ISSN 0176-1617 R&D Projects: GA AV ČR KJB600380510 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Flowering * Landsberg erecta Subject RIV: EF - Botanics Impact factor: 2.437, year: 2008

  7. Efficient Plastid Transformation in Arabidopsis.

    Yu, Qiguo; Lutz, Kerry Ann; Maliga, Pal

    2017-09-01

    Plastid transformation is routine in tobacco ( Nicotiana tabacum ) but 100-fold less frequent in Arabidopsis ( Arabidopsis thaliana ), preventing its use in plastid biology. A recent study revealed that null mutations in ACC2 , encoding a plastid-targeted acetyl-coenzyme A carboxylase, cause hypersensitivity to spectinomycin. We hypothesized that plastid transformation efficiency should increase in the acc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation of the plastid-encoded ACC β-carboxylase subunit. We bombarded ACC2 -defective Arabidopsis leaves with a vector carrying a selectable spectinomycin resistance ( aadA ) gene and gfp , encoding the green fluorescence protein GFP. Spectinomycin-resistant clones were identified as green cell clusters on a spectinomycin medium. Plastid transformation was confirmed by GFP accumulation from the second open reading frame of a polycistronic messenger RNA, which would not be translated in the cytoplasm. We obtained one to two plastid transformation events per bombarded sample in spectinomycin-hypersensitive Slavice and Columbia acc2 knockout backgrounds, an approximately 100-fold enhanced plastid transformation frequency. Slavice and Columbia are accessions in which plant regeneration is uncharacterized or difficult to obtain. A practical system for Arabidopsis plastid transformation will be obtained by creating an ACC2 null background in a regenerable Arabidopsis accession. The recognition that the duplicated ACCase in Arabidopsis is an impediment to plastid transformation provides a rational template to implement plastid transformation in related recalcitrant crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Reference: 783 [Arabidopsis Phenome Database[Archive

    Full Text Available xpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 en...phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine. Overe

  9. Reference: 774 [Arabidopsis Phenome Database[Archive

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  10. The DAG1 transcription factor negatively regulates the seed-to-seedling transition in Arabidopsis acting on ABA and GA levels

    Boccaccini, A.; Lorrai, R.; Ruta, V.; Frey, A.; Mercey-Boutet, S.; Marion-Poll, F.; Tarkowská, Danuše; Strnad, Miroslav; Costantino, P.; Vittorioso, P.

    2016-01-01

    Roč. 16, SEP 9 (2016), s. 198 ISSN 1471-2229 R&D Projects: GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : DAG1 * Seed development * Chromatin remodelling Subject RIV: EF - Botanics Impact factor: 3.964, year: 2016

  11. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis(1[W])

    Hichri, I.; Muhovski, Y.; Žižková, Eva; Dobrev, Petre; Franco-Zorrilla, J.M.; Solano, R.; Lopez-Vidriero, I.; Motyka, Václav; Lutts, S.

    2014-01-01

    Roč. 164, č. 4 (2014), s. 1967-1990 ISSN 0032-0889 R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : RICE ORYZA-SATIVA * AGROBACTERIUM-MEDIATED TRANSFORMATION * TARGET-SEQUENCE RECOGNITION Subject RIV: EF - Botanics Impact factor: 6.841, year: 2014

  12. Infection and RNA recombination of Brome mosaic virus in Arabidopsis thaliana

    Dzianott, Aleksandra; Bujarski, Jozef J.

    2004-01-01

    Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle

  13. Interaction in vitro between the proteinase of Tomato ringspot virus (genus Nepovirus) and the eukaryotic translation initiation factor iso4E from Arabidopsis thaliana.

    Léonard, Simon; Chisholm, Joan; Laliberté, Jean-François; Sanfaçon, Hélène

    2002-08-01

    Eukaryotic initiation factor eIF(iso)4E binds to the cap structure of mRNAs leading to assembly of the translation complex. This factor also interacts with the potyvirus VPg and this interaction has been correlated with virus infectivity. In this study, we show an interaction between eIF(iso)4E and the proteinase (Pro) of a nepovirus (Tomato ringspot virus; ToRSV) in vitro. The ToRSV VPg did not interact with eIF(iso)4E although its presence on the VPg-Pro precursor increased the binding affinity of Pro for the initiation factor. A major determinant of the interaction was mapped to the first 93 residues of Pro. Formation of the complex was inhibited by addition of m(7)GTP (a cap analogue), suggesting that Pro-containing molecules compete with cellular mRNAs for eIF(iso)4E binding. The possible implications of this interaction for translation and/or replication of the virus genome are discussed.

  14. Arabidopsis thaliana peroxidase N

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  15. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  16. Chloroplast Signaling Gates Thermotolerance in Arabidopsis

    Patrick J. Dickinson

    2018-02-01

    Full Text Available Temperature is a key environmental variable influencing plant growth and survival. Protection against high temperature stress in eukaryotes is coordinated by heat shock factors (HSFs, transcription factors that activate the expression of protective chaperones such as HEAT SHOCK PROTEIN 70 (HSP70; however, the pathway by which temperature is sensed and integrated with other environmental signals into adaptive responses is not well understood. Plants are exposed to considerable diurnal variation in temperature, and we have found that there is diurnal variation in thermotolerance in Arabidopsis thaliana, with maximal thermotolerance coinciding with higher HSP70 expression during the day. In a forward genetic screen, we identified a key role for the chloroplast in controlling this response, suggesting that light-induced chloroplast signaling plays a key role. Consistent with this, we are able to globally activate binding of HSFA1a to its targets by altering redox status in planta independently of a heat shock.

  17. Exploiting natural variation in Arabidopsis

    Molenaar, J.A.; Keurentjes, J.J.B.; Sanchez-Serrano, J.J.; Salinas, J.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  18. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial–Abaxial Patterning in Arabidopsis thaliana

    Koji Kojima

    2018-01-01

    Full Text Available Leaf abaxial–adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2. Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2 which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1, has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial–abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2

  19. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  20. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa

    Kolář, Filip; Fuxová, G.; Záveská, E.; Nagano, A. J.; Hyklová, L.; Lučanová, Magdalena; Kudoh, H.; Marhold, K.

    2016-01-01

    Roč. 25, č. 16 (2016), s. 3929-3949 ISSN 0962-1083 Institutional support: RVO:67985939 Keywords : approximate Bayesian computatuion * niche differentiation * phytogeography * Arabidopsis Subject RIV: EF - Botanics Impact factor: 6.086, year: 2016

  1. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  2. Phosphoproteomic studies in Arabidopsis and tobacco male gametophytes

    Fíla, Jan; Čapková, Věra; Honys, David

    2014-01-01

    Roč. 42, č. 2 (2014), s. 383-387 ISSN 0300-5127 R&D Projects: GA ČR(CZ) GAP501/11/1462; GA ČR(CZ) GAP305/12/2611; GA ČR GA13-06943S; GA MŠk(CZ) LD13049 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * male gametophyte * mature pollen Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.194, year: 2014

  3. Identification of Polyadenylation Sites within Arabidopsis Thaliana

    Kalkatawi, Manal

    2011-09-01

    Machine Learning (ML) is a field of artificial intelligence focused on the design and implementation of algorithms that enable creation of models for clustering, classification, prediction, ranking and similar inference tasks based on information contained in data. Many ML algorithms have been successfully utilized in a variety of applications. The problem addressed in this thesis is from the field of bioinformatics and deals with the recognition of polyadenylation (poly(A)) sites in the genomic sequence of the plant Arabidopsis thaliana. During the RNA processing, a tail consisting of a number of consecutive adenine (A) nucleotides is added to the terminal nucleotide of the 3’- untranslated region (3’UTR) of the primary RNA. The process in which these A nucleotides are added is called polyadenylation. The location in the genomic DNA sequence that corresponds to the start of terminal A nucleotides (i.e. to the end of 3’UTR) is known as a poly(A) site. Recognition of the poly(A) sites in DNA sequence is important for better gene annotation and understanding of gene regulation. In this study, we built an artificial neural network (ANN) for the recognition of poly(A) sites in the Arabidopsis thaliana genome. Our study demonstrates that this model achieves improved accuracy compared to the existing predictive models for this purpose. The key factor contributing to the enhanced predictive performance of our ANN model is a distinguishing set of features used in creation of the model. These features include a number of physico-chemical characteristics of relevance, such as dinucleotide thermodynamic characteristics, electron-ion interaction potential, etc., but also many of the statistical properties of the DNA sequences from the region surrounding poly(A) site, such as nucleotide and polynucleotide properties, common motifs, etc. Our ANN model was compared in performance with several other ML models, as well as with the PAC tool that is specifically developed for

  4. Composition and function of P bodies in Arabidopsis thaliana

    Luis David Maldonado-Bonilla

    2014-05-01

    Full Text Available mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.

  5. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  6. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  7. Reference: 255 [Arabidopsis Phenome Database[Archive

    Full Text Available ases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption...olyphosphate kinases in phosphate signaling biology. Generation of phytate-free seeds in Arabidopsis through disruption

  8. Arabidopsis CDS blastp result: AK108458 [KOME

    Full Text Available AK108458 002-143-D05 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|152379...1|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 2e-35 ...

  9. Arabidopsis CDS blastp result: AK070842 [KOME

    Full Text Available AK070842 J023074O14 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|1523791...|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 1e-112 ...

  10. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  11. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  12. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.).

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut ( Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae ( Palmaceae ). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1 . Its transcriptional activities and interactions with the acetyl-CoA carboxylase ( BCCP2 ) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis , high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase ( P oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

  13. Reference: 21 [Arabidopsis Phenome Database[Archive

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  14. Reference: 789 [Arabidopsis Phenome Database[Archive

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  15. Reference: 306 [Arabidopsis Phenome Database[Archive

    Full Text Available of the endoreduplication cycle in Arabidopsis requires a plant homologue of archaeal DNA topoisomerase (topo) VI. To further understa...nd how DNA is endoreduplicated and how this process is r

  16. Reference: 150 [Arabidopsis Phenome Database[Archive

    Full Text Available ridization, Pht1;4 was found mainly expressed in inorgan...physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hyb

  17. Arabidopsis CDS blastp result: AK099152 [KOME

    Full Text Available AK099152 J023070H02 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  18. Arabidopsis CDS blastp result: AK068407 [KOME

    Full Text Available AK068407 J013149B08 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  19. Arabidopsis CDS blastp result: AK241043 [KOME

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  20. Arabidopsis CDS blastp result: AK243135 [KOME

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  1. Reference: 346 [Arabidopsis Phenome Database[Archive

    Full Text Available th a function in purine turnover in Arabidopsis. To our knowledge this is the fir...ock in allantoate catabolism. AtAAH transcript was detected in all tissues examined by RT-PCR, consistent wi

  2. Reference: 510 [Arabidopsis Phenome Database[Archive

    Full Text Available in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover... its degradation. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem

  3. Reference: 278 [Arabidopsis Phenome Database[Archive

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  4. Arabidopsis CDS blastp result: AK287673 [KOME

    Full Text Available AK287673 J065121E18 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-17 ...

  5. Arabidopsis CDS blastp result: AK241272 [KOME

    Full Text Available AK241272 J065132I19 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  6. Arabidopsis CDS blastp result: AK241712 [KOME

    Full Text Available AK241712 J065197H24 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-27 ...

  7. Arabidopsis CDS blastp result: AK106306 [KOME

    Full Text Available AK106306 002-101-C10 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 3e-89 ...

  8. Arabidopsis CDS blastp result: AK287726 [KOME

    Full Text Available AK287726 J065138E17 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  9. Arabidopsis CDS blastp result: AK109848 [KOME

    Full Text Available AK109848 002-148-F05 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-73 ...

  10. Arabidopsis CDS blastp result: AK242387 [KOME

    Full Text Available AK242387 J080051E14 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 2e-45 ...

  11. Arabidopsis CDS blastp result: AK240892 [KOME

    Full Text Available AK240892 J065030K10 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-88 ...

  12. Arabidopsis CDS blastp result: AK242957 [KOME

    Full Text Available AK242957 J090089I15 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-28 ...

  13. Arabidopsis CDS blastp result: AK287621 [KOME

    Full Text Available AK287621 J065066I09 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-85 ...

  14. Reference: 627 [Arabidopsis Phenome Database[Archive

    Full Text Available omal processing protease (GPP) from the fat-storing cotyledons of watermelon (Citrullus vulgaris) by column ...ptidase, and a Lon-protease. Specific antibodies against the peroxisomal Deg-protease from Arabidopsis (Deg15) identify the watermelo

  15. Arabidopsis CDS blastp result: AK242585 [KOME

    Full Text Available AK242585 J090010M20 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  16. Arabidopsis CDS blastp result: AK242601 [KOME

    Full Text Available AK242601 J090014G03 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  17. Arabidopsis CDS blastp result: AK110467 [KOME

    Full Text Available AK110467 002-166-G08 At3g03050.1 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-7 (gi:962

  18. Arabidopsis CDS blastp result: AK066835 [KOME

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  19. Arabidopsis CDS blastp result: AK102695 [KOME

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  20. Arabidopsis CDS blastp result: AK242890 [KOME

    Full Text Available AK242890 J090079L19 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  1. Arabidopsis CDS blastp result: AK100523 [KOME

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  2. Arabidopsis CDS blastp result: AK065259 [KOME

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  3. Arabidopsis CDS blastp result: AK102134 [KOME

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  4. The fifth international conference on Arabidopsis research

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  5. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...... similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family...

  6. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  7. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation

    Kollmer, I.; Novák, Ondřej; Strnad, Miroslav; Schmülling, T.; Werner, T.

    2014-01-01

    Roč. 78, č. 3 (2014), s. 359-371 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : xylem differentiation * Arabidopsis thaliana * cytokinin oxidase/dehydrogenase Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  8. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain

    Lermontova, L.; Schubert, V.; Fuchs, J.; Klatte, J.; Macas, Jiří; Schubert, I.

    2006-01-01

    Roč. 18, - (2006), s. 2443-2451 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50510513 Keywords : histone CENH3 * Arabidopsis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.868, year: 2006

  9. Reference: 398 [Arabidopsis Phenome Database[Archive

    Full Text Available modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement... is beginning to define the molecular machinery that controls these movement...s. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabi...dopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensitie...s while maintaining a normal movement response under low light intensities. In wi

  10. Reference: 170 [Arabidopsis Phenome Database[Archive

    Full Text Available rice A et al. 2005 Mar. Plant Cell 17(3):791-803. Environmental time cues, such as photocycles (light/dark) and thermocycles...h is known about entrainment of the Arabidopsis thaliana clock to photocycles, th...e determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RES... an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus

  11. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein

  12. hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning

    Pineau, C.; Amandine, F.; Ranocha, P.; Jauneau, A.; Turner, S.; Lemonnier, G.; Renou, J.P.; Tarkowski, Petr; Sandberg, G.; Jouanin, L.; Sundberg, B.; Boudet, A.M.; Goffner, D.; Pichon, M.

    2005-01-01

    Roč. 44, č. 2 (2005), s. 271-289 ISSN 0960-7412 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * cambium * secondary xylem Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.969, year: 2005

  13. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis

    Porco, S.; Pěnčík, Aleš; Rashed, A.; Voss, U.; Casanova-Saez, R.; Bishopp, A.; Golebiowska, A.; Bhosale, R.; Swarup, R.; Swarup, K.; Peňáková, Pavlína; Novák, Ondřej; Staswick, P.; Hedden, P.; Phillips, A.; Vissenberg, K.; Bennett, M.J.

    2016-01-01

    Roč. 113, č. 39 (2016), s. 11016-11021 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * IAA degradation * oxidase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.661, year: 2016

  14. Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient

    Dupľáková, Nikoleta; Dobrev, Petre; Reňák, David; Honys, David

    2016-01-01

    Roč. 11, č. 10 (2016), s. 1817-1832 ISSN 1754-2189 R&D Projects: GA ČR GP13-41444P Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * pollen * male gametophyte Subject RIV: ED - Physiology Impact factor: 10.032, year: 2016

  15. Transferases and transporters mediate the detoxification and capacity to tolerate trinitrotoluene in Arabidopsis

    Landa, Přemysl; Štorchová, Helena; Hodek, J.; Vaňková, Radomíra; Podlipná, Radka; Maršík, Petr; Ovesná, J.; Vaněk, Tomáš

    2010-01-01

    Roč. 10, č. 4 (2010), s. 547-559 ISSN 1438-793X R&D Projects: GA MŠk 2B06187; GA MŠk 2B08058 Institutional research plan: CEZ:AV0Z50380511 Keywords : Microarrays * Arabidopsis thaliana * TNT Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.397, year: 2010

  16. Arabidopsis non-specific phospholipase C1: Characterization and its involvement in response to heat stress

    Krčková, Zuzana; Brouzdová, Jitka; Daněk, Michal; Kocourková, Daniela; Rainteau, D.; Ruelland, E.; Valentová, O.; Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    Roč. 6, NOV 4 (2015), s. 928 ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP501/12/1942 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Diacylglycerol * Heat stress Subject RIV: ED - Physiology Impact factor: 4.495, year: 2015

  17. Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties

    Kowalska, M.; Galuszka, Petr; Frébortová, Jitka; Šebela, M.; Béres, Tibor; Hluska, T.; Šmehilová, M.; Bilyeu, K. D.; Frébort, Ivo

    2010-01-01

    Roč. 71, č. 17 (2010), s. 1970-1978 ISSN 0031-9422 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Pichia pastoris expression system * Electron acceptor Subject RIV: CE - Biochemistry Impact factor: 3.150, year: 2010

  18. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana

    Pejchar, Přemysl; Potocký, Martin; Krčková, Zuzana; Brouzdová, Jitka; Daněk, Michal; Martinec, Jan

    2015-01-01

    Roč. 6, FEB 16 2015 (2015) ISSN 1664-462X R&D Projects: GA ČR(CZ) GPP501/12/P950 Institutional support: RVO:61389030 Keywords : aluminum toxicity * Arabidopsis * diacylglycerol Subject RIV: ED - Physiology Impact factor: 4.495, year: 2015

  19. Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control

    Horvath, B.M.; Kourová, Hana; Nagy, S.; Nemeth, E.; Magyar, Z.; Papdi, C.; Ahmad, Z.; Sanchez-Perez, G.F.; Perilli, S.; Blilou, I.; Pettko-Szandtner, A.; Darula, Z.; Meszaros, T.; Binarová, Pavla; Bogre, L.; Scheres, B.

    2017-01-01

    Roč. 36, č. 9 (2017), s. 1261-1278 ISSN 0261-4189 R&D Projects: GA ČR GA15-11657S Institutional support: RVO:61388971 Keywords : Arabidopsis * BRCA1 * DNA damage response Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 9.792, year: 2016

  20. Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development

    Van Aken, O.; Pečenková, Tamara; van de Cotte, B.; De Rycke, R.; Eeckhout, D.; Fromm, H.; De Jaeger, G.; Witters, E.; Beemster, G.T.S.; Inzé, D.; Van Breusegem, F.

    2007-01-01

    Roč. 52, č. 5 (2007), s. 850-864 ISSN 0960-7412 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis * prohibitins * mitochondria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.751, year: 2007

  1. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana - The identification of cis-(+)-OPDA-Ile

    Floková, K.; Feussner, K.; Herrfurth, C.; Miersch, O.; Mik, V.; Tarkowská, Danuše; Strnad, Miroslav; Feussner, I.; Wasternack, Claus; Novák, Ondřej

    2016-01-01

    Roč. 122, FEB (2016), s. 230-237 ISSN 0031-9422 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana (Brassicaceae) * Jasmonates * Cis-(+)-12-oxo-phytodienoyl-L- iso leucine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.205, year: 2016

  2. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana

    Rosero, A.; Žárský, Viktor; Cvrčková, F.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 585-597 ISSN 0022-0957 R&D Projects: GA ČR GAP305/10/0433 Institutional research plan: CEZ:AV0Z50380511 Keywords : Actin * Arabidopsis * At5g25500 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.794, year: 2013

  3. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis

    Pěnčík, Aleš; Casanova-Sáez, R.; Pilařová, V.; Žukauskaitė, Asta; Pinto, R.; Micol, J.L.; Ljung, K.; Novák, Ondřej

    2018-01-01

    Roč. 69, č. 10 (2018), s. 2569-2579 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GJ17-21581Y Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * auxin * metabolite profiling * multivariate data analysis * mutant * screening Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  4. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis

    Peng, L.; Skylar, A.; Chang, P.L.; Bišová, Kateřina; Wu, X.

    2014-01-01

    Roč. 393, č. 2 (2014), s. 160-170 ISSN 0012-1606 R&D Projects: GA AV ČR M200201205 Grant - others:NSF(US) MCB-1122213 Institutional support: RVO:61388971 Keywords : cell cycle * arabidopsis * meristem Subject RIV: EE - Microbiology, Virology Impact factor: 3.547, year: 2014

  5. Intracellular localization of Arabidopsis sulfurtransferases.

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta

    2004-06-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.

  6. G2 Checkpoint Responses in Arabidopsis

    Britt, Anne [Univ. of California, Davis, CA (United States)

    2013-03-18

    This project focused on the mechanism and biological significance of the G2 arrest response to replication stress in plants. We employed both forward and reverse genetic approaches to identify genes required for this response. A total of 3 different postdocs, 5 undergraduates, and 2 graduate students participated in the project. We identified several genes required for damage response in plants, including homologs of genes previously identified in animals (ATM and ATR), novel, a plant-specific genes (SOG1) and a gene known in animals but previously thought to be missing from the Arabidopsis genome (ATRIP). We characterized the transcriptome of gamma-irradiated plants, and found that plants, unlike animals, express a robust transcriptional response to damage, involving genes that regulate the cell cycle and DNA metabolism. This response requires both ATM and the transcription factor SOG1. We found that both ATM and ATR play a role in meiosis in plants. We also found that plants have a cell-type-specific programmed cell death response to ionizing radiation and UV light, and that this response requires ATR, ATM, and SOG1. These results were published in a series of 5 papers.

  7. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  8. Sulfinylated Azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils

    Qin, Yuan; Wysocki, Ronald J; Somogyi, Arpad; Feinstein, Yelena; Franco, Jessica Y; Tsukamoto, Tatsuya; Dunatunga, Damayanthi; Levy, Clara; Smith, Steven; Simpson, Robert; Gang, David; Johnson, Mark A; Palanivelu, Ravishankar

    2011-01-01

    SUMMARY Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultrahigh resolution ESI FT-ICR and MS/MS techniques to accurately determine the mass (202.126 daltons) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-Methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 µM stimulated ~50% germination) and elicit accession-specific response. Although N-Methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen. PMID:21801250

  9. Mining the active proteome of Arabidopsis thaliana

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  10. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  11. Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1

    Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji [Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Miwa, Masanao [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 (Japan); Fukamizu, Akiyoshi, E-mail: akif@tara.tsukuba.ac.jp [Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2009-05-08

    Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependent on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.

  12. Pertussis toxin treatment attenuates some effects of insulin in BC3H-1 murine myocytes

    Luttrell, L.M.; Hewlett, E.L.; Romero, G.; Rogol, A.D.

    1988-01-01

    The effects of pertussis toxin (PT) treatment on insulin-stimulated myristoyl-diacylglycerol (DAG) generation, hexose transport, and thymidine incorporation were studied in differentiated BC3H-1 mycocytes. Insulin treatment caused a biphasic increase in myristoyl-DAG production which was abolished in myocytes treated with PT. There was no effect of PT treatment on basal (nonstimulated) myristoyl-DAG production. Insulin-stimulated hydrolysis of a membrane phosphatidylinositol glycan was blocked by PT treatment. ADP-ribosylation of BC3H-1 plasma membranes with [ 32 P]NAD revealed a 40-kDa protein as the major PT substrate in vivo and in vitro. The time course and dose dependence of the effects of PT on diacylglycerol generation correlated with the in vivo ADP-ribosylation of the 40-kDa substrate. Pertussis toxin treatment resulted in a 71% attenuation of insulin-stimulated hexose uptake without effect on either basal or phorbol ester-stimulated uptake. The stimulatory effects of insulin and fetal calf serum on [ 3 H]thymidine incorporation into quiescent myocytes were attenuated by 61 and 59%, respectively, when PT was added coincidently with the growth factors. Nonstimulated and EGF-stimulated [ 3 H]thymidine incorporation was unaffected by PT treatment. These data suggest that a PT-sensitive G protein is involved in the cellular signaling mechanisms of insulin

  13. Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin.

    Ernst, Katharina; Eberhardt, Nina; Mittler, Ann-Katrin; Sonnabend, Michael; Anastasia, Anna; Freisinger, Simon; Schiene-Fischer, Cordelia; Malešević, Miroslav; Barth, Holger

    2018-05-01

    The Bordetella pertussis toxin (PT) is one important virulence factor causing the severe childhood disease whooping cough which still accounted for approximately 63,000 deaths worldwide in children in 2013. PT consists of PTS1, the enzymatically active (A) subunit and a non-covalently linked pentameric binding/transport (B) subunit. After endocytosis, PT takes a retrograde route to the endoplasmic reticulum (ER), where PTS1 is released into the cytosol. In the cytosol, PTS1 ADP-ribosylates inhibitory alpha subunits of trimeric GTP-binding proteins (Giα) leading to increased cAMP levels and disturbed signalling. Here, we show that the cyclophilin (Cyp) isoforms CypA and Cyp40 directly interact with PTS1 in vitro and that Cyp inhibitors cyclosporine A (CsA) and its tailored non-immunosuppressive derivative VK112 both inhibit intoxication of CHO-K1 cells with PT, as analysed in a morphology-based assay. Moreover, in cells treated with PT in the presence of CsA, the amount of ADP-ribosylated Giα was significantly reduced and less PTS1 was detected in the cytosol compared to cells treated with PT only. The results suggest that the uptake of PTS1 into the cytosol requires Cyps. Therefore, CsA/VK112 represent promising candidates for novel therapeutic strategies acting on the toxin level to prevent the severe, life-threatening symptoms caused by PT.

  14. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Arabidopsis cotyledon chloroplast biogenesis factor CYO1 uses glutathione as an electron donor and interacts with PSI (A1 and A2) and PSII (CP43 and CP47) subunits.

    Muranaka, Atsuko; Watanabe, Shunsuke; Sakamoto, Atsushi; Shimada, Hiroshi

    2012-08-15

    CYO1 is required for thylakoid biogenesis in cotyledons of Arabidopsis thaliana. To elucidate the enzymatic characteristics of CYO1, we analyzed the protein disulfide isomerase (PDI) activity of CYO1 using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The reductase activity of CYO1 increased as a function of Di-E-GSSG, with an apparent K(m) of 824nM and K(cat) of 0.53min(-1). PDI catalyzes dithiol/disulfide interchange reactions, and the cysteine residues in PDI proteins are very important. To analyze the significance of the cysteine residues for the PDI activity of CYO1, we estimated the kinetic parameters of point-mutated CYO1 proteins. C117S, C124S, C135S, and C156S had higher values for K(m) than did wild-type CYO1. C158S had a similar K(m) but a higher K(cat), and C138S and C161S had similar K(m) values but lower K(cat) values than did wild-type CYO1. These results suggested that the cysteine residues at positions 138 and 161 were important for PDI activity. Low PDI activity of CYO1 was observed when NADPH or NADH was used as an electron donor. However, PDI activity was observed with CYO1 and glutathione, suggesting that glutathione may serve as a reducing agent for CYO1 in vivo. Based on analysis with the split-ubiquitin system, CYO1 interacted with the A1 and A2 subunits of PSI and the CP43 and CP47 subunits of PSII. Thus, CYO1 may accelerate the folding of cysteine residue--containing PSI and PSII subunits by repeatedly breaking and creating disulfide bonds. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    Jarvis, P.; Belzile, F.; Page, T.; Dean, C.

    1997-01-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  17. Regulation of Floral Stem Cell Termination in Arabidopsis

    Toshiro eIto

    2015-02-01

    Full Text Available In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network.

  18. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and

  19. The arabidopsis cyclic nucleotide interactome

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  20. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana

    Fallath, Thorya; Kidd, Brendan N.; Stiller, Jiri; Davoine, Celine; Bj?rklund, Stefan; Manners, John M.; Kazan, Kemal; Schenk, Peer M.

    2017-01-01

    The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display do...

  1. Glufosinate ammonium selection of transformed Arabidopsis.

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  2. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night

    Panchal, Shweta; Roy, Debanjana; Chitrakar, Reejana; Price, Lenore; Breitbach, Zachary S.; Armstrong, Daniel W.; Melotto, Maeli

    2016-01-01

    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface. PMID:27446113

  3. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  4. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night.

    Panchal, Shweta; Roy, Debanjana; Chitrakar, Reejana; Price, Lenore; Breitbach, Zachary S; Armstrong, Daniel W; Melotto, Maeli

    2016-01-01

    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface.

  5. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  6. Back to the roots

    Harms, Alexander; Gerdes, Kenn

    2016-01-01

    In this issue of Molecular Cell, Jankevicius et al. (2016) characterize the DarTG toxin-antitoxin module in which the DarT toxin ADP-ribosylates single-stranded DNA and the DarG antitoxin counteracts DarT by direct binding and by enzymatic removal of the ADP-ribosylation....

  7. Arabidopsis CDS blastp result: AK288349 [KOME

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  8. Arabidopsis CDS blastp result: AK241364 [KOME

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  9. Arabidopsis CDS blastp result: AK064663 [KOME

    Full Text Available AK064663 002-115-A10 At2g34450.1 high mobility group (HMG1/2) family protein simila...r to HMG protein [Arabidopsis thaliana] GI:2832361; contains Pfam profile PF00505: HMG (high mobility group) box 2e-27 ...

  10. Divergent regulation of Arabidopsis SAUR genes

    Mourik, van Hilda; Dijk, van Aalt D.J.; Stortenbeker, Niek; Angenent, Gerco C.; Bemer, Marian

    2017-01-01

    Background: Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we

  11. Arabidopsis CDS blastp result: AK120871 [KOME

    Full Text Available AK120871 J023026D19 At1g48900.1 signal recognition particle 54 kDa protein 3 / SRP5...4 (SRP-54C) identical to SP|P49967 Signal recognition particle 54 kDa protein 3 (SRP54) {Arabidopsis thaliana} 0.0 ...

  12. Arabidopsis CDS blastp result: AK071661 [KOME

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  13. Arabidopsis CDS blastp result: AK242428 [KOME

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  14. Arabidopsis CDS blastp result: AK242428 [KOME

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  15. Arabidopsis CDS blastp result: AK241786 [KOME

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  16. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  17. Arabidopsis CDS blastp result: AK242428 [KOME

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  18. Arabidopsis CDS blastp result: AK242428 [KOME

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  19. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  20. Arabidopsis CDS blastp result: AK108506 [KOME

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  1. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  2. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  3. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  4. Arabidopsis CDS blastp result: AK243656 [KOME

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  5. Arabidopsis CDS blastp result: AK243656 [KOME

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  6. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  7. Arabidopsis CDS blastp result: AK243656 [KOME

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  8. Arabidopsis CDS blastp result: AK062711 [KOME

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  9. Arabidopsis CDS blastp result: AK288095 [KOME

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  10. Arabidopsis CDS blastp result: AK242346 [KOME

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  11. Arabidopsis CDS blastp result: AK288095 [KOME

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  12. Arabidopsis CDS blastp result: AK068893 [KOME

    Full Text Available AK068893 J023001G24 At4g15090.1 far-red impaired response protein (FAR1) / far-red impai...red responsive protein (FAR1) identical to far-red impaired response protein FAR1 [Arabidopsis thaliana] gi|5764395|gb|AAD51282; contains Pfam:PF03101 domain: FAR1 family 1e-39 ...

  13. Reference: 359 [Arabidopsis Phenome Database[Archive

    Full Text Available 359 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16531491i Cnops Gerda...leaf development in Arabidopsis thaliana. 4 852-66 16531491 2006 Apr The Plant cell Azmi Abdelkrim|Cnops Gerda

  14. Reference: 749 [Arabidopsis Phenome Database[Archive

    Full Text Available former mutant had decreased electron transport rates, a lower DeltapH gradient across the grana membranes, r...the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. ...d the electron transport rate in grana membranes of Arabidopsis. 4 1012-28 18381925 2008 Apr The Plant cell

  15. Arabidopsis CDS blastp result: AK241679 [KOME

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  16. Arabidopsis CDS blastp result: AK242212 [KOME

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  17. Reference: 486 [Arabidopsis Phenome Database[Archive

    Full Text Available time in many plant species through the photoperiod and vernalization pathways, re...cipates in both the photoperiod and vernalization pathways in Arabidopsis thaliana by regulating expression ... of VIN3 in a photoperiod-dependent manner. A PHD finger protein involved in both the vernalization and photoperiod pathways

  18. Reference: 751 [Arabidopsis Phenome Database[Archive

    Full Text Available 751 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18390806i Sitaraman ...unctions during Arabidopsis embryo and floral development. 2 672-81 18390806 2008 Jun Plant physiology Bui Minh|Liu Zhongchi|Sitaraman Jayashree

  19. Arabidopsis CDS blastp result: AK103126 [KOME

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  20. Roles of DNA methyltransferases in Arabidopsis development ...

    Mutations that cause severe loss of DNA methylation often leads to abnormal development. In the present review, we summarized recent findings of the three major DNA methyltransferases mutants playing vital role in development of Arabidopsis thaliana. Keywords: DNA methylation, epigenetics, methyltransferase, mutant ...

  1. Arabidopsis CDS blastp result: AK108796 [KOME

    Full Text Available AK108796 002-151-C01 At2g25320.1 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 3e-97 ...

  2. Arabidopsis CDS blastp result: AK102133 [KOME

    Full Text Available AK102133 J033085E13 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 1e-146 ...

  3. Arabidopsis CDS blastp result: AK105718 [KOME

    Full Text Available AK105718 001-201-F09 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 5e-22 ...

  4. Reference: 438 [Arabidopsis Phenome Database[Archive

    Full Text Available ity and drought tolerance in Arabidopsis thaliana. 18 6902-12 16943431 2006 Sep Molecular and cellular bio...logy Chen Zhizhong|Gong Zhizhong|Hong Xuhui|Jablonowski Daniel|Ren Xiaozhi|Schaffrath Raffael|Zhang Hairong|Zhou Xiaofeng|Zhu Jian-Kang

  5. Reference: 356 [Arabidopsis Phenome Database[Archive

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  6. Proteomics of Arabidopsis seed germination and priming

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D.

    2003-01-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and

  7. Reference: 689 [Arabidopsis Phenome Database[Archive

    Full Text Available the high affinity of MOT1 allows plants to obtain scarce Mo from soil. An Arabidopsis thaliana high-affinity... molybdate transporter required for efficient uptake of molybdate from soil. 47 18807-12 18003916 2007 Nov P

  8. Reference: 169 [Arabidopsis Phenome Database[Archive

    Full Text Available e M et al. 2005 Mar. Plant J. 41(5):744-54. The recessive Arabidopsis thalianafumonisin B1-resistant (fbr6) ...opment and sensitivity to fumonisin B1. 5 744-54 15703061 2005 Mar The Plant journal Liang Xinwen|Nekl Emily R|Stiers Justin J|Stone Julie M

  9. Arabidopsis CDS blastp result: AK065420 [KOME

    Full Text Available AK065420 J013022D10 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 1e-166 ...

  10. Arabidopsis CDS blastp result: AK062262 [KOME

    Full Text Available AK062262 001-047-H04 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, put...ative / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:1...154627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  11. Arabidopsis CDS blastp result: AK069545 [KOME

    Full Text Available AK069545 J023025I06 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  12. Arabidopsis CDS blastp result: AK067323 [KOME

    Full Text Available AK067323 J013106B16 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  13. Arabidopsis CDS blastp result: AK060612 [KOME

    Full Text Available AK060612 001-025-F03 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, put...ative / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:1...154627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  14. Arabidopsis CDS blastp result: AK107208 [KOME

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  15. Arabidopsis CDS blastp result: AK065124 [KOME

    Full Text Available AK065124 J013001P04 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chloroph...yll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 0.0 ...

  16. Arabidopsis CDS blastp result: AK067730 [KOME

    Full Text Available AK067730 J013116K15 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chloroph...yll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 0.0 ...

  17. Arabidopsis CDS blastp result: AK103940 [KOME

    Full Text Available AK103940 001-013-G08 At5g54190.1 protochlorophyllide reductase A, chloroplast / PCR A / NADPH-protochlorophy...llide oxidoreductase A (PORA) identical to SP:Q42536 protochlorophyllide reductase ...A, chloroplast precursor (EC 1.3.1.33) (PCR A) (NADPH-protochlorophyllide oxidoreductase A) (POR A) [Arabidopsis thaliana] 1e-130 ...

  18. Arabidopsis CDS blastp result: AK063367 [KOME

    Full Text Available AK063367 001-114-D11 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chlorop...hyll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 0.0 ...

  19. Arabidopsis CDS blastp result: AK071899 [KOME

    Full Text Available AK071899 J013059G06 At1g44446.1 chlorophyll a oxygenase (CAO) / chlorophyll b synthase identical to chloroph...yll a oxygenase GI:5853117 from [Arabidopsis thaliana]; contains Pfam PF00355 Rieske [2Fe-2S] domain 1e-154 ...

  20. Arabidopsis CDS blastp result: AK104855 [KOME

    Full Text Available AK104855 001-043-B11 At5g54190.1 protochlorophyllide reductase A, chloroplast / PCR A / NADPH-protochlorophy...llide oxidoreductase A (PORA) identical to SP:Q42536 protochlorophyllide reductase ...A, chloroplast precursor (EC 1.3.1.33) (PCR A) (NADPH-protochlorophyllide oxidoreductase A) (POR A) [Arabidopsis thaliana] 1e-130 ...

  1. Arabidopsis CDS blastp result: AK105724 [KOME

    Full Text Available AK105724 001-201-G07 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  2. Arabidopsis CDS blastp result: AK106106 [KOME

    Full Text Available AK106106 001-207-C12 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 9e-39 ...

  3. Arabidopsis CDS blastp result: AK072243 [KOME

    Full Text Available AK072243 J023003N10 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  4. Arabidopsis CDS blastp result: AK065086 [KOME

    Full Text Available AK065086 J013001L18 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  5. Arabidopsis CDS blastp result: AK105066 [KOME

    Full Text Available AK105066 001-044-F12 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 1e-166 ...

  6. Arabidopsis CDS blastp result: AK069285 [KOME

    Full Text Available AK069285 J023011N22 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  7. Arabidopsis CDS blastp result: AK242707 [KOME

    Full Text Available AK242707 J090040M15 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  8. Arabidopsis CDS blastp result: AK241860 [KOME

    Full Text Available AK241860 J065216G12 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  9. Arabidopsis CDS blastp result: AK242707 [KOME

    Full Text Available AK242707 J090040M15 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  10. Arabidopsis CDS blastp result: AK241860 [KOME

    Full Text Available AK241860 J065216G12 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  11. Arabidopsis CDS blastp result: AK242472 [KOME

    Full Text Available AK242472 J080303B22 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  12. Arabidopsis CDS blastp result: AK073288 [KOME

    Full Text Available AK073288 J033028L24 At1g70550.2 expressed protein similar to hypothetical protein G...B:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabidop

  13. Arabidopsis CDS blastp result: AK242472 [KOME

    Full Text Available AK242472 J080303B22 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  14. Arabidopsis CDS blastp result: AK242472 [KOME

    Full Text Available AK242472 J080303B22 At5g46200.1 68418.m05684 expressed protein contains similarity to carboxyl-term...inal proteinase contains Pfam profile PF03080: Arabidopsis proteins of unknown function; expression supported by MPSS 2e-33 ...

  15. Arabidopsis CDS blastp result: AK104980 [KOME

    Full Text Available AK104980 001-125-D09 At1g70550.2 expressed protein similar to hypothetical protein ...GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabido

  16. Arabidopsis CDS blastp result: AK289251 [KOME

    Full Text Available AK289251 J100081E23 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 6e-21 ...

  17. Arabidopsis CDS blastp result: AK287737 [KOME

    Full Text Available AK287737 J065143M09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 7e-14 ...

  18. Arabidopsis CDS blastp result: AK288338 [KOME

    Full Text Available AK288338 J090023E14 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 9e-22 ...

  19. Arabidopsis CDS blastp result: AK288935 [KOME

    Full Text Available AK288935 J090082J19 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 8e-21 ...

  20. Arabidopsis CDS blastp result: AK241112 [KOME

    Full Text Available AK241112 J065091K02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 1e-16 ...

  1. Arabidopsis CDS blastp result: AK240855 [KOME

    Full Text Available AK240855 J065021H02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 7e-25 ...

  2. Arabidopsis CDS blastp result: AK288753 [KOME

    Full Text Available AK288753 J090065M09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 3e-29 ...

  3. Arabidopsis CDS blastp result: AK288612 [KOME

    Full Text Available AK288612 J090053J15 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 5e-24 ...

  4. Reference: 632 [Arabidopsis Phenome Database[Archive

    Full Text Available Ludmila et al. 2007 Sep. Plant J. 51(5):874-85. One of the earliest responses of plants to environmental str...elopment in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene...R12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental

  5. Arabidopsis CDS blastp result: AK073859 [KOME

    Full Text Available AK073859 J033073L16 At4g22260.1 alternative oxidase, putative / immutans protein (I...M) identical to IMMUTANS from Arabidopsis thaliana [gi:4138855]; contains Pfam profile PF01786 alternative oxidase 5e-21 ...

  6. Arabidopsis CDS blastp result: AK067891 [KOME

    Full Text Available AK067891 J013124H21 At4g22260.1 alternative oxidase, putative / immutans protein (I...M) identical to IMMUTANS from Arabidopsis thaliana [gi:4138855]; contains Pfam profile PF01786 alternative oxidase 1e-110 ...

  7. Arabidopsis CDS blastp result: AK241438 [KOME

    Full Text Available AK241438 J065162G03 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 4e-98 ...

  8. Arabidopsis CDS blastp result: AK241312 [KOME

    Full Text Available AK241312 J065141L09 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 2e-19 ...

  9. Arabidopsis CDS blastp result: AK243352 [KOME

    Full Text Available AK243352 J100060L07 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 1e-103 ...

  10. Arabidopsis CDS blastp result: AK289177 [KOME

    Full Text Available AK289177 J100024E07 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 4e-98 ...

  11. Arabidopsis CDS blastp result: AK119904 [KOME

    Full Text Available AK119904 002-182-A05 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-78 ...

  12. Arabidopsis CDS blastp result: AK070528 [KOME

    Full Text Available AK070528 J023060D13 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  13. Arabidopsis CDS blastp result: AK104030 [KOME

    Full Text Available AK104030 001-020-C01 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  14. Arabidopsis CDS blastp result: AK104160 [KOME

    Full Text Available AK104160 006-211-E09 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  15. Arabidopsis CDS blastp result: AK068433 [KOME

    Full Text Available AK068433 J013156D16 At1g20620.2 catalase 3 (SEN2) almost identical to catalase 3 SP...:Q42547, GI:3123188 from [Arabidopsis thaliana]; identical to catalase 3 (SEN2) mRNA, partial cds GI:3158369 1e-63 ...

  16. Reference: 119 [Arabidopsis Phenome Database[Archive

    Full Text Available of the Arabidopsis homolog of MSH4 (AtMSH4). We demonstrate that AtMSH4 expression can only be detected in floral tissues, consisten...chromosomes. A T-DNA insertional mutant (Atmsh4) exhibited normal vegetative growth but a severe reduction in fertility, consistent

  17. Reference: 239 [Arabidopsis Phenome Database[Archive

    Full Text Available 239 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16015335i Bundock Paul et al. 2005 Jul. Natur...functions. An Arabidopsis hAT-like transposase is essential for plant development. 7048 282-4 16015335 2005 Jul Nature Bundock Paul|Hooykaas Paul

  18. Reference: 590 [Arabidopsis Phenome Database[Archive

    Full Text Available 590 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17450124i Caro Elena et al. 2007 May. Nature... to root epidermis patterning in Arabidopsis. 7141 213-7 17450124 2007 May Nature Caro Elena|Castellano M Mar|Gutierrez Crisanto

  19. Arabidopsis CDS blastp result: AK241762 [KOME

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  20. Arabidopsis CDS blastp result: AK242393 [KOME

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...