WorldWideScience

Sample records for aqueous waste streams

  1. Investigation and development of liquid-liquid extraction systems for the removal of pertechnetate from aqueous nuclear waste stream simulants

    Science.gov (United States)

    Gansle, Kristina Marie Rohal

    1998-11-01

    The solvent extraction behavior of perrhenate (ReO 4-) and pertechnetate (TcO4- ) from aqueous nuclear waste stream simulants was examined using the anion-exchange reagent Aliquat-336 nitrate. The extraction tendencies of ReO 4- followed those of TcO4- from both acidic and basic media, demonstrating that ReO4 - was a suitable nonradioactive surrogate for TcO4 -. For ICP-AES analysis of Re in high salt solutions, a V-groove nebulizer and 1:1 dilution of the sample and standards with 0.1% Triton X-100 surfactant reduced deposition of solids within the sample introduction system, thus minimizing memory effects. A new approach to waste remediation technology, Redox-Recyclable Extraction and Recovery (R2ER), was also studied. The redox-active species 1,1',3,3'-tetrakis(2-methyl-2-hexyl)ferrocene (HEP) was oxidized to its cationic form for extraction of TcO4 - or ReO4- from aqueous waste and reduced to its neutral form for recovery of the anion. The thermodynamics of liquid-liquid interfacial electron transfer for the oxidation/activation of HEP were shown to be controlled by three factors: the reduction potentials of the redox-active species in the aqueous and organic phases and the transfer of an ion across the liquid-liquid interface. The deactivation/reduction rate of HEP+NO3- by iron was affected by organic solvent diluent and improved by treating the iron with hexanes and 1 M HCl. The volume of solid secondary-waste in the R2ER cycle was reduced by a factor of 3000. In complete extraction/recovery cycles, HEP+NO3- in 2-nonanone removed greater than 99% TcO4- from the 101-SY, 103-SY, 1 M HCl and 1 M NaOH/1.5 M NaNO3 Hanford Tank waste simulants. Another redox-active extractant, bis(hydridotris(1-pyrazolyl)borato)iron(III) nitrate (FeTp2+NO3-), was also selective for ReO4- remediation from simulated aqueous waste. Organic solutions of the alkyl substituted ferricenium extractants were not stable in the presence of nucleophilic anions and/or reducing agents. HEP+NO3

  2. Extraction and recovery of mercury and lead from aqueous waste streams using redox-active layered metal chalcogenides. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    'The authors have begun to examine the extraction and recovery of heavy elements from aqueous waste streams using redox-active metal chalcogenides. They have been able to prepare extractants from known chalcogenide starting materials, studied the efficacy of the extractants for selective removal of soft metal ions from aqueous phases, studied the deactivation of extractants and the concomitant recovery of soft metal ions from the extractants, and characterized all of the solids and solutions thus far in the study. The study was proposed as two parallel tasks: Part 1 and Part 2 emphasize the study and development of known metal chalcogenide extractants and the synthesis and development of new metal chalcogenide extractants, respectively. The two tasks were divided into sub-sections that study the extractants and their chemistry as detailed below: Preparation and reactivity of metal chalcogenide host solids Extraction of target waste (guest) ions from simulated waste streams Examination of the guest-host solids recovery of the guest metal and reuse of extractant Each section of the two tasks was divided into focused subsections that detail the specific problems and solutions to those problems that were proposed. The extent to which those tasks have been accomplished and the continued efforts of the team are described in detail below. (b) Progress and Results. The DOE-supported research has proceeded largely as proposed and has been productive in its first 12 months. Two full-paper manuscripts were submitted and are currently under peer review. A third paper is in preparation and will be submitted shortly. In addition, 5 submitted or invited presentations have been made.'

  3. Technetium removal from aqueous wastes

    International Nuclear Information System (INIS)

    The research discussed in this report has compared several ''state of the art'' techniques for the removal of traces of the radionuclide, technetium, from aqueous wastes. The techniques investigated were: electrochemical reduction to an insoluble oxide, electrochemical ion exchange, seeded ultrafiltration and chemical reduction followed by filtration. Each technique was examined using a simulant based upon the waste generated by the Enhanced Actinide Removal Plant (EARP) at Sellafield. The technique selected for further investigation was direct electrochemical reduction which offers an ideal route for the removal of technetium from the stream (DFs 10-100) and can be operated continuously with a low power consumption 25 kW for the waste generated by EARP. Cell designs for scale up have been suggested to treat the 1000m3 of waste produced every day. Future work is proposed to investigate the simultaneous removal of other key radionuclides, such as ruthenium, plutonium and cobalt as well as scale up of the resulting process and to investigate the effect of these other radionuclides on the efficiency of the electrochemical reduction technique for the removal of technetium. Total development and full scale plant costs are estimated to be of the order of 5 pounds - 10M, with a time scale of 5 -8 years to realisation. (author)

  4. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  5. Waste streams for algae cultivation

    OpenAIRE

    Kautto, Antti

    2011-01-01

    ALDIGA, short for “Algae from Waste for Combined Biodiesel and Biogas Pro-duction”, aims to develop a concept for a closed circulation of resources in pro-ducing biodiesel and biogas from waste. The project is realized in co-operation between VTT, University of Helsinki, Lahti and Häme Universities of Applied Sciences, SYKE and funded by Tekes. The project’s first work phase ergo this bachelor’s thesis covered the mapping of available and suitable streams to be used in the cultivation of ...

  6. Extraction and recovery of mercury and lead from aqueous waste streams using redox-active layered metal chalcogenides. 1998 annual progress report

    International Nuclear Information System (INIS)

    'Mercury and other highly-toxic heavy metals such as cadmium and lead are present in many aquatic environments, and the remediation of such environments or the avoidance of heavy-metal contamination in the first place is an area of active interest. In recent years tougher environmental regulations and the high initial cost of new, more effective, and more selective extractants has made the reuse of extractant materials and the minimization of secondary waste volume a focus of their scientific effort. The authors research has involved the investigation of redox-active layered metal chalcogenides as selective, effective, and redox-recyclable extractants for heavy metals from aqueous solution.'

  7. Process optimization for effective column separation of 106Ru from aqueous waste associated with spent reprocessing solvent in storage tanks

    International Nuclear Information System (INIS)

    The present work deals with another waste stream resulting from reprocessing operations, viz. the aqueous solution present in substantial quantities as the bottom layer in tanks storing spent TBP-dodecane solvent. The effective separation of 106Ru from aqueous waste streams generated during reprocessing of spent nuclear fuel is difficult because of its complex aqueous chemistry

  8. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  9. Design of a static mixer reactor for copper recovery from waste streams

    NARCIS (Netherlands)

    Van Wageningen, W.F.C.

    2005-01-01

    The main goal of the project was the development of a plug flow reactor for the reduction of heavy metals (Cu2+) from industrial waste streams. Potential application of the reduction process inside The Netherlands lies in the IC and galvanic industry, where small waste streams containing aqueous co

  10. Analysis of residual organic materials in aqueous radioactive streams from the Purex process

    International Nuclear Information System (INIS)

    New solid phase extraction methods have been developed to allow determination of residual normal paraffin hydrocarbon (NPH) and tri-n-butyl phosphate (TBP) in aqueous radioactive streams from the Purex process. The techniques concentrate organic materials and separate them from radioactive species for analysis by gas chromatography. TBP and NPH have good radiolytic and chemical stability and have low aqueous solubility. However, they can contaminate aqueous streams and cause processing difficulties. Knowledge of the concentration of organic materials in aqueous waste is useful in assessing impact on pollution control equipment. The storage quality of diluent-washed aqueous plutonium product solution can be determined by a gas chromatographic analysis for residual TBP. 4 refs., 1 fig., 7 tabs

  11. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  12. Operational Waste Stream Assumption for TSLCC Estimates

    International Nuclear Information System (INIS)

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS MandO 2000a), and AP-3.11Q, ''Technical Reports''

  13. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  14. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    International Nuclear Information System (INIS)

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well

  15. Design of a static mixer reactor for copper recovery from waste streams

    OpenAIRE

    Van Wageningen, W.F.C.

    2005-01-01

    The main goal of the project was the development of a plug flow reactor for the reduction of heavy metals (Cu2+) from industrial waste streams. Potential application of the reduction process inside The Netherlands lies in the IC and galvanic industry, where small waste streams containing aqueous copper exist. Outside The Netherlands, the process could be applicable in the mining industry,e.g. in Chili or South Africa. The copper is reduced in the form of particles by soluble carbohydrates, wh...

  16. Analysis of SRP waste streams for waste tank certification

    International Nuclear Information System (INIS)

    The Savannah River Plant (SRP) will apply for certification from the State of South Carolina to operate the SRP High-Level Waste Tanks. The permit application will be submitted as a RCRA Part B, Volume 16, entitled ''RCRA Part B Application For the F and H-Area Radioactive Waste Farm.'' RCRA regulations require that influent and effluent streams of hazardous waste sites be characterized to obtain an operating permit. The Waste Management Technology Department requested ADD to determine 21 components (including pH and weight percent solids) in the current influent streams to SRP High-Level Waste Tanks. The analyses will be used to supplement existing data on the composition of High-Level Waste. Effluent streams, which will feed Saltstone and the DWPF, will be analyzed when they are produced. This report contains the data obtained from analyzing key influent streams to SRP High-Level Waste Tanks. The precision of the data and the analytical methods that were used are also discussed

  17. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  18. Analysis of Chemical Technology Division waste streams

    International Nuclear Information System (INIS)

    This document is a summary of the sources, quantities, and characteristics of the wastes generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory. The major contributors of hazardous, mixed, and radioactive wastes in the CTD as of the writing of this document were the Chemical Development Section, the Isotopes Section, and the Process Development Section. The objectives of this report are to identify the sources and the summarize the quantities and characteristics of hazardous, mixed, gaseous, and solid and liquid radioactive wastes that are generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory (ORNL). This study was performed in support of the CTD waste-reduction program -- the goals of which are to reduce both the volume and hazard level of the waste generated by the division. Prior to the initiation of any specific waste-reduction projects, an understanding of the overall waste-generation system of CTD must be developed. Therefore, the general approach taken in this study is that of an overall CTD waste-systems analysis, which is a detailed presentation of the generation points and general characteristics of each waste stream in CTD. The goal of this analysis is to identify the primary waste generators in the division and determine the most beneficial areas to initiate waste-reduction projects. 4 refs., 4 figs., 13 tabs

  19. Dietary change and fate of related waste streams

    OpenAIRE

    Korpalska, Magdalena

    2008-01-01

    Food consumption patterns or dietary patterns are repeated arrangements observed in food consumption by a population group. Organic waste streams are by-products of the food production which are not suitable for human consumption. Nowadays, waste streams

  20. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  1. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  2. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  3. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  4. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  5. Membrane systems to treat gaseous and nuclear industry waste streams

    International Nuclear Information System (INIS)

    Membranes are creating a revolution in the world separation technology. The applications of the membrane systems are recognised in water purification, removal of undesired waste constituents from the aqueous, organic liquids and gaseous streams. The systems named reverse osmosis, ultrafiltration and electrodialysis are well known and have found applications in the above fields. Membranes have been known to common man for use only in filtration systems at the laboratory scale. Recent developments in gas separations have found applications in CO/sub 2/, So/sub 2), H/sub 2/S and NH/sub 3/ stripping from the industrial and also nuclear gaseous effluents to save the environment from pollution and retain radioactivity in house. The supported liquid membrane based systems have been applied to recover metals from the industrial and radioactive liquid wastes. The status of the technology to treat the gaseous and liquid effluents have been described with the contributions for the development of immobilised liquid systems for the removal of some metal ions, which are present as radionuclides in the liquid wastes. Application of reverse osmosis to reduce the waste volume and the undesired radionuclides like /sup 54/Mn, /sup 58/Co, /sup 60/Co, /sup 124/Sb, /sup 110/Ag, /sup 137/Cs, /sup 134/Cs have also been discussed. Membranes systems for gas purification have also been discussed to treat industrial effluents. (author)

  6. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, William [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad A. [Argonne National Lab. (ANL), Argonne, IL (United States); Youker, Amanda [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  8. Waste Stream Analyses for Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  9. Assessment of environmental control technology for coal conversion aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Barker, R.E.

    1978-07-01

    A hydrocarbonization process has been studied to assess environmental control technology for coal conversion wastewaters. Fifteen major wastewater streams were identified; 2 present serious environmental problems not routinely encountered in industry. These are the hydrocarbonization condensate and the ash sluicing waste from the gasifier. The hydrocarbonization product water is high in phenolics, ammonia, cyanide, thiocyanate, and other sulfur compounds. This stream will present a significant wastewater treatment problem unless the stream can be recycled internally. The gasifier-ash sluicing water will probably be similar to ash sluicing water from coal-fired power generating plants. However, the large quantity of toxic trace elements may be more easily dissolved from ash produced at the lower-temperature and reducing conditions encountered in gasification. A number of cleanup technologies relevant to the cleanup of coal conversion aqueous effluents have ben assessed for their adaptability to the specific pollutants found in coal hydrocarbonization wastewater. A summary of these processes lists the potential applicability, economics, raw material requirements, process compatibility, operating conditions, state of development, environmental problems, energy requirements, and availability of each. Indications are that almost any level of removal can be achieved if one is willing to pay the cost. The optimum amount of cleanup will require much future interaction between industry, environmental control technology developers, human and environmental effects assessors, and federal effluent regulations administrators.

  10. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  11. Recovery of phenol from aqueous streams in hollow fiber modules.

    Science.gov (United States)

    Cichy, W; Szymanowski, J

    2002-05-01

    A setup with two parallel hollow-fiber modules was used to study the recovery of phenol from aqueous solutions. Cyanex 923, Amberlite LA-2, and trioctylamine (TOA) in aliphatic kerosene were used as carriers. A solution of 0.2 M NaOH was used for stripping. It was found that each of the studied carriers permitted the effective removal of phenol. Cyanex 923 showed the best performance, removing phenol in the shortest time and giving the highest fluxes and the highest mass-transfer coefficients. The maximum fluxes of phenol entering the receiving phase changed in the following ratio: Cyanex 923/Amberlite LA-2/TOA = 3.5/1.5/1. The mass-transfer coefficient in the extraction step changed in the same order: 34/5.2/1. The mass-transfer coefficients of the stripping step were 2-4 orders lower than in the extraction step and were comparable for each carrier: Cyanex 923/Amberlite LA-2/TOA = 1.1/0.7/1. Using Cyanex 923, only 5 min were needed to recover 99% of the pollutant from the aqueous stream, containing 0.5-2 g L(-1) phenol.

  12. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  13. Removal of Pu-238 from aqueous process streams using a polymer filtration process

    Science.gov (United States)

    Jarvinen, Gordon D.; Purdy, Geraldine M.; Rau, Karen C.; Remeroski, M. L.; Reimus, Mary Ann H.; Ramsey, Kevin B.; Foltyn, Elizabeth M.; Smith, Barbara F.; Robison, Thomas W.

    2001-02-01

    A glovebox facility is under construction at Los Alamos that will recover a significant quantity of the impure Pu-238 that exists in scrap and residues from past production operations. The general flowsheet consists of milling, acid dissolution, ion exchange, precipitation, calcination, oxygen isotope exchange, and waste treatment operations. As part of the waste treatment operations we are using polymer filtration to remove Pu-238 to meet facility discharge limits. Polymer filtration (PF) technology uses water-soluble polymers prepared with selective receptor sites to sequester metal ions, organic molecules, and other species from dilute aqueous solutions. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using ultrafiltration (UF) methods. Water and small, unbound components of the solution pass freely through the UF membrane while the polymer concentrates in the retentate. The permeate stream is ``cleaned'' of the components bound to the polymer and can be used in further processing steps or discharged. The concentrated retentate solution can be treated to give a final waste form or to release the sequestered species from the receptor sites by adjusting the conditions in the retentate solution. The PF technology is part of our work to develop a safe, reliable and cost-effective scrap recovery operation with high process efficiencies, minimal waste generation, and high product purity. .

  14. Anaerobic digestion of two biodegradable municipal waste streams

    OpenAIRE

    Zhang, Yue; Banks, Charles J.; Heaven, Sonia

    2012-01-01

    Landfill avoidance for organic wastes is now a high priority worldwide. Two fractions of the municipal waste stream were considered with respect to their potential for diversion through controlled anaerobic digestion. The physical and chemical properties of source segregated domestic food waste (ss-FW) and of the mechanically-recovered organic fraction of municipal solid waste (mr-OFMSW) were analysed, and their methane yields determined in both batch and semi-continuous digestion. Methane po...

  15. Evaluation of thin-film evaporation for decontamination and immobilization of aqueous nuclear waste

    International Nuclear Information System (INIS)

    In the early 1980's, AECL, at the Chalk River Laboratory (CRL) site, built a Waste Treatment Centre (WTC) for managing low level solid and aqueous liquid wastes. The objective was to demonstrate processes for converting Canadian Deuterium Uranium (CANDU) waste to a form suitable for disposal while meeting or exceeding current environmental regulations. At present, two liquid waste streams are being treated at the Waste Treatment Centre. The liquid waste streams are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies [1]. The solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200 L galvanized steel drums for storage and eventual disposal in the CRL Waste Management Area. The feed stream to the thin-film evaporator typically has a β/γ activity of about 1 - 3 μCi/mL. This intermediate-level radioactive stream is concentrated by a factor of about 10, while simultaneously being immobilized. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200 L drum ranges from 25% to 35%. Encapsulated in the bitumen matrix are a variety of non-radiochemical salts (including sodium phosphate, sodium sulphate, and sodium carbonate) which comprise the bulk of the total solids in the product drum. The drum contains less than 1% of free water. The paper will discuss the volume reduction capability of the plant, with an emphasis on the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Operations experience gained from over 200 campaigns is documented in the paper. (author)

  16. Pectin content and composition from different food waste streams.

    Science.gov (United States)

    Müller-Maatsch, Judith; Bencivenni, Mariangela; Caligiani, Augusta; Tedeschi, Tullia; Bruggeman, Geert; Bosch, Montse; Petrusan, Janos; Van Droogenbroeck, Bart; Elst, Kathy; Sforza, Stefano

    2016-06-15

    In the present paper, 26 food waste streams were selected according to their exploitation potential and investigated in terms of pectin content. The isolated pectin, subdivided into calcium bound and alkaline extractable pectin, was fully characterized in terms of uronic acid and other sugar composition, methylation and acetylation degree. It was shown that many waste streams can be a valuable source of pectin, but also that pectin structures present a huge structural diversity, resulting in a broad range of pectin structures. These can have different physicochemical and biological properties, which are useful in a wide range of applications. Even if the data could not cover all the possible batch by batch and country variabilities, to date this represents the most complete pectin characterization from food waste streams ever reported in the literature with a homogeneous methodology.

  17. Treatment of Molybdate Containing Waste Streams

    NARCIS (Netherlands)

    Witkamp, G.J.; Van Spronsen, J.; Hasselaar, M.

    2008-01-01

    The invention is directed to a process for the treatment of an aqueous solution comprising sodium carbonate and/or sodium bicarbonate and sodium molybdate, said process comprising freeze crystallising the solution at the eutectic freezing point thereof and recovering substantially pure ice crystals,

  18. High-temperature waste-heat-stream selection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

    1983-08-01

    Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

  19. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J B

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  20. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  1. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  2. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  3. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    International Nuclear Information System (INIS)

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  4. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  5. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  6. Waste management analysis for the nuclear fuel cycle. II. Recycle preparation for wastewater streams

    International Nuclear Information System (INIS)

    Recycle preparation methods were evaluated for secondary aqueous waste streams likely to be produced during reactor fuel fabrication and reprocessing. Adsorption, reverse osmosis, and ozonization methods were evaluated on a laboratory scale for their application to the treatment of wastewater. Activated carbon, macroreticular resins, and polyurethanes were tested to determine their relative capabilities for removing detergents and corrosive anions from wastewater. Conceptual flow sheets were constructed for purifying wastewater by reverse osmosis. In addition, the application of ozonization techniques for water recycle preparation was examined briefly

  7. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    Science.gov (United States)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  8. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  9. The removal of alpha-emitting radionuclides from liquid waste streams

    International Nuclear Information System (INIS)

    World-wide experience on the removal of alpha-emitting radionuclides from liquid waste streams is reviewed with particular emphasis on waste streams from reprocessing irradiated nuclear fuel and on countries other than the United Kingdom. Current practice concentrates on the use of precipitation and evaporation, either singly or in combination, for the treatment of these waste streams. (author)

  10. Aqueous extraction of pectin from sisal waste.

    Science.gov (United States)

    Santos, Jener David G; Espeleta, Alexandre F; Branco, Alexsandro; de Assis, Sandra A

    2013-02-15

    In this work, sisal waste was used as a source of pectin. Sisal is known worldwide as a source of hard fibres, and Brazil is the largest producer of sisal, producing more than 246,000 tonnes. However, the process of removing the fibres of the sisal leaf generates 95% waste. This study investigated the effect of the liquid/solid ratio (%), time (min), and temperature (°C) on the yield of the pectin obtained from sisal waste by attractive environmentally friendly process. A statistical Box-Behnken design was applied to determine the important effects and interactions of these independent variables on the yield of pectin, the dependent variable. Significant models were obtained. The yield of the extracted pectin ranged from 4.61 to 19.2%. The conditions that produced the highest yield (19.2%) were a temperature of 85 °C, extraction time of 60 min and a liquid/solid ratio of 2%.

  11. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  12. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  13. Future radioactive liquid waste streams study

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  14. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  15. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  16. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mego, W.A.

    1999-09-07

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  17. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  18. Waste stream utilisation for sustainable viticulture.

    Science.gov (United States)

    Agnew, R H; Mundy, D C; Spiers, T M; Greven, M M

    2005-01-01

    Field trials were established at four vineyards in January 1999 to evaluate the effects of four mulch mixtures on different soil and plant parameters. Mulches were made from wine industry and other commercially available plant and animal wastes. Soil, grape petioles, grape leaves and grape juice were analysed over three seasons. The mulches applied released considerable quantities of nutrients, which were available for use by the grapevines. Generally, the type of mulch used had little impact on the parameters that were measured and the greatest differences occurred between non-mulched and mulch treatments. Soil pH showed an increase at three of the four sites after application of mulch. Soil phosphorus increased moderately at one site and substantially at the other three sites in the first year and soil potassium levels increased dramatically at all sites in the first year. After the application of mulches in 1999 the petiole nitrate levels increased dramatically at all sites, however there were no differences in the second year. In the third year petiole nitrate levels were again high indicating that the differences between years was probably largely attributable to differences in rainfall received among the three seasons. Petiole potassium levels also increased after the application of mulch, however the increase was nowhere near as large as the increase in soil potassium. The use of mulch increased leaf nitrogen and potassium levels but not phosphorus levels. The use of mulch did increase juice potassium, however there was greater seasonal and site variation than variation due to the effect of mulch.

  19. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering 99TcO4- from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO4-), a stable (non-radioactive) chemical surrogate for 99TcO4-. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO4- and TcO4-

  20. Separation of technetium from nuclear waste stream simulants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  1. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  2. Monitoring stream stage, channel profile, and aqueous conductivity with time domain reflectometry (TDR).

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert; Tidwell, Vincent Carroll; Coplen, Amy K.; Ruby, Douglas Scott; Coombs, Jason R.; Wright, Jerome L.; Roberts, Jesse Daniel

    2004-11-01

    Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the context of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system

  3. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten (Parsons); J. D. Navratil (INEEL); H. B. Eldredge (U of Idaho)

    1999-03-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

  4. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    International Nuclear Information System (INIS)

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics

  5. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  6. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10-4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  7. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  8. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (KG) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  9. Selective production of methane from aqueous biocarbohydrate streams over a mixture of platinum and ruthenium catalysts.

    Science.gov (United States)

    Neira D'Angelo, Maria Fernanda; Ordomsky, Vitaly; van der Schaaf, John; Schouten, Jaap C; Nijhuis, Tjeerd Alexander

    2014-02-01

    A one-step process for the selective production of methane from low-value aqueous carbohydrate streams is proposed. Sorbitol, used herein as a model compound, is fully converted to methane, CO2 , and a minor amount of H2 by using a physical mixture of Pt and Ru (1:5 in mass basis) at 220 °C and 35 bar. This conversion is the result of hydrogenolysis of part of the sorbitol over Ru and the in situ production of H2 through the aqueous-phase reforming of the remaining carbohydrate over Pt. A synergistic effect of the combination of these two catalysts results in the rapid and highly selective conversion of the carbohydrate to methane. This process offers the possibility of upgrading a low-value carbohydrate stream into a valuable fuel with no addition of H2. Exergy analysis reveals that nearly 80 % of the exergy of the reactant is recovered as methane.

  10. Decomposition of zinc ferrite from waste streams of steelmaking

    OpenAIRE

    Tauriainen, M. (Miia)

    2015-01-01

    The goal of this study was to compare different methods to decompose the zinc ferrite from the waste streams of steel making. The samples were acquired from SSAB Raahe blast furnace and converter flue gas scrubbers and Outokumpu Tornio Works bag filters EAF1, EAF3, AOD and CRK. Sludges and dusts contain significant amounts of zinc in form of zinc oxide and zinc ferrite. Zinc ferrite is highly stable compound which makes recovery of the zinc difficult. The zinc could be recovered and recycled ...

  11. Monitoring of plutonium-contaminated solid waste streams

    International Nuclear Information System (INIS)

    The fundamentals of the active neutron interrogation techniques are summarized. Design criteria for this techniques are numerically illustrated by one-dimensional one-group diffusion theory (plane geometry). Emphasis is given to the evaluation of the induced fission source in a neutron-irradiated sample. The concept and the mathematical model of a reference monitor are described. This model is based on the Nordheim method of heterogeneous neutron diffusion media. The apparatus consists of a cylindrical lead pile provided with two axial channels, one for adaptation of a (Sb - Be) neutron source and the other for placing of the sample (waste item). The radial and azimuthal distributions of source neutron flux around the sample are measured. From Fourier analysis of this flux distribution the spatial average of the source neutron flux in the sample is deduced. Induced fission neutrons are counted by energy biased detectors. This report is the fifth chapter of the guide: Monitoring of plutonium-contaminated solid waste streams

  12. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    International Nuclear Information System (INIS)

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI's access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints

  13. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI`s access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints.

  14. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    Energy Technology Data Exchange (ETDEWEB)

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  15. Removal of styrene from waste gas stream using a biofilter

    Directory of Open Access Journals (Sweden)

    B Bina

    2004-12-01

    Full Text Available Background: Styrene is produced in large quantities in the chemical industries and it has been listed among the 189 hazardous and toxic atmospheric contaminants under Clean Air Act Amendments, 1990, due to its adverse effects on human health. The biofiltration has been widely and efficiently applied during recent decades for the treatment of air streams contaminated by volatile organic compounds at low concentrations. Also this technology has been applied widely and efficiently in the removal of styrene from waste gas streams. Methods: Biofiltration of waste gas stream polluted by styrene vapor was investigated in a three-stage bench scale reactor. Yard waste compost using shredded hard plastics as a bulking agent in a 75:25 v/v mix of plastics:compost was used to packing biofilter. The system inoculation was achieved by adding thickened activated sludge obtained from municipal wastewater treatment plant and the effects of loading rate, inlet concentration, and empty bed retention time variations on the performance and operation of biofilter were studied. Results: Microbial acclimation to styrene was achieved with inlet concentration of 65 ± 11 ppm and bed contact time of 360 s after 57 days of operation. Under steady state conditions experimental results showed equal average removal efficiency of about 84% at loading rates of 60 and 80 g m-3 h-1 with empty bed retention time of 60 s. Maximum elimination capacity was obtained up to 81 g m-3 h-1 with organic loading rate of about 120 g m-3 h-1. Reduction in performance was observed at inlet concentrations of upper than 650 ppm related to organic loading rates up to 160 g m-3 h-1 and then removal efficiency was decreased sharply. Evaluation of the concentration profile along the bed height of column indicated that the most value of elimination capacity occurred in the first section of biofilter. Elimination capacity also showed higher performance when empty bed retention time was reduced to 30 s

  16. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  17. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  18. Waste minimization/pollution prevention study of high-priority waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, R.B. [comp.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.

  19. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Complexed Metal-Bearing Waste Streams B Appendix B to Part 414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... 414—Complexed Metal-Bearing Waste Streams Chromium Azo dye intermediates/Substituted diazonium...

  20. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    International Nuclear Information System (INIS)

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE's waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ''best-in-class'' industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs

  1. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1995-10-01

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

  2. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    Science.gov (United States)

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. PMID:27067099

  3. Development of an integrated enzymatic treatment system for phenolic waste streams.

    Science.gov (United States)

    Mao, X; Buchanan, I D; Stanley, S J

    2006-12-01

    An integrated enzymatic treatment system, which includes Coprinus cinereus peroxidase (CIP) production, processing, and usage in batch or plug flow reactors, is being developed to remove phenolic compounds from the aqueous waste streams. CIP production at bench scale yielded a maximum growth medium activity of approximately 60 U CIP ml(-1). A CIP enzyme solution was prepared for use in treatment by successive filtration steps. This yielded a 4.5-fold increase in enzyme activity, with 87% enzyme activity recovery, and 83% reduction in the solution's Chemical Oxygen Demand. The purity of CIP was observed to have no effect on the ability of the enzyme to remove phenol from the aqueous solutions within the range of enzyme solution purities tested. Contrary to observations reported for phenol removal from buffered solutions, the addition of polyethylene glycol to non-buffered reaction solutions had no positive effect on the phenol removal accomplished at pH 7 in these experiments. The efficiency of enzyme use in a plug flow reactor was improved by step additions of CIP and H2O2.

  4. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water. PMID:22661261

  5. Production of lipase extrated from aqueous waste: enzymatic activity kinetics

    Directory of Open Access Journals (Sweden)

    Tatianne Ferreira de Oliveira

    2014-12-01

    Full Text Available Lipases are an important group of enzymes with various applications in the food, chemical and pharmaceutical industry, besides having great interest for the treatment of effluents with high lipid content. The objective of this study was to isolate, characterize and select lipolytic bacteria that produce lipase from aqueous waste effluents and to study the enzymatic activity kinetics of the extract obtained via submerged fermentation. The results obtained are promising, being possible to isolate and characterize 23 lipase-producing microorganisms, mostly gram-positive bacteria, but after the fermentation step in a liquid medium, gram negative bacteria showed the highest enzymatic activity (56.72 U.L-1 for STP 2A` bacterium and 81.99 U.L-1 for R2B. In the enzymatic activity kinetic study with the selected bacterium (R2B, among the six variables (temperature, pH, minimal mineral medium, soybean oil, glucose and sodium nitrate, temperature was the one that most positively influenced the enzymatic activity, and the best results were obtained at 40°C. It was concluded that the enzyme extract obtained from environmental waste may be used to treat the effluent and contribute to reduce environmental impacts.

  6. Application of biomass for the sorption of radionuclides from low level Purex aqueous wastes

    International Nuclear Information System (INIS)

    Microbial biomass have been found to be good biological adsorbents for radioactive nuclides such as uranium and thorium with comparatively easy desorption and recovery. Based on this, sorption studies have been carried out to assess the feasibility of using biomass Rhizopus arrhizus (RA) for the removal of radionuclides present in Purex low level waste streams. Biomass Rhizopus arrhizus (RA) appears effective for the removal of actinides and fission products from low level Purex plant waste/effluent solutions. Maximum sorption for uranium and plutonium is observed at 6-7 pH whereas for Am, Eu, Pm, Ce and Zr the sorption is maximum at pH 2 with high D values and fast kinetics in both cases. Sorption for Ru and Cs are negligible. Sorbed nuclides are recoverable by elution with 1 M HNO3, on once through basis. The method can be used for treating the evaporator condensates from the plant and the hold-up delay tank solution. The sodium nitrate salt concentration in the aqueous solution beyond 0.14 M seriously affects the metal uptake. The results from column experiments indicate a limited loading capacity in terms of mg of Am/U/Pu etc. per gm of RA. However, as the Purex low level effluents contain only trace level activities whose absolute ionic concentrations are much lower, the capacities observed with the present form of biomass may still be satisfactory

  7. Feasibility Study – Using a Solar Evaporator to Reduce the Metalworking Fluid (MWF) Waste Stream

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Lloyd

    2008-12-03

    A solar evaporator was designed, built, and operated to reduce the water-based metalworking fluid waste stream. The evaporator was setup in Waste Management’s barrel lot inside one of the confinement areas. The unit processed three batches of waste fluid during the prototype testing. Initial tests removed 13% of the fluid waste stream. Subsequent modifications to the collector improved the rate to almost 20% per week. Evaluation of the risk during operation showed that even a small spill when associated with precipitation, and the unit placement within a confinement area, gave it the potential to contaminate more fluid that what it could save.

  8. Fiber-optic aided spectrophotometric determination of ruthenium (III) in aqueous streams of nuclear reprocessing

    International Nuclear Information System (INIS)

    A fiber optic aided spectrophotometric technique has been developed for the determination of ruthenium (III) in nitric acid medium. The developed method is simple, accurate and applicable to aqueous streams of nuclear reprocessing. The system obeys Lambert-Beer's law at 468 nm in the concentration of 60-360 ppm of ruthenium (III) nitrate. The results obtained are reproducible with standard deviation 2% and relative error is less than 3%. The results obtained by the developed procedure are in good agreement with those obtained by the standard ICP-OES method. Fission products like Zr and Sr are not interfering. Uranium is interfering and needs prior separation by solvent extraction method. The developed method is adaptable for remote operation and on-line monitoring

  9. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  10. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Shaibu, B.S. [Chemical Sciences Division, Regional Research Laboratory (CSIR), Thiruvananthapuram-695019 (India); Reddy, M.L.P. [Chemical Sciences Division, Regional Research Laboratory (CSIR), Thiruvananthapuram-695019 (India)]. E-mail: mlpreddy@yahoo.co.uk; Bhattacharyya, A. [Radiochemistry Division, B.A.R.C, Trombay, Mumbai-400085 (India); Manchanda, V.K. [Radiochemistry Division, B.A.R.C, Trombay, Mumbai-400085 (India)

    2006-06-15

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 {mu}m) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  11. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    Science.gov (United States)

    Shaibu, B. S.; Reddy, M. L. P.; Bhattacharyya, A.; Manchanda, V. K.

    2006-06-01

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  12. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  13. Management of New Production Reactor waste streams at Savannah River

    International Nuclear Information System (INIS)

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program

  14. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  15. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd) in Aqueous Solution

    OpenAIRE

    Austin Kanayo ASIAGWU; Patrice-Anthony-Chudi OKOYE; Orji IFEOMA; Patrick Ejo OMUKU

    2009-01-01

    An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+) in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solu...

  16. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  17. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  18. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  19. Recycling ferrous and nonferrous waste streams with FASTMET

    Science.gov (United States)

    McClelland, James M.; Metius, Gary E.

    2003-08-01

    In metals processing, residue streams are routinely generated containing recoverable metallic compounds. These metallics represent both valuable materials and potential disposal problems to the producer. Midrex, primarily involved in ferrous conversion for many years, has developed a variety of new processing techniques for ferrous and non-ferrous recovery. The processing technologies involve either shaft or rotary hearth furnaces, and can be both hydrocarbon or coal based. Recent developments have included conversion studies for ferrous and non-ferrous residual streams that are energy efficient and environmentally friendly. The technologies to be presented, predominantly coal based, include FASTMET®, FASTMELT®, and Itmk3®.

  20. Recycling ferrous and nonferrous waste streams with FASTMET

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.M.; Metius, G.E. [Midrex Technology, Charlotte, NC (United States)

    2003-08-01

    In metals processing, residue streams are routinely generated containing recoverable metallic compounds. These metallics represent both valuable materials and potential disposal problems to the producer. Midrex, primarily involved in ferrous conversion for many years, has developed a variety of new processing techniques for ferrous and non-ferrous recovery. The processing technologies involve either shaft or rotary hearth furnaces, and can be both hydrocarbon or coal based. Recent developments have included conversion studies for ferrous and non-ferrous residual streams that are energy efficient and environmentally friendly. The technologies presented, predominantly coal based, include FASTMET, FASTMELT, and Itmk3.

  1. Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)

    Energy Technology Data Exchange (ETDEWEB)

    Arbon, Rodney Edward

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  2. Measurement and Monte Carlo Calculation of Waste Drum Filled With Radioactive Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    XU; Li-jun; ZHANG; Wei-dong; YE; Hong-sheng; LIN; Min; CHEN; Xi-lin; GUO; Xiao-qing

    2012-01-01

    <正>Theoretically the best calibrating source of gamma scan system (SGS) is a waste drum filled with uniform distribution of medium and radioactive nuclides. However, in reality, waste drums usually full of solid substance, which are difficult to be prepared in a completely uniformly distributed state. To reduce measurement uncertainty of the radioactivity of waste drums prepared using the method of shell source, a waste drum filled with radioactive aqueous solution was prepared. Besides, its radioactivity was measured by a SGS device and calculated using Monte Carlo method to verify the exact geometric model, which

  3. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  4. Separation of chloride and sulfate ions in univalent and divalent cation forms from aqueous streams.

    Science.gov (United States)

    Bader, M S

    2000-04-28

    The precipitation and separation of chloride and sulfate in several cation forms (sodium, potassium, magnesium, calcium, strontium, and barium) from aqueous streams were studied using isopropylamine (IPA) and ethylamine (EA) as precipitation solvents. The precipitation fractions (P) of the tested chloride salts at 5000 and 10,000 ppm by both IPA and EA over the studied range of solvents volume ratio (V(R)) were relatively identical (18-60%) and their small variations were within their experimental uncertainty. The P of combined sulfate at 1000 ppm (56-99.5%) and chloride at 5000 ppm (28-62%) in the form of calcium by IPA over the studied range of V(R) were appreciably higher than the P of sulfate (10-98.5%) from calcium sulfate in the absence of calcium chloride, or the P of chloride (18-58%) from calcium chloride in the absence of calcium sulfate. The P of chloride from oil-field-produced waters at 106,654 ppm (20-88%) by both IPA and EA were higher than the P of chloride from diluted produced water at 20,000 (17-68%) and 10,000 ppm (16-65%) over the studied range of V(R). The small amounts of sulfate present in the produced waters (e.g., 435 ppm) were completely removed at V(R) of 0.1 (the first stage of precipitation). Consistency tests performed on the acquired data indicated a good level of experimental consistency. Two model equations (2-Suffix and 3-Suffix) derived from thermodynamic principles of solid-liquid equilibrium (SLE) criteria were employed to correlate the acquired data. While both equations were adequate for correlating the precipitation data, the 3-Suffix equation was more accurate.

  5. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  6. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  7. Selection and Evaluation of Chemical Indicators for Waste Stream Identification

    Science.gov (United States)

    DeVita, W. M.; Hall, J.

    2015-12-01

    Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.

  8. Remediation of phosphorus from electric furnace waste streams

    International Nuclear Information System (INIS)

    Electrothermal production of elemental phosphorus (P4) generates substantial amounts of highly toxic phossy water sludge, slag and other gaseous wastes. Because of their high phosphorus content the sludges pose potential fire hazards. In the absence of a reliable processing technology, large amounts of these hazardous wastes are accumulated at an annual rate of 1.5-2.5 million tons from current and past operations. The accumulated sludges are stored in ponds or in special containment vessels in 30 locations in 18 states including Alabama, California, Tennessee, Idaho and Montana. Serious water pollution problems will result unless these wastes are given extensive treatment to remove the elemental phosphorus. Federal regulations prohibit permanent storage of flammable wastes. This paper reports that recently, researchers at the University of Alabama have developed a two-step method for the treatment of phosphorus sludge that includes bulk removal of phosphorus by physical separation techniques followed by remediation of the residual P4 in the sludge using a novel wet air oxidation technique known as HSAD

  9. EFFLUENT TREATMENT FACILITY (ETF) WASTE STREAM STABILIZATION TESTING

    International Nuclear Information System (INIS)

    The U.S. Department of Energy Hanford Site, the location of plutonium production for the US nuclear weapons program, is the focal point of a broad range of waste remediation efforts. This presentation will describe the development of cementitious waste forms for evaporated Hanford waste waters from several sources. Basin 42 waste water and simulants of proposed Waste Treatment and Immobilization Plant secondary wastes and Demonstration Bulk Vitrification System secondary wastes were solidified in cementitious matrices termed ''dry cementitious formulation.'' Solidification of these brines was difficult to deal with because of high sulfate contents. Two approaches were explored. The first was based on compositions similar to sulphoaluminate-belite cements. The main component of these cements is 4CaO · 2Al2O3 · SO4. When hydrating in the presence of sulfate, these cements rapidly form ettringite. The goal was to consume the sulfate by rapidly forming ettringite. Forming ettringite before the mixture has filly set minimizes the potential for deleterious expansion at a later date. These formulations were developed based on mixtures of calcium-aluminate cement, a glassy blast-furnace slag, class F fly ash, and Portland cement. A second approach was based on using high alumina cement like ciment fondu. In this case the grout was a mixture of ciment fondu, a glassy blast-furnace slag, class f fly ash, and Portland cement. The literature shows that for concretes based on equal amounts of ciment fondu and blast furnace slag, cured at either 20 C or 38 C, the compressive strength increased continuously over a period of 1 year. In this second approach, enough reactive calcium aluminate was added to fully consume the sulfate at an early age. The results of this study will be presented. Included will be results for expansion and bleed water testing, adiabatic temperature rise, microstructure development, and the phase chemistry of the hydrated materials. The results of

  10. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2004-11-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  11. investigations for the separation of radioisotopes and selected metal ions from dilute aqueous solutions and aqueous waste simulant by foaming

    International Nuclear Information System (INIS)

    co precipitate flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zine hexacyanoferrate (II) (ZnHCF) and subsequent flotation of the precipitate . collectors of different types were tested but cetyl pyridinium chloride showed the best performance. before undertaking the flotation investigations , coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. the developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste simulant. the obtained results compare favourably with data published for cesium removal by coprecipitation or adsorption processes. besides, CPF seems to be more advantageous

  12. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.

    Science.gov (United States)

    Jacob, Paul; Kashyap, Prakriti; Suparat, Tasawan; Visvanathan, Chettiyappan

    2014-09-01

    Increasing urbanisation and automobile use have given rise to an increase in global tyre waste generation. A tyre becomes waste once it wears out and is no longer fit for its original purpose, and is thus in its end-of-life state. Unlike in developed countries, where waste tyre management has already become a significant issue, it is rarely a priority waste stream in developing countries. Hence, a large quantity of waste tyres ends up either in the open environment or in landfill. In Thailand, waste tyre management is in its infancy, with increased tyre production and wider use of vehicles, but low levels of recycling, leaving scope for more appropriate policies, plans and strategies to increase waste tyre recycling. This article describes the journey of waste tyres in Thailand in terms of recycling and recovery, and disposal. Material flow analysis was used as a tool to quantify the flows and accumulation of waste tyres in Thailand in 2012. The study revealed that, in Thailand in 2012, waste tyre management was still biased towards destructive technologies (48.9%), rather than material recovery involving rubber reclamation, retreading tyres and whole and shredded tyre applications (6.7%). Despite having both economic and environmental benefits, 44.4% of used tyres in 2012 were dumped in the open environment, and the remaining 0.05% in landfills. PMID:25106533

  13. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  14. Partial stream digestion of residual municipal solid waste.

    Science.gov (United States)

    De Baere, L

    2008-01-01

    Anaerobic digestion of residual municipal solid waste (MSW) has become more important than the digestion of source separated biowaste. More than 52% of the capacity available in Europe was designed for digestion of residual municipal waste by the end of 2006, while this was only 13% in 1998. Partial digestion of residual waste organics, by which only a part of the organics is digested, has been implemented to reduce the need for dewatering and subsequent wastewater treatment. The digestate coming from part of the organics is immediately mixed with the non-digested organic fraction. This organic fraction is drier and still contains a lot of energy which can be used to dry the digestate during the aerobic composting of the mixture of digested and undigested organics. Such a MBT-plant has been operating for over a year whereby 2/3 of the organics (including sludge cake) are digested (25,000 t/year) and mixed after digestion with the remaining 1/3 of the organics. Biogas production averages 125.7 Nm2 per ton fed and contained 56.2% of methane. The mixture of digestate and non-digested organics is aerated in tunnels during 4 to 6 weeks. The stabilized end product is landfilled, meeting the stringent German standards for inert landfills. By using a dry fermentation able to produce a digestate at 35% solids, there is no need for dewatering the digestate so that no wastewater is produced. PMID:18441435

  15. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.

    Science.gov (United States)

    Jin, Bo; Yin, Pinghe; Ma, Yihong; Zhao, Ling

    2005-12-01

    This study proposed a novel waste utilization bioprocess for production of lactic acid and fungal biomass from waste streams by fungal species of Rhizopus arrhizus 36017 and R. oryzae 2062. The lactic acid and fungal biomass were produced in a single-stage simultaneous saccharification and fermentation process using potato, corn, wheat and pineapple waste streams as production media. R. arrhizus 36017 gave a high lactic acid yield up to 0.94-0.97 g/g of starch or sugars associated with 4-5 g/l of fungal biomass produced, while 17-19 g/l fungal biomass with a lactic acid yield of 0.65-0.76 g/g was produced by the R. oryzae 2062 in 36-48 h fermentation. Supplementation of 2 g/l of ammonium sulfate, yeast extract and peptone stimulated an increase in 8-15% lactic acid yield and 10-20% fungal biomass. PMID:16208461

  16. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  17. Separation of technetium from nuclear waste stream simulants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1994-09-30

    The authors evaluated several calorimetric assays for ReO{sub 4}{sup {minus}}, and discovered that all were flawed. They evaluated atomic absorption spectroscopy as a technique to determine sub-millimolar concentrations of ReO{sub 4}{sup {minus}}, and discovered that it is not sensitive enough for their use. However, they discovered that ICP-AES can be used to determine concentrations of ReO{sub 4}{sup {minus}} down to 0.25 ppm. They next determined that ReO{sub 4}{sup {minus}} can be quickly extracted (10 minutes or less) from aqueous HNO{sub 3} using the commercial extractant Aliquat-336 nitrate diluted with 1,3-diisopropylbenzene. Higher concentrations of extractant led to higher values of K{sub d} (the distribution ratio). K{sub d} was lower as the nitrate concentration of the medium increased, and was also lowered by increasing the acidity at constant nitrate ion concentration. The authors performed parallel studies with TcO{sub 4}{sup {minus}}, determining that K{sub d}(ReO{sub 4}{sup {minus}}) and K{sub d}(TcO{sub 4}{sup {minus}}) track similarly as the conditions are changed. An effort was made to prepare substituted pyridium nitrate salts that are soluble in organic solvents to be used as alternate extractants. However, in all cases but one, the salts were also soluble to some extent in the aqueous phase, significantly limiting their usefulness as extractants for these purposes. Many of the new extractant salts would partition between the organic solvent and water so that 10% of the extractant salt was in the aqueous phase. Only 1-methyl-3,5-didodecylpyridium nitrate did not show any measurable solubility in water. However, this compound was not as good an extractant as Aliquat-336. A considerable effort was also made to find suitable alternative solvents to 1,3-diisopropylbenzene. Several ketone solvents with flash points above 60 C were tested, and two of these, 2-nonanone and 3-nonanone, were superior to 1,3-diisopropylbenzene as a diluent.

  18. THE DEVELOPMENT OF AQUEOUS THERMODYNAMIC MODELS: APPLICATION TO WASTE TANK PROCESSING AND VADOSE ZONE ISSUES

    Science.gov (United States)

    The presence of a wide range of radionuclides, metal ions, inorganic ligands, and organic chelating agents combined with the high base and electrolyte concentration in the Hanford waste tanks creates some unique and difficult problems in modeling the aqueous thermodynamics of the...

  19. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  20. Poster 25. Inorganic seed materials for the decontamination of PWR aqueous wastes

    International Nuclear Information System (INIS)

    The use of several inorganic sorbents, used in combination with crossflow membrane filtration, has been studied for the reduction of Cr-51 and Sb-125 levels in a pressurised water reactor waste stream. A mixture of titanium oxide, zirconium phosphate and sodium nickel hexacyanoferrate (II) gave an overall decontamination factor of 20 at a solution pH of 4.5. (author)

  1. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  2. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  3. Unit operations used to treat process and/or waste streams at nuclear power plants

    International Nuclear Information System (INIS)

    Estimates are given of the annual amounts of each generic type of LLW [i.e., Government and commerical (fuel cycle and non-fuel cycle)] that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials [liquids (e.g., oils or solvents) and/or solids], could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends

  4. Application of insoluble tannin adsorbent to alpha aqueous waste treatment in NUCEF

    International Nuclear Information System (INIS)

    The use of insoluble tannin adsorbent has been investigated as a means to reduce the volume of aqueous waste contaminated with americium. This work is aimed at reducing the volume of TRU waste generated within NUCEF where experiments related to back end of the nuclear fuel cycle are performed. Insoluble tannin adsorbent is a gelled material consisting of C, H and O which can be easily incinerated. The distribution coefficient and adsorption capacity of americium in insoluble tannin have been investigated and found to be 1000 ml/g in 0.02 M HNO3 and 0.013 mmol/g-dried tannin, respectively. The prospect of applying the adsorbent to the treatment of aqueous waste contaminated with americium appears promising. (author)

  5. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    International Nuclear Information System (INIS)

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  6. Solvent extraction of radionuclides from aqueous tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.; Sachleben, R.; Moyer, B. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process to remove the fission products {sup 99}Tc, {sup 90}Sr, and {sup 137}Cs from alkaline tank waste, such as those stored at Hanford and Oak Ridge. As such, this task expands on FY 1995`s successful development of a solvent-extraction and stripping process for technetium separation from alkaline tank-waste solutions. This process now includes the capability of removing both technetium and strontium simultaneously. In this form, the process has been named SRTALK and will be developed further in this program as a prelude to developing a system capable of removing technetium, strontium, and cesium.

  7. Independent review of inappropriate identification, storage and treatment methods of polychlorinated biphenyl waste streams

    International Nuclear Information System (INIS)

    The purpose of the review was to evaluate incidents involving the inappropriate identification, storage, and treatment methods associated with polychlorinated biphenyl (PCB) waste streams originating from the V-tank system at the Test Area North (TAN). The team was instructed to perform a comprehensive review of Lockheed Martin Idaho Technologies Company (LMITCO's) compliance programs related to these incidents to assess the adequacy and effectiveness of the management program in all respects including: adequacy of the waste management program in meeting all LMITCO requirements and regulations; adequacy of policies, plans, and procedures in addressing and implementing all federal and state requirements and regulations; and compliance status of LMITCO, LMITCO contract team members, and LMITCO contract/team member subcontractor personnel with established PCB management policies, plans, and procedures. The V-Tanks are part of an intermediate waste disposal system and are located at the Technical Support Facility (TSF) at TAN at the Idaho National Engineering and Environmental Laboratory (INEEL). The IRT evaluated how a waste was characterized, managed, and information was documented; however, they did not take control of wastes or ensure followup was performed on all waste streams that may have been generated from the V-Tanks. The team has also subsequently learned that the Environmental Restoration (ER) program is revising the plans for the decontamination and decommissioning of the intermediate waste disposal system based on new information listed and PCB wastes. The team has not reviewed those in-process changes. The source of PCB in the V-Tank is suspected to be a spill of hydraulic fluid in 1968

  8. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  10. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    International Nuclear Information System (INIS)

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment

  11. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    OpenAIRE

    Erminda Tsouko; Constantina Kourmentza; Dimitrios Ladakis; Nikolaos Kopsahelis; Ioanna Mandala; Seraphim Papanikolaou; Fotis Paloukis; Vitor Alves; Apostolis Koutinas

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L)...

  12. Sorption of 137Cs from Aqueous Waste Solutions using Pottery

    International Nuclear Information System (INIS)

    A simple and inexpensive method for sorption of 137Cs from aqueous solutions using a highly available vase shape pottery material has been investigated. Porosity of the used pottery allowed for the penetration of the radioactive solution through its permeable body. Two routes had been investigated for cesium removal from the radioactive solutions. In the first one, pottery bodies were immersed into the radioactive solutions. In the second method; the radioactive solutions were filled the inner volumes of the pottery bodies. Vase shape pottery showed higher sorption capability for 137Cs much more than its powder forms, especially in the alkaline medium. Pottery bodies showed high potential for 137Cs removal. Adsorption isotherms revealed good lit to the Freundlich and Langumir isotherms. During sorption processes outside and inside the pottery body, 137Cs was well captured inside the amorphous microstructure of the pottery body. In this respect, micro filtration of cesium radionuclides through the used pottery could be postulated. Desorption experiments indicated higher immobilization affinity for radiocesium into pottery bodies, which indicates a high containment for 137Cs with an irreversible fixation mechanism

  13. Chemical treatment of aqueous radioactive Cesium-137 waste using Ferri Chloride

    International Nuclear Information System (INIS)

    Ferric Chloride 6H2O was used for treatment of liquid radioactive wastes containing Cesium-137. Various concentration of ferric chloride 6H2O have been added into the waste at different pH and speed of stirrer. The treatment was based on the coagulans-flocculation and coprecipitation mechanisms. The best result of this experiment was achieved by adding 300 ppm of Ferric chloride 6 H2O into liquid waste on following condition the rate Stirrer was 250 rpm. At this condition, it was found that the separation efficiency and the decontamination factor were 83.32 % and 5.99. The activity of decreasing of aqueous radioactive Cesium-137 waste was 2.10 x 10-4 Ci/l to 3.50 x 10-5 Ci/l

  14. Radiation-flotation purification of aqueous wastes from mercury

    International Nuclear Information System (INIS)

    Purification of industrial wastes of plants producing chlorine and alkalies by electrolysis with using metallic mercury as a cathode from mercury (in ionic and metallic form as well as in the form of precipitate) to the accepted in the Soviet Union limiting permitted level of concentration (5 x 10-3 mg dm-3) by routine sulphide and ion exchange methods has some disadvantages. We have now developed the radiation-flotation method which consists of three stages: preliminary flotation in the presence of surfactant (sodium alkylsulphonate), γ-irradiation at dose 1 kGy and secondary flotation (also in the presence of sodium alkylsulphonate). The method is discussed and results are reported. (author)

  15. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-06-28

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000.

  16. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    International Nuclear Information System (INIS)

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000

  17. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    Science.gov (United States)

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.

  18. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    Science.gov (United States)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  19. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    Science.gov (United States)

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques.

  20. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  1. SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2015-09-01

    Full Text Available In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

  2. Process Control for Simultaneous Vitrification of Two Mixed Waste Streams in the Transportable Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Jantzen, C.M.; Brown, K.G.; Cicero-Herman, C.

    1998-05-01

    Two highly variable mixed (radioactive and hazardous) waste sludges were simultaneously vitrified in an EnVitCo Transportable Vitrification System (TVS) deployed at the Oak Ridge Reservation. The TVS was the result of a cooperative effort between the Westinghouse Savannah River Company and EnVitCo to design and build a transportable melter capable of vitrifying a variety of mixed low level wastes.The two waste streams for the demonstration were the dried B and C Pond sludges at the K-25 site and waste water sludge produced in the Central Neutralization Facility from treatment of incinerator blowdown. Large variations occurred in the sodium, calcium, silicon, phosphorus, fluorine and iron content of the co- blended waste sludges: these elements have a significant effect on the process ability and performance of the final glass product. The waste sludges were highly reduced due to organics added during processing, coal-pile runoff (coal and sulfides), and other organics, including wood chips. A batch-by-batch process control model was developed to control glass viscosity, liquidus, and reduction/oxidation, assuming that the melter behaved as a Continuously Stirred Tank Reactor.

  3. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  4. Corrosion behavior of technetium waste forms exposed to various aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, David Gary [Los Alamos National Laboratory; Jarvinen, Gordon [Los Alamos National Laboratory; Mausolf, Edward [UNIV OF NEVADA; Czerwinski, Ken [UNIV OF NEVADA; Poineau, Frederic [UNIV OF NEVADA

    2009-01-01

    Technetium is a long-lived beta emitter produced in high yields from uranium as a waste product in spent nuclear fuel and has a high degree of environmental mobility as pertechnetate. It has been proposed that Tc be immobilized into various metallic waste forms to prevent Tc mobility while producing a material that can withstand corrosion exposed to various aqueous medias to prevent the leachability of Tc to the environment over long periods of time. This study investigates the corrosion behavior of Tc and Tc alloyed with 316 stainless steel and Zr exposed to a variety of aqueous media. To date, there is little investigative work related to Tc corrosion behavior and less related to potential Tc containing waste forms. Results indicate that immobilizing Tc into stainless steel-zirconium alloys can be a promising technique to store Tc for long periods of time while reducing the need to separately store used nuclear fuel cladding. Initial results indicate that metallic Tc and its alloys actively corrode in all media. We present preliminary corrosion rates of 100% Tc, 10% Tc - 90% SS{sub 85%}Zr{sub 15%}, and 2% Tc - 98% SS{sub 85%}Zr{sub 15%} in varying concentrations of nitric acid and pH 10 NaOH using the resistance polarization method while observing the trend that higher concentrations of Tc alloyed to the sample tested lowers the corrosion rate of the proposed waste package.

  5. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    Energy Technology Data Exchange (ETDEWEB)

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  6. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    Science.gov (United States)

    Delva, Laurens; Ragaert, Kim; Cardon, Ludwig

    2015-12-01

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  7. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    Energy Technology Data Exchange (ETDEWEB)

    Delva, Laurens, E-mail: Laurens.Delva@ugent.be; Ragaert, Kim, E-mail: Kim.Ragaert@ugent.be; Cardon, Ludwig, E-mail: Ludwig.Cardon@ugent.be [Centre for Polymer and Materials Technologies (CPMT), Department of Materials Science and Engineering, Ghent University, Technologiepark 915, 9052 Zwijnaarde (Belgium)

    2015-12-17

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  8. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    2001-01-24

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  9. Study on recycle of materials and components from waste streams during decommissioning for heavy water research reactor

    International Nuclear Information System (INIS)

    The recycle of valuable materials from potential waste streams is one of important elements of waste minimization, and it can minimize the environment impact. The recycle of the arising was researched with taking the decommissioning of heavy water research reactor (HWRR) in China Institute of Atomic Energy as an example. By analyzing all the possible wastes that could generate during the decommissioning of HWRR, some amount of materials have potential values to recycle and may be used either directly or after appropriate treatment for other purposes. The research results show that in HWRR decommissioning at least tons of irons, 10 tons of aluminum and 5 tons of heavy water can be recycled by carrying out the waste minimization control measures (eg. waste classification and waste stream segregation), adopting appropriate decontamination technologies, and performing the requirements of clearance. (authors)

  10. Tea Wastes Efficiency on Removal of Cd(II From Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2016-07-01

    Full Text Available Background & Aims of the Study: Heavy metals, such as cadmium (Cd(II, enter into the environment and cause health hazard due to their toxicity and bioaccumulation in the human body. Therefore, they must be removed from water. In recent years, much attention has been focused on the use of material residues as low-cost adsorbents for the removal of heavy metal ions from aqueous solutions. The aim of this paper is the assessment of tea wastes efficiency on removal of Cd(II from aqueous solutions. Materials and Methods: The present study was conducted in experimental scale. In this paper, tea wastes were prepared and used as an adsorbent for the removal of Cd(II ions from water. In batch tests, the effect of parameters like pH (1.0-8.0, initial metal concentration (100-800 mg L-1, contact time (15-120 min, adsorbent dose (1.0-5.0 g and temperature (25-55 °C on the adsorption process was studied. Results: The results demonstrated that the maximum percentage of Cd(II adsorption was found at pH 6.0 and the equilibrium was achieved after 60 min with 3.0 g tea wastes. The experimental isotherm data were analyzed, using the Langmuir and Freundlich models and it was found that the removal process followed the Langmuir isotherm. In addition, the adsorption kinetics followed the pseudo-second-order kinetic model. The maximum adsorption capacity calculated by Langmuir fitting was 71.4 mg g−1. Conclusion: The results suggest that tea wastes could be employed as an effective material for the removal of Cd(II ions from aqueous solutions and the maximum adsorption capacity was found to be 71.4 mg g−1.

  11. Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls

    Energy Technology Data Exchange (ETDEWEB)

    Belue, A; Fischer, R P

    2007-01-08

    In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES&H Policies of LLNL'', in the ES&H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existing environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for

  12. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na2SO4, CaCl2 and MgSO4) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl2 and low rejection for Na2SO4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  13. Tritium Separation from High Volume Dilute Aqueous Streams- Milestone Report for M3FT-15OR0302092

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, S. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-02-29

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration covering the range of concentration anticipated in nuclear fuel processing where potentially both acid and water streams are recycled. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1 mCi/mL which is about 0.1 mg/L or 0.1 ppm. The HTO concentration was three orders of magnitude lower than experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes. Separation factor calculated from the measured tritium concentrations ranged from 0.83-0.98. Although the membrane performance characterization results were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. We have identified several new approaches, such as tuning the diffusion coefficient of HTO, that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.

  14. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  15. Entrained solvent separation by charcoal adsorption from aqueous streams generated during uranium recovery from phosphoric acid

    International Nuclear Information System (INIS)

    During the two cycle solvent extraction process for the separation of uranium from phosphoric acid, solvents such as D2EHPA, di nonyl phenyl phosphoric acid (DNPPA), tri butyl phosphate (TBP), etc., get dissolved/entrained in the various aqueous phases such as WPA, ammonium carbonate solution, MGA and sulphuric acid. These solvents have to be separated both from process economy point of view and for industrial acceptability. Systematic experiments showed that recovery of solvents by diluent washing is not effective for alkaline solution. Hence studies were undertaken to study the feasibility of activated charcoal adsorption for entrained/dissolved solvent separation. (author)

  16. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  17. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    to recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g View the MathML sourceNH4+-N/m2/d......Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed...... bioelectrodialysis was successfully demonstrated with cattle manure. The results provide new possibilities for development of cost-effective technologies, capable of waste resources recovery and renewable energy production....

  18. Personal Review: Sources of sulfide in waste streams and current biotechnologies for its removal

    Institute of Scientific and Technical Information of China (English)

    MAHMOOD Qaisar; ZHENG Ping; CAI Jing; HAYAT Yousaf; HASSAN Muhammad Jaffar; WU Dong-lei; HU Bao-lan

    2007-01-01

    Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dissolved sulfide (S2- and HS-) in wastewaters and as H2S in waste gases. Due to its corrosive nature, biological hydrogen sulfide removal processes are being investigated to overcome the chemical and disposal costs associated with existing chemically based removal processes. The nitrogen and sulfur metabolism interacts at various levels of the wastewater treatment process. Hence, the sulfur cycle offers possibilities to integrate nitrogen removal in the treatment process, which needs to be further optimized by appropriate design of the reactor configuration, optimization of performance parameters, retention of biomass and optimization of biomass growth. The present paper reviews the biotechnological advances to remove sulfides from various environments.

  19. Removal of Pb (II from Aqueous Solutions Using Waste Tea Leaves

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2015-03-01

    Full Text Available Background: The presence of lead in natural waters has become an important issue around the world. Lead has been identified as a highly toxic metal that can cause severe environmental and public health problems and its decontamination is of utmost importance. The aim of this work was to evaluate the adsorption of lead (Pb(II on waste tea leaves as a cheap purification method. Methods: In this experimental study, prepared waste tea leaves were used as adsorbent for the removal of Pb (II from aqueous solutions. Adsorption experiments were carried out as batch studies at different contact time, pH, amount of adsorbent, initial metal concentration and temperature. Results: The results showed that maximum removal efficiency was observed at pH 6. Also the adsorption of Pb (II ions increased with decreasing initial metal concentration. The Langmuir isotherm model fits well with the equilibrium adsorption isotherm data and its calculated maximum monolayer adsorption capacity was 166.6 mg g-1 at a temperature of 25±0.1˚C. The kinetic data obtained have been analyzed using pseudo-first-order and pseudo-second-order models. The best fitted kinetic model was found to be pseudo-second-order. Conclusion: The results suggest that tea wastes could be employed as cheap material for the removal of lead from aqueous solutions.

  20. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace

  1. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.

    Science.gov (United States)

    Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong

    2014-11-01

    This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused.

  2. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    International Nuclear Information System (INIS)

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates

  3. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  4. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Sadananda; Pandey, Ashok K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Sangita D., E-mail: sangdk@barc.gov.in [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Reddy, A.V.R. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. Black-Right-Pointing-Pointer Membranes offered high capacity and selectivity for fluoride in aqueous media. Black-Right-Pointing-Pointer Quantitative uptake (80 {+-} 5%) of fluoride. Black-Right-Pointing-Pointer Fast sorption kinetics. Black-Right-Pointing-Pointer Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic-organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for Almost-Equal-To 76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg{sup -1}), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  5. Recycling of Waste Streams of the Biotechnological Poly(hydroxyalkanoate Production by Haloferax mediterranei on Whey

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-01-01

    Full Text Available For manufacturing “bioplastics” such as poly(hydroxyalkanoates (PHA, the combination of utilization of inexpensive carbon sources with the application of robust microbial production strains is considered a decisive step to make this process more cost-efficient and sustainable. PHA production based on surplus whey from dairy industry was accomplished by the extremely halophile archaeon Haloferax mediterranei. After fermentative production of PHA-rich biomass and the subsequent cell harvest and downstream processing for PHA recovery, environmentally hazardous, highly saline residues, namely spent fermentation broth and cell debris, remain as residues. These waste streams were used for recycling experiments to assess their recyclability in subsequent production processes. It was demonstrated that spent fermentation broth can be used to replace a considerable part of fresh saline fermentation medium in subsequent production processes. In addition, 29% of the expensive yeast extract, needed as nitrogen and phosphate source for efficient cultivation of the microorganism, can be replaced by cell debris from prior cultivations. The presented study provides strategies to combine the reduction of costs for biomediated PHA production with minimizing ecological risks by recycling precarious waste streams. Overall, the presented work shall contribute to the quick economic success of these promising biomaterials.

  6. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels.

  7. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    International Nuclear Information System (INIS)

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels

  8. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  9. Composition, activity- and heat-inventory of different waste streams from LWR and FBR nuclear fuel cycles

    International Nuclear Information System (INIS)

    According to the German concept, spent reactor fuel elements are intended to be reprocessed. The resulting radioactive wastes are planned to be disposed of in a salt dome. Long-term safety analysis for the nuclear waste repository and the evaluation of waste treatment methods require detailed information about the composition, activity- and heat-inventory of the waste streams. In this report data are listed which were calculated for radioactive wastes from reprocessed fuel elements (high-level waste concentrate, medium-level waste concentrate, dissolver residues) and radioactive wastes from the fabrication of nuclear fuel elements. Data are given for the reprocessing and the fabrication of uranium dioxide and uranium/plutonium mixed oxide fuel elements for light-water reactors. In addition the corresponding waste streams from a fast breeder reactor nuclear fuel cycle are characterized. For the calculations the KORIGEN-code was used with input data for reference-type reactors. The calculation of the time dependent radionuclide composition of the wastes was based on element separation factors which were experimentally determined. (orig.)

  10. Biosorption of Methylene Blue from Aqueous Solutions by Diospyrous melanoxylon Leaf Waste

    Directory of Open Access Journals (Sweden)

    Raghvendra G Patil

    2013-04-01

    Full Text Available Waste Tendu (Diospyros melanoxylon leaves from bidi (local cigarette industry has been used as a raw material to produce activated carbon applying sulfuric acid carbonization method. Batch experiments were conducted to assess the potential for the removal of methylene blue dye from aqueous solution using the activated carbon and compared to raw tendu leaves powder and commercial activated carbon. Equilibrium isotherm and kinetic studies have been done by varying the parameters such initial concentration of dye, adsorbent dose, pH of the dye solution, and varying the contact time between the carbon and the dye. It was found that the methylene blue adsorption on tendu waste-based activated carbon conformed to the Langmuir isotherm. The maximum monolayer adsorption capacities were found to be 219.3, 355.9 and 495.1 mg/g for raw tendu waste, carbonized tendu and commercial carbon, respectively. The kinetic studies were well characterized by a pseudo second order kinetic model. The results of this study indicate that raw tendu waste a renewable bioresource, as such as well as its carbonized form are attractive biosorbent for removing a cationic dye from the dye wastewater.DOI: http://dx.doi.org/10.5755/j01.erem.63.1.2735

  11. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  12. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g-1) and textile dye reactive red (163 mg g-1), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  13. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X−

    International Nuclear Information System (INIS)

    The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I−, Br−, and Cl− anions are revisited and determined more accurately than in previous studies

  14. A study of the use of seeded ultrafiltration for the treatment of thorium-uranium mining waste streams

    International Nuclear Information System (INIS)

    The use of seeded ultrafiltration for the treatment of radioactive waste streams arising from the nuclear industry has demonstrated its high potential as an efficient process for the removal of radionuclides present in the rad waste streams. The experimental data on simulated mining streams has given indications on the suitability of this technique for the treatment of mining waste streams. The results also show that proper choice of absorbers can reduce not only the radioactivity level but also remove most of the products of both the thorium and uranium decay series. Decontamination factors (D F) for the system using manganese dioxide (Mn O2) are only slightly affected by the preparation method. On the contrary, the D F achieved using titanium hydroxide (HTiO) absorber was found to be dependent on the preparation method. The experimental data shows that total activity levels can be reduced to below to below detection limit (3 E-3 Bq/ml). The extent of decontamination of thorium containing waste streams was found to be dependent on the absorber used; in the order diuranate > HTiO> Fe(OH)3> Mn O2. The use of HTiO reduced the decay product activity of almost all the thorium daughters to nearly background levels. A D F of the order of 300 can easily be achieved using diuranate floe. 10 fig., 5 tab

  15. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  16. Economic and environmental characterization of an evolving Li-ion battery waste stream.

    Science.gov (United States)

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W; Bailey, Chelsea; Ganter, Matthew J; Landi, Brian J

    2014-03-15

    While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques.

  17. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  18. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  19. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    DEFF Research Database (Denmark)

    Zhang, Yifeng

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater....... A sediment-type MFC based on two pieces of bioelectrodes was employed as a novel in situ applicable approach for nitrate/nitrite removal, as well as electricity production from eutrophic lakes. The nitrogen removal and power generation were limited by the DO level in the water and acetate level injected......, additional electron donor or risk of bacteria discharge. Such a new system may offer a promising avenue for drinking water treatment and energy recovery....

  20. ANALISIS WASTE DALAM ALIRAN MATERIAL INTERNAL DENGAN VALUE STREAM MAPPING PADA PT XYZ

    Directory of Open Access Journals (Sweden)

    Ketut Gita Ayu

    2012-05-01

    Full Text Available The main focus of the research is excess inventory and motion waste which commonly occur in warehouse and production floor. This research is carried out to minimize the average level and eliminate unnecessary motions, with consideration of electronic pull and traceability system characteristics. Product X, the highest-selling product, is the object of this research. To identify the current condition, the current state Value Stream Mapping (VSM is developed as the basis to arrange improvement plan to minimize the wastes. Safety stock is determined through average and maximum consumption difference; and reorder point is determined to comply with pull approach. Average inventory level is calculated using continuous review method. The simulation was conducted and it was shown that 8.29 minutes is the maximum lateness. Thus, safety stock and reorder point are adjusted accordingly to anticipate stockout due to lateness. The improvement of process cycle efficiency is shown to increase from 4.1 % to 5.1 % as projected in future state VSM.

  1. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-11-15

    Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed to recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g NH4(+)-N/m(2)/d and 18.9 g SO4(2-)/m(2)/d were obtained, resulting in a Coulombic and current efficiencies of 23.6% and 77.4%, respectively. Meanwhile, H2 production of 0.29 L/L/d was achieved. Gas recirculation at the cathode increased the nitrogen and sulfate fluxes by 2.3 times. The applied voltage, initial (NH4)2SO4 concentrations and coexistence of other ions were affecting the system performance. The energy balance revealed that net energy (≥ 16.8 kWh/kg-N recovered or ≥ 4.8 kWh/kg-H2SO4 recovered) was produced at all the applied voltages (0.8-1.4 V). Furthermore, the applicability of bipolar bioelectrodialysis was successfully demonstrated with cattle manure. The results provide new possibilities for development of cost-effective technologies, capable of waste resources recovery and renewable energy production.

  2. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    Science.gov (United States)

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted. PMID:26250546

  3. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    Science.gov (United States)

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted.

  4. Case study and presentation of the DOE treatability group concept for low-level and mixed waste streams

    International Nuclear Information System (INIS)

    The Federal Facility Compliance Act of 1992 requires the US Department of Energy (DOE) to prepare an inventory report of its mixed waste and treatment capacities and technologies. Grouping waste streams according to technological requirements is the logical means of matching waste streams to treatment technologies, and streamlines the effort of identifying technology development needs. To provide consistency, DOE has developed a standard methodology for categorizing waste into treatability groups based on three characteristic parameters: radiological, bulk physical/chemical form, and regulated contaminant. Based on category and component definitions in the methodology, descriptive codes or strings of codes are assigned under each parameter, resulting in a waste characterization amenable to a computerized format for query and sort functions. By using only the applicable parameters, this methodology can be applied to all waste types generated within the DOE complex: radioactive, hazardous, mixed, and sanitary/municipal. Implementation of this methodology will assist the individual sites and DOE Headquarters in analyzing waste management technology and facility needs

  5. Removal of arsenate and arsenite from aqueous solution by waste cast iron

    Institute of Scientific and Technical Information of China (English)

    Nag-Choul Choi; Song-Bae Kim; Soon-Oh Kim; Jae-Won Lee; Jun-Boum Park

    2012-01-01

    The removal of As(Ⅲ) and As(Ⅴ) from aqueous solution was investigated using waste cast iron,which is a byproduct of the iron casting process in foundries.Two types of waste cast iron were used in the experiment:grind precipitate dust (GPD) and cast iron shot (CIS).The X-ray diffraction analysis indicated the presence of Fe0 on GPD and CIS.Batch experiments were performed under different concentrations of As(Ⅲ) and As(Ⅴ) and at various initial pH levels.Results showed that waste cast iron was effective in the removal of arsenic.The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result.In the adsorption of both As(Ⅲ) and As(Ⅴ),the adsorption capacity of GPD was greater than CIS,mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS.Results also indicated the removal of As(Ⅲ) and As(Ⅴ)by GPD and CIS was influenced by the initial solution pH,generally decreasing with increasing pH from 3.0 to 10.5.In addition,both GPD and CIS were more effective at the removal of As(Ⅲ) than As(Ⅴ) under given experimental conditions.This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  6. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  7. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution

    Directory of Open Access Journals (Sweden)

    Azadeh Ebrahimian Pirbazari

    2014-08-01

    Full Text Available The adsorption of methylene blue (MB from aqueous solution by alkali treated Foumanat tea waste (ATFTW from agriculture biomass was investigated. The adsorbent was characterized by Scanning Electron Microscopy (SEM, Fourier Transform-Infrared Spectroscopy (FT-IR and nitrogen physisorption. FTIR results showed complexation and ion exchange appear to be the principle mechanism for MB adsorption. The adsorption isotherm data were fitted to Langmuir, Sips, Redlich-Peterson and Freundlich equations, and the Langmuir adsorption capacity, Qmax was found to be 461 mgg−1. It was found that the adsorption of MB increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The removal of MB by ATFTW followed pseudo-second order reaction kinetics based on Lagergren equations. Mechanism studies indicated that the adsorption of MB on the ATFTW was mainly governed by external mass transport where particle diffusion was the rate limiting step.

  8. Removal of Lead (II Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-01-01

    Full Text Available The removal of lead (II ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS analysis after adsorption reveals the accumulation of lead (II ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  9. Solidification of aqueous tritium-containing wastes with calcium oxide and asphalt

    International Nuclear Information System (INIS)

    A simple method is proposed for solidifying aqueous tritium-containing wastes with calcium oxide and asphalt. We incorporated tritiated calcium hydroxide into molten asphalt at 100-210/degree/C and studied the evolution of tritium (T) oxides there from as well as the extent to which calcium and tritium are leached out of the solidified product. Depending on temperature and heating time, the evolution of HTO from a Ca(OH)OT-asphalt mixture was low (between 5.6 x 10/sup /minus/4/ and 5.9 x 10/sup /minus/4/ wt.% of the original amount). Tritium evolution rates and leaching coefficients of tritium and calcium showed the solidified product to have high stability in water. Conclusions were drawn as to the usefulness of the proposed method

  10. Material stream management of biomass wastes for the optimization of organic wastes utilization; Stoffstrommanagement von Biomasseabfaellen mit dem Ziel der Optimierung der Verwertung organischer Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Boess, Andreas; Fehrenbach, Horst; Giegrich, Juergen; Vogt, Regine [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Dehoust, Guenter; Schueler, Doris; Wiegmann, Kirsten; Fritsche, Uwe [Oeko-Institut, Inst. fuer Angewandte Oekologie, Darmstadt (Germany)

    2007-02-15

    The effective use of the valuable substances found in waste materials can make an important contribution to climate protection and the conservation of fossil and mineral resources. In order to harness the potential contribution of biomass waste streams, it is necessary to consider the potential of the waste in connection with that of the total biomass. In this project, relevant biogenous material streams in the forestry, the agriculture as well as in several industries are studied, and their optimization potentials are illustrated. Scenarios are then developed, while taking various other environmental impacts into considerations, to explore possible optimized utilization of biomass streams and biomass waste substances for the future. Straw that is not needed for humus production and currently left on the field can be used for its energy content. The realisation of this potential would be significant contribution towards climate protection. The energetic use of liquid manure without negatively influencing its application as commercial fertilizer can also be similarly successful because of its large volume. The results of our study also support an increased energetic use of saw residues as fuel (in form of pellets) in small furnaces. For household organic wastes, the report suggests the fermentation with optimized energy use and intensified marketing of the aerobically treated compost as peat substitution. While for waste cooking fat that is currently disposed in the residual waste, a separate collection and direct use in motors that are used as combined heat and power generation are recommended. For meat and bone meal and communal sludge that are not being used substantial currently or in the future, phosphorus can be recovered with promising success from the ash produced when the waste is burnt in mono incinerators. These technical options should however be tested against disposal standard. (orig.)

  11. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Directory of Open Access Journals (Sweden)

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  12. A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Koel Banerjee

    2012-01-01

    Full Text Available The present study deals with the application of Watermelon Shell, an agricultural waste, for the adsorptive removal of Cu(II from its aqueous solutions. This paper incorporates the effects of time, dose,temperature, concentration, particle size, agitation speed and pH. Analytical techniques have been employed to find pore properties and characteristics of adsorbent materials. Batch kinetic and isotherm studies have also been performed to understand the ability of the adsorbents. The adsorption behavior of the Cu(II has beenstudied using Freundlich, Langmuir and Tempkin adsorption isotherm models. The monolayer adsorption capacity determined from the Langmuir adsorption equation has been found as 111.1 mg/g. Kineticmeasurements suggest the involvement of pseudo-second-order kinetics in adsorptions and is controlled by a particle diffusion process. Adsorption of Cu(II on adsorbents was found to increase on decreasing initial concentration, increasing pH up to 8, increasing temperature, increasing agitation speed and decreasing particlesize. Overall, the present findings suggest that watermelon outer shell is environmentally friendly, efficient and low-cost biosorbent which is useful for the removal of Cu(II from aqueous media.

  13. Metal Oxide Nanoparticles in Electrospun Polymers and Their Fate in Aqueous Waste Streams

    Science.gov (United States)

    Hoogesteijn von Reitzenstein, Natalia

    Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays---water-soil, water-octanol, water-wastewater sludge and water-surfactant---were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO˙) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO˙ is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3 - were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO 2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.

  14. Adsorption of Reactive Red 198 Azo Dye fromAqueous Solution onto theWaste Coagulation Sludge of theWater Treatment Plants

    Directory of Open Access Journals (Sweden)

    M. Mahmoudi

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives:Much attention has been recently paid on using waste materials as adsorbents for removal of contaminants from water and wastewater. A new low cost waste was examined for its capacity to adsorb RR198, an azo reactive model dye, from an aqueous solution."nMaterials andMethods: The waste was dried, powdered and characterized before being used as an adsorbent. The effects of pH (3-10, adsorbent dose (0.2-3 g, dye concentration and contact time on the adsorption efficiency were investigated. Equilibrium study data were modeled using Langmuir and Freundlich models."nResults: The characterization analysis indicated that itwas composedmainly of ferric hydroxide. The powder had a BET and average pore size of 107 m2/g and 4.5 nm, respectively. The results showed that dye removal was highest at a solution pH of 7 to 8 and a powder dose of 2 g/L. The RR198 removal percentage decreased from 100& to 43& at 140 min contact time when the concentration of dye was increased from 25 mg/L to 100 mg/L, at optimum pH and dosage. The Langmuir equation provided the best fit for the experimental data. The maximum adsorption capacity was calculated to be 34.4 mg/g."nConclusion: According to the obtained results, the water coagulation waste sludge appears to be a suitable low cost and effcient adsorbent for removing reactive azo dyes from waste streams.

  15. Remediation of alkaline intermediate level radioactive aqueous liquid waste stored along with organic waste at PREFRE Tarapur for ion exchange process: a laboratory scale study

    International Nuclear Information System (INIS)

    Dibutyl phosphate (DBP) and monobutyl phosphate (MBP) are formed during reprocessing of spent fuel as degradation products of Tributyl phosphate (TBP). To maintain the efficiency of TBP solvent during its repeated use, the degraded products are removed by sodium carbonate washing of the solvent. This radioactive sodium carbonate solution is stored in a separate tank along with the exhausted TBP solvent. The presence of degraded products of TBP and their complexes, ion exchange treatment of this waste is creating problems during alpha decontamination step. The present paper deals with the remediation of the aqueous phase of the above waste. For the treatment of the aqueous phase of waste, first the TBP degraded products are required to be removed so that the normal ion exchange treatment can be adopted. (author)

  16. Removal of cadmium from aqueous solutions by adsorption onto orange waste

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Marin, A.B. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Zapata, V. Meseguer [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)]. E-mail: vzapata@um.es; Ortuno, J.F. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Aguilar, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Saez, J. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Llorens, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)

    2007-01-02

    The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3 h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data.

  17. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  18. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J. [SAIC, Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  19. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Rieuwerts, J.S., E-mail: jrieuwerts@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Mighanetara, K.; Braungardt, C.B. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Rollinson, G.K. [Camborne School of Mines, CEMPS, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ (United Kingdom); Pirrie, D. [Helford Geoscience LLP, Menallack Farm, Treverva, Penryn, Cornwall TR10 9BP (United Kingdom); Azizi, F. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2014-02-01

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 10{sup 5} mg kg{sup −1} As and concentrations in stream sediments of up to 2.5 × 10{sup 4} mg kg{sup −1} As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining

  20. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles.

    Science.gov (United States)

    Abdur Rahman, Md; Bakker, M C M

    2012-07-01

    A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1-6mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 ± 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external interference and noise when applied in an eddy current separator, make the hybrid sensor suitable for applications such as quality control and sensor controlled separation. PMID:22498575

  1. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  2. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  3. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream

    Directory of Open Access Journals (Sweden)

    Letricia Barbosa-Pereira

    2013-01-01

    Full Text Available The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE and supercritical fluid extraction (SFE—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v of methanol displayed the highest antioxidant activity (0.20 g L−1, similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1 was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6% as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries.

  4. Screening of Phosphorus-Accumulating Fungi and Their Potential for Phosphorus Removal from Waste Streams.

    Science.gov (United States)

    Ye, Yulin; Gan, Jing; Hu, Bo

    2015-11-01

    While bacteria have been primarily studied for phosphorus (P) removal in wastewater treatment, fungi and their ability to accumulate intracellular polyphosphate are less investigated. P-accumulating fungal strains were screened from soybean plants and surrounding soil by flask cultivation with potato dextrose broth and KH2PO4 in this study. Mucor circinelloides was selected for its high efficiency in P removal efficiency and high cellular P content. Neisser staining and growth-curve analysis confirmed that M. circinelloides stored polyphosphate intracellularly by luxury phosphate uptake. The effect of culture medium compositions on P removal efficiency and cellular P content was also investigated. Monosaccharides (such as glucose and fructose) and organic nitrogen (N, such as urea, and peptone) promoted fungi growth and P accumulation. M. circinelloides also preferred organic phosphates. When glucose, urea, and phytic acid sodium salt were used as the carbon, N, and P source, respectively, the maximum utilization efficiency was 40.1% for P and 7.08% for cellular P content. In addition, the potential of M. circinelloides for P removal from waste streams was investigated. Compared with the non-inoculated control culture, inoculation with M. circinelloides improved the soluble P removal in treating wastewater centrate, screened manure, and digested manure. PMID:26280802

  5. Model of truly closed circuit of waste stream flow in metallurgical enterprise

    OpenAIRE

    Gajdzik, B.; E. Michlowicz; Zwolińska, B.; P. Kisiel

    2014-01-01

    The publication presents flows of metallurgical waste in manufacturing metallurgical enterprise. On the basis of analysis the structure of waste flows and the way of waste management within the enterprise or outside it were described. In the observation of the metallurgical waste flow a universal model of waste flow structure was created. It may be used in waste management of a metallurgical enterprise with full production cycle (from raw materials processes, through steel production up to fi...

  6. Model of truly closed circuit of waste stream flow in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-04-01

    Full Text Available The publication presents flows of metallurgical waste in manufacturing metallurgical enterprise. On the basis of analysis the structure of waste flows and the way of waste management within the enterprise or outside it were described. In the observation of the metallurgical waste flow a universal model of waste flow structure was created. It may be used in waste management of a metallurgical enterprise with full production cycle (from raw materials processes, through steel production up to final products.

  7. Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    2001-10-02

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

  8. Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2012-10-01

    Full Text Available This work aims to study the removal of Cu(II and Cr(VI from aqueous solutions with commercial coffee wastes. Materials with no further treatment such as coffee residues from café may act as adsorbents for the removal of Cu(II and Cr(VI. Equilibrium data were successfully fitted to the Langmuir, Freundlich and Langmuir-Freundlich model (L-F. The maximum adsorption capacity of the coffee residues can reach 70 mg/g for the removal of Cu(II and 45 mg/g for Cr(VI. The kinetic data were fitted to pseudo-first, -second and -third order equations. The equilibrium was achieved in 120 min. Also, the effect of pH on adsorption and desorption was studied, as well as the influence of agitation rate. Ten cycles of adsorption-desorption were carried out revealing the strong reuse potential of these low-cost adsorbents; the latter was confirmed from a brief economic approach.

  9. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    Science.gov (United States)

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar. PMID:26100325

  10. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen

    2011-12-01

    Present study explores the potentiality of locally available cellulose, hemicellulose and lignin-rich agricultural by-product sugarcane bagasse (SB) for the removal of erythrosin B (EB) and methylene blue (MB) from aqueous waste. The SB has been characterized by Fourier transform infrared and scanning electron microscopy analytical techniques. Batch experiments have been carried out to determine the influence of parameters like initial dye concentration, pH of the medium, contact time between the adsorbate and adsorbent, weight of adsorbent and system temperature on the removal of EB and MB. Optimum conditions for adsorption are found to be pH 9, temperature 308 K and an equilibration time of 1 h. Under these conditions equilibrium isotherms have been analysed by Langmuir and Freundlich isotherm equations. Based on the Langmuir adsorption isotherm model, the predicted maximum monolayer adsorption capacities of SB for EB and MB are found to be 500 mg g-1 (at 328 K) and 1,000 mg g-1 (at 308 K), respectively. The separation factor reveals the favourable nature of the isotherm for the studied dyes—SB system. The thermodynamic study indicates that the adsorptions of dyes are spontaneous and endothermic process. High temperatures favour EB adsorption whereas optimum temperature for MB adsorption is 318 K.

  11. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  12. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  13. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass

    International Nuclear Information System (INIS)

    In the present study adsorption of Cr(VI) from aqueous solutions onto different agricultural wastes, viz., sugarcane bagasse, maize corn cob and Jatropha oil cake under various experimental conditions has been studied. Effects of adsorbent dosage, Cr(VI) concentration, pH and contact time on the adsorption of hexavalent chromium were investigated. The concentration of chromium in the test solution was determined spectrophotometrically. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of chromium ions on to studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents. Maximum adsorption was observed in the acidic medium at pH 2 with a contact time of 60 min at 250 rpm stirring speed. Jatropha oil cake had better adsorption capacity than sugarcane bagasse and maize corn cob under identical experimental conditions. The applicability of the Langmuir and Freundlich adsorption isotherms was tested. The results showed that studied adsorbents can be an attractive low cost alternative for the treatment of wastewaters in batched or stirred mode reactors containing lower concentrations of chromium

  14. Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam

    OpenAIRE

    Nguyen, Hoa Huu; Heaven, Sonia; Banks, Charles

    2014-01-01

    Anaerobic digestion (AD) was introduced in Vietnam more than 10 years ago, but at a small scale to deal with agricultural wastes, manure, etc. Despite its many advantages, AD does not yet make a significant contribution to resolving Vietnams urban waste issues due to a lack of information, data and experience. This paper, using an energy model of food waste digestion, provides a usable source of information regarding energy potential of food waste generated from urban areas in Vietnam in form...

  15. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste

  16. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera abyssinica)

    OpenAIRE

    Dula, Tamirat; Siraj, Khalid; Kitte, Shimeles Addisu

    2014-01-01

    This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order k...

  17. Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig 639 Resin

    International Nuclear Information System (INIS)

    A proposed facility is being designed for the immobilization of Hanford underground storage tank radioactive waste. The waste is pretreated to split it into Low Activity Waste (LAW) and High Level Waste (HLW) streams for separate vitrification. One unit process in the facility is designed to remove radioactive technetium by ion-exchange from a highly alkaline aqueous phase

  18. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles

    International Nuclear Information System (INIS)

    Highlights: ► A new sensor system is developed for metal grade measurement of falling bottom ash particles. ► The system is hybrid, consisting of an optical and an electromagnetic sensor. ► Grade of ECS concentrated bottom ash in 1–6 mm sieve size accurately measured up to 143 p/s feed rate. ► Accuracy reached was 2.4% with respect to manual analysis. ► Measures for elimination of both stationary and stochastic errors are discussed. - Abstract: A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1–6 mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 ± 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external

  19. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  20. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  1. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1999-08-23

    Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

  2. Spatio-Temporal Statistical Modeling of Livestock Waste in Streams. Livestock Series Report 5

    OpenAIRE

    Noel Cressie; James J. Majure

    1996-01-01

    Surface water runoff from large livestock operations finds its way into streams, rivers, and ultimately the larger watershed area. In this paper, the model measures the nitrate concentrations in the upper North Bosque (Texas) watershed, which is a region of concentrated dairy operations. Using 15 months of daily data collected at 17 stream monitoring sites allows the authors to obtain optimal predictions of unknown nitrate concentration at all stream locations at any given time, along with a ...

  3. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream

    Institute of Scientific and Technical Information of China (English)

    TIAN Bao-guo; SI Ji-tao; ZHAO Yan; WANG Hong-tao; HAO Ji-ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  4. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    Science.gov (United States)

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases. PMID:17915696

  5. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  6. Characterization of past and present waste streams from the 325 Radiochemistry Building

    Energy Technology Data Exchange (ETDEWEB)

    Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-01

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site.

  7. Characterization of past and present waste streams from the 325 Radiochemistry Building

    International Nuclear Information System (INIS)

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site

  8. The exploitation of municipal solid waste (MSW) and related waste paper streams in the production of bioalcohol

    OpenAIRE

    Elliston, Adam

    2012-01-01

    An organic fraction from municipal solid waste (MSW) comprised 38.9% (w/w) glucose (cellulose and starch) indicating its potential as a substrate for bioalcohol production. Microscopy indicated that the fraction was rich in waste paper fibres. Much paper waste comes from shredded office paper (50.4% w/w glucose) which is unrecyclable because of poor fibre length. This, and microbiological hazards associated with the use of MSW led to its choice as model substrate for study. Saccharificatio...

  9. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique

    DEFF Research Database (Denmark)

    Van Wagenen, Jonathan; Pape, Mathias Leon; Angelidaki, Irini

    2015-01-01

    Industrial wastewaters can serve as a nutrient and water source for microalgal production. In this study the effluent of an internal circulation (IC) reactor anaerobically treating the wastes of a biotechnology production facility were chosen as the cultivation medium for Chlorella sorokiniana...... been observed in any previous report indicating that the waste stream allowed the algae to grow at its full potential....

  10. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    International Nuclear Information System (INIS)

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H2SO4, HNO3, NaOH, Na2CO3, CaCl2 and NaCl. Among these reagents, 0.1 M HNO3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔGo, ΔHo and ΔSo, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined

  11. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: Implication for the nuclear waste storage

    Science.gov (United States)

    Truche, Laurent; Berger, Gilles; Destrigneville, Christine; Pages, Alain; Guillaume, Damien; Giffaut, Eric; Jacquot, Emmanuel

    2009-08-01

    Sulphate reduction by hydrogen, likely to occur in deep geological nuclear waste storage sites, was studied experimentally in a two-phase system (water + gas) at 250-300 °C and under 4-16 bars H 2 partial pressure in hydrothermal-vessels. The calculated activation energy is 131 kJ/mol and the half-life of aqueous sulphate in the presence of hydrogen and elemental sulphur ranges from 210,000 to 2.7 × 10 9 years at respective temperatures of 90 °C, the thermal peak in the site and 25 °C, the ambient temperature far from the site. The features and rate of the sulphate reduction by H 2 are close to those established for TSR in oil fields. The experiments also show that the rate of sulphate reduction is not significantly affected in the H 2 pressure range of 4-16 bars and in the pH range of 2-5, whereas a strong increase is measured at pH below 2. We suggest that the condition for the reaction to occur is the speciation of sulphate dominated by non symmetric species ( HSO4- at low pH), and we propose a three steps reaction, one for each intermediate-valence sulphur species, the first one requiring H 2S as electron donor rather than H 2. We distinguish two possible reaction pathways for the first step, depending on pH: reduction of sulphate into sulphur dioxide below pH 2 or into thiosulphate or sulphite + elemental sulphur in the pH range 2-5.

  12. Heterogeneous catalysis contribution for the denitration of aqueous nuclear radioactive waste with formic acid

    International Nuclear Information System (INIS)

    The chemical denitration aims to reduce the nitric acid concentration in nuclear fuel reprocessing aqueous wastes by adding formic acid as a reducing agent. The denitration reaction exhibits an induction period, which duration is related to the time needed by the key intermediate of the reaction, i.e. nitrous acid, to reach a threshold concentration in the reaction medium. The addition of a Pt/SiO2 catalyst in the reaction mixture suppresses the induction period of the chemical denitration. The aim of the present work is to identify the role of Pt/SiO2 in the catalytic denitration mechanism. The experimental work is based on the comparison of catalytic tests performed with various catalysts, in order to identify the intrinsic characteristics of Pt/SiO2 that might influence its activity for the reaction. Catalytic denitration results show that Pt/SiO2 acts only by speeding up the nitrous acid generation in the solution until its concentration reaches the threshold level of 0,01 mol L-1 in the experimental conditions. Catalysts activity is evaluated by quantifying the nitrous acid generated on the platinum surface during the induction period of the homogeneous denitration reaction. The large platinum aggregates reactivity is greater than the one of nano-sized particles. The study of the key step of the catalytic denitration reaction, the catalytic generation of nitrous acid, clarifies the role of Pt/SiO2. The homogeneous denitration is initiated thanks to a redox cycle on the catalyst surface: an initial oxidation of Pt0 by nitric acid, which is reduced into nitrous acid, followed by the reduction of the passivated 'Ptox' by formic acid. Furthermore, a platinum reduction by formic acid prior to the catalytic test prevents any platinum leaching from the catalyst into the nitric solution, being all the more significant as platinum dispersion is high. (author)

  13. The influence of non-aqueous radiochemical processes on radiation parameters of spent fuel and radioactive wastes

    International Nuclear Information System (INIS)

    The influence of the technology applied for separation of radioactive elements on radiation parameters of fuel and wastes when using non-aqueous radiochemical processing of spent fuels are studied. The results of calculational modelling the fuel recycle in the BREST-1200 reactor closed fuel cycle are considered. The data characterizing contribution of separate elements in potential biological danger (dose) and the dependence of the potential biological danger of the wastes on regenerated fuel cooling time are discussed. It is shown that plutonium and americium give the main contributions into the fuel potential biological danger in time period of 40-1000 years. For monitored cooling of 120-150 years the balance between natural uranium potential biological danger and that of wastes at different waste compositions is achievable. The fission product contributions into potential biological danger differ slightly for different variants of the processing technology. The 99Tc contribution is noticeable only in the case of metallurgical processing. The conclusion is made that differences in radiochemical technologies applied for waste fracturing and fuel purification degree do not influence in principle on capabilities for radiation balance achieving. For a long-time perspective the radiation balance is determined by plutonium, americium and their decay products. The technology peculiarities may change radiation characteristics of wastes only at separate stages of cooling and do not affect greatly the radiation balance as a whole

  14. High-temperature incineration of radioactive waste. Exploitation of the FLK-60 slagging incinerator for the treatment of different waste streams contaminated with plutonium

    International Nuclear Information System (INIS)

    During the years 1983 and 1984 the FLK-60 high-temperature slagging incinerator at Mol was used for incineration of simulated plutonium waste and BWR power-station waste after extensive technical adaptations. A total of 10 tons of simulated waste containing 15 g of plutonium and 6 tons of simulated waste containing 624 MBq of 60Co and 393 MBq of cesium isotopes was successfully treated. The average volume reduction factor was 18. Global decontamination factors of 280 000 for 137Cs and 22 000 000 for 239Pu were measured. Routine working and interventions for maintenance and repair could be carried out safely in alpha-conditions. The report describes in detail the technical adaptations and the behaviour of the various parts of the installation during the 39 runs carried out in the contract period. It also gives the chemical and radiochemical composition of the granules and secondary waste streams. The plutonium-based leach rate of the granules is in the range of 2 x 10-5 to 3.5 x 10-4 g/cm2. d. Finally typical mass, energy and radioactivity balances of the installation are given and various options for the final conditioning of the granules are briefly discussed. 6 refs, 6 figs, 29 tables

  15. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [NSTec

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  16. Manipulation of the ash flow temperature and viscosity of a carbonaceous Sasol waste stream

    Energy Technology Data Exchange (ETDEWEB)

    J.C. van Dyk; M.J. Keyser; F.B. Waanders; M. Conradie [Syngas and Coal Technologies, Sasolburg (South Africa). Sasol Technology, R& amp; D Division

    2010-01-15

    In 2001 Sasol investigated selected the Lurgi Multi Purpose Gasification (MPG) process for converting a Sasol-Lurgi MK III fixed bed dry bottom coal gasifier at the former Sasolburg coal-to-liquids plant to a slagging gasification process. The MPG process was considered anoption suitable for the gasification of feedstocks which are difficult to manage. The most obvious differences between the feedstocks previously gasified, compared to the Sasol dusty tar, were found to be the viscosity and melting point of the dusty tar. The viscosity of the Sasol dusty tar mixture was higher than a factor of 10 ofpreviously used feedstocks. Another important feedstock property is the ash melting point of the feed within the gasifier. Ash particles fed with the tar melt in the high temperature zone of the flame. Molten ash particles which hit the gasifier wall will solidify and stick to the wall if the wall temperature is below the melting point of the ash. The melting point of the dusty tar ash is 1380{sup o}C and a fluxing agent has to be added to reduce the melting temperature below 1250{sup o}C to limit excessive wear of the refractory lining. It was concluded that the viscosity of dusty tar can be decreased with the addition of specific waste solvent streams. The ash fusion temperatures of dusty tar can be lowered by adding a fluxing agent. The addition of spent Fe-catalyst as fluxing agent was found to be less effective than limestone. The addition of Fe can cause the acid/base ratio to change so that the ash fusion temperature increases. The results show in both oxidizing and reducing atmospheres the Fe-catalyst was transformed into the slag melt as either Fe{sub 2}O{sub 3} under oxidizing conditions and FeO under reducing conditions. The slag showed no sign of metallic Fe and was very homogeneous under oxidizing and reducing conditions. 17 refs., 7 figs., 8 tabs.

  17. Method for the removal of ultrafine particulates from an aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Kopasz, John P. (Bolingbrook, IL); Ellison, Adam J. G. (Corning, NY)

    2000-01-01

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  18. Method for the Removal of Ultrafine Particulates from an Aqueous Suspension

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.

    1999-03-05

    A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  19. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  20. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O3/H2O2 and O3/γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  1. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K.

  2. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K. PMID:27177317

  3. Biosorption of Pb2+ from aqueous solution by waste biomass of aerial roots of Rhizophora mangle (red mangrove).

    Science.gov (United States)

    Horsfall, Michael; Ogban, Fred; Akporhonor, Eyitemi Emmanuel

    2005-09-01

    The processing waste of the aerial roots of Rhizophora mangle was used in both its unmodified or mercaptoacetic acid (MAA) modified form for the sorption of Pb2+ from aqueous solution. The biomass rapidly and strongly sorbed Pb2+ at pH 5.0, which indicated chemisorption. A significant increase in Pb2+ sorption resulted from MAA treatment of the biomass, indicating that sorption occurs through an ion-exchange process. From sorption-capacity experiments, the unmodified and modified materials extracted, at pH 5, 31.3 and 85.5 mg of Pb2+ per gram of biomass, respectively, from aqueous solutions. Our studies may contribute to an innovative method for the economical and ecologically save removal and recovery of heavy-atom metal ions from contaminated waters through biosorption. PMID:17193207

  4. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2011-01-01

    Full Text Available Beyond energy efficiency, there are now urgent challenges around the supply of resources, materials, energy, food and water. After debating energy efficiency for the last decade, the focus has shifted to include further resources and material efficiency. In this context, urban farming has emerged as a valid urban design strategy, where food is produced and consumed locally within city boundaries, turning disused sites and underutilized public space into productive urban landscapes and community gardens. Furthermore, such agricultural activities allow for effective composting of organic waste, returning nutrients to the soil and improving biodiversity in the urban environment. Urban farming and resource recovery will help to feed the 9 billion by 2050 (predicted population growth, UN-Habitat forecast 2009. This paper reports on best practice of urban design principles in regard to materials flow, material recovery, adaptive re-use of entire building elements and components (‘design for disassembly’; prefabrication of modular building components, and other relevant strategies to implement zero waste by avoiding waste creation, reducing wasteful consumption and changing behaviour in the design and construction sectors. The paper touches on two important issues in regard to the rapid depletion of the world’s natural resources: the built environment and the education of architects and designers (both topics of further research. The construction and demolition (C&D sector: Prefabricated multi-story buildings for inner-city living can set new benchmarks for minimizing construction wastage and for modular on-site assembly. Today, the C&D sector is one of the main producers of waste; it does not engage enough with waste minimization, waste avoidance and recycling. Education and research: It’s still unclear how best to introduce a holistic understanding of these challenges and to better teach practical and affordable solutions to architects, urban

  5. Applying value stream mapping techniques to eliminate non-value-added waste for the procurement of endovascular stents

    International Nuclear Information System (INIS)

    Objectives: To eliminate non-value-adding (NVA) waste for the procurement of endovascular stents in interventional radiology services by applying value stream mapping (VSM). Materials and methods: The Lean manufacturing technique was used to analyze the process of material and information flow currently required to direct endovascular stents from external suppliers to patients. Based on a decision point analysis for the procurement of stents in the hospital, a present state VSM was drawn. After assessment of the current status VSM and progressive elimination of unnecessary NVA waste, a future state VSM was drawn. Results: The current state VSM demonstrated that out of 13 processes for the procurement of stents only 2 processes were value-adding. Out of the NVA processes 5 processes were unnecessary NVA activities, which could be eliminated. The decision point analysis demonstrated that the procurement of stents was mainly a forecast driven push system. The future state VSM applies a pull inventory control system to trigger the movement of a unit after withdrawal by using a consignment stock. Conclusion: VSM is a visualization tool for the supply chain and value stream, based on the Toyota Production System and greatly assists in successfully implementing a Lean system.

  6. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  7. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    2012-09-15

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater desalination, and biosensors. Although the technologies are promising, a number of hurdles need to be overcome before that field applications are economically feasible. The main purpose of this work was to improve the performance, reduce the construction cost, and expand the application scopes of MFC-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main removal mechanism of nitrogen and phosphorus was algae biomass uptake, while nitrification and denitrification process contributed to part of nitrogen removal. The key factors such as algae concentration, COD/N ratios and photoperiod were systemically studied. A self-powered submersible microbial electrolysis cell was developed for in situ biohydrogen production from anaerobic reactors. The hydrogen production increased along with acetate and buffer concentration. The hydrogen production rate of 32.2 mL/L/d and yield of 1.43 mol-H2/mol-acetate were achieved. Alternate exchanging the function between the two cell units was found to be an effective approach to inhibit methanogens. A sensor, based on a submersible microbial fuel cell, was developed for in situ monitoring of microbial activity and biochemical oxygen demand in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Temperature, pH, conductivity and inorganic solid content were significantly affecting the sensitivity of the sensor. The sensor showed

  8. Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Ryberg, Morten; Renz, Michael;

    2016-01-01

    Hydrothermal carbonization (HTC) of green waste, food waste, organic fraction of municipal solid waste (MSW), and digestate is assessed using life cycle assessment as a potential technology to treat biowaste. Water content of the biowaste and composition of the resulting hydrochar are important...... is in the use of heat and electricity with increasing plant size, but its overall environmental performance is largely influenced in a given geographic location by the incumbent waste management system that it replaces. Impact scores are within the range of existing alternative treatment options, suggesting...... parameters influencing environmental performance. Hydrochar produced from green waste performs best and second best in respectively 2 and 10 out of 15 impact categories, including climate change, mainly due to low transportation needs of the biowaste and optimized pumping efficiency for the feedstock...

  9. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  10. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  11. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  12. A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste And Orange Peel for Adsorption of Violet B Dye from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2014-12-01

    Full Text Available Adsorption of violet B azo dye from aqueous solutions was studied by different cellulose agriculturalwaste materials (almond shell (AS, pistachio shell (PS, walnut shell (WS, Tea waste (TW and orange peel (OP. Cellulose agricultural waste sorbents characterized by FTIR and SEM methods. The effects of different parameters such as contact time, pH, adsorbent dosage and initial dye concentration were studied.Maximum removal of dye was obtained at contact time of 90 min and pH 11.The adsorption of violet B was fitted by pseudo-second-order kinetic model.The Langmuir isotherm model was better fitted than Freundlichmodel. The results showed that the adsorption efficiency of violet B by cellulose agricultural waste materials is as followed: Almond shell > Orange peel > Pistachio shell > Tea waste> Walnut shell.The maximum adsorption capacity was obtained 96, 82, 71.4, 55.5 and 48.7 mg g−1 for AS, OP, PS, TW and WS, respectively.

  13. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  14. Continuous environmental monitoring for aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Jones, G. Jr.

    1980-05-01

    An aquatic environmental monitor has been developed that will continuously monitor aqueous waste streams from coal processing plants. The monitor contains three different instruments: a continuous chemical oxygen demand monitor and two continuous-flow fluorometers with different excitation-emission characteristics. A prototype instrument was fabricated and evaluated for several different applications. The details of the instrument design and results of its evaluation are presented in this report.

  15. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II from aqueous solution using formaldehyde treated waste tea leaves

    Directory of Open Access Journals (Sweden)

    Jasmin Shah

    2015-05-01

    Full Text Available The sorption characteristic of Ni (II from aqueous solution using formaldehyde treated waste tea leaves as a low cost sorbent has been studied. The effect of pH, contact time, sorbent dose, initial metal ion concentration and temperature were investigated in batch experiments. The equilibrium data were fitted into four most common isotherm models; Freundlich, Langmuir, Tempkin and Dubinin–Radushkevich (D–R. The Langmuir model described the sorption isotherm best with maximum monolayer sorption capacity of 120.50 mg g−1. Four kinetic models, pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich were employed to explain the sorption mechanism. The kinetics of sorption data showed that the pseudo-second-order model is the best with correlation coefficient of 0.9946. The spontaneous and exothermic nature of the sorption process was revealed from thermodynamic investigations. The effect of some common alkali and alkaline earth metal ions were also studied which showed that the presence of these ions have no effect on the sorption of Ni (II. The results showed that waste tea leaves have the potential to be used as a low cost sorbent for the removal of Ni (II from aqueous solutions.

  16. Removal of Xylene fromWaste Air Stream Using Catalytic Ozonation Process

    Directory of Open Access Journals (Sweden)

    H Mokarami

    2010-10-01

    Full Text Available "n "n "nBackgrounds and Objectives: Volatile organic compounds (VOCs are one of the common groups of contaminants encountered in the industrial activities, emitted through air stream into the atmosphere. To prevent the human and environmental health from the adverse effects of VOCs, air streams containing VOCs need to be treated before discharging to environment. This study was aimed at investigating the catalytic ozonation process for removing xylene from a contaminated air stream."nMaterials and Methods: In the present work, a bench scale experimental setup was constructed and used for catalytic ozonation of xylene. The performance of catalytic ozonation process was compared with that of single adsorption and ozonation in removal of several concentration of xylene under the similar experimental conditions."nResults: The results indicated that the efficiency of catalytic ozonation was higher than that of single adsorption and ozonation in removal of xylene. The emerging time and elimination capacity of xylene for inlet concentration of 300 ppm was 1.4 and 5.8 times of those in adsorption system. The activated carbon acted as catalyst in the presence of ozone and thus attaining the synergistic effect for xylene degradation."nConclusion: catalytic ozonation process is an efficient technique the treatment of air streams containing high concentrations of xylene. The adsorption systems can also be simply retrofitted to catalytic ozonation process and thereby improving their performance for treating VOCs.

  17. Development of column grade ammonium molybdo phosphate granules for the separation of cesium from acidic waste streams in reprocessing plants (Paper No. AL-44)

    International Nuclear Information System (INIS)

    Ammonium molybdo phosphate(AMP) microcrystals can be converted into granular form suitable for column operations if a suitable binder is used. The column filled with such AMP granules, can be effectively used to remove cesium from the reprocessing waste streams prior to final disposal. But difficulty arises as most of the monomers affect AMP. A process has been developed to obtain AMP in granualar form suitable for column operations which does not alter the capacity, kinetics and stability of the exchanger. The performance of the grunular form AMP in treating acidic waste streams of reprocessing plants has been described here. (author)

  18. PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS

    Science.gov (United States)

    Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...

  19. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years....

  20. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years....

  1. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  2. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  3. Development of a novel process for the removal of selected organic compounds from waste streams

    OpenAIRE

    Enright, Deirdre

    2015-01-01

    peer-reviewed The aim of this research work was to develop a solid regenerable catalytic adsorbent for the removal of organics from industrial wastewater. This was to be achieved by a two-step process. The first step involved the removal of the aqueous contaminant of concern by adsorption onto a selective adsorbent/catalyst. The second step involved the oxidation of this adsorbed pollutant into carbon dioxide, water and nitrogen whilst minimising the formation of nitrogen oxides. 2-nitroph...

  4. Partitioning and recovery of neptunium from high level waste streams of PUREX origin using 30% TBP

    International Nuclear Information System (INIS)

    237Np is one of the longest-lived nuclides among the actinides present in the high level waste solutions of reprocessing origin. Its separation, recovery and transmutation can reduce the problem of long term storage of the vitrified waste to a great extent. With this objective, the present work was initiated to study the extraction of neptunium into TBP under the conditions relevant to high level waste, along with uranium and plutonium by oxidising it to hexavalent state using potassium dichromate and subsequently recovering it by selective stripping. Three types of simulated HLW solutions namely sulphate bearing (SB), with an acidity of ∼ 0.3 M and non-sulphate wastes originating from the reprocessing of fuels from pressurised heavy water reactor (PHWR) and fast breeder reactor (FBR) with acidities of 3.0 M HNO3 were employed in these studies. The extraction of U(VI), Np(VI) and Pu(VI) was very high for PHWR- and FBR-HLW solutions, whereas for the SB-HLW solution, these values were less but reasonably high. Quantitative recovery of neptunium and plutonium was achieved using a stripping solution containing 0.1 M H2O2 and 0.01 M ascorbic acid at an acidity of 2.0 M. Since, cerium present in the waste solutions is expected to undergo oxidation in presence of K2Cr2O7, its extraction behaviour was also studied under similar conditions. Based on the results, a scheme was formulated for the recovery of neptunium along with plutonium and was successfully applied to actual high level waste solution originating from the reprocessing of research reactor fuels. (author). 19 refs., 2 figs., 17 tabs

  5. Assessment of the Regenerative Potential of Organic Waste Streams in Lagos Mega-City

    Science.gov (United States)

    Opejin, Adenike Kafayat

    There is never a better time for this study than now when Nigeria as a country is going through the worst time in power supply. In Lagos city about 12,000 tons of waste is generated daily, and is expected to increase as the city adds more population. The management of these waste has generated great concern among professionals, academia and government agencies. This study examined the regenerative management of organic waste, which accounts for about 45% of the total waste generated in Lagos. To do this, two management scenarios were developed: landfill methane to electricity and compost; and analyzed using data collected during field work and from government reports. While it is understood that landfilling waste is the least sustainable option, this study argued that it could be a viable method for developing countries. Using U.S EPA LandGEM and the IPCC model, estimates of capturable landfill methane gas was derived for three landfills studied. Furthermore, a 35-year projection of waste and landfill methane was done for three newly proposed landfills. Assumptions were made that these new landfills will be sanitary. It was established that an average of 919,480,928m3 methane gas could be captured to generate an average of 9,687,176 MW of electricity annually. This makes it a significant source of power supply to a city that suffers from incessant power outages. Analysis of composting organics in Lagos was also done using descriptive method. Although, it could be argued that composting is the most regenerative way of managing organics, but it has some problems associated with it. Earthcare Compost Company processes an average of 600 tons of organics on a daily basis. The fraction of waste processed is infinitesimal compared to the rate of waste generated. One major issue identified in this study as an obstacle to extensive use of this method is the marketability of compost. The study therefore suggests that government should focus on getting the best out of the

  6. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  7. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  8. Solidification Of The Hanford Law Waste Stream Produced As A Result Of Near-Tank Continuous Sludge Leaching And Sodium Hydroxide Recovery

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  9. Revised Arrangements for the Management of Solid and Non-Aqueous Radioactive Waste - 12452

    International Nuclear Information System (INIS)

    In 2010, Atomic Weapons Establishment (AWE) identified a requirement to implement revised management arrangements for the generation, storage and disposal of radioactive waste. A thorough review of the current arrangements/processes was undertaken which included both legal compliance requirements and the identification of business improvement opportunities. On completion of this review a suitable project team was established and in 2011 an integrated Radioactive Waste Management process was implemented throughout the business. Initial results have shown measurable improvements within Radioactive Waste management compliance, operator understanding and increased business efficiency. Through the development and implementation of the revised working arrangements AWE has been able to continue to demonstrate both legal compliance to its regulators along with business efficiency and effectiveness improvements. Simple to follow process maps have improved employees understanding of Radioactive Waste management requirements, provided them with easily accessible information and ensured the business operates in a single coherent manner. The implementation of a modern electronic data management system has ensured all waste related information is easily retrievable and appropriately maintained. The additional functions that have been built into the system have reduced the potential for human error and increased the overall efficiency of the Waste Management department through the use of the automated report generation functionality. (authors)

  10. Valorization of waste streams, "From food by-products to worm biomass"

    NARCIS (Netherlands)

    Laarhoven, B.; Elissen, H.J.H.; Temmink, B.G.; Buisman, C.J.N.

    2013-01-01

    A new technology is investigated to produce a high quality animal feed source by converting safe industrial food wastes into worm biomass. The freshwater worm Lumbriculus variegatus (common name: blackworm) has been selected for this purpose. This species can be used to reduce and concentrate munici

  11. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  12. Pretreatment of different waste streams for improvement in biogas production; Foerbehandlingsteknikers betydelse foer oekat biogasutbyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarvari Horvath, Ilona (Hoegskolan i Boraas (Sweden)); del Pilar Castillo, Maria (JTI (Sweden)); Loren, Anders; Brive, Lena; Ekendahl, Susanne; Nordman, Roger (SP, Boraas (Sweden)); Kanerot, Mija (Boraas Energi och Miljoe AB (Sweden))

    2010-07-01

    Biological breakdown of organic municipal and industrial waste to biogas is already in use today. The technology is of outmost importance to attain the environmental goals that our society has set regarding to sustainable development. Of decisive economic importance is the ability to obtain an increased amount of biogas from the same amount of substrate. Alternative resources for biogas production are at the same time of great interest in order to enable a large expansion of biogas production. The goal of applying a suitable pre-treatment step before anaerobic digestion is to open up the molecular structure of inaccessible biopolymers in order to facilitate access to the carbon for microorganisms involved in biological breakdown and fermentation to biogas. Our study shows that introducing a pretreatment step opens new perspectives for biogas production. Treatment of paper residuals by steam explosion increased methane production up to 400 Nm3/ton dry matter, to a double amount of methane yield compared to that of untreated paper. A novel method for pretreatment with an environment-friendly solvent N-methylmorpholine-N-oxide (NMMO) was also tested on lignocellulose-rich waste fractions from forest and agricultural. The NMMO-treatment increased the methane yields of spruce chips and triticale straw by 25 times (250 Nm3/ton dry matter), and by 6 times (200 Nm3/ton dry matter), respectively, compared to that of the untreated materials. Keratin-rich feather waste yielded around 200 Nm3 methane/ton dry matter, which could be increased to 450 Nm3/ton after enzymatic treatment and to 360 Nm3/ton after either chemical treatment with lime, or after biological treatment with a recombinant bacterial strain of Bacillus megaterium. However, the gain in increased amount of methane after a pretreatment step should be weighted against a possible increase in energy usage generated by the pretreatment. We have therefore performed a case study in which the energy balance for a biogas

  13. Material-stream-specific waste treatment with particular regard to thermal processes; Stoffstromspezifische Abfallbehandlung im Hinblick auf thermische Verfahren. Fachseminar

    Energy Technology Data Exchange (ETDEWEB)

    1998-09-01

    The experts` seminar on ``Material-stream-specific waste treatment with particular regard to thermal processes`` is the third event of its kind to be held by the Zentrum fuer Abfallforschung (ZAF=Centre for Waste Research). The purpose of the seminar is to de-emotionalise the debate going on between environment-oriented citizens, authorities, scientists, operators, and manufacturers and to find solutions that are acceptable in terms of costs as well as environmental impact. The seminar deals with traditional methods such as grate firing as well as with new methods such as low-temperature carbonisation, thermoselect, Noell-KRC, or RCP processes. [Deutsch] Das Fachseminar `Stoffstromspezifische Abfallbehandlung im Hinblick auf thermische Verfahren` ist die 13. Veranstaltung dieser Art, die durch das Zentrum fuer Abfallforschung (ZAF) durchgefuehrt wird. Das Seminar soll dazu beitragen, die Diskussion zwischen umweltbewuessten Bevoelkerungsgruppen, Behoerden, Wissenschaft, Betreibern und Herstellern zu versachlichen und dabei Loesungen zu finden, die hinsichtlich der Kosten und der Umweltbeeintraechtigung vertretbar sind. Es werden sowohl die traditionellen Verfahren wie Rostfeuerung als auch neue Verfahren wie Schwelbrenn-, Thermoselekt-, Noell-KRC- oder RCP-Verfahren behandelt. (orig.)

  14. Simultaneous production of high-quality water and electrical power from aqueous feedstock’s and waste heat by high-pressure membrane distillation

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Hanemaaijer, J.H.; Brouwer, H.; Medevoort, J. van; Jansen, A.; Altena, F.; Vleuten, P. van der; Bak, H.

    2015-01-01

    A new membrane distillation (MD) concept (MemPower) has been developed for the simultaneous production of high-quality water from various aqueous feedstocks with cogeneration of mechanical power (electricity). Driven by low-grade heat (waste, solar, geothermal, etc.) a pressurized distillate can be

  15. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  16. Nano-cerium vanadate: A novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chayan; Dudwadkar, Nilesh [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathi, Subhash Chandra, E-mail: sctri001@gmail.com [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gandhi, Pritam Maniklal [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Grover, Vinita [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, Chetan Prakash [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Avesh Kumar, E-mail: aktyagi@barc.gov.in [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-09-15

    Highlights: • Template free, low temperature synthesis of CeVO{sub 4} nanopowders. • Thermodynamically and kinetically favourable uptake of Am(III) and U(VI) exhibited. • K{sub d} and ΔG° values for Am(III) and U(VI) uptake in pH 1–6 are reported. • Interdiffusion coefficients and zeta potential values in pH 1–6 are reported. • Possible application in low level aqueous nuclear waste remediation. - Abstract: Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides {sup 233}U (4.82 MeV α) and {sup 241}Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3 h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr{sup 2+}, Ru{sup 3+}, Fe{sup 3+}, etc., in the uptake process indicated CeVO{sub 4} nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions.

  17. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  18. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    International Nuclear Information System (INIS)

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less

  19. Removal of Pb (II) from Aqueous Solutions Using Waste Tea Leaves

    OpenAIRE

    Mehrdad Cheraghi; Soheil Sobhanardakani; Raziyeh Zandipak; Bahareh Lorestani; Hajar Merrikhpour

    2015-01-01

    Background: The presence of lead in natural waters has become an important issue around the world. Lead has been identified as a highly toxic metal that can cause severe environmental and public health problems and its decontamination is of utmost importance. The aim of this work was to evaluate the adsorption of lead (Pb(II)) on waste tea leaves as a cheap purification method. Methods: In this experimental study, prepared waste tea leaves were used as adsorbent for the removal of Pb (II) ...

  20. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.

    Science.gov (United States)

    Kadirvelu, K; Kavipriya, M; Karthika, C; Radhika, M; Vennilamani, N; Pattabhi, S

    2003-03-01

    Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of pollutants from water. Since all agricultural solid wastes used in this investigation are freely, abundantly and locally available, the resulting carbons are expected to be economically viable for wastewater treatment.

  1. Development of advanced treatment technologies of radio-aqueous waste by an environmental friendly decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Wook; Lee, E. H.; Moon, J. K. and others

    2006-01-15

    This project was aimed at the technology developments of electrode fabrication, electrolytic reactor design and fabrication, electrolytic processes and the analyses of electroytic reaction mechanisms, which were essential elements for the development of electrolytic systems to decompose or teat environmentally- friendly the several salts contained in waste solutions which are to be generated in the fields of nuclear/non-nuclear industries. Major research items carried our in this project were as follows; - Development of technologies to choose and fabricate the anodes and cathodes for the treatments of waste solutions containing nitrogen compounds and organics. - Development of a membrane electrolyzer stacked by mono-polar unit cells with independent series flow path of electrolytes - Development of an electrolyzer with a self-pH adjustment and an electrolytic process for ammonia decomposition by using the electrolyzer - Analysis of electrolytic reaction mechanism of ammonia - Development of an ion exchange membrane electrolyzer with only one discharge of pH-controlled electrolyte solution - Development of electrolytic dechlorination technology for the treatment of chloride molten salt waste salt from pyroprocess. - Development of technologies for treatment of high concentration nitric acid and recovery of waste organic solvent.

  2. Using CaO- and MgO-rich industrial waste streams for carbon sequestration

    International Nuclear Information System (INIS)

    To prevent rapid climate change, it will be necessary to reduce net anthropogenic CO2 emissions drastically. This likely will require imposition of a tax or tradable permit scheme that creates a subsidy for negative emissions. Here, we examine possible niche markets in the cement and steel industries where it is possible to generate a limited supply of negative emissions (carbon storage or sequestration) cost-effectively. Ca(OH)2 and CaO from steel slag or concrete waste can be dissolved in water and reacted with CO2 in ambient air to capture and store carbon safely and permanently in the form of stable carbonate minerals (CaCO3). The kinetics of Ca dissolution for various particle size fractions of ground steel slag and concrete were measured in batch experiments. The majority of available Ca was found to dissolve on a time scale of hours, which was taken to be sufficiently fast for use in an industrial process. An overview of the management options for steel slag and concrete waste is presented, which indicates how their use for carbon sequestration might be integrated into existing industrial processes. Use of the materials in a carbon sequestration scheme does not preclude subsequent use and is likely to add value by removing the undesirable qualities of water absorption and expansion from the products. Finally, an example scheme is presented which could be built and operated with current technology to sequester CO2 with steel slag or concrete waste. Numerical models and simple calculations are used to establish the feasibility and estimate the operating parameters of the scheme. The operating cost is estimated to be US$8/t-CO2 sequestered. The scheme would be important as an early application of technology for capturing CO2 directly from ambient air

  3. Removal of Cu(II Ions from Aqueous Solutions by Adsorption Onto Activated Carbon Derived From Olive Waste Cakes

    Directory of Open Access Journals (Sweden)

    Hesham G. Ibrahim

    2016-04-01

    Full Text Available This paper studied the ability of using local activated carbon (LAC derived from olive waste cakes as an adsorbent for the removal of Cu(II ions from aqueous solution by batch operation. Various operating parameters such as solution pH, adsorbent dosage, initial metal ions concentration, and equilibrium contact time have been studied. The results indicated that the adsorption of Cu(II increased with the increasing pH, and the optimum solution pH for the adsorption of Cu(II was found to be 5. The adsorption process increases with increasing dosage of LAC, also the amount of Cu(II removed changes with Cu(II initial concentration and contact time. Adsorption was rapid and occurred within 25 min. for Cu(II concentration range from 60 to 120 mg/l isothermally at 30±1 oC. Maximum adsorption occurs at Cu(II initial concentration lesser than 100 mg/l by using adsorbent dosage (1.2 g/l. The equilibrium adsorption data for Cu(II were fitted well with the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of LAC was found to be 106.383 mg/g. So, the results indicated the suitability use of the activated carbon derived from olive waste cakes (LAC as low cost and natural material for reliable removal of Cu(II from water and wastewater effluents.

  4. Utilization of multiple waste streams for acid gas sequestration and multi-pollutant control

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Dilmore, R.M.; Hedges, S.W.; Howard, B.H.; Romanov, V. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA (United States)

    2012-03-15

    A novel CO{sub 2} sequestration concept is reported that combines SO{sub 2} removal and CO{sub 2} capture and sequestration, using a bauxite-processing residue which is a waste product and with waste brine water from oil/gas production. The bauxite residue/brine mixture of 46/54 v/v exhibited a CO{sub 2} sequestration capacity of > 0.078 mol L{sup -1} when exposed to pure CO{sub 2} at 20 C and 2.73 MPa. At a higher temperature of 140 C, a bauxite residue/brine mixture of 80/20 v/v indicated a CO{sub 2} sequestration capacity of > 0.094 mol L{sup -1} when exposed to pure CO{sub 2} at 3.85 MPa. Under the same reaction conditions, an identical ratio of reaction mixture exposed to simulated flue gas at a similar initial pressure was capable of sequestering 0.16 mol of CO{sub 2} and > 99.9 % of the applied SO{sub 2}. Calcite formation was verified as a product of bauxite/brine mixture carbonation. The caustic bauxite residues (pH 12.5-13.5) and acidic wastewater brine (pH 3-5) are also effectively neutralized after participating as reactive reagents in the conceptual process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    Science.gov (United States)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  6. Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers

    Science.gov (United States)

    Chowdhury, Shamik; Saha, Papita Das

    2012-09-01

    Biosorption potential of hen feathers (HFs) to remove methylene blue (MB) from aqueous solutions was investigated. Batch experiments were carried out as function of different process parameters such as pH, initial dye concentration, biosorbent dose and temperature. The optimum conditions for removal of MB were found to be pH 7.0, biosorbent dose = 1.0 g, and initial dye concentration = 50 mg L-1. The temperature had a strong influence on the biosorption process. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms with the Langmuir isotherm showing the best fit at all temperatures studied. The maximum monolayer sorption capacity was determined as 134.76 mg g-1 at 303 K. According to the mean free energy values of sorption ( E) calculated using the D-R isotherm model, biosorption of MB onto HFs was chemisorption. Kinetic studies showed that the biosorption of MB followed pseudo second-order kinetics. The activation energy ( E a) determined using the Arrhenius equation confirmed that the biosorption involved chemical ion-exchange. Thermodynamic studies showed that the biosorption process was spontaneous and exothermic. To conclude, HFs is a promising biosorbent for MB removal from aqueous solutions.

  7. Thermodynamic study of the adsorption of chromium ions from aqueous solution on waste corn cobs material

    Directory of Open Access Journals (Sweden)

    Rafael A. Fonseca-Correa

    2014-12-01

    Full Text Available The paper shows the results of a study obtaining activated carbon from corn cobs and determining its use as an adsorbent for the removal of Cr3+ from aqueous solutions. The finely ground precursor was subjected to pyrolysis at 600 and 900 °C in a nitrogen atmosphere and chemical activation with H2O2 and HNO3. The effects of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained were tested. The samples were characterised chemically and texturally. Were obtained microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and exhibited differences acid-base character of the surface. The results obtained shows that a suitable good option of the activation procedure for corncobs permits the production of economic adsorbents with high sorption capacity for Cr3+ from aqueous solutions. A detailed study of immersion calorimetry was performed with carbons prepared from corn cobs to establish possible relationships with these materials between the enthalpies of immersion and textural and chemical parameters.

  8. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deyi, E-mail: xixizhang@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Luo, Heming; Zheng, Liwen; Wang, Kunjie; Li, Hongxia; Wang, Yi; Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A novel approach on recycle of waste phosphogypsum was exploited. Black-Right-Pointing-Pointer Phosphogypsum was utilized to prepare hydroxyapatite nanoparticles with high purity. Black-Right-Pointing-Pointer nHAp derived from PG exhibits excellent adsoprtion capacity for fluoride. Black-Right-Pointing-Pointer Fluoride adsorbs onto nHAp mainly by electrostatic interaction and hydrogen bond. - Abstract: In the present study, waste phosphogypsum (PG) was utilized firstly to prepare hydroxyapatite nanoparticles (nHAp) via microwave irradiation technology. The nHAp derived from PG exhibited a hexagonal structure with the particle size about 20 nm Multiplication-Sign 60 nm and high purity. Meanwhile, the adsorption behaviour of fluoride onto the nHAp derived from PG was investigated to evaluate the potential application of this material for the treatment of the wastewater polluted with fluoride. The results indicate that the nHAp derived from PG can be used as an efficient adsorbent for the removal of fluoride from aqueous solution. The maximum adsorption capacities calculated from Langmuir-Freundlich model were 19.742, 26.108, 36.914 and 40.818 mg F{sup -}/g nHAp for 298, 308, 318 and 328 K, respectively. The pseudo-second order kinetic model was found to provide the best correlation of the used experimental data compared to the pseudo-first order and the adsorption isotherm could be well defined by Langmuir-Freundlich equation. The adsorption mechanism investigation shows that electrostatic interaction and hydrogen bond are the main driving force for fluoride uptake onto nHAp derived from waste PG.

  9. AUTOMATED IDENTIFICATION AND SORTING OF RARE EARTH ELEMENTS IN AN E-WASTE RECYCLING STREAM - PHASE I

    Science.gov (United States)

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to these concerns, e-waste recycling is a rapidly gro...

  10. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes

    International Nuclear Information System (INIS)

    The adsorption of U(VI) onto dried and pyrolyzed tea and coffee wastes was investigated. The adsorption properties of the materials were characterized by measuring uranium uptake as a function of solution pH, kinetics and adsorption isotherms. pH profile of uranium adsorption where UO22+ is expected to be the predominant species was measured between pH 0 and 4. Both Langmuir and Freundlich adsorption models were used to describe adsorption equilibria, and corresponding constants evaluated. Using the Langmuir model, the maximum adsorption capacity of uranium by dried tea and coffee wastes was 59.5 and 34.8 mg/g, respectively at 291 K. Adsorption thermodynamic constants, ΔHdeg ΔSdeg and ΔGdeg were also calculated from adsorption data obtained at three different temperatures. Adsorption thermodynamics of uranyl ions on dried tea and coffee systems indicated spontaneous and endothermic processes. Additionally, a Lagergren pseudo-second-order kinetic model was used to fit the kinetic experimental data for both adsorbents and the constants evaluated. Dried tea and coffee wastes proved to be effective adsorbents with high capacities and significant advantage of a very low cost. (author)

  11. Idaho Chemical Processing Plant (ICPP) injection well: Operations history and hydrochemical inventory of the waste stream

    International Nuclear Information System (INIS)

    Department of Energy (DOE), United States Geological Survey (USGS), and Idaho Chemical Processing Plant (ICPP) documents were searched for information regarding service disposal operations, and the chemical characteristics and volumes of the service waste emplaced in, and above, the Eastern Snake River Plain aquifer (ESRP) from 1953-1992. A summary database has been developed which synthesizes available, but dispersed, information. This assembled data records spatial, volumetric and chemical input patterns which will help establish the initial contaminant water characteristics required in computer modeling, aid in interpreting the monitoring well network hydrochemical information, and contribute to a better understanding of contaminant transport in the aquifer near the ICPP. Gaps and uncertainties in the input record are also identified with respect to time and type. 39 refs., 5 figs., 5 tabs

  12. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    Science.gov (United States)

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  13. Statistical optimization of aqueous extraction of pectin from waste durian rinds.

    Science.gov (United States)

    Maran, J Prakash

    2015-02-01

    The objectives of this present study was to investigate and optimize the aqueous extraction conditions such as solid-liquid (SL) ratio (1:5-1:15 g/ml), pH (2-3), extraction time (20-60 min) and extraction temperature (75-95 °C) on maximum extraction of pectin from durian rinds using four factors, three levels Box-Behnken response design. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and analyzed by analysis of variance (ANOVA). The optimum extraction condition was found to be as follows: SL ratio of 1:10 g/ml, pH of 2.8, extraction time of 43 min and extraction temperature of 86 °C respectively. Under the optimal conditions, the experimental pectin yield (9.1%) was well correlated with predicted yield (9.3%).

  14. Radiological assessment of petroleum pipe scale waste streams from dry rattling operations - 16323

    International Nuclear Information System (INIS)

    Petroleum pipe scale consists of inorganic solids, such as barium sulfate. These solids can precipitate out of brine solutions that are pumped out of oil wells as part of normal oil field operations. The precipitates can nucleate on down hole pipe walls, causing the buildup of hard scales in some tubular in a pipe string, while leaving others virtually untouched. Once the scale buildup is sufficient to restrict flow in the string significantly, the tubular are removed from service. Once removed, tubular are transported to storage yards for storage, subsequent inspection, and possible recycling. Many of the tubular are never returned to service, either because the threads were too damaged, pipe walls too thin, or the scale buildup too thick. Historically, the tubular refurbishment industry used primarily one of two processes, either a high-pressure water lance or a dry, abrasive 'rattling' process to ream pipes free of scale buildup. The dry rattling process was primarily for touching up new pipes that have rusted slightly during storage; however, pipes with varying levels of scale were reamed, leaving only a thin coating of scale on the inner diameter, and then returned to service. Chemically, radium is an analog for barium, and radium is present in parts-per-million quantities in the brines produced from downhole pumping operations. Thus, some of the scales contain radium salts. When the radium-bearing scales are reamed with a dry process there is the possibility of generating radioactive aerosols, as well as bulk waste materials. At Texas A and M University, and under the university's radioactive materials broad scope license, an outdoor laboratory was constructed and operated with dry rattling equipment restored to the 'as was' condition typical of historical pipe cleaning yards. A battery of measurements were obtained to determine the radiological and aerodynamic properties of scale-waste products liberated from the inner surfaces of a variety of tubular

  15. Adsorption of lanthanides in aqueous solution aiming to study of nuclear wastes

    International Nuclear Information System (INIS)

    The problem of radioactive wastes is a concern of world-wide scope, a time that does not still have a defined local for the construction of a repository for radioactive wastes of high level. One of the preliminary stages for the choice of the place more appropriate is the geologic study associated to the experimental studies of adsorption of the involved chemical species in the process. In this work, a sample of basaltic rock was used, of the South Region of the Formation Serra Geral, collected in Frederico Westphalen Town (RS), that it will be probably a candidate to the rock hostess for location of radioactive wastes. Two experiments have been carried out through, namely: 'Test Batch' and Percolating, both under atmospheric pressure, at the ambient temperature of 25 deg C, with the purpose to study the capacity of sorption of the rare earth elements - REE. The REE are used in this work in function of its analogy with the actinides, aiming at to investigate the chemistry behavior and the speciation of the same in natural waters, searching the possibility of geologic storage of radioactive wastes, a time that the adsorption of the REE depends on variables of the environment as pH, ionic strength, temperature and presence of ligands, as carbonates and constituent of surfaces of minerals. Experiment of percolating of the REE was carried through, 100ppb, in the basalt (with 80 mesh) in solutions with ionic strength 1= 0,025 M and 1=0,5 M of NaCl. pH was controlled in a range of 5,6 the 7,6 with HNO3 addition. The concentrations were analyzed by ICP-MS. The 'Batch Test' is an efficient form of studying sorption/desorption isotherms, beyond values of the reason between the distributions solid/solution and estimation of the solubility. The percolating experiment, was carried through under pH controlled around 6, and allowed to verify the behaviour of heavy REE in comparison with the light REE. (author)

  16. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    Science.gov (United States)

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-01

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. PMID:22191490

  17. Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

    Directory of Open Access Journals (Sweden)

    Paolo Viotti

    2015-11-01

    Full Text Available The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP. The two-stage air process combines a water scrubber and a biotrickling filter (BTF in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively. Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

  18. Sorption of copper(II) from aqueous phase by waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nagendra Rao, C.R. (Government Polytechnic, Anantapur (India)); Iyengar, L.; Venkobachar, C. (Indian Inst. of Tech., Kanpur (India))

    The objective of the present investigation is to compare three biomasses for copper uptake under different experimental conditions so as to choose the most suitable one for scaleup purposes. Ganoderma lucidum is a macrofungi, growing widely in tropical forests. Sorbent preparation requires its collection from the field. Asperigillus niger is obtained as a waste biomass from the fermentation industry. Activated sludge biomass is available from the biological waste treatment plants. The results of their potential to remove copper are presented. The copper uptake by biosorbents though, varied significantly, showed an increased trend in the range of pH 4 to 6. The increase in metal binding after alkali treatment was marginal for G. lucidum, significant for A. niger, and dramatic for sludge. Copper sorption capacities of M and M[sub c] were much higher than for other sorbents at pH 5.0. The effect of anionic ligands, like acetate and tartrate on copper uptake by raw and alkali treated biosorbents, was negligible as the predominant species in the presence of these ligands is divalent copper ion. Pyrophosphate, citrate, and EDTA had varying degrees of adverse effects on metal uptake. Thus, among the sorbents G. lucidum in its raw form is best suited for the practical application of copper removal from industrial effluents.

  19. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  20. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  1. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. [University of Nottingham Malaysia Campus, Semenyih, Selangor (Malaysia)

    2012-04-15

    Biosorption of cadmium(II) ions (Cd{sup 2+}) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd{sup 2+} uptake was highly dependent on the initial pH and Cd{sup 2+} removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd{sup 2+} concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd{sup 2+} from aqueous solution. (orig.)

  2. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    The purpose of this study was to investigate the net energy potential of single stage mesophilic reactor and two phase mesophilic reactor (hydrogeniser followed by methaniser) using the mix of process industrial food waste (IFW) and sewage sludge (SS). Two-phase reactor efficiency was analysed based on individual optimum influent/environmental (C:N and pH) and reactor/engineering (HRT and OLR) conditions achieved using the batch and continuous reactor study for the hydrogen and methane. Optimum C:N 20 and pH 5.5{+-}0.5 was observed using the Bio-H{sub 2} potential (BHP) and C:N 15 and pH 6.5{+-}0.3 for the biochemical methane potential (BMP) test. The maximum hydrogen content of 47% (v/v) was achieved using OLR 6 g VS/L/d and HRT of 5 days. Increase in hydrogen yield was noticed with consistent decrease in OLR. The volatile solids (VS) removal and hydrogen yield was observed in range 41.3 to 47% and 112.3 to 146.7 mL/ gVS{sub removed}. The specific hydrogen production rate improved at low OLR, 0.2 to 0.4 L/(L.d) using OLR 7.1 and 6 g VS/L/d respectively was well corroborated comparable to previous reported results at OLR 6 gVS/L/d using the enriched carbohydrate waste stream in particular to food wastes. A significant increase in VFA concentrations were noticed shifting OLR higher from 6 g VS/L/d thereby unbalancing the reactor pH and the biogas yield respectively. In similar, maximum methane content of 70% (v/v) was achieved using OLR of 3.3 gVS/L/d and HRT of 10 days. Slight decrease in methane content was noticed thereby increasing HRT to 12 and 15 days respectively. The volatile solids (VS) removal and specific methane production rate was observed in range 57.6 to 68.7 and 0.22 to 1.19 L/(L.d). The specific methane production potential improved thereby reducing the HRT and optimum yield was recorded as 476.6 mL/gVS{sub removed} using OLR 3.3 gVS/L/d. The energy potential of optimum condition in single stage hydorgeniser is 2.27 MW/tonne VS{sub fed}. Using the

  3. Removal of radioactive contaminants from aqueous laboratory wastes by chemical treatment

    International Nuclear Information System (INIS)

    The following conclusions can be drawn from the studies reported. The presence of suspended matter (i.e., clay) in the spiked tapwater solution improved the plutonium removals; however, the addition of clinoptilolite to the plant raw feed did not provide any noticeable improvement for plutonium removal. The addition of powdered clinoptilolite to the regular treatment in the plant significantly improved the removal of 137Cs, but had little effect on plutonium or 90Sr removal. Magnesium sulfate-lime-TSP (trisodium phosphate) treatment in the plant performed adequately, but not as well as the regular ferric sulfate-lime-TSP treatment. However, magnesium appears to be an adequate alternate during occasions of non-typical influents. A large portion of the plutonium is associated with the suspended solids matter in the waste. Autoradiographs indicate that the plutonium is generally evenly distributed, with some occasional hot spots

  4. Efficiency Study of Nickel (II and Cadmium (II Biosorption by Powder of Waste Activated Sludge from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    A.A Ebrahimi

    2011-01-01

    Full Text Available "n "n "nBackground and Objective: Nickel (II and cadmium (II are important in environmental pollutant. Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions because of the decrease in sludge problems, economical issues, high efficiency and compatibility with the environment."nMaterials and Methods: power of wasted activated sludge have been contact with nickel (II and cadmium (II solutions in 0.25 and 0.75 milli molar invarious pHs and mixing pace, at 24-26 0C temperature on batch reactor system .After two hours (continuously 5-420 min in kinetic study samples were analyzed with atomic absorption spectrophotometer."nResults:The kinetic study results show that equilibrium adsorption time for nickel (II and cadmium"n(II reached within 2 hr, but the profile curve of cadmium (II biosorption was smoother than nickel (II biosorption. Both metals adsorption followed the Langmuir model and the maximum adsorption capacity (qmax for nickel (II and cadmium (II was 0.195 and 0.37 milli mole per gram respectively. The increase in pH resulted in adsorption increase for both metals. For cadmium (II at 0.25 and 0.75 mMinitial concentration there was no adsorption at pH 2 where as nickel (0.25 mM adsorption was observed at the same pH. The optimum mixing rate for both metals was 200 rpm and this effect was more obviously in greater concentration."nConclusion: Like othe biosorbents ,wasted activated sludge showed greater capacity for cadmium(II biosorption than nickel (II. Cadmium (II in modeling and biosorption characteristics study had more conformity than nickel (II.

  5. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla Skin Waste

    Directory of Open Access Journals (Sweden)

    Adriana Dailey

    2015-11-01

    Full Text Available The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM. Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C, time (min, and sample-to-solvent ratio (g/100 mL, and their interactions, did not significantly affect phenolic compound (TPC, flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity.

  6. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla) Skin Waste.

    Science.gov (United States)

    Dailey, Adriana; Vuong, Quan V

    2015-01-01

    The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM). Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C), time (min), and sample-to-solvent ratio (g/100 mL), and their interactions, did not significantly affect phenolic compound (TPC), flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity. PMID:26783954

  7. The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue

    Directory of Open Access Journals (Sweden)

    Mohammed Nsaif

    2013-12-01

    Full Text Available This study is deal with study the potential of Iraqi Rice Husk (IRH on the removal of three heavy metals pollutant which were (Mg, Mn and Mo ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26 % for heavy metal (Mg, Mn and Mo respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absorbance material bed height, pH and feeding temperature. Statistical model is achieved to find an expression relates the overall operating parameters with the removal efficiency for each metal ions used in this investigation in a general equation (each one alone. The samples of (IRH remaining after using it in the removal of (Mg, Mn and Mo heavy metal ions above from Simulated Synthetic Aqueous Solutions (SSAS to investigate the capitalized of it in different methods. Different benefits possess which are: remove the three toxic heavy metals ions contaminated the water, get rid of agricultural waste (IRH, in the same time, produce light and more benefit hydrocarbons from n-heptane isomerization using a type Y-zeolite catalyst synthesis from remaining (IRH and prepare a cheap and active rodenticide.

  8. Biosorption kinetic studies of heavy metal ions from aqueous solution by a mixture of vegetable waste (abstract)

    International Nuclear Information System (INIS)

    Biosorption potential of a new bio sorbent prepared from vegetable waste composed of mixture of potato and carrot peels for the removal of heavy metals such as Ni (II) and Cu (II) from aqueous solution was determined. Batch experiments were conducted to optimize parameters i.e. initial pH, temperature, contact time, initial metal concentration and bio sorbent dose and it was observed that maximum adsorption of nickel (78%) was achieved by stirring the contents for 75 min at pH 4 and 35 deg. C by using 3.0 g of bio sorbent while in the case of copper maximum removal of copper occurred at pH 2, temperature of 50 deg. C, contact time of 45 minutes, metal concentration of 30 ppm and bio sorbent dose of 2.5 g. Kinetic studies of these reactions showed that they follow a pseudo-second order reaction, while these systems fit well in the Langmuir isotherm model and Freundlich isotherm model for Ni (II) and Cu (II) ions respectively. Both neat and metal loaded bio sorbent samples were analyzed using FT-IR spectrophotometer and X-Ray Florescence spectrometer in order to confirm the bio sorption of Ni (II) and Cu (II) and results have revealed that the metals are present in the spent bio sorbent. (author)

  9. Modification of waste coal gangue and its application in the removal of Mn(2+) from aqueous solution.

    Science.gov (United States)

    Qiu, Ruifang; Cheng, Fangqin

    2016-01-01

    We developed a new calcination method to convert coal gangue (CG), a common waste generated from coal production process, into a modified form, which could be used as an adsorbent to remove Mn(2+) from aqueous solution. Sodium tetraborate (Na2B4O7·10H2O) was added into the CG calcination process as an additive, and the concentrations of Na2B4O7·10H2O were optimized along with the calcination temperature to obtain the best adsorbent capacity of modified coal gangue (MCG). We applied multiple analytical methods such as scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis to characterize the MCG. The results showed it had a smaller particle size and a larger specific surface area and pore volume after modification. It also indicated that the phase of CG transformed from kaolinite to metakaolinite after calcination. Moreover, a new substance was generated with two new peaks at 1,632 cm(-1) and 799 cm(-1). The Mn(2+) absorption capacity of MCG was evaluated using a series of experiments with different adsorbent doses, pH values and initial Mn(2+) concentrations during the adsorption process. We found that Mn(2+) adsorbent capacity of MCG increased by more than seven-fold compared to that of CG. The Langmuir isotherm model and the pseudo-second-order kinetic model provided the best fit to the adsorption processes. PMID:27438259

  10. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc. PMID:27261730

  11. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  12. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    Science.gov (United States)

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ. PMID:24649668

  13. Ultrasound-assisted mineralization of organic compounds in aqueous liquid wastes

    International Nuclear Information System (INIS)

    Full text of publication follows: The rinsing of the nuclear installations used for the reprocessing of fuel irradiated before their final shutdown dismantling is considered by use of surface-active compounds diluted in nitric acid medium. In order to comply with the industrial vitrification specifications (carbon concentration in solution), mineralization (carbon decomposition into CO2) of liquid wastes has to be performed. An oxidation using H2O2 with nickel nitrate used as catalyst (Fenton reaction) is an efficient method for organics compounds destruction but it involves an important dilution because of added amounts of H2O2. Ultrasound associated or not with the Fenton reaction could be interesting with an aim of reducing H2O2 consumption. Indeed, it is known that water sono-lysis generates H2O2 involving radicals formation which may oxidize organics compounds. Laboratory tests have shown poor carbon oxidation performances even if associated with Fenton reaction. Efficiency is limited by nitrous acid, formed from nitric acid sono-lysis, enhancing H2O2 consumption. However, reaction mechanisms are complex and further tests, still in progress, will involve an anti nitrous agent in order to neutralize all nitrous acid and so let H2O2 operate on the organics compounds. (authors)

  14. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber.

    Science.gov (United States)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang

    2015-12-15

    In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29±0.28 mg/g, 505.64±0.21 mg/g, and 123.08±0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  15. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jellali, Salah, E-mail: salah.jallali@certe.rnrt.tn [Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, Soliman (Tunisia); Wahab, Mohamed Ali; Anane, Makram [Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, Soliman (Tunisia); Riahi, Khalifa [School of Engineering in Rural Equipment of Medjez El Bab, Laboratory of Chemistry and Water Quality, Medjez El Bab (Tunisia); Bousselmi, Latifa [Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, Soliman (Tunisia)

    2010-12-15

    Phosphate mine slimes (PMS), an abundant waste generated from phosphate mines, was used in this study as a cost-effective adsorbent to investigate the phosphate anions removal from synthetic and urban secondary treated wastewater solutions. Dynamic experiments using laboratory reactors were carried out to study the effect of phosphate influent concentration, PMS dosage and feed flow rate on phosphate removal and a kinetic model was used to determine the phosphate mass transfer coefficients. The results show that the phosphate removal increases with influent phosphate concentration and PMS dosage. The feed flow rate has no significant effect. On the other hand, the phosphate removal from wastewater is less efficient than the synthetic solution due to anions competition process. The evaluation of phosphates mass transfer coefficients confirms the presence of anion competition phenomena and the necessity of increasing PMS dosage to provide more adsorption sites. The cost-effective and high adsorptive capability of PMS make them attractive materials for phosphate anions removal and recovery from secondary treated wastewaters with the possibility of agronomic reuse as fertilizer.

  16. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  17. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Science.gov (United States)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    tillage and ratoon (no-till) harvest. We expect that the physical soil differences due to tillage versus no-tillage with vegetative regrowth on the biochar-amended soil will increase the diversity of soil microbial community structure, potential for C sequestration, and overall valuation of biochar as a soil amendment for factors such as waste-stream diversion, nutrient holding capacity, and C sequestration in addition to crop yield and GHG flux. These different treatments paired with intensive biochar characterization will aid in identifying how specific biochar properties translate to soil quality changes and increase the ability to target specific soil deficiencies with a tailored biochar for maximum holistic benefits.

  18. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  19. Monitoring of Plutonium Contaminated Solid Waste Streams. A technical guide to design and analysis of monitoring systems

    International Nuclear Information System (INIS)

    The basic information on the Pu content in Pu Contaminated Materials (PCM) is the measurement of radiation emitted by Pu isotopes either spontaneously or due to irradiation by external neutron or gamma-sources. Requirements on measurement accuracy and detection limits should be defined by the operator of a Pu-handling facility in accordance with monitoring objectives in the very beginning of the planning of a monitoring system. Monitoring objectives reflect nuclear safety and radiological protection regulations and the needs for Pu-accountancy of nuclear materials management and safeguards. On considering the possibilities and limitations of radiometric techniques a solution of the monitoring problem is based on appropriate segregation and packaging procedures and records upon matrix and isotopic composition of PCM-items to be measured. The general interrelations between waste item characteristics and measurement uncertainty and detection limit are outlined in the first chapter which is addressed to the system planner. Chapter 2 is devoted to the attention of instrument developers and analysts. It presents in a general approach the correlations between the observed radiation leakage rate, respectively detection signal, and the generating source, e.g. Pu-isotopic content of the examined PCM item. Some practical measurement methods are reviewed and their limitations are indicated. The possible radiometric techniques based on detection of gamma rays from alpha decay (and 241Am), neutrons from spontaneous fission and (α,n)-reaction and from induced fission reactions by neutron irradiation of Pu isotopes are presented. The measurement uncertainty of a single PCM item measurement is estimated on the basis of the uncertainty of the spatial distributions of source (Pu) and matrix materials. For the estimation of the cumulative error over a large collection of PCM items from a defined PCM-stream a probabilistic approach is suggested

  20. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  1. Stripping of TBP degraded product along with actinides from organic phase generated during the remediation of the aqueous phase of spent organic waste storage tank

    International Nuclear Information System (INIS)

    Degraded products of Tri butyl phosphate (TBP) are generated during extraction of U and Pu by PUREX due to high radiation field. Sodium carbonate wash is given to clean up the TBP solvent and the wash liquid is in a separate tank along with the spent organic waste. Though the aqueous phase from this tank comes intermediate level liquid waste category, presence of the degrade products of TBP are creating problem during its treatment by ion exchange process. To remediate this waste for ion exchange treatment, the degraded products of TBP are removed by solvent extraction using spent TBP stored in the same tank as solvent. Present paper details the stripping of the TBP degraded product along with alpha activity from the organic phase

  2. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    Science.gov (United States)

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic

  3. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g−1. The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  4. New developments and improvements in processing of 'problematic' radioactive waste. Results of a coordinated research project 2003-2007

    International Nuclear Information System (INIS)

    This report addresses a category of wastes termed 'problematic wastes', wastes for which safe, efficient and cost effective methods for processing are not readily available. Processing options for many of these are identified and addressed. Results presented, illustrate the strategy for breaking 'problematic' waste streams down into a sequence of 'standard' issues which are amenable to solution. Decision makers and facility managers faced with problematic waste streams should be able to use this information to identify and pursue solutions to meet their needs. In this report, processing options for a total of 27 problematic waste streams that were identified and addressed by the individual laboratories participating in the Coordinated Research Project are discussed. These waste streams covered an extremely broad spectrum, ranging from simple, one component aqueous solutions originating from a research laboratory to very complex aqueous concentrates of waste resulting from reprocessing activities or reactor operation. These challenging wastes included: waste contaminated by tritium, wastes containing transuranic elements, and solid health care waste. The range of aqueous wastes included those contaminated by organic complexing agents and surfactants to pure organic waste such as contaminated oil. Correspondingly, the scale of approaches and technologies used to address these wastes is very broad. Use of this report is likely to be most effective as an initial screening tool to identify technologies best able to meet specific waste management objectives in terms of the waste generated, the technical complexity, the available economic resources, the environmental impact considerations, and the desired end product (output) of the technology. The report should assist the user to compare technologies and to reach an informed decision based on safety, technological maturity, economics, and other local needs

  5. Bitumen immobilization of aqueous radwaste by thin-film evaporation

    International Nuclear Information System (INIS)

    In the early 1980s, AECL built a Waste Treatment Centre (WTC) for managing low-level solid and aqueous liquid wastes for converting CANDU wastes. At present, two liquid waste streams are being treated at the WTC. The liquid waste streams are volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis (TRO) membrane technologies. The concentrate produced from the TRO system and the volume-reduced MF backwash solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200-L galvanized steel drums for storage. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200-L drum ranges from 25 to 35%. Encapsulated in the bitumen matrix are a variety of nonradiochemical salts, which comprise the bulk of the total solids that are in the product drum. This report discusses the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Simulated bituminized waste forms were leached in accordance with the ANS/ANSI 16.1 leach test. In this test, the waste form is immersed under water for an extended period of time, and the leachate is periodically removed and chemically analysed. The Leachability index varied between 7 and 9 for the emulsified bitumen waste forms produced at the WTC. Bitumen samples were unconfined and subjected to immersion and frequent leachate replenishment. The results of leach tests will be a lower bound for the performance of the bitumen waste product in an unsaturated environment. The Leachability indexes reported exceeds the USNRC minimum requirement for wasteform criteria. Adding protective overcoats of either Portland cement or oxidized bitumen enhanced the Leachability index. 8 refs., 3 tabs., 6 figs

  6. Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso Solid waste from tanneries as adsorbent for the removal of dyes in aqueous medium

    OpenAIRE

    Rogério Marcos Dallago; Alessandra Smaniotto; Luiz Carlos Alves de Oliveira

    2005-01-01

    The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather). Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AU...

  7. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  8. Influence of the contaminated wastes/soils on the geochemical characteristics of the Bodelhão stream waters and sediments from Panasqueira mine area, Portugal

    Science.gov (United States)

    Abreu, Maria Manuela; Godinho, Berta; Magalhães, Maria Clara F.; Anjos, Carla; Santos, Erika

    2013-04-01

    Panasqueira is a famous Portuguese tin-tungsten mine operating more or less continuously since the end of the nineteenth century. This mine is located in the Central Iberian Zone, northwest of Castelo Branco, about 35 km from Fundão, being the greatest producer of tungsten in Europe. Panasqueira mine also produces copper and tin. The ore exploitation has caused huge local visual and chemical impact from the large waste tailings, together with water drainage from mine galleries, seepage and effluents from water plant treatment. The objective of this work was to evaluate the influence of the contaminated wastes and soils on the water and sediments characteristics of the Bodelhão stream. This stream crosses the mine area at the bottom of the main tailings, receiving sediments, seepage and drainage waters from wastes and/or soils developed on the waste materials which cover the host rocks (schists), and also from the water treatment plant. Waste materials contain different levels of hazardous chemical elements depending on their age and degree of weathering (mg/kg - As: 466-632; Cd: 2.6-4.2; Cu: 264-457; Zn: 340-456; W: 40-1310). Soils developed on old wastes (60-80 years old) are mainly silty loam, acidic (except one soil (pH 8.2) developed on waste materials covered by leakage mud from a pipe conducting effluent to a pond), with relatively high concentration of organic carbon (median 48.6 g/kg). The majority of soils are heavily contaminated in As (158-7790 mg/kg), Cd (0.6-138 mg/kg), Cu (51-4081 mg/kg), W (19-1450 mg/kg), and Zn (142-12300 mg/kg). The fraction of these elements extracted with DTPA solution, relatively to total concentration, varies from low to As (plant are less acidic (pH: 5.6-6.5) than those collected upper stream (pH 4.9) and showed high electric conductivity (up to 1.5 mS/cm), high concentrations of sulfate (618-1030 mg/L), and hazardous elements: up to 12.4 µg As/L; 83.7 µg Cd/L; 210 µg Cu/L; 5.8 mg Zn/L. The highest concentrations of

  9. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic

    International Nuclear Information System (INIS)

    A novel newberyite-rich magnesium-phosphate ceramic, intended for the stabilization of the US Department of Energy's low-level mixed-waste streams, has been developed by an acid-base reaction between magnesium oxide and a phosphoric acid solution. The reaction slurry, formed at room temperature, sets rapidly and forms a lightweight hard ceramic with low open porosity and a high compression strength of ∼ 6,200 psi. It is a composite of stable mineral phases of newberyite, luenebergite, and residual Mg oxide. Using this matrix, the authors developed superior waste forms for a surrogate ash waste stream. The final waste form is a low-permeability structural-quality ceramic, in which hazardous contaminants are chemically fixed and physically encapsulated. The compression strength of the waste form is an order of magnitude higher than the land disposal requirement, even at high waste loading. The high compression strength is attributed to stronger bonds in the waste form that result from participation of ash waste in the setting reactions. Long-term leaching studies show that the waste form is stable in an aqueous environment. The chemically bonded phosphate ceramic approach in this study may be a simple, inexpensive, and efficient method for fabricating high-performance waste forms either for stabilizing waste streams or for developing value-added construction materials from high-volume benign waste streams

  10. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, Richland, WA (United States); Mahoney, J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  11. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation.

    Science.gov (United States)

    Jin, Hongmei; Capareda, Sergio; Chang, Zhizhou; Gao, Jun; Xu, Yueding; Zhang, Jianying

    2014-10-01

    Biochar converted from waste products is being considered as an alternative adsorbent for removal of aqueous heavy metal(loid)s. In this work, experimental and modeling investigations were conducted to examine the effect of biochars pyrolytically produced from municipal solid wastes on removing aqueous As(V) before and after activated by 2M KOH solution. Results showed that the highest adsorption capacity of pristine biochars was 24.49 mg/g. The pseudo-second-order model and Langmuir adsorption isotherm model can preferably describe the adsorption process. The activated biochar showed enhanced As(V) adsorption ability with an adsorption capacity of 30.98 mg/g, which was more than 1.3 times of pristine biochars, and 2-10 times of modified biochars reported by other literatures. Increase of surface area and changes of porous texture, especially the functional groups on the surface of activated biochars are the major contributors to its more efficient adsorption of As(V). PMID:25103038

  12. Exploitation of the FLK-60 slagging incinerator for different alpha waste streams and study of the feasibility of medium-level alpha-beta-gamma waste incineration in FLK-60

    International Nuclear Information System (INIS)

    The FLK-60 high temperature slagging incinerator and its peripherals were developed by SCK/CEN with the help of the Commission of the European Communities in the framework of contract no. EUR-017-76-7 WAS-B. This second contract, which covered the period between October 1980 and December 1982, aimed at gaining exploitation experience by running the FLK-60 installation with beta-gamma radioactive waste in semi-industrial conditions. At the end of those 27 months, the system was ready for exploitation in alpha-conditions with plutonium-containing materials. This report describes the various plant parameters during the 25 runs carried out in the framework of this contract and the results of characterization tests carried out on the final product and the secondary waste streams. In the meantime, typical operation balances are computed

  13. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    International Nuclear Information System (INIS)

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  14. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  15. The DMC process for radioactive waste treatment

    International Nuclear Information System (INIS)

    This paper describes AEA Technology's patented Direct Membrane Cleaning (DMC) technology for enhancing the filtration of finely divided solids from aqueous streams. Electrolytically generated, microscopic gas bubbles at the membrane surface remove the superficial fouling layer, enching the permeation rate of the membrane. DMC technology has been demonstrated for ultrafilters and microfilters; several applications are summarized, including radioactive waste treatment and non-nuclear applications

  16. The Potential For Efficient Biological Pre-Treatment Of Exploration Based Waste Streams For Potable Water Production Using A Membrane Reactor Capable Of Simultaneous Nitrification-Denitrification

    Science.gov (United States)

    Jackson, William; Morse, Audra; Landes, Nick

    Long term space habitation and exploration require high efficiency water recycling systems. Waste streams from space habitation contain high concentrations of both organic nitrogen and ammonium and high ratios of N to organic C compared to terrestrial wastewater. As with terrestrial systems wastewater must be highly treated to remove organic carbon, nitrogen compounds, salts, and trace constituents. In general, either some type of reverse osmosis or distillation step is required as the final treatment prior to disinfection. However, the high waste strength of the waste can seriously impact the efficiency of these post-processors. Biological pre-treatment is one process capable of significant reductions in organic carbon and nitrogen. Biological systems are self sustaining and require minimal inputs of energy or consumables. Research in our lab has been conducted to evaluate a number of micro-gravity compatible biological reactor systems. Both nitrification-denitrification coupled systems, in which oxygen consumption is reduced by using nitrate as an electron acceptor, and single reactor systems for organic removal and nitrification have been extensively investigated. Reactor types include tubular pulsed flow reactors, packed bed reactors, and membrane reactors. Recently a single vessel membrane reactor capable of simultaneous nitrification-denitrification (sNDN) has been developed and evaluated for its ability to potentially replace other proposed systems. Results to be presented include a review of past system performance and limitations with comparison to the performance of the new sNDN reactor system. Conversion efficiency, stability, and volumetric reaction rates will be discussed.

  17. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    International Nuclear Information System (INIS)

    Laboratory results of a comprehensive regulatory performance test program, using an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). The testing has shown that the relatively viscous form of oxidized bitumen that was used has been able to meet all performance requirements. Using a 53-mm Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of ASTM D312, type III, air-blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, was used. The mixed liquid waste contained approximately 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium, and strontium. Samples tested contained three levels of waste loading: that is, 40, 50, and 60 wt % salt. Performance test results include the 90-day American Nuclear Society (ANS) 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP toxicity test, at all levels of waste loading. Additionally, test results presented include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy (SEM). Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements

  18. Combined Waste Form Cost Trade Study

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; Steve Piet; Timothy Trickel; Joe Carter; John Vienna; Bill Ebert; Gretchen Matthern

    2008-11-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE.

  19. Investigations of actinides in the context of final disposal of high-level radioactive waste - trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    This contribution presents a small piece of research work at KIT-INE dealing with the speciation of redox sensitive trivalent actinides like Pu(III), Np(III), and U(III) in aqueous solution. The redox preparation, stabilization, and speciation of trivalent actinide in aqueous systems are discussed here. The reductants investigated were rongalite, HYA (hydroxylamine hydrochloride), and AHA (acetohydroxamic acid). The time dependence of An(III) stability at different pH values was investigated. The An(III) species in aqueous solution have been characterized by UV-Vis and XANES spectroscopy. A broader overview of the work at KIT-INE is given in the oral presentation at the NUCAR2013 conference. (author)

  20. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  1. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    International Nuclear Information System (INIS)

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a 60Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of 60Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 μg/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. 60Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants

  2. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1999-06-14

    This report is fully responsive to the requirements of Section 4.0 Acceptable Knowledge from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  3. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    International Nuclear Information System (INIS)

    This report is fully responsive to the requirements of Section 4.0 ''Acceptable Knowledge'' from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge

  4. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  5. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  6. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    Science.gov (United States)

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-02-03

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions.

  7. Sequestering Potential of Peach Nut Shells as an Efficient Sorbent for Sequestering Some Toxic Metal Ions from Aqueous Waste: A Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen

    2016-06-01

    Full Text Available The peach nut shells potential as a low cost biosorbent for separation of certain metal ions from aqueous media was investigated. The effects of different parameters such as pH, shaking speed, initial metal ions concentration and their contact time with adsorbent on sorption efficiency of biosorbent was investigated to optimize the parameters for maximum sorption. The FT–IR spectroscopy and TGA were used to characterize the biosorbent. A significant increase in sorption was noted with rise in pH of metal ions solution and maximum sorption was observed at pH 6. The isothermal data was fitted to Langmuir, Dubinin–Radushkevich (D–R, Freundlich isotherms and equilibrium process was best fitted to Langmuir isotherm. The removal efficiency of chemically activated samples was found to be ~35 to 45% greater than raw sample. The results showed that peach nut shell was an effective biosorbent for the remediation of the contaminated water with lead (II, Nickle (II and Chromium (III ions. Being low cost material, PNS has a potential to be exploited in waste water treatment technologies. This study shows that activated PNS exhibited appreciable sorption for Pb, Cr and Ni metals ions (97%, 95% and 94% respectively from aqueous solution even at very low concentration of sorbent. The chemical and thermal activation of peach nut shells enhances the removal efficiency for all the metal ions and from the reported data; it was found that the adsorption ability of Pb ions was greater than nickel and chromium.

  8. Nutrient recovery from biodigestion waste (water) streams and reuse as renewable fertilizers: a two-year field experiment

    OpenAIRE

    Vaneeckhaute, Céline; Ghekiere, Greet; Michels, Evi; Vanrolleghem, Peter A; Meers, Erik; Tack, Filip

    2013-01-01

    The aim of this study was to evaluate the impact of using bio-digestion waste derivatives as substitute for synthetic fertilizers and/or as P-poor equivalent for animal manure on soil and crop production. In a field trial, nutrient balances were assessed and the physicochemical soil fertility and quality were evaluated. The biogas yield of the harvested energy crops was also determined. An economical and ecological evaluation was conducted. The highest biomass yields were obtained when the li...

  9. Design of efficient catalysts for gasification of biomass-derived waste streams in hot compressed water. Towards industrial applicability.

    OpenAIRE

    Vlieger, de, J.J.

    2013-01-01

    The energy required for the globalized living standards of our society depends currently on fossil fuels. The availability and use of fossil fuels were taken for granted during the last century, but depletion of cheap oil and the environmental concerns related to combustion of fossil fuels force us to shift to alternative energy sources. Biomass is believed to be a promising renewable energy source for the future. Conversion of biomass waste to liquid fuels or hydrogen is projected to provide...

  10. Nitrifying Community Analysis in a Single Submerged Attached-Growth Bioreactor for Treatment of High-Ammonia Waste Stream

    DEFF Research Database (Denmark)

    Gu, April Z.; Pedros, Philip B; Kristiansen, Anja;

    2007-01-01

    This study investigated the nitrifying community structure in a single-stage submerged attached-growth bioreactor (SAGB) that successfully achieved stable nitrogen removal over nitrite of a high-strength ammonia wastewater. The reactor was operated with intermittent aeration and external carbon a...... in this study is applicable for high-ammonia-strength wastewater treatment, such as centrate or industrial wastes. Udgivelsesdato: December 2007...

  11. Liberation of chromium from ferrochrome waste materials utilising aqueous ozonation and the advanced oxidation process / Yolindi van Staden

    OpenAIRE

    Van Staden, Yolindi

    2014-01-01

    During ferrochrome (FeCr) production, three types of generic chromium (Cr) containing wastes are generated, i.e. slag, bag filter dust (BFD) and venturi sludge. The loss of these Cr units contributes significantly to the loss in revenue for FeCr producers. In this study, the liberation of Cr units was investigated utilising two case study waste materials, i.e. BFD from a semi-closed submerged arc furnace (SAF) operating on acid slag and the ultrafine fraction of slag (UFS) orig...

  12. Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso Solid waste from tanneries as adsorbent for the removal of dyes in aqueous medium

    Directory of Open Access Journals (Sweden)

    Rogério Marcos Dallago

    2005-06-01

    Full Text Available The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather. Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AUREA tanning company in Erechim-RS (Brazil showed that this material presents high adsorption capacities of the reactive textile dyes.

  13. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter, and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents.

  14. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  15. Waste generation reduction: nitrates. FY 1984 status report

    International Nuclear Information System (INIS)

    A study was initiated at Rocky Flats Plant (RFP) to develop and demonstrate technology to eliminate nitrates in low-level waste streams without generating objectionable oxides of nitrogen. Various chemical and thermal methods of denitrification were investigated earlier in this program. Work in FY 1984 was conducted on the Thagard High Temperature Fluid Wall Reactor (HTFWR) and on an aqueous two-step process. Preliminary tests were conducted on a plasma torch system. Testing was completed with actual RFP nitrate wastes on an aqueous process consisting of formic and sulfuric acid reflux, followed by evaporation of the liquid to dryness. Results from this process show promising nitrate destruction, but with production of some NO/sub x/ in the off-gas. Also completed in aqueous testing were laser excitation techniques, indicating that the high activation energy of the nitrate ion can be overcome with a simpler chemical reaction with additional energy applied. Experiments were conducted using an HTFWR to determine its nitrate/nitrite destruction efficiency on simulated RFP and Savannah River Plant waste streams. These streams included nitrate-contaminated soils and feeds containing surrogate fission products. Various additives were tested to enhance nitrate destruction, reduce NO/sub x/ off-gas generation, and produce an acceptable final waste form

  16. Literature survey on solid and aqueous species of importance for nuclear waste repositories: The elements uranium, neptunium and cesium

    International Nuclear Information System (INIS)

    This document contains extensive tables listing all possible chemical compounds of species that might occur in a proposed nuclear waste repository. Most are listed as unlikely to occur under conditions predicted for the repository. Extensive data tables and reference sources are provided for those compounds that might occur on form

  17. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  18. Extraction of Theanine from Waste Liquid of Tea Polyphenol Production in Aqueous Two-phase Systems with Cationic and Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junwei; WANG Yan; PENG Qijun

    2013-01-01

    Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactant two-phase system (ASTP) with cationic suffactant (CTAB) and anionic surfactant (SDS).Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant.The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP.Theanine concentration in the bottom phase increases with increasing concentration of theanine,whereas the partition coefficient and extraction rate only change a little when the concentration of theanine is above 0.2 g· L-1.With the increase of SDS concentration,the phase ratio and the partition coefficient decrease,while the extraction efficiency of theanine increases and the concentration of theaninc changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio.The temperature has a notable effect on the concentration of theanine in the bottom phase,partition coefficient and extraction rate of theanine.The increase of waste liquid decreases the phase ratio,increases the concentration and extraction rate of theanine in the bottom phase,since the protein and the saccharide enter the bottom phase with theanine.

  19. Saltstone Vault Classification Samples Modular Caustic Side Solvent Extraction Unit/Actinide Removal Process Waste Stream April 2011

    International Nuclear Information System (INIS)

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock and Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B and W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B and W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B and W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most

  20. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  1. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  2. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  3. Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste.

    Science.gov (United States)

    Banerjee, Chayan; Dudwadkar, Nilesh; Tripathi, Subhash Chandra; Gandhi, Pritam Maniklal; Grover, Vinita; Kaushik, Chetan Prakash; Tyagi, Avesh Kumar

    2014-09-15

    Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides (233)U (4.82 MeV α) and (241)Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr(2+), Ru(3+), Fe(3+), etc., in the uptake process indicated CeVO4 nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions.

  4. Removing sulphur oxides from a fluid stream

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  5. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  6. Dissolved phosphorus export from an animal waste impacted in-stream wetland: response to tropical storm and hurricane disturbance.

    Science.gov (United States)

    Novak, J M; Szogi, A A; Stone, K C; Watts, D W; Johnson, M H

    2007-01-01

    The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export. PMID:17412914

  7. Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk-An agricultural waste

    International Nuclear Information System (INIS)

    The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix golden yellow 3 RFN from aqueous solution. In this work, adsorption of Reactofix golden yellow 3 RFN on wheat husk and charcoal has been studied by using batch studies. The equibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from wastewater

  8. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Seal, Robert R., II; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was

  9. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    International Nuclear Information System (INIS)

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput

  10. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. The US Department of Energy Low-Level Radioactive Waste Management Program is directed toward a coordinated program covering the period from low-level radioactive waste generation through the decommissioning of the disposal site. This paper addresses the treatment portion of the program. The development efforts include: mechanical methods for metal and compactible waste volume reduction; incineration of trash or other combustibles through the use of controlled air, cyclone, or molten glass furnaces; ultrafiltration, reverse osmosis, biological or chemical destruction of nitrates; adsorption treatment of low-concentration aqueous waste streams; combustion of organic liquids; and smelting of metal wastes to reduce their volume and conserve our natural resources. (author)

  11. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  12. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  13. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Organic anion exchange resins are evaluated for 99-TcO4- (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I-, NO3-, SO4=, CO3=, Cl- and OH-. Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  14. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO3-, OH- and BO3- environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  15. ADSORPTION OF PHENOL AND Pb2+ FROM AQUEOUS SOLUTIONS BY A NEW DI-FUNCTION ADSORBENT WITH SULFHYDRYL GROUPS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinnan; LI Aimin; ZHANG Bo; ZHANG Quanxing

    2007-01-01

    A new di-function adsorbent (JN-3) was prepared by sulfhydryl modified. Comparing with Amberlite XAD-4 and NDA-150, the equilibrium adsorption for phenol on the JN-3 from aqueous solutions was tested, perfect adsorption capacity was shown. Pb2+ can be also removed by JN-3 because of the chelate interaction between sulfhydryl groups and metal ions. This adsorbent could be used in removal of combine pollutants such as phenolic compounds and heavy metal ions from waste streams.

  16. A review of methods for the decontamination of alpha-bearing waste streams to very low-levels of activity

    International Nuclear Information System (INIS)

    This report reviews the processes presently available for the decontamination of alpha-bearing waste effluents. Evaporation, chemical precipitation, organic and inorganic ion exchange, solvent extraction, ultrafiltration, electrical and microbiological processes are considered in turn. Each type of process and its applications in the nuclear industry are briefly described together with the results from any recent development studies. From the information available the advantages and limitations of the process for alpha removal to low-levels (10-2-10-3 Bq/msup(l)) are assessed. It is concluded that no single process is capable of removing the actinides to these very low levels but that this level of decontamination should be achieved by the use of two or more processes either sequentially or in combination; e.g. the use of ultrafiltration or precipitation processes in combination with finely divided inorganic ion exchange materials. Processes involving a good solid-liquid separation, such as ultrafiltration appear to be the most appropriate for actinides which show a tendency to hydrolyse and form colloids. However, there is very limited information available on the removal of actinides by such processes, particularly at levels < Bq/ml. Electrical and biological processes are not yet sufficiently developed for their potential to be properly assessed. (author)

  17. Sequential Extraction Results and Mineralogy of Mine Waste and Stream Sediments Associated With Metal Mines in Vermont, Maine, and New Zealand

    Science.gov (United States)

    Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.

    2007-01-01

    We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.

  18. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  19. Evaluation of an Adsorbent Based on Agricultural Waste (Corn Cobs for Removal of Tyrosine and Phenylalanine from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Cibele C. O. Alves

    2013-01-01

    Full Text Available Adsorption of phenolic amino acids, such as phenylalanine and tyrosine, is quite relevant for the production of protein hydrolysates used as dietary formulations for patients suffering from congenital disorders of amino acid metabolism, such as phenylketonuria. In this study, an adsorbent prepared from corn cobs was evaluated for the removal of tyrosine (Tyr from both a single component solution and a binary aqueous solution with phenylalanine (Phe. The adsorption behavior of tyrosine was similar to that of phenylalanine in single component solutions, however, with a much lower adsorption capacity (14 mg g−1 for Tyr compared to 109 mg g−1 for Phe. Tyr adsorption kinetics was satisfactorily described by a pseudosecond-order model as it was for Phe. In adsorption equilibrium studies for binary mixtures, the presence of Tyr in Phe solutions favored Phe faster adsorption whereas the opposite behavior was observed for the presence of Phe in Tyr solutions. Such results indicate that, in binary systems, Phe will be adsorbed preferably to Tyr, and this is a welcome feature when employing the prepared adsorbent for the removal of Phe from protein hydrolysates to be used in dietary formulations for phenylketonuria treatment.

  20. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production.

  1. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. PMID:24656549

  2. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. PMID:27474855

  3. Evaluation of an adsorbent based on agricultural waste (corn cobs) for removal of tyrosine and phenylalanine from aqueous solutions.

    Science.gov (United States)

    Alves, Cibele C O; Franca, Adriana S; Oliveira, Leandro S

    2013-01-01

    Adsorption of phenolic amino acids, such as phenylalanine and tyrosine, is quite relevant for the production of protein hydrolysates used as dietary formulations for patients suffering from congenital disorders of amino acid metabolism, such as phenylketonuria. In this study, an adsorbent prepared from corn cobs was evaluated for the removal of tyrosine (Tyr) from both a single component solution and a binary aqueous solution with phenylalanine (Phe). The adsorption behavior of tyrosine was similar to that of phenylalanine in single component solutions, however, with a much lower adsorption capacity (14 mg g(-1) for Tyr compared to 109 mg g(-1) for Phe). Tyr adsorption kinetics was satisfactorily described by a pseudosecond-order model as it was for Phe. In adsorption equilibrium studies for binary mixtures, the presence of Tyr in Phe solutions favored Phe faster adsorption whereas the opposite behavior was observed for the presence of Phe in Tyr solutions. Such results indicate that, in binary systems, Phe will be adsorbed preferably to Tyr, and this is a welcome feature when employing the prepared adsorbent for the removal of Phe from protein hydrolysates to be used in dietary formulations for phenylketonuria treatment.

  4. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst.

    Science.gov (United States)

    Rezaei, Fatemeh; Moussavi, Gholamreza; Bakhtiari, Alireza Riyahi; Yamini, Yadollah

    2016-04-01

    This paper investigates the catalytic potential of MgO/GAC composite for toluene elimination from waste air in the catalytic ozonation process (COP). The MgO/GAC composite was a micro-porous material with the BET surface area of 1082m(2)/g. Different functional groups including aromatic CC, saturated CO of anhydrates, hydroxyl groups and SH bond of thiols were identified on the surface of MgO/GAC. Effects of residence time (0.5-4s), inlet toluene concentration (100-400ppmv) and bed temperature (25-100°C) were investigated on degradation of toluene in COP. Impregnation of GAC with MgO increased the breakthrough time and removal capacity by 73.9% and 64.6%, respectively, at the optimal conditions. The catalytic potential of the GAC and MgO/GAC for toluene degradation was 11.1% and 90.6%, respectively, at the optimum condition. The highest removal capacity using MgO/GAC (297.9gtoulene/gMgO/GAC) was attained at 100°C, whereas the highest removal capacity of GAC (128.5mgtoulene/gGAC) was obtained at 25°C. Major by-products of the toluene removal in COP with GAC were Formic acid, benzaldehyde, O-nitro-p-cresol and methyl di-phenyl-methane. MgO/GAC could greatly catalyze the decomposition of toluene in COPand formic acid was the main compound desorbed from the catalyst. Accordingly, the MgO/GAC is an efficient material to catalyze the ozonation of hydrocarbon vapors. PMID:26784452

  5. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    International Nuclear Information System (INIS)

    Highlights: • Fe3O4 nanoparticles prepared from waste liquor were functionalized with EDA. • EDA-Fe3O4 nanoparticles had high adsorption capacity and selectivity for Cr(VI). • The adsorption kinetics, thermodynamics and isotherm were studied. • Electrostatic attraction and complexation were postulated as adsorption mechanisms. • EDA-Fe3O4 nanoparticles retained high capacity after several adsorption processes. - Abstract: In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20–50 nm and a BET surface area of 28 m2 g−1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl−or Cr(VI)/SO42− double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption–desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI)

  6. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    International Nuclear Information System (INIS)

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g-1. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  7. Removal of TcO4- from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Asmussen, Robert M.; Lawter, Amanda R.; Bowden, Mark E.; Lukens, Wayne W.; Sarma, Debajit; Riley, Brian J.; Kanatzidis, Mercouri G.; Qafoku, Nikolla

    2016-06-01

    Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability, the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.

  8. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    Science.gov (United States)

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. PMID:24071717

  9. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    Science.gov (United States)

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained.

  10. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus.

    Science.gov (United States)

    Morgan-Sagastume, Fernando; Karlsson, Anton; Johansson, Peter; Pratt, Steven; Boon, Nico; Lant, Paul; Werker, Alan

    2010-10-01

    In this study, the production of polyhydroxyalkanoates (PHAs) from waste activated sludge (WAS) was evaluated. PHAs were produced from fermented WAS pretreated via high-pressure thermal hydrolysis, a stream characterised by high levels of nutrients (approximately 3.5 g N L(-1) and 0.5 g P L(-1)) and soluble organics. PHA-storing organisms were successfully enriched at high organic loading rates (6 g COD(sol) L(-1) d(-1)) under aerobic dynamic feeding in sequencing batch reactors at a sludge retention time of 6 d with a short feast length less than 20% of the cycle, and a maximum substrate concentration during feast of 1 g COD(VFA) L(-1). The biomass enrichment, characterised by a decrease in species evenness based on Lorenz curves, provided a biomass that accumulated 25% PHA on a dry-biomass basis with yields on VFA of 0.4 Cmol Cmol(-1) in batch tests. The PHA consisted of ∼70 mol% 3-hydroxybutyrate and ∼30 mol% 3-hydroxyvalerate, and presented high thermal stability (T(d) = 283-287 °C) and a molecular mass ranging from 0.7 to 1.0 × 10(6) g mol(-1). Overall PHA storage was comparable to that achieved with other complex substrates; however, lower PHA storage rates (0.04-0.05 Cmol PHA(-1) Cmol X(-1) h(-1)) and productivities (3-4 Cmol PHA L(-1) h(-1)) were probably associated with a biomass-growth and high-respiration response induced by high levels of non-VFA organics (40-50% of COD(sol) in feed) and nutrients. PHA production is feasible from pretreated WAS, but the enrichment and accumulation process require further optimisation. A milder WAS pretreatment yielding lower levels of non-VFA organics and readily available nutrients may be more amenable for improved performance.

  11. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe{sub 3}O{sub 4} nanoparticles prepared from steel pickling waste liquor

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.B. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Fang, Z.Q., E-mail: zhanqiangfang@m.scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Tsang, P.K.E. [Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong 00852 (China); Cheng, W.; Yan, X.M.; Zheng, L.C. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2014-09-30

    Highlights: • Fe{sub 3}O{sub 4} nanoparticles prepared from waste liquor were functionalized with EDA. • EDA-Fe{sub 3}O{sub 4} nanoparticles had high adsorption capacity and selectivity for Cr(VI). • The adsorption kinetics, thermodynamics and isotherm were studied. • Electrostatic attraction and complexation were postulated as adsorption mechanisms. • EDA-Fe{sub 3}O{sub 4} nanoparticles retained high capacity after several adsorption processes. - Abstract: In this study, Fe{sub 3}O{sub 4} nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe{sub 3}O{sub 4} NPs for engineering applications. The obtained EDA-Fe{sub 3}O{sub 4} NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe{sub 3}O{sub 4} NPs had a crystalline structure with a particle size range of 20–50 nm and a BET surface area of 28 m{sup 2} g{sup −1}. Functionalization with EDA was able to improve the adsorption selectivity of Fe{sub 3}O{sub 4} for Cr(VI) in Cr(VI)/Cl{sup −}or Cr(VI)/SO{sub 4}{sup 2−} double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe{sub 3}O{sub 4} NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe{sub 3}O{sub 4} NPs retained a high adsorption capacity after several consecutive adsorption–desorption processes, indicating that EDA-Fe{sub 3}O{sub 4} NPs serve as an

  12. Catalytic destruction of hazardous organics in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Sealock, L.J. Jr.

    1988-04-01

    Pacific Northwest Laboratory (PNL) is developing a process for destroying hazardous organics and chlorinated organics in aqueous solutions. The process is targeted at liquid waste streams that are difficult and costly to treat with conventional or developing technologies. Examples of these waste streams include contaminated groundwater and surface water and industrial wastewater. Aqueous solutions are treated with a transition metal catalyst at 300/degree/C to 460/degree/C and 2000 to 5000 psig pressure to convert the wastes to innocuous gases. During proof-of-principle tests conducted in a 1-L batch reactor, destruction of over 99/percent/ (in most cases approaching 99.9/percent/) of the organic material was achieved. Hexone (methyl is isobutyl ketone, MIBK), p-cresol, hexane, benzene, and naphthalene were used as model waste materials. The only major product with all of the organic compounds was a gas containing 50/percent/ to 75/percent/ methane, 25/percent/ to 45/percent/ carbon dioxide, and 0/percent) to 5/percent/ hydrogen. Reduced nickel was the only effective catalyst and that the optimal operating conditions for destroying nonchlorinated organics were 350/degree/C to 400/degree/C, 2000 to 4000 psig, and 30/endash/ to 60/endash/min residence time. These tests also indicated that catalyst deactivation or fouling would not be a problem at these conditions. Chlorobenzene and trichloroethylene (TEC), were also tested. Destruction of both compounds was 99/percent/ or greater, but the products were different from those obtained from hydrocarbons. With TCE, the major product was carbon dioxide; with chlorobenzene the major product identified was benzene. In the tests with the chlorinated hydrocarbons, the chlorine was converted to HC1 and the reduced nickel was converted to nickel hydroxide, which may be detrimental to long-term catalyst activity. (15 refs., 8 figs., 6 tabs).

  13. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  14. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations.

    Science.gov (United States)

    Spir, Lívia Genovez; Ataide, Janaína Artem; De Lencastre Novaes, Letícia Celia; Moriel, Patrícia; Mazzola, Priscila Gava; De Borba Gurpilhares, Daniela; Silveira, Edgar; Pessoa, Adalberto; Tambourgi, Elias Basile

    2015-01-01

    Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential. PMID:25919128

  15. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    Science.gov (United States)

    Fang, X. B.; Fang, Z. Q.; Tsang, P. K. E.; Cheng, W.; Yan, X. M.; Zheng, L. C.

    2014-09-01

    In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20-50 nm and a BET surface area of 28 m2 g-1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl-or Cr(VI)/SO42- double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption-desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI).

  16. Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D.W.

    1979-01-01

    Emphasis was focused on the operating parameters that most strongly affected the optimization of the processes used to treat actual process or feed streams which simulated actual compositions occurring at nuclear facilities. These parameters included gas superficial velocity, temperature, types of organic and inorganic contaminants, relative humidity, iodine feed-gas concentration, iodine species, column design (for both acid-scrub and solid sorbent-based processes), sorbent particle size, run time, intense radiation (solid sorbents only), and scrub-acid concentration. The most promising acid-scrub process for removal of iodine species from off-gases appears to be Iodox. The most promising solid sorbent for removal of iodine species from off-gases is the West German Ag-KTB--AgNO/sub 3/-impregnated amorphous silicic acid. The tandem silver mordenite--lead mordenite sorbent system is also quite attractive. Only a limited number of processes have thus far been studied for removal of iodine species from low-level liquid waste streams. The most extensive successful operating experience has been obtained with anion exchange resins utilized at nuclear power reactors. Bench-scale engineering tests have indicated that the best process for removal of all types of iodine species from liquid waste streams may be treatment on a packed bed containing a mixture of sorbents with affinity for both elemental and anionic species of iodine. 154 references, 7 figures, 21 tables.

  17. Accelerator Production of Tritium Waste Characterization and Certification Challenges

    International Nuclear Information System (INIS)

    This paper summaries the processes and methods APT used for the identification and classification of the waste streams, the characterization and certification of the waste streams, and waste minimization

  18. Bioprocessing of a stored mixed liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Finney, R. [Mound Applied Technologies, Miamisburg, OH (United States)] [and others

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  19. Formulation and preparation on Hanford Waste Treatment Plan direct feed low activity waste effluent management facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  20. Neptunium distribution in PUREX process streams

    International Nuclear Information System (INIS)

    237Np is one of the most important minor actinides present in spent fuel both from environmental and application point of view. The routing of neptunium to the particular waste stream of PUREX process is required for its separation and purification as 237Np is the target nuclide for production of 238Pu. In addition, the routing of neptunium to a particular PUREX stream will help in better waste management, which in turn will reduce its bearing on the environment considering its long half life, alpha emitting properties and mobile nature. In order to route Neptunium to a particular waste stream of PUREX process, it is imperative to understand the distribution of neptunium in various process streams. Although, there are reports on Np distribution under simulated conditions of PUREX streams, the present study deals with neptunium determination in actual PUREX streams samples. (author)

  1. Results of Toxicity Identification Evaluations (TIE'S) conducted on the A-01 outfall and its contributory waste streams, July 1996 - February 1997

    International Nuclear Information System (INIS)

    Toxicity tests were conducted at nine locations during the summer of 1996. The results indicated that A-01B, A-01C, A-03, A-04, A-05 and A-01 were toxic to the test species, Ceriodaphnia dubia, while A-01A, A-06, and WE-01 were not toxic. Beginning in August 1996, Toxicity Identification Evaluations (TIE's) were initiated on all toxic outfalls in order to identify the toxicants responsible for the observed toxicity. A complete TIE was performed on A-01 because it is the regulatory compliance point for all of the combined waste streams that were tested. Only the portions of a TIE that are related to metal and chlorine toxicity were performed on the remaining locations because existing data indicated that metals and chlorine were present in potentially toxic quantities at these locations, and there was no evidence that other toxicants would be expected to be present in toxic amounts. The results of the TIE's indicate that metals are responsible for most of the toxicity at all of the outfalls that were toxic and that chlorine contributed to the toxicity at two of the outfalls. Specifically, the toxicity at A-01B, A-01C, and A-01 was due to copper; the toxicity at A-03 was due to primarily to copper, although zinc also contributed to the toxicity; the toxicity at A-04 was due primarily to copper, with residual chlorine and zinc contributing to the toxicity; and the toxicity at A-05 was due primarily to copper, with residual chlorine contributing to the toxicity. A-03 was the most toxic outfall, with 100% mortality occurring at concentrations as low as 12.5% effluent. A-03 was found to have concentrations of copper, lead, and zinc that exceeded EPA water quality criteria by approximately two orders of magnitude. The metal concentrations at A-01 and WE-01, which is located approximately 0.5 miles downstream from A-01 were similar. However, A-01 was toxic, while WE-01 was not

  2. High-grade use of waste propane streams in the Dutch chemical industry. An exploratory study in the context of the Chemical Industry Roadmap; Hoogwaardig gebruik van reststromen propaan in de Nederlandse chemische industrie. Een verkenning binnen de Routekaart Chemie

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Afman, M.R.; Croezen, H.J.; Van Lieshout, M.

    2012-09-15

    In the context of the Dutch chemical industry's Roadmap the industry is actively seeking concrete ways of improving the efficiency of its products and processes. One option is to make higher-grade use of current waste streams, as feedstocks for other products, for example. This study focuses on propane waste streams from the oil and gas processing industry. Today these are used partly as fuel (fuel gas) but there are no technical barriers to converting propane to propylene, which can then be used as a feedstock. Higher-grade use of this particular waste stream leads to CO2 emission reductions in the production chain. Given the high market price of propylene, such a move may also be economically attractive. The study focuses on the Rotterdam region, because propane suppliers and companies seeking propylene are in closest proximity there [Dutch] In het kader van de Routekaart Chemie is de chemische industrie actief op zoek naar concrete opties om in haar processen en producten de efficiency te verhogen. Een route is daarbij om reststromen hoogwaardiger te benutten en in te zetten als grondstof voor andere producten. Dit onderzoek richt zich op reststromen propaan uit de olie- en gasverwerkende industrie. Deze worden nu deels als brandstof (stookgas) ingezet maar technisch is het mogelijk propaan om te zetten in propeen, dat als grondstof voor de chemische industrie kan worden gebruikt. Door het hoogwaardiger benutten van deze reststroom wordt in de keten een reductie van CO2 gerealiseerd. Tegelijk kan het economisch interessant zijn, vanwege de hoge marktprijzen van propeen. De studie focust op de regio Rotterdam, omdat leveranciers van propaan en afnemers van propeen daar het meest dichtbij elkaar gevestigd zijn.

  3. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  4. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  5. Microbial treatment of aqueous wastes

    International Nuclear Information System (INIS)

    1) General binding efficiencies by immobilized cells decrease in the order U > Pb > Cu > Cd. The metal binding immobilized Rhodospirillum rubrum exceeded that found for Rhodobacter capsulata. 2) The binding efficiencies for U, Pb, Cu and Cd were greatest at pH 4.5, 5.0, 5.0 and 7.0 respectively. Immobilized cells showed an increased metal-binding capacity over a wide pH range as compared those free cells. 3) The binding efficiency decreased with increasing the initial metal concentrations. 4) Uranium can easily be stripped from the immobilized cells over several binding-stripping cycles and the adsorptive capacity of the immobilized cells appeared to increase after the first few cycles. It is therefore possible to use the immobilized cells repeatedly with regeneration. (Author)

  6. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  7. Development of Polymeric Waste Forms for the Encapsulation of Toxic Wastes Using an Emulsion-Encapsulation Based Process

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.; Quach, A.; Birnie, D. P.; Saez, A. E.; Ela, W. P.; Zeliniski, B. J. J.; Xia, G.; Smith, H.

    2003-01-01

    Developed technologies in vitrification, cement, and polymeric materials manufactured using flammable organic solvents have been used to encapsulate solid wastes, including low-level radioactive materials, but are impractical for high salt-content waste streams (Maio, 1998). In this work, we investigate an emulsification process for producing an aqueous-based polymeric waste form as a preliminary step towards fabricating hybrid organic/inorganic polyceram matrices. The material developed incorporates epoxy resin and polystyrene-butadiene (PSB) latex to produce a waste form that is non-flammable, light weight, of relatively low cost, and that can be loaded to a relatively high weight content of waste materials. Sodium nitrate was used as a model for the salt waste. Small-scale samples were manufactured and analyzed using leach tests designed to measure the diffusion coefficient and leachability index for the fastest diffusing species in the waste form, the salt ions. The microstructure and composition of the samples were probed using SEM/EDS techniques. The results show that some portion of the salt migrates towards the exterior surfaces of the waste forms during the curing process. A portion of the salt in the interior of the sample is contained in polymer corpuscles or sacs. These sacs are embedded in a polymer matrix phase that contains fine, well-dispersed salt crystals. The diffusion behavior observed in sections of the waste forms indicates that samples prepared using this emulsion process meet or exceed the leachability criteria suggested for low level radioactivity waste forms.

  8. Stream Computing

    CERN Document Server

    Kak, Subhash

    2008-01-01

    Stream computing is the use of multiple autonomic and parallel modules together with integrative processors at a higher level of abstraction to embody "intelligent" processing. The biological basis of this computing is sketched and the matter of learning is examined.

  9. Stream Evaluation

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital representation of the map accompanying the "Kansas stream and river fishery resource evaluation" (R.E. Moss and K. Brunson, 1981.U.S. Fish and Wildlife...

  10. Study on Recycle of Materials and Components From Waste Streams During Decommissioning for Heavy Water Research Reactor%重水研究堆退役废物再利用研究

    Institute of Scientific and Technical Information of China (English)

    岳维宏; 逄锦鑫

    2013-01-01

    实现废物再利用是废物最小化的重要措施之一,从废物流中将有潜在利用价值的物料分离出来实现再利用可大幅减少对环境的影响。本文以中国原子能科学研究院重水研究堆退役为实例研究了放射性废物再利用问题。通过全面分析和计算重水研究堆在退役期间产生的各类废物,得出具有一定数量的物料有潜在的利用价值,可直接或经适当处理后再利用在其他行业领域中。研究表明,通过采取废物最小化控制措施(如废物分类和废物流分离等),采用适当的去污技术和执行清洁解控要求,至少可使重水研究堆退役过程中产生的几十吨钢铁、10 t铝材和5 t重水实现再利用。%The recycle of valuable materials from potential waste streams is one of important elements of waste minimization ,and it can minimize the environment impact . The recycle of the arising was researched with taking the decommissioning of heavy water research reactor (HWRR) in China Institute of Atomic Energy as an example .By analyzing all the possible wastes that could generate during the decommissioning of HWRR ,some amount of materials have potential values to recycle and may be used either directly or after appropriate treatment for other purposes .The research results show that in HWRR decommissioning at least tons of irons ,10 tons of aluminum and 5 tons of heavy water can be recycled by carrying out the waste minimization control measures (eg .waste classification and waste stream segregation) ,adopting appropriate decontamination technologies ,and performing the requirements of clearance .

  11. Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W.

    1996-04-01

    The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could define the residues as hazardous; and (4) do not fail a series of acute toxicity tests. The first phase will focus on a subset of the F999 wastes generated at the U.S. Army Dugway Proving Ground (DPG), where the Army tests the effects of military chemical agents and agent-decontamination procedures on numerous military items. This effort is identified as Phase I of the Delisting Program. Subsequent phases will address other DPG chemical agent decontaminated residues and remediation wastes and similar residues at other installations.

  12. Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials

    OpenAIRE

    Chiang, Yi Wai; Santos, Rafael; Monballiu, Annick; Ghyselbrecht, Karel; Martens, Johan; Mattos, Maria Laura T.; Van Gerven, Tom; Meesschaert, Boudewijn

    2013-01-01

    Bioleaching is a potential route for the valorisation of low value natural and waste alkaline materials. It may serve as a pre-treatment stage to mineral carbonation and sorbent synthesis processes by increasing the surface area and altering the mineralogy of the solid material and by generating an alkaline rich (Ca and Mg) aqueous stream. It may also aid the extraction of high value metals from these materials (e.g. Ni), transforming them into valuable ore reserves. The bioleaching potential...

  13. Pharmaceutical modulation of diffusion potentials at aqueous-aqueous boundaries under laminar flow conditions.

    Science.gov (United States)

    Collins, Courtney J; Strutwolf, Jörg; Arrigan, Damien W M

    2011-04-01

    In this work, the modulation of the diffusion potential formed at the microfluidic aqueous-aqueous boundary by a pharmaceutical substance is presented. Co-flowing aqueous streams in a microchannel were used to form the stable boundary between the streams. Measurement of the open circuit potential between two silver/silver chloride electrodes enabled the diffusion potential at the boundary to be determined, which is concentration dependent. Experimental results for protonated propranolol as well as tetrapropylammonium are presented. This concept may be useful as a strategy for the detection of drug substances.

  14. Options for the decontamination of alpha-bearing liquid wastes

    International Nuclear Information System (INIS)

    This document reviews the processes potentially available, and their state of development, for the removal of alpha activity from aqueous waste streams. In present practice, most such streams are treated by precipitation, usually with an iron hydroxide, but the potential role and limitations of other precipitants, of ion exchange techniques and solvent extraction are also discussed as well as newer electrochemical methods. Because of the importance of precipitation, and the fact the α-activity often occurs in suspended form in wastes, the methods for solids separation and concentration are considered in some detail, together with other physical processes such as evaporation. The equipment and operational aspects are also discussed, particularly for precipitation, ion exchange and solvent extraction treatments. The conclusions relate to an extensive table in which the different methods are compared. The optimum treatment or combination of treatments will depend on the waste stream and other circumstances (particularly on the chemical and radiological constituents of the waste, and its rate of arising) and the aim of this work is to give an initial guide to the choice among the options. (author)

  15. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  16. Standard Review Plan for a petition for rulemaking on radioactive waste streams below regulatory concern: Expedited review in accordance with Appendix B to 10 CFR, Part 2

    International Nuclear Information System (INIS)

    The Standard Review Plan (SRP) provides guidance to staff reviewers acting on rulemaking petitions in an expeditious manner to exempt from regulation radioactive waste determined to be Below Regulatory Concern (BRC), as called for in the Low-Level Radioactive Waste Policy Amendments Act of 1985. The review plan is designed to ensure the quality and uniformity of staff reviews and to present a well-defined basis for the staff's evaluation of BRC petitions. The plan serves to improve the understanding of the staff's review by interested members of the public and the industry. It also provides information about the BRC rulemaking process to a wider audience. 6 refs., 7 figs

  17. Aqueous-based thick photoresist removal for bumping applications

    Science.gov (United States)

    Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.

    2015-03-01

    Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.

  18. Water Pollution and Treatments Part I: Evaluation of Organic, Inorganic and Marine Products as Adsorbents For Petroleum Pollutants Present In Aqueous Wastes

    International Nuclear Information System (INIS)

    The main objective of the present work is to perform a comparative laboratory study using an adsorption technique for oil removal from the waste water drained to sea from refineries, offshore and/or onshore petroleum installations. Different crushed adsorbent materials, namely, cotton fibers, charcoal, petroleum coke, agriculture wastes (such as, rice straws, wheat stems, milled dry leaves and lignin), inorganic adsorbents (such as sand, and bricks) and a marine Product (such as sponge) are included in this study. They were tested for oil recovery from laboratory prepared oily salt water samples. Two different Egyptian crude oils varying in their properties and several refined products (gasoline, kerosene, gas oil, diesel oil, fuel oil, lubricating oil) and skimmed oil were employed. Their adsorptive efficiencies were tested. Good results were obtained with sponge and cotton fibers. The used agricultural wastes show better adsorption compared with coke and inorganic adsorbents.

  19. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-01

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  20. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery.

    Science.gov (United States)

    Faulconer, Emily K; von Reitzenstein, Natalia V Hoogesteijn; Mazyck, David W

    2012-01-15

    Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N(2) (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (± 8.3%) sorbent recovery and 96.3% (± 9%) Hg removal. The mass balance has been closed to within approximately ± 15%. PMID:22104766

  1. DOE Waste Treatability Group Guidance

    International Nuclear Information System (INIS)

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level

  2. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  3. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to

  4. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    Science.gov (United States)

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and

  5. Rescuing Food from the Organics Waste Stream to Feed the Food Insecure: An Economic and Environmental Assessment of Australian Food Rescue Operations Using Environmentally Extended Waste Input-Output Analysis

    OpenAIRE

    Christian John Reynolds; Julia Piantadosi; John Boland

    2015-01-01

    In this paper we investigate the economic and environmental efficiency of charities and NGO’s “rescuing†food waste, using a 2008 case study of food rescue organisations in Australia. We quantify the tonnages, costs, and environmental impact of food rescued, and then compare food rescue to other food waste disposal methods composting and landfill. To our knowledge this is the first manuscript to comprehend the psychical flows of charity within an Input-Output framework—treating the cha...

  6. WCATS: Waste Documentation, Course #8504

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sandy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  7. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  8. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  9. Use of waste materials--Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions.

    Science.gov (United States)

    Mittal, Alok; Kurup Krishnan, Lisha; Gupta, Vinod K

    2005-01-31

    Bottom Ash, a power plan t waste material and De-Oiled Soya, an agriculture waste product were successfully utilized in removing trisodium 2-hydroxy-1-(4-sulphonato-1-naphthylazo)naphthalene-3,6-disulphonate--a water-soluble hazardous azo dye (Amaranth). The paper incorporates thermodynamic and kinetic studies for the adsorption of the dye on these two waste materials as adsorbents. Characterization of each adsorbent was carried out by I.R. and D.T.A. curves. Batch adsorption studies were made by measuring effects of pH, adsorbate concentration, sieve size, adsorbent dosage, contact time, temperature etc. Specific rate constants for the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherms were applied to calculate thermodynamic parameters. The adsorption on Bottom Ash takes place via film diffusion process at lower concentrations and via particle diffusion process at higher concentrations, while in the case of De-Oiled Soya process only particle diffusion takes place in the entire concentration range.

  10. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag2+, Co3+, or Fe3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  11. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although

  12. Mixed wasted integrated program: Logic diagram

    International Nuclear Information System (INIS)

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development's Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR)

  13. Removal of volatile organic compounds (VOCs) present in a synthetic waste gas stream by a bio-filter packed with wood bark; Elimination de composes organiques volatils (COV) presents dans l'air par un biofiltre a garnissage naturel structure

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Lopez, E.M.

    2001-10-01

    The Environmental Council of the European Union requires the reduction of 54 % of volatile organic compounds (VOCs) emitted in waste gas streams to the ambient air. Nowadays, bio-filtration is a bio-process used to treat large waste air streams with low concentration of pollutants. Bio-filters have the advantage of low cost operation and maintenance. Bio-filters are generally packed with organic material as a support to fix microorganisms. These microorganisms degrade pollutants in waste gas streams to carbon dioxide, water and mineral salts. The performance of a bio-filter depends on the biological, physical and chemical properties of the support. Parameters studied in this research include water holding capacity of the support, specific surface area, void fraction, uniform pore size distribution, bulk density of the support, pressure drop, and buffer capacity. The support must provide enough nutrients. These parameters were measured for wood bark. A hydrodynamic study was carried out in the experimental bio-filter using wood bark as a support. The Comiti and Renaud model was used in order to determine the tortuosity and the dynamic specific surface area of the packing material. This model takes into consideration the wall effect corrections. The bio-filter performance was evaluated for ethanol biodegradation by varying either the superficial gas velocity (99 to 1288 m.h{sup -1}) or the ethanol concentration (35 to 480 g.m{sup -3}.h{sup -1}) of the simulated gas stream. The experimental values were validated by using the Ottengraf's model. In this model, zero-order kinetics with diffusion limitation was assumed. Microorganisms fixed in the support include yeast, fungi and bacteria. Biodegradation of a mixture of ethanol, dichloromethane, methyl ethyl ketone and toluene in the simulated waste stream was also evaluated. The influence of parameters such as pH, pressure drop, temperature and humidity were measured in this system. (author)

  14. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  15. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  16. Concepts for detritiation of waste liquids

    International Nuclear Information System (INIS)

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the SRS reactors, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, so research and development programs have been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R ampersand D efforts world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in future fusion reactors. This paper presents a review of some of the methods that have been proposed, studied, and developed for removal of tritium from light and heavy water, along with some new concepts for aqueous detritiation directly from liquid oxide (HTO) bearing feed streams

  17. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    Science.gov (United States)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  18. Site-specific waste management instruction for the Onsite Measurements Services Organization

    International Nuclear Information System (INIS)

    This Site-Specific Waste Management Instruction provides guidance for the management of waste generated as a result of field screening measurements performed by the Onsite Measurements Services Organization. Because this report is not project specific, it is not possible to designate waste streams through this document, other than to assess whether the analyses themselves will cause a waste stream to be designated. Generally, field screening methodologies that do not create dangerous waste are employed instead of those that create dangerous waste. The analyses within the scope of this SSWMI are as follows: VOC analyses of water samples using aqueous headspace analyses; VOC analyses of air samples using soil gas analytical techniques; total uranium analyses of water samples using kinetic phosphorescence analyses; chromate analyses of water samples is using a colorimetric method based on ''AccuVac'' ampuls manufactured by the Hach Company; nitrate analyses of water samples using paper test strips; conductivity analyses of water samples using electrodes; and sulfate analyses of water samples using a colorimetric method based on ''AccuVac'' ampuls

  19. A Comparative Study of Chromium and Cadmium Removal from Their Common Aqueous Solution by Batch Operation Using Tea Factory Waste as Adsorbent

    Directory of Open Access Journals (Sweden)

    Jibesh Datta

    2014-06-01

    Full Text Available The process of adsorption is a powerful tool for the treatment of industrial wastewater. In the recent years many studies have been conducted to evaluate the effectiveness of various locally available economical adsorbents for the removal of various heavy metals from the waste water. In the present study tea factory waste is used as adsorbent and its capacity to remove toxic heavy metals chromium and cadmium from their combined solution is investigated. Batch adsorption study is conducted to find the adsorption capacity of the adsorbent and the effect of the three important process parameters, i.e. agitation rate, adsorbent dose and initial metal ion concentration is evaluated. The maximum adsorption capacity of 24.88 mg/g and 23.92 mg/g is observed in case of cadmium and chromium respectively. It is also found that the removal efficiency of cadmium is higher than that of chromium in all cases. The experimental results are also found to be well fitted in the Langmuir and Freundlich Isotherm model.

  20. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 2

    International Nuclear Information System (INIS)

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  1. River and Stream Pollution

    Science.gov (United States)

    ... Topics Games Activities Lessons MENU River and Stream Pollution Kids Homepage Topics Pollution River and Stream Pollution ... stream in the first place by disturbing the land as little as possible. Farmers and construction workers ...

  2. Comparison between mixed liquors of two side-stream membrane bioreactors treating wastewaters from waste management plants with high and low solids anaerobic digestion.

    Science.gov (United States)

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Fernández-Giménez, E; Álvarez-Requena, C; Muñagorri-Mañueco, F; Ortiz-Villalobos, G

    2016-09-01

    In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor. PMID:27235772

  3. Mass balance evaluation of polybrominated diphenyl ethers in landfill leachate and potential for transfer from e-waste.

    Science.gov (United States)

    Danon-Schaffer, Monica N; Mahecha-Botero, Andrés; Grace, John R; Ikonomou, Michael

    2013-09-01

    Previous research on brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) has largely focussed on their concentrations in the environment and their adverse effects on human health. This paper explores their transfer from waste streams to water and soil. A comprehensive mass balance model is developed to track polybrominated diphenyl ethers (PBDEs), originating from e-waste and non-e-waste solids leaching from a landfill. Stepwise debromination is assumed to occur in three sub-systems (e-waste, aqueous leachate phase, and non-e-waste solids). Analysis of landfill samples and laboratory results from a solid-liquid contacting chamber are used to estimate model parameters to simulate an urban landfill system, for past and future scenarios. Sensitivity tests to key model parameters were conducted. Lower BDEs require more time to disappear than high-molecular weight PBDEs, since debromination takes place in a stepwise manner, according to the simplified reaction scheme. Interphase mass transfer causes the decay pattern to be similar in all three sub-systems. The aqueous phase is predicted to be the first sub-system to eliminate PBDEs if their input to the landfill were to be stopped. The non-e-waste solids would be next, followed by the e-waste sub-system. The model shows that mass transfer is not rate-limiting, but the evolution over time depends on the kinetic degradation parameters. Experimental scatter makes model testing difficult. Nevertheless, the model provides qualitative understanding of the influence of key variables.

  4. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies.

    Science.gov (United States)

    Gupta, Suresh; Babu, B V

    2009-07-01

    In the present study, an adsorbent was prepared from tamarind seeds and used after activation for the removal of Cr(VI) from aqueous solutions. The tamarind seeds were activated by treating them with concentrated sulfuric acid (98% w/w) at a temperature of 150 degrees C. The adsorption of Cr(VI) was found to be maximum at low values of initial pH in the range of 1-3. The adsorption process of Cr(VI) was tested with Langmuir, Freundlich, Redlich-Peterson, Koble-Corrigan, Tempkin, Dubinin-Radushkevich and Generalized isotherm models. Application of the Langmuir isotherm to the system yielded a maximum adsorption capacity of 29.7 mg/g at an equilibrium pH value ranging from 1.12 to 1.46. The adsorption process followed second-order kinetics and the corresponding rate constants obtained were 2.605 x 10(-3), 0.818 x 10(-3), 0.557 x 10(-3) and 0.811 x 10(-3) g/mg min(-1) for 50, 200, 300 and 400 mg/L of initial Cr(VI) concentration, respectively. The regenerated activated tamarind seeds showed more than 95% Cr(VI) removal of that obtained using the fresh activated tamarind seeds. A feasible solution is proposed for the disposal of the contaminants (acid and base solutions) containing high concentrations of Cr(VI) obtained during the regeneration (desorption) process.

  5. On-line slurry viscosity and concentration measurement as a real-time waste stream characterization tool. 1998 annual progress report

    International Nuclear Information System (INIS)

    'This project seeks to develop an on-line sensor to measure the viscosity of dense slurries. This report summarizes work after two years of a three year project. The flow behavior of slurries is important for many of the proposed unit operations to be used in the conveying and processing of tank wastes. One alternative for determining the rheological properties of such materials is to obtain samples and test them off-line using conventional rheometers. Such a protocol is not practical for a wide variety of wastes. Rather, it is the goal of this work to find on-line, in-process techniques for measurement. There are two systems that the authors have propose examining: (1) Nuclear magnetic resonance imaging (NMRI), and, (2) Ultrasonic Doppler Velocimetry. Central to both of these techniques is the measurement of velocity profiles in pipe flows. For the NMRI measurements, the presence of particles has two principal effects on the NMRI velocity profiles: a decrease in signal intensity and image blurring. Similar effects are observed in turbulent flows due to the local random fluctuations in the flow. This similarity has led us to turbulent flow using NMRI. The governing equations for the signal obtained by NMRI are the Bloch-Torrey equations. Previously, the author showed a relationship between turbulent fluctuations and spatial signal intensity variations, assuming isotropic turbulence. However, this assumption does not reflect the true nature of turbulence in a pipe flow where the turbulence is not isotropic. In the new work the Bloch-Torrey equations will be solved by first, time averaging and then employing a turbulence model for pipe flow. The purpose of the time averaging is to smooth the fluctuations of time scale smaller than that of NMRI data acquisition. After this work with single phase fluids, the authors shall undertake NMRI experiments of slurry flow. Various operational parameters will be optimized during the experiments to obtain velocity profile of the

  6. Sustainable utilization of ressources. Production of ethanol from dairy waste streams; Nachhaltige Verwertung von Wertstoffstroemen. Gewinnung von Ethanol aus einem Reststoff der Molkeverarbeitung

    Energy Technology Data Exchange (ETDEWEB)

    Benecke, Christian

    2011-07-01

    The worldwide increasing demand for cheese and dairy products leads to a steady increase of whey production. Today, whey is no more considered as waste, but serves as source for materials like lactose and proteins. At the end of this process a whey concentrate is released, which contains still a significant content of lactose. This lactose could not be obtained in the desired quality. This thesis describes a method to increase added value from the utilization-process of whey. To achieve this intent, methods where evaluated, to use the remaining lactose as a substrate for the fermentation to ethanol. Yeasts of the strain Kluyveromyces marxianus were evaluated for the use in this process. The degradation rate of the substrate and a maximized conversion were the main objectives. For the growth of the yeast cells, a method was developed, which uses only whey concentrate as substrate and avoids the usage of other materials for nutrition. The method was optimized in consideration of initial substrate concentration and degradation rate. The high content of salts in the whey concentrate leads to the further investigations of inhabitating or proliferating effects of different anions and cations on the used yeast cells. It becomes obvious, that a desalting or dilution of the used whey concentrate is mandatory. For that purpose, the nanofiltration was applied successfully to this process. The usage of not desalted whey concentrate is also possible. With an adequate dilution of the whey concentrate, relative yields of ca. 90% could be achieved. With a significant increase of the initial biomass, the duration of the fermentation process could be halved to ca. 25 h. (orig.)

  7. Metal separations using aqueous biphasic partitioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  8. Flow of Aqueous Humor

    Science.gov (United States)

    ... Facebook Twitter Google Plus Email Print this page Flow of Aqueous Humor Most, but not all, forms ... aqueous humor) produced by the eye's ciliary body flows out freely (follow blue arrow). Aqueous humor flows ...

  9. Recent approach in treatment of liquid radioactive waste: membrane methods

    International Nuclear Information System (INIS)

    Full text: The fuel cycle produces different types of radioactive waste. Radioactive waste is also generated during production and application of radioisotopes, as well as during processing of raw materials containing naturally occurring radioactive isotopes. All those wastes have to be treated and conditioned before safe storage or disposal to protect the human health and natural environment. The management of radioactive waste has to be reached with reasonable cost by implementing appropriate technologies. The processing requirements depend on the level of radioactivity and chemical and physical properties of the waste streams. Various methods are used to treat aqueous radioactive wastes, including evaporation, chemical precipitation and ion exchange, as well as less developed solvent extraction, biotechnological processes and membrane methods. Although membrane processes are still considered as novel technologies in the field of radioactive waste treatment, many applications in nuclear centres and laboratories around the world are reported. At the Department of Nuclear Methods of Process Engineering, Institute of Nuclear Chemistry and Technology, for many years membrane techniques are studied and considered as a possible application in radioactive wastes processing field. After some years of research reverse osmosis was applied at Institute of Atomic Energy (Department of Radioactive Waste Treatment) processing the radioactive wastes from all of Poland. The 3-stage RO plant supplements the existing waste processing system based on evaporator giving the possibility of initial concentration of liquid waste or final polishing of the condensate after evaporation. Intensive studies on ultrafiltration (UF) enhanced by sorption on different sorbents or complexation with chelating polymers are carried on. The ceramic membranes made from alumina, titania and zirconia are used in experiments. Such membranes show high chemical, temperature and radiation resistance. They

  10. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-08-01

    Full Text Available Dyes are an important class of pollutants and disposal of them in precious water resources must be avoided. Among various methods adsorption occupies a prominent place in dye removal. The aim of this study is to evaluate adsorption of dye Reactive Red 198 and Blue 19 (RR-198 & RB-19 (on to Aloe Vera plant ash from aqueous solutions. In this research Aloe Vera ash was prepared at laboratory conditions and then after shredding, screened by ASTM standard sieve with 60 -200 mesh sizes and the effects of pH (3-12, adsorbent dose (0.1-1 g/L, contact time (10-60 min, initial dye concentration (10-160 mg/L and temperature were investigated in the experiment. In different samples Dye concentration was measured by spectrophotometer at 592 nm and 520 nm wavelength for RR198 and RB19 respectively. Also the Langmuir and Freundlich adsorption isotherms were determined in order to describe the relations between the colored solutions and the adsorbent. The results of this study showed that acidic conditions were more conducive to enhance the hydrolysis rate than basic ones as the decomposition was optimum at pH 3. The adsorption rate of RR-198 and RB-19 dyes was increased by increasing of initial dye concentration, increasing of adsorbent dose in 0.1 to 0.4 mg/L. Dye solution was decolorized in a relatively short time (20 min. The efficiencies for RR-198 and RB- 19 reactive dyes were 82.68% and 90.42% respectively. The maximum adsorption capacity (qmax has been found to be 80.152 mg/g for RR-198 reactive dye and 88.452 mg/g for Blue 19 reactive dye. Adsorption isotherms were examined by Freundlich and Langmuir isotherm that finally showed the Freundlich multilayer isotherm has better accordance with dates. The results indicate that Aloe Vera ash plant as a natural and inexpensive adsorbent is a suitable adsorbent for the adsorption of textile dyes.

  11. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  12. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    International Nuclear Information System (INIS)

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  13. Literature search on the use of resins for treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Over 100 commercial providers with mixed-waste treatability capabilities exist in the US. The maturity level of these technologies varies from a bench scale to a pilot or a commercial scale. The techniques include deactivation, chemical oxidation, recovery of metals, stabilization, vitrification, incineration, biodegradation, and chemical extraction. This report focuses on the use of resins to remove actinides and heavy metals from aqueous waste streams. Only the literature that described resins with high removing efficiency are presented here. The majority of the literature reviewed are proceedings and national or international reports ordered through the Berkeley Lab Library. Some of the reports that the authors requested have not yet arrived. Only a few papers were found in the open literature (journals or magazines). Although this report does not include all existing references, it provides an accurate assessment of efficient resins to be considered for waste minimization procedures. 70 refs

  14. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  15. National Institutes of Health: Mixed waste minimization and treatment

    International Nuclear Information System (INIS)

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy's National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified

  16. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution

    International Nuclear Information System (INIS)

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l-1 initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g-1 at 25 deg. C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l-1) and temperature (25-45 deg. C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature

  17. 地下河出口河流水化学昼夜动态变化--生物地球化学过程的控制%Diel Aqueous Chemical Cycling in a Typical Karst Spring-fed Stream:Controls of Biogeochemical Processes

    Institute of Scientific and Technical Information of China (English)

    章程; 汪进良; 蒲俊兵

    2015-01-01

    昼夜动态变化的研究有助于揭示水体中相对快速的生物地球化学过程,同时也有助于判别影响水化学变化的主导因子。本文选择由地下水补给且富含水生植物的典型河流,开展高分辨率水文地球化学监测和高频率水样取样工作,分析了水化学的昼夜动态变化特征并对比其沿流程的变化,探讨了水化学昼夜循环产生的生物地球化学控制机理。结果表明,河流水化学离子成分多呈现出昼夜动态变化的特点, Ca2+、DIC 白天下降幅度达22.4%,昼夜循环主要受水生植物光合作用控制,但不同成分沿流程具有不同的变化规律,存在Ca2+、DIC和营养元素成分的流失。研究河段硝酸盐含量较高(农业活动产生的面源氮补给),沿流程有减小趋势,受生物同化作用控制,白天小幅升高夜间回落的昼夜动态变化,主要受硝化作用过程控制。DOC与TOC含量小时数据呈现快速波动特点,白天上升夜间下降,受生物代谢活动控制, DOC的日变化幅度可相差1倍。岩溶区地表河流水化学昼夜动态变化规律与生物地球化学过程研究,不仅能揭示水化学无机组分昼夜循环的控制因素,也有助于更好理解岩溶作用过程中无机碳与有机碳的快速转换特性,对提高岩溶碳汇的估算精度有重要意义。%The study of diel variations can help to reveal biogeochemical processes that occur relatively rapidly in natural waters and also the main and important controlling factors that influence the changes of aqueous chemistry. Three-day monitoring with high resolution data logger and high frequency sampling with 1-hour interval were conducted in a typical karst spring-fed stream with abundant aquatic vegetation. Daily cycling of hydrochemistry and its changes along the stream flow were discussed and the influence of biogeochemical processes on hydrochemistry was analyzed. The results show that

  18. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    Science.gov (United States)

    AbstractWastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  19. Thermal loading of natural streams

    Science.gov (United States)

    Jackman, Alan P.; Yotsukura, Nobuhiro

    1977-01-01

    The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)

  20. Vitrification of hazardous and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  1. Sorption of Cd2+ Ions From Aqueous Solutions on Organic Wastes / Sorpcja Jonów Cd2+ Z Roztworów Wodnych Na Odpadach Organicznych

    Science.gov (United States)

    Bożęcka, Agnieszka; Sanak-Rydlewska, Stanisława

    2015-09-01

    This article presents the results of research on the Cd2+ ions sorption from model aqueous solutions on sunflower hulls, walnut shells and plum stones. The effect of various factors, such as mass of the natural sorbent, the pH, the time and the temperature was studied. The process of Cd2+ ions sorption on studied sorbents was described by the Langmuir model. The best sorption capacity has been achieved for sunflower hulls. The maximum sorption capacity for this material was 19.93 mg/g. W artykule przedstawiono wyniki badań, które dotyczyły usuwania jonów Cd2+ z modelowych roztworów wodnych za pomocą odpadów organicznych, takich jak: łuski słonecznika, łupiny orzecha włoskiego i pestki śliwek. Wykazano, iż badane materiały mogą być skutecznie wykorzystywane do usuwania jonów Cd2+ z modelowych roztworów wodnych w układach jednoskładnikowych. Dla badanego zakresu stężeń i przyjętych warunków procesu sorpcji w układach jednoskładnikowych, największą wydajność sorpcji jonów Cd2+, osiągnięto dla łuszczyn słonecznika. Wyniosła ona 81,75-93,02%. Dla pozostałych materiałów sorpcja jest nieco niższa, ale również zadowalająca. W pracy podano interpretację otrzymanych wyników w oparciu o jeden z najpopularniejszych modeli izoterm adsorpcji - Langmuira, który potwierdził, iż najlepszym sorbentem jonów Cd2+, spośród badanych, są łuszczyny słonecznika. Materiał ten cechuje się największą wartością parametrów qmax i b izotermy Langmuira. W tym przypadku stała qmax, wyrażająca pojemność monowarstwy, przyjęła wartość 19,93 mg/g, a parametr b, określający powinowactwo do usuwanych jonów wynosi 0,2264 dm3/mg (Rys. 5, Tab. 1). Udowodniono również, że proces sorpcji jonów Cd2+ na badanych sorbentach organicznych zależy od masy sorbentu. Dla wszystkich materiałów stopień usunięcia jonów Cd2+ z roztworów wodnych rośnie ze wzrostem masy sorbentu, aż do uzyskania maksimum przy naważce 0,5 g (Rys. 1

  2. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    Science.gov (United States)

    Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

    1998-01-01

    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

  3. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  4. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sadananda [Department of Chemistry, University of Pune, Pune 411 007 (India); Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pandey, Ashok K., E-mail: ashokk@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Athawale, Anjali A. [Department of Chemistry, University of Pune, Pune 411 007 (India); Subramanian, M. [Bio-organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Seshagiri, T.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Khanna, Pawan K. [Nanoscience Laboratory, Centre for Materials for Electronics Technology, Pune 411 008 (India); Manchanda, Vijay K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-02-28

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator ({alpha},{alpha}'-dimethoxy-{alpha}-phenyl acetophenone), and Ag{sup +} ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag{sup 0} that could be anchored in the form of nanoparticles were 5 {+-} 1 and 10 {+-} 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  5. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods will be presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. The fluidized-bed biological denitrification process is an environmentally acceptable and economically sound method for the disposal of nonreusable sources of nitrate effluents. A very high denitrification rate can be obtained in a FBR as the result of a high concentration of denitrification bacteria in the bioreactor and the stagewise operation resulting from plug flow in the reactor. The overall denitrification rate in an FBR ranges from 20- to 100-fold greater than that observed for an STR bioreactor. It has been shown that the system can be operated using Ca2+, Na+, or NH4+ cations at nitrate concentrations up to 1 g/liter without inhibition. Biological sorption of uranium and other radionuclides (particularly the actinides) from dilute aqueous waste streams shows considerable promise as a means of recovering these valuable resources and reducing the environmental impact, however, further development efforts are required

  6. WCATS: Waste Documentation, Course No. 8504

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sandy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  7. ICDF Complex Operations Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  8. WCATS: Waste Documentation, Course No. 8504

    International Nuclear Information System (INIS)

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  9. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag2+ or Ce+4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  10. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    International Nuclear Information System (INIS)

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ''waste profiles'' that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG

  11. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  12. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  13. Precipitation of neptunium dioxide from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  14. UTILIZATION OF AQUEOUS-TAR CONDENSATES FORMED DURING GASIFICATION

    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska

    2016-11-01

    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  15. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  16. Rock & Roll: Waste seperation

    OpenAIRE

    van den Berg, R

    2000-01-01

    Five hundred tonnes of glass, 1 million tonnes of plastic,14 million tonnes of building and demolition waste, 7 million tonnes of household waste, 3 million tonnes of packaging, 3.5 million tonnes of paper and board, and 300,000 old cars. All part of the annual harvest of waste materials in the Netherlands. Optimal processing is still lacking for quite a few of these waste streams. Take scrap metal from cars, for instance. It contains bits of copper and aluminium that cannot be separated. At ...

  17. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  18. E-Waste in Transition - From Pollution to Resource

    OpenAIRE

    Mihai, Florin-Constantin

    2016-01-01

    E-waste management is a serious challenge across developed, transition, and developing countries because of the consumer society and the globalization process. E-waste is a fast-growing waste stream which needs more attention of international organizations, governments, and local authorities in order to improve the current waste management practices. The book reveals the pollution side of this waste stream with critical implications on the environment and public health, and ...

  19. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  20. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  1. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  2. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas prod

  3. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  4. Accelerator-driven Transmutation of Waste

    Science.gov (United States)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  5. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  6. B Plant Cooling Water stream-specific report

    International Nuclear Information System (INIS)

    The proposed wastestream designation for the B Plant Cooling Water (CBC) waste stream is that the stream is not a dangerous waste, pursuant to the Washington (State) Administrative Code (WAC) 173-303, Dangerous Waste Regulations. This proposed designation, made by applying a combination of process knowledge and sample data for the CBC (October 1989 to March 1990), was used to determine if the effluent contains a listed dangerous waste (WAC 173-303-080). Sampling data alone is used to compare to the dangerous waste criteria (WAC 173-303-100) and dangerous waste characteristics (WAC 173-303-090). Sample data for the CBC operation was from the October 1989 to March 1990 timeframe that is based on the Liquid Effluent Study Characterization Data (WHC-EP-0355). 21 refs., 7 figs., 10 tabs

  7. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery

    Energy Technology Data Exchange (ETDEWEB)

    Faulconer, Emily K., E-mail: emily.faulconer@yahoo.com [Department of Environmental Engineering Sciences, University of Florida, 217 Black Hall, P.O. Box 116450, Gainesville, FL 32611-645 (United States); Hoogesteijn von Reitzenstein, Natalia V.; Mazyck, David W. [Department of Environmental Engineering Sciences, University of Florida, 217 Black Hall, P.O. Box 116450, Gainesville, FL 32611-645 (United States)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. Black-Right-Pointing-Pointer Thermal oxidation did not influence magnetic recovery or Hg removal performance. Black-Right-Pointing-Pointer At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. - Abstract: Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 {mu}g/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N{sub 2} (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 {mu}g/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% ({+-}8.3%) sorbent recovery and 96.3% ({+-}9%) Hg removal. The mass balance has been closed to within approximately {+-}15%.

  8. The phase transport and reactions of γ-irradiated aqueous-ionic liquids

    International Nuclear Information System (INIS)

    A novel technology based on the transfer of chemical species across water/ionic liquid interfaces via specific complexation reactions is currently being considered for the separation and sequestration of metal ion contaminants from radioactive waste effluents in the nuclear fuel cycle. An ideal solvent for these applications should have a high intrinsic selectivity for a targeted metal or group of metals (e.g., trans-Pu actinides, lanthanides, or other fission products), an efficient switching mechanism (between complexation and decomplexation), and a high immiscibility with aqueous solutions. These characteristics must be maintained in the chemical, radiation, and mass transport environments present during the separation process. Ionic liquids (ILs) have an almost negligible vapour pressure and high thermal stability. Their ability to dissolve a wide range of substrate molecules and potential to be highly resilient in radiation fields make ILs particularly promising media. The separation efficiency of the biphasic system will depend on many parameters, including the aqueous oxidation state of the targeted metal ion, and the thermodynamics and kinetics of interfacial transport and metal-ligand complex formation at the water/IL interface or in the IL phase. The most uncertain and unstudied area for these applications is the effect of ionizing radiation on the stability and separation efficiency of the biphasic system. The present study investigates the effect of γ-radiation on gas/IL and water/IL interfacial stability and mass transfer with trihexyltetradecylphosphonium bis(trifluoromethyl-sulfonyl)imide, a phosphonium-based IL. The IL, in contact with either gas or water, was irradiated at a dose rate of 6.4 kGy·h-1. Gas-phase samples were analyzed by gas chromatography-mass spectrometry (GC-MS) and the changes in the IL and aqueous phases were monitored by conductivity measurements and Raman spectroscopy. In this paper we discuss these observations and their

  9. Planarity of Streamed Graphs

    OpenAIRE

    Da Lozzo, Giordano; Rutter, Ignaz

    2015-01-01

    In this paper we introduce a notion of planarity for graphs that are presented in a streaming fashion. A $\\textit{streamed graph}$ is a stream of edges $e_1,e_2,...,e_m$ on a vertex set $V$. A streamed graph is $\\omega$-$\\textit{stream planar}$ with respect to a positive integer window size $\\omega$ if there exists a sequence of planar topological drawings $\\Gamma_i$ of the graphs $G_i=(V,\\{e_j \\mid i\\leq j < i+\\omega\\})$ such that the common graph $G^{i}_\\cap=G_i\\cap G_{i+1}$ is drawn the sa...

  10. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Patrick [NSTec

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  11. Assessment of magnetite to remove Cs (Total) and Am-241 from radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Lima, Josenilson B.; Bueno, Vanessa N.; Yamamura, Mitiko H.; Holland, Helber; Hiromoto, Goro; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: apotiens@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radioactive waste can affect human hea lt and the environment, thus their safe management has received considerable attention worldwide. Radioactive waste treatment is an important step in its management. Sorption technique is one of the most studied methods to reduce the volume of radioactive waste streams and it has been successfully used for treatment of radioactive liquid wastes. Herein, the experiments were performed using magnetite (Fe{sub 3}O{sub 4}) as adsorbents for removal the cesium and americium from different radioactive aqueous solution. An aqueous solution with 13.9 ppm of Cs-133 was stirred with 20-25 mg of magnetite and another solution of 117.94 Bq/mL Am-241 was stirred with 50 mg using the same adsorbent but in different contact times and pH. After the experiments the magnetite was removal using a super magnet and the solutions were analyzed by ICP-OES for Cs-133 and Am-241 remaining in solution was quantified by a gamma spectrometry. The results suggested that the biosorption process for Cs is more efficient at pH 6 and 30 minutes of contact time and for Am-241 the most efficient pH was also 6 and 40 min of contact time with 93% of removal of this radionuclide from the solution. (author)

  12. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  13. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes