WorldWideScience

Sample records for aqueous waste streams

  1. Long Term Stability Testing Results for Savannah River Site Organic and Aqueous Waste streams

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate waste streams (both volatile and nonvolatile), a volatile organic waste stream with a residual aqueous phase, an aqueous waste stream, and an aqueous waste stream with a residual organic phase. The Savannah River Site (SRS) legacy plutonium/uranium extraction (PUREX) process waste and the F-Canyon PUREX waste constituted the volatile organic wastes and various oils constituted the nonvolatile organic waste stream. The aqueous waste streams included a rainwater waste stream and an aqueous organic waste stream. MSE also evaluated the PUREX waste stream with a residual aqueous component with and without aqueous-type sorbent materials. Based on testing performed at MSE, the rainwater waste stream was successfully solidified by SRS personnel using two different sorbents. Several small oil wastes were also successfully solidified by SRS personnel using granular clay sorbents based on information provided by MSE from the oils waste stream testing and 75,706 Liters (L) [20,000 gallons (gal)] of the F-Canyon PUREX waste was solidified at Waste Consolidation Specialists (WCS). Solidification of the various surrogate waste streams listed above was performed from 2004 to 2006 at the MSE testing and evaluation facility located at the Mike Mansfield Advanced Technology Center in Butte, Montana. This paper summarizes the comparison of the initial liquid release testing (LRT) values with LRT results obtained over three years later in an attempt to understand the long-term stability characteristics of the solidified waste streams. The paper also includes solidification results for B-25 box samples generated late in 2005. (authors)

  2. Application of coals as sorbents for the removal of Cr from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2001-09-01

    The study reported further understanding of how various electron transfer processes operate for Cr(VI) with a view to using coals for the removal of Cr(VI) from waste streams. Skye peat, Spanish and German lignites, UK high and low volatility bituminous coals and an activated carbon were used. After treatment to remove exchangeable cations, ion exchange experiments were conducted in 0.1 M acetic acid-sodium acetate (1:1) buffer and 0.05 M sulphuric acid solutions and the slurries were agitated once a day. The ion concentrations in the solutions were determined by flame atomic absorption spectroscopy. The Cr(VI) renaming in solution was determined by the standard calorimetric 1,5-diphenylcarbazide method. Peat and low rank (Spanish Mequinenza) coal exhibited a larger capacity for Cr(VI) removal than bituminous coal. Redox mechanisms are operative coupled with the oxidation of the coal and peat surfaces. Desorption of Cr(III) formed by reduction which occurs in strongly acidic media also needs to be considered. 1 ref., 3 figs.

  3. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    Science.gov (United States)

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols. PMID:19368207

  4. Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams.

    Science.gov (United States)

    Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz

    2016-04-20

    Heavy metals from industrial processes are of special concern because they produce chronic poisoning in the aquatic environment. More strict environmental regulations on the discharge of toxic metals require the development of various technologies for their removal from polluted streams (i.e. industrial wastewater, mine waters, landfill leachate, and groundwater). The separation of toxic metal ions using immobilized materials (novel sorbents and membranes with doped ligands), due to their high selectivity and removal efficiency, increased stability, and low energy requirements, is promising for improving the environmental quality. This critical review is aimed at studying immobilized materials as potential remediation agents for the elimination of numerous toxic metal (e.g. Pb, Cd, Hg, and As) ions from polluted streams. This study covers the general characteristics of immobilized materials and separation processes, understanding of the metal ion removal mechanisms, a review of the application of immobilized materials for the removal of toxic metal ions, as well as the impacts of various parameters on the removal efficiency. In addition, emerging trends and opportunities in the field of remediation technologies using these materials are addressed. PMID:27044908

  5. Mercury separation from aqueous wastes

    International Nuclear Information System (INIS)

    This project is providing an assessment of new sorbents for removing mercury from wastes at US Department of Energy sites. Four aqueous wastes were chosen for lab-scale testing; a high-salt, acidic waste currently stored at Idaho National Engineering Laboratory (INEL); a high-salt, alkaline waste stored at the Savannah River Site (SRS); a dilute lithium hydroxide solution stored at the Oak Ridge Y-12 Plant; and a low-salt, neutral groundwater generated at the Y-12 Plant. Eight adsorbents have been identified for testing, covering a wide range of cost and capability. Screening tests have been completed, which identified the most promising adsorbents for each waste stream. Batch isotherm tests have been completed using the most promising adsorbents, and column tests are in progress. Because of the wide range of waste compositions tested, no one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility with the waste solutions. the most effective adsorbents identified to date are SuperLig 618 for the INEL tank waste stimulant; Mersorb followed by lonac SR-3 for the SRS tank waste stimulant; Durasil 70 and Ionac SR-3) for the LIOH solution; and lonac SR-3 followed by lonac SR-4 and Mersorb for the Y-12 groundwater

  6. Extraction and recovery of mercury and lead from aqueous waste streams using redox-active layered metal chalcogenides. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    'The authors have begun to examine the extraction and recovery of heavy elements from aqueous waste streams using redox-active metal chalcogenides. They have been able to prepare extractants from known chalcogenide starting materials, studied the efficacy of the extractants for selective removal of soft metal ions from aqueous phases, studied the deactivation of extractants and the concomitant recovery of soft metal ions from the extractants, and characterized all of the solids and solutions thus far in the study. The study was proposed as two parallel tasks: Part 1 and Part 2 emphasize the study and development of known metal chalcogenide extractants and the synthesis and development of new metal chalcogenide extractants, respectively. The two tasks were divided into sub-sections that study the extractants and their chemistry as detailed below: Preparation and reactivity of metal chalcogenide host solids Extraction of target waste (guest) ions from simulated waste streams Examination of the guest-host solids recovery of the guest metal and reuse of extractant Each section of the two tasks was divided into focused subsections that detail the specific problems and solutions to those problems that were proposed. The extent to which those tasks have been accomplished and the continued efforts of the team are described in detail below. (b) Progress and Results. The DOE-supported research has proceeded largely as proposed and has been productive in its first 12 months. Two full-paper manuscripts were submitted and are currently under peer review. A third paper is in preparation and will be submitted shortly. In addition, 5 submitted or invited presentations have been made.'

  7. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min-1 (120 gal min-1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  8. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  9. Technetium removal from aqueous wastes

    International Nuclear Information System (INIS)

    The research discussed in this report has compared several ''state of the art'' techniques for the removal of traces of the radionuclide, technetium, from aqueous wastes. The techniques investigated were: electrochemical reduction to an insoluble oxide, electrochemical ion exchange, seeded ultrafiltration and chemical reduction followed by filtration. Each technique was examined using a simulant based upon the waste generated by the Enhanced Actinide Removal Plant (EARP) at Sellafield. The technique selected for further investigation was direct electrochemical reduction which offers an ideal route for the removal of technetium from the stream (DFs 10-100) and can be operated continuously with a low power consumption 25 kW for the waste generated by EARP. Cell designs for scale up have been suggested to treat the 1000m3 of waste produced every day. Future work is proposed to investigate the simultaneous removal of other key radionuclides, such as ruthenium, plutonium and cobalt as well as scale up of the resulting process and to investigate the effect of these other radionuclides on the efficiency of the electrochemical reduction technique for the removal of technetium. Total development and full scale plant costs are estimated to be of the order of 5 pounds - 10M, with a time scale of 5 -8 years to realisation. (author)

  10. Miscellaneous Waste Stream strategy document

    International Nuclear Information System (INIS)

    This strategy document addresses objectives and implementation for the Miscellaneous Waste Stream (MWS) program through FY1996. Its intention is to develop's comprehensive pollution prevention/hazard minimization program for MWS projects. The overall focus of this program is aimed at pollution prevention/hazard minimization for MWS processes and involves the elimination/minimization of processes and materials that result in pollutant releases to all environmental media. The document is divided into three categories of initial issues identified from funded MWS projects: waste streams, assessment tools, and waste characterization and worker exposure methods development. Initial strategy requires the development of a baseline of major waste streams at each facility and the identification of MWS issues and proposed solutions. Goals and schedules will evolve as these new issues are identified. Applicable pollution prevention/hazard minimization technologies will be identified, prioritized, and employed to address each issue commensurate with funding availability. Options will then be chosen and the proven technologies transferred to other sites, including commercial industry. Most notably, this strategy document calls for a 50 percent volume and toxicity reduction by CY1995 in the miscellaneous waste streams generated by processes within the MWS

  11. TSA waste stream and final waste form composition

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ``average`` transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ``average`` transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties.

  12. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  13. Waste streams for algae cultivation

    OpenAIRE

    Kautto, Antti

    2011-01-01

    ALDIGA, short for “Algae from Waste for Combined Biodiesel and Biogas Pro-duction”, aims to develop a concept for a closed circulation of resources in pro-ducing biodiesel and biogas from waste. The project is realized in co-operation between VTT, University of Helsinki, Lahti and Häme Universities of Applied Sciences, SYKE and funded by Tekes. The project’s first work phase ergo this bachelor’s thesis covered the mapping of available and suitable streams to be used in the cultivation of ...

  14. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  15. Extraction and recovery of mercury and lead from aqueous waste streams using redox-active layered metal chalcogenides. 1998 annual progress report

    International Nuclear Information System (INIS)

    'Mercury and other highly-toxic heavy metals such as cadmium and lead are present in many aquatic environments, and the remediation of such environments or the avoidance of heavy-metal contamination in the first place is an area of active interest. In recent years tougher environmental regulations and the high initial cost of new, more effective, and more selective extractants has made the reuse of extractant materials and the minimization of secondary waste volume a focus of their scientific effort. The authors research has involved the investigation of redox-active layered metal chalcogenides as selective, effective, and redox-recyclable extractants for heavy metals from aqueous solution.'

  16. Process optimization for effective column separation of 106Ru from aqueous waste associated with spent reprocessing solvent in storage tanks

    International Nuclear Information System (INIS)

    The present work deals with another waste stream resulting from reprocessing operations, viz. the aqueous solution present in substantial quantities as the bottom layer in tanks storing spent TBP-dodecane solvent. The effective separation of 106Ru from aqueous waste streams generated during reprocessing of spent nuclear fuel is difficult because of its complex aqueous chemistry

  17. Design of a static mixer reactor for copper recovery from waste streams

    NARCIS (Netherlands)

    Van Wageningen, W.F.C.

    2005-01-01

    The main goal of the project was the development of a plug flow reactor for the reduction of heavy metals (Cu2+) from industrial waste streams. Potential application of the reduction process inside The Netherlands lies in the IC and galvanic industry, where small waste streams containing aqueous co

  18. Analysis of residual organic materials in aqueous radioactive streams from the Purex process

    International Nuclear Information System (INIS)

    New solid phase extraction methods have been developed to allow determination of residual normal paraffin hydrocarbon (NPH) and tri-n-butyl phosphate (TBP) in aqueous radioactive streams from the Purex process. The techniques concentrate organic materials and separate them from radioactive species for analysis by gas chromatography. TBP and NPH have good radiolytic and chemical stability and have low aqueous solubility. However, they can contaminate aqueous streams and cause processing difficulties. Knowledge of the concentration of organic materials in aqueous waste is useful in assessing impact on pollution control equipment. The storage quality of diluent-washed aqueous plutonium product solution can be determined by a gas chromatographic analysis for residual TBP. 4 refs., 1 fig., 7 tabs

  19. Treatability study of aqueous, land disposal restricted mixed wastes

    International Nuclear Information System (INIS)

    Treatment studies have been completed on two aqueous waste streams at the Mixed Waste Storage Facility that are classified as land disposal restricted. Both wastes had mercury and lead as characteristic hazardous constituents. Samples from one of these wastes, composed of mercury and lead sulfide particles along with dissolved mercury and lead, was successfully treated by decanting, filtering, and ion exchanging. The effluent water had an average level of 0.003 and 0.025 mg/L of mercury and lead, respectively. These values are well below the targeted RCRA limits of 0.2 mg/L mercury and 5.0 mg/L lead. An acidic stream, containing the same hazardous metals, was also successfully treated using a treatment process of precipitation, filtering, and then ion exchange. Treatment of another waste was not completely successful, presumably because of the interference of a chelating agent

  20. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  1. Operational Waste Stream Assumption for TSLCC Estimates

    International Nuclear Information System (INIS)

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS MandO 2000a), and AP-3.11Q, ''Technical Reports''

  2. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    International Nuclear Information System (INIS)

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well

  3. Design of a static mixer reactor for copper recovery from waste streams

    OpenAIRE

    Van Wageningen, W.F.C.

    2005-01-01

    The main goal of the project was the development of a plug flow reactor for the reduction of heavy metals (Cu2+) from industrial waste streams. Potential application of the reduction process inside The Netherlands lies in the IC and galvanic industry, where small waste streams containing aqueous copper exist. Outside The Netherlands, the process could be applicable in the mining industry,e.g. in Chili or South Africa. The copper is reduced in the form of particles by soluble carbohydrates, wh...

  4. Analysis of Chemical Technology Division waste streams

    International Nuclear Information System (INIS)

    This document is a summary of the sources, quantities, and characteristics of the wastes generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory. The major contributors of hazardous, mixed, and radioactive wastes in the CTD as of the writing of this document were the Chemical Development Section, the Isotopes Section, and the Process Development Section. The objectives of this report are to identify the sources and the summarize the quantities and characteristics of hazardous, mixed, gaseous, and solid and liquid radioactive wastes that are generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory (ORNL). This study was performed in support of the CTD waste-reduction program -- the goals of which are to reduce both the volume and hazard level of the waste generated by the division. Prior to the initiation of any specific waste-reduction projects, an understanding of the overall waste-generation system of CTD must be developed. Therefore, the general approach taken in this study is that of an overall CTD waste-systems analysis, which is a detailed presentation of the generation points and general characteristics of each waste stream in CTD. The goal of this analysis is to identify the primary waste generators in the division and determine the most beneficial areas to initiate waste-reduction projects. 4 refs., 4 figs., 13 tabs

  5. Analysis of SRP waste streams for waste tank certification

    International Nuclear Information System (INIS)

    The Savannah River Plant (SRP) will apply for certification from the State of South Carolina to operate the SRP High-Level Waste Tanks. The permit application will be submitted as a RCRA Part B, Volume 16, entitled ''RCRA Part B Application For the F and H-Area Radioactive Waste Farm.'' RCRA regulations require that influent and effluent streams of hazardous waste sites be characterized to obtain an operating permit. The Waste Management Technology Department requested ADD to determine 21 components (including pH and weight percent solids) in the current influent streams to SRP High-Level Waste Tanks. The analyses will be used to supplement existing data on the composition of High-Level Waste. Effluent streams, which will feed Saltstone and the DWPF, will be analyzed when they are produced. This report contains the data obtained from analyzing key influent streams to SRP High-Level Waste Tanks. The precision of the data and the analytical methods that were used are also discussed

  6. Hydrothermal carbonization of municipal waste streams

    Science.gov (United States)

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass ...

  7. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  8. Dietary change and fate of related waste streams

    OpenAIRE

    Korpalska, Magdalena

    2008-01-01

    Food consumption patterns or dietary patterns are repeated arrangements observed in food consumption by a population group. Organic waste streams are by-products of the food production which are not suitable for human consumption. Nowadays, waste streams

  9. Actinide removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Actinide separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery and americium removal from nitric acid waste streams generated by plutonium purification operations. Capacity and breakthrough studies show anion exchange with Dowex 1x4 (50 to 100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO(tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer. Partial neutralization and solid supported liquid membrane transfer removes americium for sorption on discardable inorganic ion exchangers, potentially allowing for non-TRU waste disposal

  10. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  11. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  12. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  13. Plutonium removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery from nitric acid waste streams generated by plutonium purifications operations. Capacity and breakthrough studies show anion exchange with Dowex 1.4 (50-100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO (tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer

  14. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  15. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  16. Membrane systems to treat gaseous and nuclear industry waste streams

    International Nuclear Information System (INIS)

    Membranes are creating a revolution in the world separation technology. The applications of the membrane systems are recognised in water purification, removal of undesired waste constituents from the aqueous, organic liquids and gaseous streams. The systems named reverse osmosis, ultrafiltration and electrodialysis are well known and have found applications in the above fields. Membranes have been known to common man for use only in filtration systems at the laboratory scale. Recent developments in gas separations have found applications in CO/sub 2/, So/sub 2), H/sub 2/S and NH/sub 3/ stripping from the industrial and also nuclear gaseous effluents to save the environment from pollution and retain radioactivity in house. The supported liquid membrane based systems have been applied to recover metals from the industrial and radioactive liquid wastes. The status of the technology to treat the gaseous and liquid effluents have been described with the contributions for the development of immobilised liquid systems for the removal of some metal ions, which are present as radionuclides in the liquid wastes. Application of reverse osmosis to reduce the waste volume and the undesired radionuclides like /sup 54/Mn, /sup 58/Co, /sup 60/Co, /sup 124/Sb, /sup 110/Ag, /sup 137/Cs, /sup 134/Cs have also been discussed. Membranes systems for gas purification have also been discussed to treat industrial effluents. (author)

  17. National Institutes of Health: Mixed waste stream analysis

    International Nuclear Information System (INIS)

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 requires that the US Department of Energy (DOE) provide technical assistance to host States, compact regions, and unaffiliated States to fulfill their responsibilities under the Act. The National Low-Level Waste Management Program (NLLWMP) operated for DOE by EG ampersand G Idaho, Inc. provides technical assistance in the development of new commercial low-level radioactive waste disposal capacity. The NLLWMP has been requested by the Appalachian Compact to help the biomedical community become better acquainted with its mixed waste streams, to help minimize the mixed waste streams generated by the biomedical community, and to provide applicable treatment technologies to those particular mixed waste streams. Mixed waste is waste that satisfies the definition of low-level radioactive waste (LLW) in the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and contains hazardous waste that either (a) is listed as a hazardous waste in Subpart D of 40 CFR 261, or (b) causes the LLW to exhibit any of the hazardous waste characteristics identified in 40 CFR 261. The purpose of this report is to clearly define and characterize the mixed waste streams generated by the biomedical community so that an identification can be made of the waste streams that can and cannot be minimized and treated by current options. An understanding of the processes and complexities of generation of mixed waste in the biomedical community may encourage more treatment and storage options to become available

  18. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  19. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  20. Waste Stream Analyses for Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  1. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, William [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad A. [Argonne National Lab. (ANL), Argonne, IL (United States); Youker, Amanda [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  2. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  3. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  4. Evaluation of Secondary Streams in Mixed Waste Treatment

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) and its predecessors have generated waste containing radioactive and hazardous chemical components (mixed wastes) for over 50 years. Facilities and processes generating these wastes as well as the regulations governing their management have changed. Now, DOE has 49 sites where mixed waste streams exist. The Federal Facility Compliance Act of 1992 (1) required DOE to prepare and obtain regulatory approval of plans for treating these mixed waste streams. Each of the involved DOE sites submitted its respective plan to regulators in April 1995 (2). Most of the individual plans were approved by the respective regulatory agencies in October 1995. The implementation of these plans has begun accordance with compliance instruments (orders) issued by the cognizant regulatory authority. Most of these orders include milestones that are fixed, firm and enforceable as defined in each compliance order. In many cases, mixed waste treatment that was already being carried out and survived the alternative selection process is being used now to treat selected mixed waste streams. For other waste streams at sites throughout the DOE complex treatment methods and schedules are subject to negotiation as the realties of ever decreasing budgets begin to drive the available options. Secondary wastes generated by individual waste treatment systems are also mixed wastes that require treatment in the appropriate treatment system. These secondary wastes may be solid or liquid waste (or both). For example debris washing will generate wastewater requiring treatment; wastewater treatment, in turn, will generate sludge or other residuals requiring treatment; liquid effluents must meet applicable limits of discharge permits. At large DOE sites, secondary waste streams will be a major influence in optimizing design for primary treatment. Understanding these impacts is important not only foe system design, but also for assurances that radiation releases and

  5. Anaerobic digestion of two biodegradable municipal waste streams

    OpenAIRE

    Zhang, Yue; Banks, Charles J.; Heaven, Sonia

    2012-01-01

    Landfill avoidance for organic wastes is now a high priority worldwide. Two fractions of the municipal waste stream were considered with respect to their potential for diversion through controlled anaerobic digestion. The physical and chemical properties of source segregated domestic food waste (ss-FW) and of the mechanically-recovered organic fraction of municipal solid waste (mr-OFMSW) were analysed, and their methane yields determined in both batch and semi-continuous digestion. Methane po...

  6. Evaluation of thin-film evaporation for decontamination and immobilization of aqueous nuclear waste

    International Nuclear Information System (INIS)

    In the early 1980's, AECL, at the Chalk River Laboratory (CRL) site, built a Waste Treatment Centre (WTC) for managing low level solid and aqueous liquid wastes. The objective was to demonstrate processes for converting Canadian Deuterium Uranium (CANDU) waste to a form suitable for disposal while meeting or exceeding current environmental regulations. At present, two liquid waste streams are being treated at the Waste Treatment Centre. The liquid waste streams are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies [1]. The solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200 L galvanized steel drums for storage and eventual disposal in the CRL Waste Management Area. The feed stream to the thin-film evaporator typically has a β/γ activity of about 1 - 3 μCi/mL. This intermediate-level radioactive stream is concentrated by a factor of about 10, while simultaneously being immobilized. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200 L drum ranges from 25% to 35%. Encapsulated in the bitumen matrix are a variety of non-radiochemical salts (including sodium phosphate, sodium sulphate, and sodium carbonate) which comprise the bulk of the total solids in the product drum. The drum contains less than 1% of free water. The paper will discuss the volume reduction capability of the plant, with an emphasis on the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Operations experience gained from over 200 campaigns is documented in the paper. (author)

  7. Characterization of waste streams on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    The Oak Ridge Reservation (ORR) plants generate solid low-level waste (LLW) that must be disposed of or stored on-site. The available disposal capacity of the current sites is projected to be fully utilized during the next decade. An LLW disposal strategy has been developed by the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program as a framework for bringing new, regulator-approved disposal capacity to the ORR. An increasing level of waste stream characterization will be needed to maintain the ability to effectively manage solid LLW by the facilities on the ORR under the new regulatory scenario. In this paper, current practices for solid LLW stream characterization, segregation, and certification are described. In addition, the waste stream characterization requirements for segregation and certification under the LLWDDD Program strategy are also examined. 6 refs., 3 figs., 4 tabs

  8. Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: Effects of aqueous methylmercury and diet retention

    International Nuclear Information System (INIS)

    Transfer of aqueous methylmercury (MeHg) to primary consumers in aquatic foodwebs is poorly understood despite its importance for bioaccumulation of MeHg. We studied bioaccumulation of MeHg in simple aquatic food chains of two humic boreal streams in relation to streamwater chemistry, food web characteristics and dietary fatty acid (FA) biomarkers. Transfer of aqueous MeHg into primary consumers was similar in both streams, resulting in higher MeHg in consumers in the MeHg-rich stream. Trophic enrichment of MeHg and dietary retention of FA biomarkers was the same in both streams, suggesting that exposure to aqueous MeHg at the base of the food chain determined levels of MeHg in biota. In addition, contents of dietary biomarkers suggested that ingestion of algae reduced MeHg bioaccumulation, while ingestion of bacteria stimulated MeHg uptake. Dietary uptake of bacteria could thus be an important pathway for MeHg-transfer at the bottom of food chains in humic streams. - Highlights: ► We examined MeHg bioaccumulation in simple food chains in two boreal streams. ► Higher MeHg in invertebrates was associated with higher aqueous MeHg. ► Dietary biomarkers showed that consumers in both streams accessed similar food sources. ► We concluded at exposure to aqueous MeHg determined bioaccumulation of MeHg. ► Seasonal variation in MeHg in biota could be related to diet using dietary biomarkers. - Exposure to aqueous methylmercury at the base of the food chain in boreal streams determines mercury in aquatic biota at higher trophic levels.

  9. Pectin content and composition from different food waste streams.

    Science.gov (United States)

    Müller-Maatsch, Judith; Bencivenni, Mariangela; Caligiani, Augusta; Tedeschi, Tullia; Bruggeman, Geert; Bosch, Montse; Petrusan, Janos; Van Droogenbroeck, Bart; Elst, Kathy; Sforza, Stefano

    2016-06-15

    In the present paper, 26 food waste streams were selected according to their exploitation potential and investigated in terms of pectin content. The isolated pectin, subdivided into calcium bound and alkaline extractable pectin, was fully characterized in terms of uronic acid and other sugar composition, methylation and acetylation degree. It was shown that many waste streams can be a valuable source of pectin, but also that pectin structures present a huge structural diversity, resulting in a broad range of pectin structures. These can have different physicochemical and biological properties, which are useful in a wide range of applications. Even if the data could not cover all the possible batch by batch and country variabilities, to date this represents the most complete pectin characterization from food waste streams ever reported in the literature with a homogeneous methodology. PMID:26868545

  10. Extending value stream mapping through waste definition beyond customer perspective

    OpenAIRE

    Khurum, Mahvish; Petersen, Kai; Gorschek, Tony

    2014-01-01

    Value Stream Mapping is one of the several Lean practices, which has recently attracted interest in the software engineering community. In other contexts (such as military, health, production), Value Stream Mapping has achieved considerable improvements in processes and products. The goal is to also leverage on these benefits in the software intensive product development context. The primary contribution is that we are extending the definition of waste to fit in the software intensive product...

  11. Treatment of Molybdate Containing Waste Streams

    NARCIS (Netherlands)

    Witkamp, G.J.; Van Spronsen, J.; Hasselaar, M.

    2008-01-01

    The invention is directed to a process for the treatment of an aqueous solution comprising sodium carbonate and/or sodium bicarbonate and sodium molybdate, said process comprising freeze crystallising the solution at the eutectic freezing point thereof and recovering substantially pure ice crystals,

  12. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  13. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J B

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  14. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    International Nuclear Information System (INIS)

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  15. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  16. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  17. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  18. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  19. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  20. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  1. Automated Solutions for Identification of Abnormalities within Waste Streams

    International Nuclear Information System (INIS)

    Management and analysis of data within the waste management world is a vital, yet time consuming activity. In the past, data submitted for waste stream characterization and container certification required human review and approval. While human review can identify data points that fall outside accepted parameters, identification of statistical outliers and anomalies requires a comprehensive comparison against historical data points. A full statistical review of submitted data cannot be adequately performed without technical assistance. This paper will detail the development of the Statistical Tracking Tool (STT) developed for the Waste Isolation Pilot Plant's Waste Data System (WDS) and other automated optimization tools designed to greatly reduce time devoted processing nuclear waste shipments. The tools within the WDS provide technical assistance for analyzing data within waste streams prior to characterization and certification approval and assisting in the building of overpacks and payloads for shipment and disposal. The identification of potentially problematic data sets will prevent erroneous waste shipments avoiding regulatory fines, wasted man hours, and work stoppages. Further analysis will be given to additional techniques and principles that can be applied to a wider range of data adding to the efficacy and value of the Statistical Tracking Tool. (authors)

  2. Modeling the economics of blending organic processing waste streams

    Science.gov (United States)

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into va...

  3. Waste management analysis for the nuclear fuel cycle. II. Recycle preparation for wastewater streams

    International Nuclear Information System (INIS)

    Recycle preparation methods were evaluated for secondary aqueous waste streams likely to be produced during reactor fuel fabrication and reprocessing. Adsorption, reverse osmosis, and ozonization methods were evaluated on a laboratory scale for their application to the treatment of wastewater. Activated carbon, macroreticular resins, and polyurethanes were tested to determine their relative capabilities for removing detergents and corrosive anions from wastewater. Conceptual flow sheets were constructed for purifying wastewater by reverse osmosis. In addition, the application of ozonization techniques for water recycle preparation was examined briefly

  4. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    Science.gov (United States)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  5. The removal of alpha-emitting radionuclides from liquid waste streams

    International Nuclear Information System (INIS)

    World-wide experience on the removal of alpha-emitting radionuclides from liquid waste streams is reviewed with particular emphasis on waste streams from reprocessing irradiated nuclear fuel and on countries other than the United Kingdom. Current practice concentrates on the use of precipitation and evaporation, either singly or in combination, for the treatment of these waste streams. (author)

  6. Future radioactive liquid waste streams study

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  7. Future radioactive liquid waste streams study

    International Nuclear Information System (INIS)

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL

  8. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  9. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  10. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  11. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  12. Groundwater stream experiment for the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.G.; Bowers, D.; Fortney, D.R.

    1981-08-01

    This project was conducted to evaluate the practicality of using laboratory groundwater stream experiments to model a hydraulic breach of a nuclear waste repository located deep in a bedded salt environment. A test plan is included in this report that gives details of the apparatus, rocks, solutions, and analyses to be used in a groundwater stream experiment. Preliminary experiments revealed the essential impermeability of halite; only a small concentration of water (about 75 ppM) moved in halite by diffusion, with a coefficient of 2.0 x 10/sup -7/ cm/sup 2//s. From work completed in this program, groundwater stream experiments appear to be a practical method of establishing the chemical interactions that would occur in a breached repository in bedded salt.

  13. Monitoring stream stage, channel profile, and aqueous conductivity with time domain reflectometry (TDR).

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert; Tidwell, Vincent Carroll; Coplen, Amy K.; Ruby, Douglas Scott; Coombs, Jason R.; Wright, Jerome L.; Roberts, Jesse Daniel

    2004-11-01

    Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the context of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system

  14. Separation of technetium from nuclear waste stream simulants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  15. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering 99TcO4- from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO4-), a stable (non-radioactive) chemical surrogate for 99TcO4-. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO4- and TcO4-

  16. Removal of plutonium from low level Purex waste streams by Chitosan

    International Nuclear Information System (INIS)

    The low level waste solution generated from Purex process contains traces of Plutonium and Americium contributing alpha activity to the solution. Chitosan is it natural bio-polymer derived from Chitin. Successful studies were carried out using Chitosan to recover the uranium, thorium and americium from different waste streams. The studies were extended to find out its plutonium sorption characteristics. Chitosan was equilibrated with pure plutonium tracer solution at different pH, for 60 minutes with a Chitosan to aqueous ratio of 1:100 and the raffinates were filtered and analysed radio metrically. The results showed -95 % of plutonium could be recovered by Chitosan between pH 4 and 7. Elution study of loaded plutonium was also studied with 1M HNO3. (author)

  17. Waste minimization/pollution prevention study of high-priority waste streams

    International Nuclear Information System (INIS)

    Although waste minimization has been practiced by the Metals and Ceramics (M ampersand C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division's pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M ampersand C staff members empowered by the Division Director to study specific waste streams

  18. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  19. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    Science.gov (United States)

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  20. Ion-Exchange characteristic of carboxymethylated cross-linked pregelled starch removal of co-60 and Cs-137 from aqueous waste solution

    International Nuclear Information System (INIS)

    Low and intermediate radioactive liquid waste streams are resulting mainly from Nuclear Power Plants in addition to that originating from the applications of radioisotopes in different fields of life (medicine-industry-agriculture, research works, ect...). Treatment of these aqueous waste solutions before its release is an important process that keeps the environment clean for man and for the coming generations. Carboxymethylated cross-linked pregelled starch has been prepared and used as an organic exchanger for the removal of Co-60 and Cs-137 from aqueous waste simulate. More than 90% of Co-60 and up to 60% of Cs-137 were removed from the waste streams at 29±1 degree after 60 minutes. Different factors that may affect the removal process of both radionuclides using the exchanger (e.g. contact time, temperature, and pH-value of the waste solution0 were studied systematically

  1. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    International Nuclear Information System (INIS)

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics

  2. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI`s access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints.

  3. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    International Nuclear Information System (INIS)

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI's access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints

  4. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (KG) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  5. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  6. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  7. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  8. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10-4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  9. Donnan dialysis for the treatment of aqueous wastes

    International Nuclear Information System (INIS)

    Commercially available ion exchange membranes with high selectivity and chemical stability make attractive the use of Donnan dialysis as a separation process for the treatment of industrial liquid aqueous wastes. The concentration of metal ions in solution, by using a chemical gradient across a selective cationic membrane, can be the basis for new hybrid processes in which well-known chemical treatments and membrane separation are coupled. Donnan dialysis separations of two ions of different charge Sr(II) and Cr(III), by means of perfluorinated Nafion membranes in tubular form, are discussed by taking into account different hydrodynamic and chemical conditions in the feed and strip solutions. Results are compared with other hybrid processes for the treatment of low activity nuclear wastes (Sr-90) and conventional wastes (chromate and Cr(III)). (author)

  10. Recovery of plutonium from nitric-acid waste streams

    International Nuclear Information System (INIS)

    Nitric acid (7M) waste streams at Rocky Flats contain 0.01 to 0.001 g/1 plutonium and new processes are under development to reduce the plutonium levels to 10-5 g/1. Anion exchange and solvent extraction methods are under evaluation. Several macroreticular and microreticular anion exchange resins were evaluated and Rohm and Hass (IRA-938) gave significant improvement in plutonium capacity and elution over several other resins tested. The solvent extraction process uses dihexyl-N, N-diethylcarbamylmethylene phosphonate extractant. The results of recent tests using a combined anion exchange extraction chromatography process will be described for recovering both plutonium and americum

  11. Decomposition of zinc ferrite from waste streams of steelmaking

    OpenAIRE

    Tauriainen, M. (Miia)

    2015-01-01

    The goal of this study was to compare different methods to decompose the zinc ferrite from the waste streams of steel making. The samples were acquired from SSAB Raahe blast furnace and converter flue gas scrubbers and Outokumpu Tornio Works bag filters EAF1, EAF3, AOD and CRK. Sludges and dusts contain significant amounts of zinc in form of zinc oxide and zinc ferrite. Zinc ferrite is highly stable compound which makes recovery of the zinc difficult. The zinc could be recovered and recycled ...

  12. Monitoring of plutonium-contaminated solid waste streams

    International Nuclear Information System (INIS)

    The fundamentals of the active neutron interrogation techniques are summarized. Design criteria for this techniques are numerically illustrated by one-dimensional one-group diffusion theory (plane geometry). Emphasis is given to the evaluation of the induced fission source in a neutron-irradiated sample. The concept and the mathematical model of a reference monitor are described. This model is based on the Nordheim method of heterogeneous neutron diffusion media. The apparatus consists of a cylindrical lead pile provided with two axial channels, one for adaptation of a (Sb - Be) neutron source and the other for placing of the sample (waste item). The radial and azimuthal distributions of source neutron flux around the sample are measured. From Fourier analysis of this flux distribution the spatial average of the source neutron flux in the sample is deduced. Induced fission neutrons are counted by energy biased detectors. This report is the fifth chapter of the guide: Monitoring of plutonium-contaminated solid waste streams

  13. Entrainment of Solvent in Aqueous Stream from CINC V-5 Contactor

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S. D.; Restivo, M. L.; Peters, T. B.; Fowley, M. D.; Burns, D. B.; Smith, W. M. Jr.; Fondeur, F. F.; Crump, S. L.; Norato, M. A.; Herman, D. T.; Nash, C. A.

    2005-04-29

    spectroscopy and droplet size measurement by a MicroTrac{trademark} S3000. Interfacial tension measurements also showed sensitivity to purity of the solvent suggesting that this technique may prove valuable for future process diagnostics. The study highlighted limitations of the current gas chromatography configuration for determination of modifier content of samples. Additional development of analytical methods for determining composition--and particularly modifier content--of organic and mixed aqueous-organic samples is warranted. Infrared spectroscopy shows particular promise. Additional full-scale studies are warranted to investigate the entrainment of organic in the aqueous effluent from the extraction operation. Since waste composition may differ appreciably for the process, this stream may exhibit much wider variance in hydraulic behavior, organic entrainment, and may pose a greater risk for poor hydraulics. Conducting contactor studies at SRNL allowed numerous personnel to view operations and facilitated the training of staff members. Members of the Design Authority, Engineering, and Training groups benefited from tours. Consideration should be given to procuring and installing a full-scale contactor at SRNL for future support and for assistance during commissioning of the MCU. Additional study of surface and interfacial tension is recommended. This tool may also offer economical and rapid process diagnostics for future operations.

  14. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: ORNL; Y-12 Plant; K-25 Plant; Pantex Plant; Norfolk Naval Shipyard; Hanford Site; and Puget Sound Naval Shipyard

  15. Control of aromatic-waste air streams by soil bioreactors

    International Nuclear Information System (INIS)

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency

  16. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  17. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    Energy Technology Data Exchange (ETDEWEB)

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  18. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  19. Removal of styrene from waste gas stream using a biofilter

    Directory of Open Access Journals (Sweden)

    B Bina

    2004-12-01

    Full Text Available Background: Styrene is produced in large quantities in the chemical industries and it has been listed among the 189 hazardous and toxic atmospheric contaminants under Clean Air Act Amendments, 1990, due to its adverse effects on human health. The biofiltration has been widely and efficiently applied during recent decades for the treatment of air streams contaminated by volatile organic compounds at low concentrations. Also this technology has been applied widely and efficiently in the removal of styrene from waste gas streams. Methods: Biofiltration of waste gas stream polluted by styrene vapor was investigated in a three-stage bench scale reactor. Yard waste compost using shredded hard plastics as a bulking agent in a 75:25 v/v mix of plastics:compost was used to packing biofilter. The system inoculation was achieved by adding thickened activated sludge obtained from municipal wastewater treatment plant and the effects of loading rate, inlet concentration, and empty bed retention time variations on the performance and operation of biofilter were studied. Results: Microbial acclimation to styrene was achieved with inlet concentration of 65 ± 11 ppm and bed contact time of 360 s after 57 days of operation. Under steady state conditions experimental results showed equal average removal efficiency of about 84% at loading rates of 60 and 80 g m-3 h-1 with empty bed retention time of 60 s. Maximum elimination capacity was obtained up to 81 g m-3 h-1 with organic loading rate of about 120 g m-3 h-1. Reduction in performance was observed at inlet concentrations of upper than 650 ppm related to organic loading rates up to 160 g m-3 h-1 and then removal efficiency was decreased sharply. Evaluation of the concentration profile along the bed height of column indicated that the most value of elimination capacity occurred in the first section of biofilter. Elimination capacity also showed higher performance when empty bed retention time was reduced to 30 s

  20. Photolysis of spinosyns in seawater, stream water and various aqueous solutions.

    Science.gov (United States)

    Liu, Shangzhong; Li, Qing X

    2004-09-01

    Spinosad, a reduced-risk insecticide, contains primarily two active compounds, spinosyns A and D that are fermentation products of bacterium Saccharopolyspora spinosa. It is currently used to control fruit flies in Hawaii, USA. In this study, we investigated photodegradation of spinosyns A and D, respectively, in seawater, stream, tap and distilled-deionized waters under various light sources. Photodegradation of the two chemicals was also studied in various aqueous solutions prepared with phosphate buffer at different pH or chemical sensitizers. Two major photolytic products from spinosyn A were detected as spinosyn B and hydroxylated spinosyn A. Spinosyn D was similarly hydroxylated and N-demethylated. Spinosyns A and D were photodegraded rapidly under sunlight in Hawaii, USA. The half-life of spinosyns A and D in stream water was 1.1 and 1.0 h, respectively, and was a half of that in distilled-deionized water, 2.2 and 2.0 h, respectively. Photodegradation of spinosyns A and D followed an order of increasing rate constants in distilled-deionized, seawater, stream and tap water under 300 nm artificial light, and was enhanced approximately 8- and 17-fold, respectively, in acetone-sensitized solution as compared to in distilled-deionized water. Photolysis rates of spinosyns A and D in isopropanol- or humic acid-fortified water did not differ much as compared with those accordingly in distilled-deionized water. Spinosyns A and D photodegraded slower in acidic aqueous solution than in basic aqueous solution. PMID:15276725

  1. A combined chemical + enzymatic method to remove selected aromatics from aqueous streams

    International Nuclear Information System (INIS)

    Aromatics are major pollutants found in aqueous environments and in sediments. While there are many chemical and biochemical processes to remove and/or destroy these contaminants, they have to be considered in light of the economics and the time-scales for treatment. We describe our initial work on a hybrid chemical + enzymatic technique to remove aromatics from aqueous stream. The aromatic is first converted to the corresponding phenol through classical Fenton type chemistry involving catalysis by Fe(II). The phenol is subsequently polymerized through an enzymatic mechanism, using horseradish peroxidase as the oxidative enzyme. The polymer is insoluble in water and can be easily recovered. In addition, such phenolic polymers are useful products with varied applications in coatings and resin technologies. Thus, the pollutants can be eventually converted to useful products

  2. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  3. Waste Information Management System with 2012-13 Waste Streams - 13095

    International Nuclear Information System (INIS)

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  4. Commercial treatability study capabilities for application to the US Department of Energy's anticipated mixed waste streams

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE's waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE's mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters

  5. Waste minimization/pollution prevention study of high-priority waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, R.B. [comp.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.

  6. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to section 3021(a) of the Resource Conservation and Recovery Act (RCRA), as amended by section 105(a) of the Federal Facility Compliance Act (FFCA) of 1992 (Pub. L. No. 102-386). DOE has prepared this report for submission to EPA and the States in which DOE stores, generates, or treats mixed wastes. As required by the FFCA, this report contains: a national inventory of all mixed wastes in the DOE system that are currently stored or will be generated over the next five years, including waste stream name, description, EPA waste codes, basis for characterization (i.e., sampling and analysis or process knowledge), effect of radionuclides on treatment, quantity stored that is subject to the Land Disposal Restrictions (LDRs) storage prohibition, quantity stored that is not subject to the LDRS, expected generation over the next five years, Best Demonstrated Available Technology (BDAT) used for developing the LDR requirements, and waste minimization activities; and a national inventory of mixed waste treatment capacities and technologies, including information such as the descriptions, capacities, and locations of all existing and proposed treatment facilities, explanations for not including certain existing facilities in capacity evaluations, information to support decisions on unavailability of treatment technologies for certain mixed wastes, and the planned technology development activities

  7. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1995-10-01

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

  8. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    International Nuclear Information System (INIS)

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE's waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ''best-in-class'' industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs

  9. Greater-than-Class C low-level radioactive waste: The elastic waste stream

    International Nuclear Information System (INIS)

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act) made the Department of Energy (DOE) responsible for disposal of greater-than-Class C (GTCC) low-level radioactive wastes (LLW). A recent DOE study projects that some 3,240 cubic meters of GTCC LLW will be generated through 2035. As important as the projection, however, are the caveats about the uncertainties involved in the projection. GTCC LLW is labeled the elastic waste stream, not because of characteristics of the waste, but because legal interpretations and regulatory policies will have a major affect on the volume of waste ultimately considered GTCC LLW. For the past several years, DOE has implemented a three-phase strategy for implementing its responsibilities for GTCC LLW. Under the strategy, DOE would provide for interim storage of GTCC LLW that poses a potential threat to public health and safety, would plan for a dedicated storage system that would accept GTCC LLW on a less restricted basis, and would plan for eventual disposal of the waste. Based on information developed by the GTCC LLW over the past several years, the DOE Office of Environmental Restoration and Waste Management and the Idaho Operations Office have directed that the program reassess whether this is the most effective strategy to meet DOE's responsibilities under the Act

  10. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    Science.gov (United States)

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. PMID:27067099

  11. Immobilization of nitrate waste streams containing small amounts of organic solvents

    International Nuclear Information System (INIS)

    The influence of organic solvents in nitrate waste streams is investigated concerning the physical, chemical and mechanical properties of the full size waste forms when ordinary Portland cement is used as a binder matrix. Simulated waste streams containing sodium nitrate varying from 0 to about 26 wt %, including tributyl phosphate/dodecane, 30/70, as the organic phase varying from 0 to 10 wt %, were assayed. (author)

  12. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water. PMID:22661261

  13. Production of lipase extrated from aqueous waste: enzymatic activity kinetics

    Directory of Open Access Journals (Sweden)

    Tatianne Ferreira de Oliveira

    2014-12-01

    Full Text Available Lipases are an important group of enzymes with various applications in the food, chemical and pharmaceutical industry, besides having great interest for the treatment of effluents with high lipid content. The objective of this study was to isolate, characterize and select lipolytic bacteria that produce lipase from aqueous waste effluents and to study the enzymatic activity kinetics of the extract obtained via submerged fermentation. The results obtained are promising, being possible to isolate and characterize 23 lipase-producing microorganisms, mostly gram-positive bacteria, but after the fermentation step in a liquid medium, gram negative bacteria showed the highest enzymatic activity (56.72 U.L-1 for STP 2A` bacterium and 81.99 U.L-1 for R2B. In the enzymatic activity kinetic study with the selected bacterium (R2B, among the six variables (temperature, pH, minimal mineral medium, soybean oil, glucose and sodium nitrate, temperature was the one that most positively influenced the enzymatic activity, and the best results were obtained at 40°C. It was concluded that the enzyme extract obtained from environmental waste may be used to treat the effluent and contribute to reduce environmental impacts.

  14. Fiber-optic aided spectrophotometric determination of ruthenium (III) in aqueous streams of nuclear reprocessing

    International Nuclear Information System (INIS)

    A fiber optic aided spectrophotometric technique has been developed for the determination of ruthenium (III) in nitric acid medium. The developed method is simple, accurate and applicable to aqueous streams of nuclear reprocessing. The system obeys Lambert-Beer's law at 468 nm in the concentration of 60-360 ppm of ruthenium (III) nitrate. The results obtained are reproducible with standard deviation 2% and relative error is less than 3%. The results obtained by the developed procedure are in good agreement with those obtained by the standard ICP-OES method. Fission products like Zr and Sr are not interfering. Uranium is interfering and needs prior separation by solvent extraction method. The developed method is adaptable for remote operation and on-line monitoring

  15. Separation of transuranium elements and fission products from medium activity aqueous liquid wastes

    International Nuclear Information System (INIS)

    In the course of work performed between January 1981 and June 1985 on the separation of TRU elements and fission products three liquid alpha containing waste streams were treated: - medium level waste solutions, - waste solutions from the acid digestion of burnable alpha containing solid residues, - waste solutions from mixed oxide fuel element fabrication. The method of separation was initially developed and optimized with simulating substances. Subesequently it was tested with real waste solutions

  16. Application of biomass for the sorption of radionuclides from low level Purex aqueous wastes

    International Nuclear Information System (INIS)

    Microbial biomass have been found to be good biological adsorbents for radioactive nuclides such as uranium and thorium with comparatively easy desorption and recovery. Based on this, sorption studies have been carried out to assess the feasibility of using biomass Rhizopus arrhizus (RA) for the removal of radionuclides present in Purex low level waste streams. Biomass Rhizopus arrhizus (RA) appears effective for the removal of actinides and fission products from low level Purex plant waste/effluent solutions. Maximum sorption for uranium and plutonium is observed at 6-7 pH whereas for Am, Eu, Pm, Ce and Zr the sorption is maximum at pH 2 with high D values and fast kinetics in both cases. Sorption for Ru and Cs are negligible. Sorbed nuclides are recoverable by elution with 1 M HNO3, on once through basis. The method can be used for treating the evaporator condensates from the plant and the hold-up delay tank solution. The sodium nitrate salt concentration in the aqueous solution beyond 0.14 M seriously affects the metal uptake. The results from column experiments indicate a limited loading capacity in terms of mg of Am/U/Pu etc. per gm of RA. However, as the Purex low level effluents contain only trace level activities whose absolute ionic concentrations are much lower, the capacities observed with the present form of biomass may still be satisfactory

  17. Partitioning of actinides from high-level waste streams of Purex process using mixtures of CMPO and TBP in dodecane

    International Nuclear Information System (INIS)

    The extraction of actinides from high active aqueous raffinate waste (HAW) as well as high-level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and stripping of actinides, lanthanides, and other fission products are discussed. Optimum conditions are proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction followed by their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third-phase formation

  18. Extraction of actinides from high level waste streams of purex process using mixtures of CMPO and TBP in dodecane

    International Nuclear Information System (INIS)

    The extraction of actinides from high-active aqueous raffinate waste (HAW) as well as high level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and striping of actinides, lanthanides and other fission products have been discussed in this report and optimum conditions have been proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction and for their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third phase formation. (author). 18 refs., 5 figs., 10 tabs

  19. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory's Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe)

  20. Chemistry of materials relevant to aqueous reprocessing and waste management

    International Nuclear Information System (INIS)

    Nuclear energy option will be an inevitable one with the fossil fuels depleting fast and present coal and oil based thermal power generation resulting in unwanted green house gas emission. The utilisation of the fissile resources will be more effective with closed fuel cycle option wherein the spent reactor fuel is reprocessed and the unused uranium and plutonium formed during the reactor operation is recovered and re-used. Of the aqueous and non-aqueous routes available to reprocess the spent nuclear fuels, aqueous reprocessing method of recovering the valuable uranium and plutonium by the PUREX process is in vogue for the past six decades. The process involves chopping the fuel into small lengths, leaching uranium and plutonium with concentrated nitric acid under reflux, conditioning the dissolver solution with respect to acidity and valency of U and Pu, solvent extraction with 30%TBP/n-DD to selectively extract U(VI) and Pu(IV) leaving most of the fission products into the raffinate, partitioning plutonium from uranium and reconversion of U and Pu into oxide forms after further purification. Many reagents are used to achieve near quantitative recovery of both uranium and plutonium (>99.9%) and with high decontamination factors (>107) from highly radioactive fission products. Nevertheless, the chemistry of several reagents used and the chemical processes that take place during the entire course of reprocessing and waste management operations are yet to be fully understood and gives a lot of scope for further improvements. Some examples where research requires concerted efforts are, 1) development of new extractants conforming to CHON principle, with acceptable physical properties, high stability, selectivity and resistance to third phase formation, 2) new partitioning reagents and processes which offer good efficiency and kinetics for uranium/plutonium reduction, 3) understanding the chemistry of troublesome fission products such as Tc, Ru and Zr, 4

  1. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  2. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    Science.gov (United States)

    Shaibu, B. S.; Reddy, M. L. P.; Bhattacharyya, A.; Manchanda, V. K.

    2006-06-01

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  3. Recycle stream impacts on feed treatment flowsheets and glass formulation for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify high-level radioactive wastes stored on the Hanford site. The vitrification flowsheet is being developed to assure that low-level effluent streams will be sufficiently low in TRU and gamma activity to allow direct disposal in shallow land burial. To achieve this goal, the process is being designed to separate high activity components from off-gas treatment decontamination waste streams, thereby creating a recycle stream which must be combined with the plant food. The intent of this paper is to consider the impacts of such a recycle stream on glass formulation, melter operability, redox control upsets due to the recycle of nitrates, and the ability of a single composition frit to accommodate shifts in the recycle flowsheet

  4. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  5. Evaluating and controlling the characteristics of the nuclear waste in the FWMS using waste stream analysis model

    International Nuclear Information System (INIS)

    The Waste Stream Analysis (WSA) Model is used by the Department of Energy to model the item and location dependent properties of the nuclear waste stream in the Federal Waste Managements System and at utility spent fuel storage facilities. WSA can simulate a wide variety of FWMS configurations and operating strategies and can select and sequence spent fuel for optimal efficiency in the FWMS while minimizing adverse impact on the utility sector. WSA tracks each assembly from the time of discharge to ultimate geologic disposal including all shipping cask and waste package loadings and both at-reactor and FWMS consolidation. WSA selects the highest capacity shipping cask or waste package that does not violate external dose rate or heat limitations for a group of spent fuel assemblies to be containerized. This paper presents an overview of the Waste Stream Analysis Model and a number of key results from a set of coordinated SIMS runs, which illustrates both the impact of waste characteristics on system performance and the ability to control waste characteristics by use of selection and sequencing strategies. 7 refs., 6 figs

  6. Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron

    OpenAIRE

    Darab, John

    2008-01-01

    The application of nanoparticles of predominantly zerovalent iron (nanoiron), either unsupported or supported, to the separation and reduction of pertechnetate anions (TcO4-) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams in general, the research discussed here was directed at two specific potential applications at the U.S. Department of Energy"s Hanford Site: (1) the di...

  7. Management of New Production Reactor waste streams at Savannah River

    International Nuclear Information System (INIS)

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program

  8. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  9. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  10. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd) in Aqueous Solution

    OpenAIRE

    Austin Kanayo ASIAGWU; Patrice-Anthony-Chudi OKOYE; Orji IFEOMA; Patrick Ejo OMUKU

    2009-01-01

    An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+) in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solu...

  11. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  12. Recycling ferrous and nonferrous waste streams with FASTMET

    Science.gov (United States)

    McClelland, James M.; Metius, Gary E.

    2003-08-01

    In metals processing, residue streams are routinely generated containing recoverable metallic compounds. These metallics represent both valuable materials and potential disposal problems to the producer. Midrex, primarily involved in ferrous conversion for many years, has developed a variety of new processing techniques for ferrous and non-ferrous recovery. The processing technologies involve either shaft or rotary hearth furnaces, and can be both hydrocarbon or coal based. Recent developments have included conversion studies for ferrous and non-ferrous residual streams that are energy efficient and environmentally friendly. The technologies to be presented, predominantly coal based, include FASTMET®, FASTMELT®, and Itmk3®.

  13. Recycling ferrous and nonferrous waste streams with FASTMET

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.M.; Metius, G.E. [Midrex Technology, Charlotte, NC (United States)

    2003-08-01

    In metals processing, residue streams are routinely generated containing recoverable metallic compounds. These metallics represent both valuable materials and potential disposal problems to the producer. Midrex, primarily involved in ferrous conversion for many years, has developed a variety of new processing techniques for ferrous and non-ferrous recovery. The processing technologies involve either shaft or rotary hearth furnaces, and can be both hydrocarbon or coal based. Recent developments have included conversion studies for ferrous and non-ferrous residual streams that are energy efficient and environmentally friendly. The technologies presented, predominantly coal based, include FASTMET, FASTMELT, and Itmk3.

  14. Standardisation of the indophenol colorimetric method for determination of ammonia in various aqueous streams

    International Nuclear Information System (INIS)

    The work has been initiated to fulfill the requirement of a user Department. The requirement is to determine ammonia in water samples from a Nuclear Power Plant. Right now Nessler's method is in use. However since this requires the use of Hg which is toxic, there is requirement of another environmental friendly and robust method for this determination. There are several methods commonly used for determination of ammonia in water. Ammonia concentration easily changes with time during the storage of the samples and hence a rapid method of analysis is required. Most commonly employed analysis methods are based on those proposed by Nessler and Berthelot. Nessler's method requires the use of toxic mercury compound and lacks sensitivity. Consequently Berthelot method became more popular. Berthelot method is based on color creation reaction between phenol/phenolic derivatives and ammonia. The method involves reaction of ammonia with hypochlorite to form monochloroamine at optimal pH level around 10; then the monochloroamine and phenolic compound combines in the presence of a suitable catalyst to give indophenol, which has a blue colour. The optimal pH range for this step is 12 to 13 and the most effective catalyst is nitropruside. Most commercial ammonia test kit used salisilate salt as the colour development reagent. Dong Kim Loan et. al used thymol as colour producing reagent. In the present work many phenols are tried such as; resorcinol, sulphosalicylic acid, meta hydroxyl benzaldehyde, thymol etc. It was found that thymol gave the fastest response. Hence thymol was further optimized for various parameters such as pH, interference from various species (cations/anion, humic acid and hydrazine), effect of cationic, anionic and non-ionic surfactants on the colour formation, kinetics of colour formation, stability of produced colour etc. The method will be used for the determination of ammonia in various aqueous streams such as ground water and secondary coolant

  15. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  16. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  17. Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)

    Energy Technology Data Exchange (ETDEWEB)

    Arbon, Rodney Edward

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  18. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  19. Measurement and Monte Carlo Calculation of Waste Drum Filled With Radioactive Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    XU; Li-jun; ZHANG; Wei-dong; YE; Hong-sheng; LIN; Min; CHEN; Xi-lin; GUO; Xiao-qing

    2012-01-01

    <正>Theoretically the best calibrating source of gamma scan system (SGS) is a waste drum filled with uniform distribution of medium and radioactive nuclides. However, in reality, waste drums usually full of solid substance, which are difficult to be prepared in a completely uniformly distributed state. To reduce measurement uncertainty of the radioactivity of waste drums prepared using the method of shell source, a waste drum filled with radioactive aqueous solution was prepared. Besides, its radioactivity was measured by a SGS device and calculated using Monte Carlo method to verify the exact geometric model, which

  20. Selection and Evaluation of Chemical Indicators for Waste Stream Identification

    Science.gov (United States)

    DeVita, W. M.; Hall, J.

    2015-12-01

    Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.

  1. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  2. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  3. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    The authors evaluated several calorimetric assays for ReO4-, and discovered that all were flawed. They evaluated atomic absorption spectroscopy as a technique to determine sub-millimolar concentrations of ReO4-, and discovered that it is not sensitive enough for their use. However, they discovered that ICP-AES can be used to determine concentrations of ReO4- down to 0.25 ppm. They next determined that ReO4- can be quickly extracted (10 minutes or less) from aqueous HNO3 using the commercial extractant Aliquat-336 nitrate diluted with 1,3-diisopropylbenzene. Higher concentrations of extractant led to higher values of Kd (the distribution ratio). Kd was lower as the nitrate concentration of the medium increased, and was also lowered by increasing the acidity at constant nitrate ion concentration. The authors performed parallel studies with TcO4-, determining that Kd(ReO4-) and Kd(TcO4-) track similarly as the conditions are changed. An effort was made to prepare substituted pyridium nitrate salts that are soluble in organic solvents to be used as alternate extractants. However, in all cases but one, the salts were also soluble to some extent in the aqueous phase, significantly limiting their usefulness as extractants for these purposes. Many of the new extractant salts would partition between the organic solvent and water so that 10% of the extractant salt was in the aqueous phase. Only 1-methyl-3,5-didodecylpyridium nitrate did not show any measurable solubility in water. However, this compound was not as good an extractant as Aliquat-336. A considerable effort was also made to find suitable alternative solvents to 1,3-diisopropylbenzene. Several ketone solvents with flash points above 60 C were tested, and two of these, 2-nonanone and 3-nonanone, were superior to 1,3-diisopropylbenzene as a diluent

  4. Remediation of phosphorus from electric furnace waste streams

    International Nuclear Information System (INIS)

    Electrothermal production of elemental phosphorus (P4) generates substantial amounts of highly toxic phossy water sludge, slag and other gaseous wastes. Because of their high phosphorus content the sludges pose potential fire hazards. In the absence of a reliable processing technology, large amounts of these hazardous wastes are accumulated at an annual rate of 1.5-2.5 million tons from current and past operations. The accumulated sludges are stored in ponds or in special containment vessels in 30 locations in 18 states including Alabama, California, Tennessee, Idaho and Montana. Serious water pollution problems will result unless these wastes are given extensive treatment to remove the elemental phosphorus. Federal regulations prohibit permanent storage of flammable wastes. This paper reports that recently, researchers at the University of Alabama have developed a two-step method for the treatment of phosphorus sludge that includes bulk removal of phosphorus by physical separation techniques followed by remediation of the residual P4 in the sludge using a novel wet air oxidation technique known as HSAD

  5. Classification of toxic chemical-waste streams from nuclear reactors

    International Nuclear Information System (INIS)

    The radiological and chemical constituents from light water reactors are identified, the methodology for comparing the hazards of various chemicals quantitatively with those of radioactive materials is presented, and the possible management basis of low-level waste (LLW) is considered

  6. EFFLUENT TREATMENT FACILITY (ETF) WASTE STREAM STABILIZATION TESTING

    International Nuclear Information System (INIS)

    The U.S. Department of Energy Hanford Site, the location of plutonium production for the US nuclear weapons program, is the focal point of a broad range of waste remediation efforts. This presentation will describe the development of cementitious waste forms for evaporated Hanford waste waters from several sources. Basin 42 waste water and simulants of proposed Waste Treatment and Immobilization Plant secondary wastes and Demonstration Bulk Vitrification System secondary wastes were solidified in cementitious matrices termed ''dry cementitious formulation.'' Solidification of these brines was difficult to deal with because of high sulfate contents. Two approaches were explored. The first was based on compositions similar to sulphoaluminate-belite cements. The main component of these cements is 4CaO · 2Al2O3 · SO4. When hydrating in the presence of sulfate, these cements rapidly form ettringite. The goal was to consume the sulfate by rapidly forming ettringite. Forming ettringite before the mixture has filly set minimizes the potential for deleterious expansion at a later date. These formulations were developed based on mixtures of calcium-aluminate cement, a glassy blast-furnace slag, class F fly ash, and Portland cement. A second approach was based on using high alumina cement like ciment fondu. In this case the grout was a mixture of ciment fondu, a glassy blast-furnace slag, class f fly ash, and Portland cement. The literature shows that for concretes based on equal amounts of ciment fondu and blast furnace slag, cured at either 20 C or 38 C, the compressive strength increased continuously over a period of 1 year. In this second approach, enough reactive calcium aluminate was added to fully consume the sulfate at an early age. The results of this study will be presented. Included will be results for expansion and bleed water testing, adiabatic temperature rise, microstructure development, and the phase chemistry of the hydrated materials. The results of

  7. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    OpenAIRE

    Raziya Nadeem; Muhammad Aslam Khan; Uzma Ijaz; Abida Mahmood; Muhammad Asif Hanif; Tariq Mahmood Ansari; Muhammad Ali

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an...

  8. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2004-11-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  9. investigations for the separation of radioisotopes and selected metal ions from dilute aqueous solutions and aqueous waste simulant by foaming

    International Nuclear Information System (INIS)

    co precipitate flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zine hexacyanoferrate (II) (ZnHCF) and subsequent flotation of the precipitate . collectors of different types were tested but cetyl pyridinium chloride showed the best performance. before undertaking the flotation investigations , coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. the developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste simulant. the obtained results compare favourably with data published for cesium removal by coprecipitation or adsorption processes. besides, CPF seems to be more advantageous

  10. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  11. Partial stream digestion of residual municipal solid waste.

    Science.gov (United States)

    De Baere, L

    2008-01-01

    Anaerobic digestion of residual municipal solid waste (MSW) has become more important than the digestion of source separated biowaste. More than 52% of the capacity available in Europe was designed for digestion of residual municipal waste by the end of 2006, while this was only 13% in 1998. Partial digestion of residual waste organics, by which only a part of the organics is digested, has been implemented to reduce the need for dewatering and subsequent wastewater treatment. The digestate coming from part of the organics is immediately mixed with the non-digested organic fraction. This organic fraction is drier and still contains a lot of energy which can be used to dry the digestate during the aerobic composting of the mixture of digested and undigested organics. Such a MBT-plant has been operating for over a year whereby 2/3 of the organics (including sludge cake) are digested (25,000 t/year) and mixed after digestion with the remaining 1/3 of the organics. Biogas production averages 125.7 Nm2 per ton fed and contained 56.2% of methane. The mixture of digestate and non-digested organics is aerated in tunnels during 4 to 6 weeks. The stabilized end product is landfilled, meeting the stringent German standards for inert landfills. By using a dry fermentation able to produce a digestate at 35% solids, there is no need for dewatering the digestate so that no wastewater is produced. PMID:18441435

  12. Separation of technetium from nuclear waste stream simulants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1994-09-30

    The authors evaluated several calorimetric assays for ReO{sub 4}{sup {minus}}, and discovered that all were flawed. They evaluated atomic absorption spectroscopy as a technique to determine sub-millimolar concentrations of ReO{sub 4}{sup {minus}}, and discovered that it is not sensitive enough for their use. However, they discovered that ICP-AES can be used to determine concentrations of ReO{sub 4}{sup {minus}} down to 0.25 ppm. They next determined that ReO{sub 4}{sup {minus}} can be quickly extracted (10 minutes or less) from aqueous HNO{sub 3} using the commercial extractant Aliquat-336 nitrate diluted with 1,3-diisopropylbenzene. Higher concentrations of extractant led to higher values of K{sub d} (the distribution ratio). K{sub d} was lower as the nitrate concentration of the medium increased, and was also lowered by increasing the acidity at constant nitrate ion concentration. The authors performed parallel studies with TcO{sub 4}{sup {minus}}, determining that K{sub d}(ReO{sub 4}{sup {minus}}) and K{sub d}(TcO{sub 4}{sup {minus}}) track similarly as the conditions are changed. An effort was made to prepare substituted pyridium nitrate salts that are soluble in organic solvents to be used as alternate extractants. However, in all cases but one, the salts were also soluble to some extent in the aqueous phase, significantly limiting their usefulness as extractants for these purposes. Many of the new extractant salts would partition between the organic solvent and water so that 10% of the extractant salt was in the aqueous phase. Only 1-methyl-3,5-didodecylpyridium nitrate did not show any measurable solubility in water. However, this compound was not as good an extractant as Aliquat-336. A considerable effort was also made to find suitable alternative solvents to 1,3-diisopropylbenzene. Several ketone solvents with flash points above 60 C were tested, and two of these, 2-nonanone and 3-nonanone, were superior to 1,3-diisopropylbenzene as a diluent.

  13. Study of aqueous process using hydrochloric acid for radioactive waste including uranium

    International Nuclear Information System (INIS)

    A lot of solid and liquid radioactive wastes had been produced in the various examinations. The wastes have been stored in Japan Nuclear Cycle Development Institute Ningyo-Toge Environmental Engineering Center. Amounts of solid wastes including fluorine and uranium are very much, so techniques of final disposal will be developed and the solid wastes will be disposed. This study estimates the applicability of aqueous process using hydrochloric acid for CaF2, NaF, Al2O3 and UF4, so examinations using those wastes were performed and mass balance and activity balance sheets were made. The conclusion is as below. 1. The process using hydrochloric acid to CaF2 is applicable. 2. The process using hydrochloric acid to NaF is applicable. 3. Dissolution of Al2O3 is difficult, but uranium in Al2O3 is almost dissolved, so application of aqueous process using hydrochloric acid for Al2O3 is possible. 4. Application of aqueous process using hydrochloric acid to UF4 has problem of insolubility of UF4. 5. Next subjects are a rise of solid/liquid ratio, a increase of efficiency of uranium precipitation and decrease of second wastes which are resins and aluminium as masking material to fluorine. (author)

  14. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.

    Science.gov (United States)

    Jacob, Paul; Kashyap, Prakriti; Suparat, Tasawan; Visvanathan, Chettiyappan

    2014-09-01

    Increasing urbanisation and automobile use have given rise to an increase in global tyre waste generation. A tyre becomes waste once it wears out and is no longer fit for its original purpose, and is thus in its end-of-life state. Unlike in developed countries, where waste tyre management has already become a significant issue, it is rarely a priority waste stream in developing countries. Hence, a large quantity of waste tyres ends up either in the open environment or in landfill. In Thailand, waste tyre management is in its infancy, with increased tyre production and wider use of vehicles, but low levels of recycling, leaving scope for more appropriate policies, plans and strategies to increase waste tyre recycling. This article describes the journey of waste tyres in Thailand in terms of recycling and recovery, and disposal. Material flow analysis was used as a tool to quantify the flows and accumulation of waste tyres in Thailand in 2012. The study revealed that, in Thailand in 2012, waste tyre management was still biased towards destructive technologies (48.9%), rather than material recovery involving rubber reclamation, retreading tyres and whole and shredded tyre applications (6.7%). Despite having both economic and environmental benefits, 44.4% of used tyres in 2012 were dumped in the open environment, and the remaining 0.05% in landfills. PMID:25106533

  15. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  16. THE DEVELOPMENT OF AQUEOUS THERMODYNAMIC MODELS: APPLICATION TO WASTE TANK PROCESSING AND VADOSE ZONE ISSUES

    Science.gov (United States)

    The presence of a wide range of radionuclides, metal ions, inorganic ligands, and organic chelating agents combined with the high base and electrolyte concentration in the Hanford waste tanks creates some unique and difficult problems in modeling the aqueous thermodynamics of the...

  17. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  18. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  19. Poster 25. Inorganic seed materials for the decontamination of PWR aqueous wastes

    International Nuclear Information System (INIS)

    The use of several inorganic sorbents, used in combination with crossflow membrane filtration, has been studied for the reduction of Cr-51 and Sb-125 levels in a pressurised water reactor waste stream. A mixture of titanium oxide, zirconium phosphate and sodium nickel hexacyanoferrate (II) gave an overall decontamination factor of 20 at a solution pH of 4.5. (author)

  20. Unit operations used to treat process and/or waste streams at nuclear power plants

    International Nuclear Information System (INIS)

    Estimates are given of the annual amounts of each generic type of LLW [i.e., Government and commerical (fuel cycle and non-fuel cycle)] that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials [liquids (e.g., oils or solvents) and/or solids], could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends

  1. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    International Nuclear Information System (INIS)

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  2. Application of insoluble tannin adsorbent to alpha aqueous waste treatment in NUCEF

    International Nuclear Information System (INIS)

    The use of insoluble tannin adsorbent has been investigated as a means to reduce the volume of aqueous waste contaminated with americium. This work is aimed at reducing the volume of TRU waste generated within NUCEF where experiments related to back end of the nuclear fuel cycle are performed. Insoluble tannin adsorbent is a gelled material consisting of C, H and O which can be easily incinerated. The distribution coefficient and adsorption capacity of americium in insoluble tannin have been investigated and found to be 1000 ml/g in 0.02 M HNO3 and 0.013 mmol/g-dried tannin, respectively. The prospect of applying the adsorbent to the treatment of aqueous waste contaminated with americium appears promising. (author)

  3. Solvent extraction of radionuclides from aqueous tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.; Sachleben, R.; Moyer, B. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process to remove the fission products {sup 99}Tc, {sup 90}Sr, and {sup 137}Cs from alkaline tank waste, such as those stored at Hanford and Oak Ridge. As such, this task expands on FY 1995`s successful development of a solvent-extraction and stripping process for technetium separation from alkaline tank-waste solutions. This process now includes the capability of removing both technetium and strontium simultaneously. In this form, the process has been named SRTALK and will be developed further in this program as a prelude to developing a system capable of removing technetium, strontium, and cesium.

  4. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  5. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  6. Independent review of inappropriate identification, storage and treatment methods of polychlorinated biphenyl waste streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The purpose of the review was to evaluate incidents involving the inappropriate identification, storage, and treatment methods associated with polychlorinated biphenyl (PCB) waste streams originating from the V-tank system at the Test Area North (TAN). The team was instructed to perform a comprehensive review of Lockheed Martin Idaho Technologies Company (LMITCO`s) compliance programs related to these incidents to assess the adequacy and effectiveness of the management program in all respects including: adequacy of the waste management program in meeting all LMITCO requirements and regulations; adequacy of policies, plans, and procedures in addressing and implementing all federal and state requirements and regulations; and compliance status of LMITCO, LMITCO contract team members, and LMITCO contract/team member subcontractor personnel with established PCB management policies, plans, and procedures. The V-Tanks are part of an intermediate waste disposal system and are located at the Technical Support Facility (TSF) at TAN at the Idaho National Engineering and Environmental Laboratory (INEEL). The IRT evaluated how a waste was characterized, managed, and information was documented; however, they did not take control of wastes or ensure followup was performed on all waste streams that may have been generated from the V-Tanks. The team has also subsequently learned that the Environmental Restoration (ER) program is revising the plans for the decontamination and decommissioning of the intermediate waste disposal system based on new information listed and PCB wastes. The team has not reviewed those in-process changes. The source of PCB in the V-Tank is suspected to be a spill of hydraulic fluid in 1968.

  7. Independent review of inappropriate identification, storage and treatment methods of polychlorinated biphenyl waste streams

    International Nuclear Information System (INIS)

    The purpose of the review was to evaluate incidents involving the inappropriate identification, storage, and treatment methods associated with polychlorinated biphenyl (PCB) waste streams originating from the V-tank system at the Test Area North (TAN). The team was instructed to perform a comprehensive review of Lockheed Martin Idaho Technologies Company (LMITCO's) compliance programs related to these incidents to assess the adequacy and effectiveness of the management program in all respects including: adequacy of the waste management program in meeting all LMITCO requirements and regulations; adequacy of policies, plans, and procedures in addressing and implementing all federal and state requirements and regulations; and compliance status of LMITCO, LMITCO contract team members, and LMITCO contract/team member subcontractor personnel with established PCB management policies, plans, and procedures. The V-Tanks are part of an intermediate waste disposal system and are located at the Technical Support Facility (TSF) at TAN at the Idaho National Engineering and Environmental Laboratory (INEEL). The IRT evaluated how a waste was characterized, managed, and information was documented; however, they did not take control of wastes or ensure followup was performed on all waste streams that may have been generated from the V-Tanks. The team has also subsequently learned that the Environmental Restoration (ER) program is revising the plans for the decontamination and decommissioning of the intermediate waste disposal system based on new information listed and PCB wastes. The team has not reviewed those in-process changes. The source of PCB in the V-Tank is suspected to be a spill of hydraulic fluid in 1968

  8. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  9. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    International Nuclear Information System (INIS)

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment

  10. Waste and Lead Time Reduction in a Software Product Customization Process with Value Stream Maps

    OpenAIRE

    Mujtaba, Shahid; Feldt, Robert; Petersen, Kai

    2010-01-01

    Custom-developed adaptations of software products are increasingly important to meet different and changing customer needs and heterogeneous system environments. Efficient software customization processes with short lead times are thus a priority for companies to stay competitive. The purpose of this case study is to identify waste-related problems in a software product customization process by using value stream maps (VSM). The study was conducted at the telecom company Ericsson AB; the empi...

  11. Large spill of mining wastes in Portelo stream: impacts on ecosystem integrity and on angling potential

    OpenAIRE

    Ana Maria GERALDES; Elsa RAMALHOSA; Caetano, Miguel; Teixeira, Amílcar

    2013-01-01

    Streams located at Montesinho Natural Park (NE Portugal) have high potential for brown trout (Salmo trutta) angling . However, in this territory there are severa! abandoned mine sites. Therefore, the continuous drainage of fine grained tailings can be particularly problematic due to arsenic, copper, aluminium and zinc. However, until now no significant disturbance was detected in water quality and in biota. Nevertheless, there has never been such a large spill of mining wastes ...

  12. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  13. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    OpenAIRE

    Erminda Tsouko; Constantina Kourmentza; Dimitrios Ladakis; Nikolaos Kopsahelis; Ioanna Mandala; Seraphim Papanikolaou; Fotis Paloukis; Vitor Alves; Apostolis Koutinas

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L)...

  14. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    International Nuclear Information System (INIS)

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors

  15. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  17. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    International Nuclear Information System (INIS)

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000

  18. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-06-28

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000.

  19. Surrogate waste streams for use in MWFA funded research and development

    International Nuclear Information System (INIS)

    Researchers developing technologies for treatment of mixed (both hazardous and radioactive) wastes are strongly encouraged to test using materials representative of the wastes targeted by their processes. Using actual wastes is essential for treatability studies and demonstrations prior to implementation, but is excessively costly and impractical during development. Thus, it is a responsibility of the focus area to provide researchers with surrogate recipes for use in development. Data from tests with standardized recipes will also facilitate comparison of results for competing technologies by potential end users and industry. Due to the wide range of waste materials in the DOE inventory and the scope of technology covered by the focus area, no one surrogate will accurately represent all wastes in all applications. The surrogates described are based on generic base compositions representative of that class of wastes, with variable constituents to be added over a recommended test range. Not all of the additives must be tested for each technology; focus should be directed to the constituents and physical forms present in the waste streams targeted by the developer. Excluding some parameters, or reducing the parametric testing rather than using the full range of concentration recommended simply limits the scope of potential application when the data is considered by a potential user. Surrogates are described for debris, sludges, and caustic scrub solution. Soils are recognized as a fourth class, and are considered too complex to represent with a surrogate. Descriptive text is also included to explain how the recipes were developed, and why each test additive is prescribed

  20. Sorption of 137Cs from Aqueous Waste Solutions using Pottery

    International Nuclear Information System (INIS)

    A simple and inexpensive method for sorption of 137Cs from aqueous solutions using a highly available vase shape pottery material has been investigated. Porosity of the used pottery allowed for the penetration of the radioactive solution through its permeable body. Two routes had been investigated for cesium removal from the radioactive solutions. In the first one, pottery bodies were immersed into the radioactive solutions. In the second method; the radioactive solutions were filled the inner volumes of the pottery bodies. Vase shape pottery showed higher sorption capability for 137Cs much more than its powder forms, especially in the alkaline medium. Pottery bodies showed high potential for 137Cs removal. Adsorption isotherms revealed good lit to the Freundlich and Langumir isotherms. During sorption processes outside and inside the pottery body, 137Cs was well captured inside the amorphous microstructure of the pottery body. In this respect, micro filtration of cesium radionuclides through the used pottery could be postulated. Desorption experiments indicated higher immobilization affinity for radiocesium into pottery bodies, which indicates a high containment for 137Cs with an irreversible fixation mechanism

  1. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    Science.gov (United States)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  2. Use of watershed characteristics to select control streams for estimating effects of metal mining wastes on extensively disturbed streams

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.M.

    1985-01-01

    Impacts of sediments and heavy metals on the biota of streams in the copper-mining district of southwestern Montana were examined by comparing aquatic communities of impacted streams with those of control streams. Control streams were chosen through the use of a technique that identifies similar streams based on similarities in their watershed characteristics. Significant differences between impacted and control sites existed for surface substrate, riparian vegetation, and the number of macro-invertebrate taxa.

  3. Radiation-flotation purification of aqueous wastes from mercury

    International Nuclear Information System (INIS)

    Purification of industrial wastes of plants producing chlorine and alkalies by electrolysis with using metallic mercury as a cathode from mercury (in ionic and metallic form as well as in the form of precipitate) to the accepted in the Soviet Union limiting permitted level of concentration (5 x 10-3 mg dm-3) by routine sulphide and ion exchange methods has some disadvantages. We have now developed the radiation-flotation method which consists of three stages: preliminary flotation in the presence of surfactant (sodium alkylsulphonate), γ-irradiation at dose 1 kGy and secondary flotation (also in the presence of sodium alkylsulphonate). The method is discussed and results are reported. (author)

  4. Heterogeneous Photo catalytic Degradation of Hazardous Waste in Aqueous Suspension

    International Nuclear Information System (INIS)

    The photo catalytic degradation of hazardous waste like chlorinated paraffin compound (1,12-Dichlorodoecane Ded) was investigated in different aquatic media using GC-MSD. The direct photolysis of Ded in HPLC water was considered to be negligible (k = 0.0020+-0.0007h-1). An acceleration of the photodegradation rate was occurred in presence of different TiO2 catalyst systems. Molecular oxygen was found to play a vital role in the degradation process. Anatase TiO2 was proved to be the most efficient one (k=0.7670+-0.0876h-1), while the rate constant of the rutile TiO2 was calculated to be 0.2780+-0.0342h-1. Improvement of photo catalytic efficiency of rutile TiO2 was achieved by addition of Fe+2 giving a rate constant =0.6710+-0.0786h-1

  5. Biodenitrification of gaseous diffusion plant aqueous wastes: stirred bed reactor

    International Nuclear Information System (INIS)

    Approximately 30 kilograms of nitrates per day are discarded in the raffinates (acid wastes) of the Portsmouth Gaseous Diffusion Plant's X-705 Uranium Recovery and Decontamination Facility. A biodenitrification process employing continuous-flow, stirred-bed reactors has been successfully used to remove nitrates from similar acid wastes at the Oak Ridge Y-12 Plant. Laboratory studies have been made at Portsmouth to characterize the X-705 raffinates and to test the stirred-bed biodenitrification process on such raffinates. Raffinates which had been previously characterized were pumped through continuous-flow, stirred-bed, laboratory-scale reactors. Tests were conducted over a period of 146 days and involved variations in composition, mixing requirements, and the fate of several metal ions in the raffinates. Tests results show that 20 weight percent nitrates were reduced to a target nitrate effluent concentration of 100 μg/ml with a 99.64 percent efficiency. However, the average denitrification rate achieved was only 33% of that demonstrated with the Y-12 stirred-bed system. These low rates were probably due to the toxic effects of heavy metal ions on the denitrifying bacteria. Also, most of the uranium in the raffinate feed remained in the biomass and calcite, which collected in the reactor. This could cause criticality problems. For these reasons, it was decided not to make use of the stirred-bed bioreactor at Portsmouth. Instead, the biodenitrification installation now planned will use fluidized bed columns whose performance will be the subject of a subsequent report

  6. Chemical treatment of aqueous radioactive Cesium-137 waste using Ferri Chloride

    International Nuclear Information System (INIS)

    Ferric Chloride 6H2O was used for treatment of liquid radioactive wastes containing Cesium-137. Various concentration of ferric chloride 6H2O have been added into the waste at different pH and speed of stirrer. The treatment was based on the coagulans-flocculation and coprecipitation mechanisms. The best result of this experiment was achieved by adding 300 ppm of Ferric chloride 6 H2O into liquid waste on following condition the rate Stirrer was 250 rpm. At this condition, it was found that the separation efficiency and the decontamination factor were 83.32 % and 5.99. The activity of decreasing of aqueous radioactive Cesium-137 waste was 2.10 x 10-4 Ci/l to 3.50 x 10-5 Ci/l

  7. Removal of dissolved TBP from aqueous streams of reprocessing origin: engineering scale studies

    International Nuclear Information System (INIS)

    Process development for removal of dissolved TBP from acidic solutions has been addressed in the present work using solvent extraction route. Batch studies were followed with continuous runs using combine air lift based mixer-settler units. These studies have revealed that the dissolved TBP in aqueous solutions can be brought down from ∼ 160 ppm to ∼ 15 ppm using dodecane with a maximum loading of ∼ 3.6% TBP. (author)

  8. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    Energy Technology Data Exchange (ETDEWEB)

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  9. SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2015-09-01

    Full Text Available In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

  10. Degradation of Refractory Organic Compounds in Aqueous Wastes employing a combination of biological and chemical treatments

    OpenAIRE

    Chindris, Anuta

    2011-01-01

    In this study the removal of refractory organic compounds (ROCs) in Aqueous Wastes (AW) employing a combination of biological and chemical treatment were investigated at Department of Chemical Engineering and Materials Science, University of Cagliari, Italy and Department of Engineering, Oxford University, UK. The main objectives were to stimulate and optimise the degradation of ROCs with efficient removal of them in AW. This project is divided in two sections, a theoreti...

  11. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  12. A Low Level Radioactivity Monitor for Aqueous Waste

    International Nuclear Information System (INIS)

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For β radioactivity the minimum values of specific activity measurable extend from 1 x 10-6 Ci/m3 to 6 x 10-8 Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10-8 Ci/m3

  13. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  14. Process Control for Simultaneous Vitrification of Two Mixed Waste Streams in the Transportable Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Jantzen, C.M.; Brown, K.G.; Cicero-Herman, C.

    1998-05-01

    Two highly variable mixed (radioactive and hazardous) waste sludges were simultaneously vitrified in an EnVitCo Transportable Vitrification System (TVS) deployed at the Oak Ridge Reservation. The TVS was the result of a cooperative effort between the Westinghouse Savannah River Company and EnVitCo to design and build a transportable melter capable of vitrifying a variety of mixed low level wastes.The two waste streams for the demonstration were the dried B and C Pond sludges at the K-25 site and waste water sludge produced in the Central Neutralization Facility from treatment of incinerator blowdown. Large variations occurred in the sodium, calcium, silicon, phosphorus, fluorine and iron content of the co- blended waste sludges: these elements have a significant effect on the process ability and performance of the final glass product. The waste sludges were highly reduced due to organics added during processing, coal-pile runoff (coal and sulfides), and other organics, including wood chips. A batch-by-batch process control model was developed to control glass viscosity, liquidus, and reduction/oxidation, assuming that the melter behaved as a Continuously Stirred Tank Reactor.

  15. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na2SO4, CaCl2 and MgSO4) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl2 and low rejection for Na2SO4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  16. Tritium Separation from High Volume Dilute Aqueous Streams- Milestone Report for M3FT-15OR0302092

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, S. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-02-29

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration covering the range of concentration anticipated in nuclear fuel processing where potentially both acid and water streams are recycled. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1 mCi/mL which is about 0.1 mg/L or 0.1 ppm. The HTO concentration was three orders of magnitude lower than experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes. Separation factor calculated from the measured tritium concentrations ranged from 0.83-0.98. Although the membrane performance characterization results were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. We have identified several new approaches, such as tuning the diffusion coefficient of HTO, that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.

  17. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Luis H., E-mail: bertortega@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX (United States); Kaminski, Michael D., E-mail: kaminski@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States); Zeng, Zuotao, E-mail: zeng@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States); Cunnane, James, E-mail: cunnane@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States)

    2013-07-15

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 10{sup 3} kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  18. Entrained solvent separation by charcoal adsorption from aqueous streams generated during uranium recovery from phosphoric acid

    International Nuclear Information System (INIS)

    During the two cycle solvent extraction process for the separation of uranium from phosphoric acid, solvents such as D2EHPA, di nonyl phenyl phosphoric acid (DNPPA), tri butyl phosphate (TBP), etc., get dissolved/entrained in the various aqueous phases such as WPA, ammonium carbonate solution, MGA and sulphuric acid. These solvents have to be separated both from process economy point of view and for industrial acceptability. Systematic experiments showed that recovery of solvents by diluent washing is not effective for alkaline solution. Hence studies were undertaken to study the feasibility of activated charcoal adsorption for entrained/dissolved solvent separation. (author)

  19. Environmental Implications of Radioactive Waste Disposal as Related to Stream Environments

    International Nuclear Information System (INIS)

    Increasing volumes of radioactive waste materials are being introduced into streams annually. These originate from the many laboratories in which radioactive materials are used for beneficial purposes, as well as from existing atomic energy facilities. To these amounts introduced directly into the river under essentially controlled conditions must be added those radioactive materials originating from fall-out and feeding into the stream through run-off or direct deposition. Since these same streams may serve a multiplicity of purposes, as for example, potable and industrial water, recreation, fishing, irrigation, and navigation, the effect of these discharges on each of these activities must be carefully evaluated. Present criteria do not provide a complete basis for determining permissible levels of discharge unless information is available on the amounts of specific radionuclides already present and the fate of these same nuclides in the downstream environment. Permissible levels of discharge will have to be modified in accordance with the above information and particularly in terms of the uses to which the downstream watercourse is put. Where several sources of discharge are to be permitted on a given water-course, allocation of maximum amounts of specific radionuclides must be established in accordance with downstream exposures of populations from all sources. Several suggested approaches to the handling-of this problem of waste management in relation to downstream uses are outlined and some of the difficulties associated with the application of each approach are considered. (author)

  20. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  1. Removal of Pertechnetate From Simulated Nuclear Waste Streams Using Supported Zerovalent Iron

    International Nuclear Information System (INIS)

    The application of nanoparticles of predominantly zerovalent iron (nanoiron), either unsupported or supported, to the separation and reduction of pertechnetate anions (TcO4#sup -#) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams in general, the research discussed here was directed at two specific potential applications at the U.S. Department of Energy's Hanford Site: (1) the direct removal of pertechnetate from highly alkaline solutions, typical of those found in Hanford tank waste, and (2) the removal of dilute pertechnetate from near-neutral solutions, typical of the eluate streams from commercial organic ion-exchange resins that may be used to remediate Hanford tank wastes. It was envisioned that both applications would involve the subsequent encapsulation of the loaded sorbent material into a separate waste form. A high surface area (>200 m2/g) base-stable, nanocrystalline zirconia was used as a support for nanoiron for tests with highly alkaline solutions, while a silica gel support was used for tests with near-neutral solutions. It was shown that after 24 h of contact time, the high surface area zirconia supported nanoiron sorbent removed about 50% (Kd = 370 L/kg) of the pertechnetate from a pH 14 tank waste simulant containing 0.51 mM TcO4#sup -# and large concentrations of Na+, OH-, NO3#sup -#, and CO3#sup 2-# for a phase ratio of 360 L simulant per kg of sorbent. It was also shown that after 18 h of contact time, the silica-supported nanoiron removed >95% pertechnetate from a neutral pH eluate simulant containing 0.076 mM TcO4#sup -# for a phase ratio of 290 L/kg. It was determined that in all cases, nanoiron reduced the Tc(VII) to Tc(IV), or possibly to Tc(V), through a redox reaction. Finally, it was demonstrated that a mixture of 20 mass % of the solid reaction products obtained from contacting zirconia-supported nanoiron with an

  2. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    Science.gov (United States)

    Delva, Laurens; Ragaert, Kim; Cardon, Ludwig

    2015-12-01

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  3. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    Energy Technology Data Exchange (ETDEWEB)

    Delva, Laurens, E-mail: Laurens.Delva@ugent.be; Ragaert, Kim, E-mail: Kim.Ragaert@ugent.be; Cardon, Ludwig, E-mail: Ludwig.Cardon@ugent.be [Centre for Polymer and Materials Technologies (CPMT), Department of Materials Science and Engineering, Ghent University, Technologiepark 915, 9052 Zwijnaarde (Belgium)

    2015-12-17

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  4. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    International Nuclear Information System (INIS)

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation

  5. Corrosion behavior of technetium waste forms exposed to various aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, David Gary [Los Alamos National Laboratory; Jarvinen, Gordon [Los Alamos National Laboratory; Mausolf, Edward [UNIV OF NEVADA; Czerwinski, Ken [UNIV OF NEVADA; Poineau, Frederic [UNIV OF NEVADA

    2009-01-01

    Technetium is a long-lived beta emitter produced in high yields from uranium as a waste product in spent nuclear fuel and has a high degree of environmental mobility as pertechnetate. It has been proposed that Tc be immobilized into various metallic waste forms to prevent Tc mobility while producing a material that can withstand corrosion exposed to various aqueous medias to prevent the leachability of Tc to the environment over long periods of time. This study investigates the corrosion behavior of Tc and Tc alloyed with 316 stainless steel and Zr exposed to a variety of aqueous media. To date, there is little investigative work related to Tc corrosion behavior and less related to potential Tc containing waste forms. Results indicate that immobilizing Tc into stainless steel-zirconium alloys can be a promising technique to store Tc for long periods of time while reducing the need to separately store used nuclear fuel cladding. Initial results indicate that metallic Tc and its alloys actively corrode in all media. We present preliminary corrosion rates of 100% Tc, 10% Tc - 90% SS{sub 85%}Zr{sub 15%}, and 2% Tc - 98% SS{sub 85%}Zr{sub 15%} in varying concentrations of nitric acid and pH 10 NaOH using the resistance polarization method while observing the trend that higher concentrations of Tc alloyed to the sample tested lowers the corrosion rate of the proposed waste package.

  6. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  7. Paper Study Evaluations Of The Introduction Of Small Column Ion Exchange Waste Streams To The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb2O5, TiO2, and ZrO2, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge Batches 8

  8. Removal of plutonium and americium from hydrochloric acid waste stream using extraction chromatography

    International Nuclear Information System (INIS)

    Extraction chromatography is under development as a method to lower actinide activity levels in hydrochloric acid (HCl) effluent streams. Successful application of this technique would allow recycle of the largest portion of HCl, while lowering the quantity and improving the form of solid waste generated. The extraction of plutonium and americium from HCl solutions was examined for several commercial and similar laboratory-produced resins coated with n-octyl(phenyl)-N,N-diisobutylcarbamoylmethyphosphine oxide (CMPO) and either tributyl phosphate (TBP), or diamyl amylphosphonate (DAAP). Distribution coefficients for Pu and Am were measured by contact studies in hydrochloric acid solutions over the range of 0.1 - 10.0 N HCl, whole varying REDOX conditions, actinide loading levels, and contact time intervals. Significant differences in the actinide distribution coefficients, and in the kinetics of actinide removal were observed as a function of resin formulation. The usefulness of these resins for actinide removal from HCl effluent streams is discussed

  9. Study on recycle of materials and components from waste streams during decommissioning for heavy water research reactor

    International Nuclear Information System (INIS)

    The recycle of valuable materials from potential waste streams is one of important elements of waste minimization, and it can minimize the environment impact. The recycle of the arising was researched with taking the decommissioning of heavy water research reactor (HWRR) in China Institute of Atomic Energy as an example. By analyzing all the possible wastes that could generate during the decommissioning of HWRR, some amount of materials have potential values to recycle and may be used either directly or after appropriate treatment for other purposes. The research results show that in HWRR decommissioning at least tons of irons, 10 tons of aluminum and 5 tons of heavy water can be recycled by carrying out the waste minimization control measures (eg. waste classification and waste stream segregation), adopting appropriate decontamination technologies, and performing the requirements of clearance. (authors)

  10. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    2001-01-24

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  11. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed to...... recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g View the MathML sourceNH4+-N/m2/d and...

  12. Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls

    Energy Technology Data Exchange (ETDEWEB)

    Belue, A; Fischer, R P

    2007-01-08

    In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES&H Policies of LLNL'', in the ES&H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existing environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for

  13. Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls

    International Nuclear Information System (INIS)

    In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES and H Policies of LLNL'', in the ES and H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existing environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for reduction

  14. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  15. Personal Review: Sources of sulfide in waste streams and current biotechnologies for its removal

    Institute of Scientific and Technical Information of China (English)

    MAHMOOD Qaisar; ZHENG Ping; CAI Jing; HAYAT Yousaf; HASSAN Muhammad Jaffar; WU Dong-lei; HU Bao-lan

    2007-01-01

    Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dissolved sulfide (S2- and HS-) in wastewaters and as H2S in waste gases. Due to its corrosive nature, biological hydrogen sulfide removal processes are being investigated to overcome the chemical and disposal costs associated with existing chemically based removal processes. The nitrogen and sulfur metabolism interacts at various levels of the wastewater treatment process. Hence, the sulfur cycle offers possibilities to integrate nitrogen removal in the treatment process, which needs to be further optimized by appropriate design of the reactor configuration, optimization of performance parameters, retention of biomass and optimization of biomass growth. The present paper reviews the biotechnological advances to remove sulfides from various environments.

  16. Removal of Pb (II from Aqueous Solutions Using Waste Tea Leaves

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2015-03-01

    Full Text Available Background: The presence of lead in natural waters has become an important issue around the world. Lead has been identified as a highly toxic metal that can cause severe environmental and public health problems and its decontamination is of utmost importance. The aim of this work was to evaluate the adsorption of lead (Pb(II on waste tea leaves as a cheap purification method. Methods: In this experimental study, prepared waste tea leaves were used as adsorbent for the removal of Pb (II from aqueous solutions. Adsorption experiments were carried out as batch studies at different contact time, pH, amount of adsorbent, initial metal concentration and temperature. Results: The results showed that maximum removal efficiency was observed at pH 6. Also the adsorption of Pb (II ions increased with decreasing initial metal concentration. The Langmuir isotherm model fits well with the equilibrium adsorption isotherm data and its calculated maximum monolayer adsorption capacity was 166.6 mg g-1 at a temperature of 25±0.1˚C. The kinetic data obtained have been analyzed using pseudo-first-order and pseudo-second-order models. The best fitted kinetic model was found to be pseudo-second-order. Conclusion: The results suggest that tea wastes could be employed as cheap material for the removal of lead from aqueous solutions.

  17. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X−

    International Nuclear Information System (INIS)

    The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I−, Br−, and Cl− anions are revisited and determined more accurately than in previous studies

  18. Biosorption of some ions on different bacterial species from aqueous and radioactive waste solutions

    International Nuclear Information System (INIS)

    The uptake of metal ions, cerium, Ce(III); cobalt, Co(II); thorium, Th(IV); and uranium U(VI) by Bacillus pumilus-LRW1, Bacillus cereus-LRW2 and Micrococcus lylae-LRW3 from aqueous solution was examined as a function of metal ion concentration, pH, temperature, and the presence of some foreign ions. The bacterial species exhibited high affinity to accumulate metal ions from their solutions at pH 4-5.0 ± 0.5. The amount of each ion (in mg) accumulated by one gram dry weight of each bacteria was calculated. The uptake by the Bacillus cereus-LRW2 from aqueous solutions and simulated radioactive wastes were also investigated. Electron microscopic investigations showed that the ions were accumulated around the cell wall. (author)

  19. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  20. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  1. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    International Nuclear Information System (INIS)

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates

  2. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity.

    Science.gov (United States)

    Standeker, Suzana; Novak, Zoran; Knez, Zeljko

    2009-06-15

    Silica aerogels are alternative adsorbents to activated carbon (AC) for the removal and the recovery of organic vapours from gas streams. The adsorption capacity measurements of different silica aerogels were done by mini-column method. Continuous adsorption measurements show that silica aerogels are excellent adsorbents of BTEX vapours from waste gas stream. Compared to the most used adsorbents, such as AC and silica gel, aerogels exhibit capacities which enormously exceed that of both commonly used adsorbents. By increasing the degree of hydrophobicity, aerogels become less effective, but they do not adsorb water vapour from gas stream. Silica monolith aerogels with different degrees of hydrophobicity by incorporating methyltrimethoxysilane (MTMS) or trimethylethoxysilane (TMES) in standard sol-gel synthesis were prepared. Excellent properties of aerogels, obtained with the sol-gel synthesis, were preserved with supercritical drying with CO(2). The degree of hydrophobicity of the aerogels was tested by measuring the contact angle (theta) of a water droplet with the aerogel surface. The aerogels were also characterised by FTIR, nitrogen sorption and DSC/TG measurements. PMID:19095355

  3. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  4. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    International Nuclear Information System (INIS)

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels

  5. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  6. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    Science.gov (United States)

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. PMID:25074717

  7. Removal of cesium from aqueous solutions and radioactive waste stimulants by coprecipitated flotation

    International Nuclear Information System (INIS)

    Coprecipitated flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zinc hexacyanoferrate (ZnHCF) and subsequent flotation of the precipitate. Collectors of different types were tested but pyridinium chloride showed the best performance before undertaking the flotation investigations coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. The developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste stimulants . The obtained results compare favorably with data published for cesium removal by coprecipitation or adsorption processes. Besides, CPF seems to be more advantageous

  8. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste

    OpenAIRE

    Martínez Martínez, María del Rosario; Miralles Esteban, Núria; Hidalgo, S.; Fiol Santaló, Núria; Villaescusa Gil, Isabel; Poch Garcia, Jordi

    2006-01-01

    The sorption of lead and cadmium from aqueous solutions by grape stalk waste (a by-product of wine production) was investigated. The effects of the contact time, pH of the solution, ionic medium, initial metal concentration, other metal ions present and ligands were studied in batch experiments at 20 °C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was described well by the Langmuir isotherm model, with maximum grape stalk sorptio...

  9. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  10. Composition, activity- and heat-inventory of different waste streams from LWR and FBR nuclear fuel cycles

    International Nuclear Information System (INIS)

    According to the German concept, spent reactor fuel elements are intended to be reprocessed. The resulting radioactive wastes are planned to be disposed of in a salt dome. Long-term safety analysis for the nuclear waste repository and the evaluation of waste treatment methods require detailed information about the composition, activity- and heat-inventory of the waste streams. In this report data are listed which were calculated for radioactive wastes from reprocessed fuel elements (high-level waste concentrate, medium-level waste concentrate, dissolver residues) and radioactive wastes from the fabrication of nuclear fuel elements. Data are given for the reprocessing and the fabrication of uranium dioxide and uranium/plutonium mixed oxide fuel elements for light-water reactors. In addition the corresponding waste streams from a fast breeder reactor nuclear fuel cycle are characterized. For the calculations the KORIGEN-code was used with input data for reference-type reactors. The calculation of the time dependent radionuclide composition of the wastes was based on element separation factors which were experimentally determined. (orig.)

  11. Use of watershed characteristics to select control streams for estimating effects of metal mining wastes on extensively disturbed streams

    Science.gov (United States)

    Hughes, Robert M.

    1985-05-01

    Impacts of sediments and heavy metals on the biota of streams in the copper-mining district of southwestern Montana were examined by comparing aquatic communities of impacted streams with those of control streams. Control streams were chosen through the use of a technique that identifies similar streams based on similarities in their watershed characteristics. Significant differences between impacted and control sites existed for surface substrate, riparian vegetation, and the number of macroinvertebrate taxa. These results revealed that: (a) chemical and physical habitats at the impacted sites were disrupted, (b) the presence of trout was an inadequate measure of ecological integrity for these sites, and (c) watershed classification based on a combination of mapped terrestrial characteristics provided a reasonable method to select control sites where potential control sites upstream and downstream were unsuitable.

  12. A study of the use of seeded ultrafiltration for the treatment of thorium-uranium mining waste streams

    International Nuclear Information System (INIS)

    The use of seeded ultrafiltration for the treatment of radioactive waste streams arising from the nuclear industry has demonstrated its high potential as an efficient process for the removal of radionuclides present in the rad waste streams. The experimental data on simulated mining streams has given indications on the suitability of this technique for the treatment of mining waste streams. The results also show that proper choice of absorbers can reduce not only the radioactivity level but also remove most of the products of both the thorium and uranium decay series. Decontamination factors (D F) for the system using manganese dioxide (Mn O2) are only slightly affected by the preparation method. On the contrary, the D F achieved using titanium hydroxide (HTiO) absorber was found to be dependent on the preparation method. The experimental data shows that total activity levels can be reduced to below to below detection limit (3 E-3 Bq/ml). The extent of decontamination of thorium containing waste streams was found to be dependent on the absorber used; in the order diuranate > HTiO> Fe(OH)3> Mn O2. The use of HTiO reduced the decay product activity of almost all the thorium daughters to nearly background levels. A D F of the order of 300 can easily be achieved using diuranate floe. 10 fig., 5 tab

  13. GLASSFORM-Version 1: A spreadsheet or an algorithm for generating preliminary glass formulations for waste streams

    International Nuclear Information System (INIS)

    GLASSFORM-Version 1, a spreadsheet or an algorithm software package, was developed for generating preliminary glass formulations for waste streams. A spreadsheet program on Microsoft Excel 97 for Windows 95 was also developed for predicting key glass properties for laboratory scale vitrification studies of simulated waste streams. The algorithm version based on Modula 2, which can be run on Windows-95 or NT, was developed to plot the glass component ratios versus the waste loading. At this time the algorithm was not developed for predicting the key glass properties. The spreadsheet or the algorithm version is an effective tool for developing preliminary glasses with a potential to be chemically durable, dense for volume reduction, of low viscosity for glass pouring, redox controlled, and resistant to corrosion of melter components such as Inconel 690. For a given solid waste stream oxide composition in wt.% or in grams or in ppm and waste loading in wt.%, the spreadsheet or the algorithm calculates glass component ratios that provide an empirical indication of the quality of a candidate glass. In addition to the component ratios for glass quality indicators, glass property composition relationships for glass durability and processability were incorporated into the spreadsheet version. These spreadsheet or algorithm versions can also be used for studying the effects of such actions as varying waste loadings or of varying individual waste components on glass properties and glass component ratios, provided specific glass property models are incorporated. As an example, the software was applied to candidate phosphate-containing glasses at the Idaho Nuclear Technology and Engineering Center (INTEC, previously Idaho Chemical Processing Plant) and also the borosilicate glasses such as the Savannah River Laboratory Environmental Assessment (EA) glass, the Hanford standard (ARM-1) glass, and the French R7T7 glass. Application of the software to new waste streams such as at

  14. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  15. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g-1) and textile dye reactive red (163 mg g-1), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  16. Biosorption of Methylene Blue from Aqueous Solutions by Diospyrous melanoxylon Leaf Waste

    Directory of Open Access Journals (Sweden)

    Raghvendra G Patil

    2013-04-01

    Full Text Available Waste Tendu (Diospyros melanoxylon leaves from bidi (local cigarette industry has been used as a raw material to produce activated carbon applying sulfuric acid carbonization method. Batch experiments were conducted to assess the potential for the removal of methylene blue dye from aqueous solution using the activated carbon and compared to raw tendu leaves powder and commercial activated carbon. Equilibrium isotherm and kinetic studies have been done by varying the parameters such initial concentration of dye, adsorbent dose, pH of the dye solution, and varying the contact time between the carbon and the dye. It was found that the methylene blue adsorption on tendu waste-based activated carbon conformed to the Langmuir isotherm. The maximum monolayer adsorption capacities were found to be 219.3, 355.9 and 495.1 mg/g for raw tendu waste, carbonized tendu and commercial carbon, respectively. The kinetic studies were well characterized by a pseudo second order kinetic model. The results of this study indicate that raw tendu waste a renewable bioresource, as such as well as its carbonized form are attractive biosorbent for removing a cationic dye from the dye wastewater.DOI: http://dx.doi.org/10.5755/j01.erem.63.1.2735

  17. Removal of Orange 16 reactive dye from aqueous solutions by waste sunflower seed shells

    Directory of Open Access Journals (Sweden)

    TEODOR MALUTAN

    2011-04-01

    Full Text Available In this work, the use of an agro-industrial waste, i.e., sunflower seed shells, was investigated as a sorbent for the removal of Orange 16 reactive dye from aqueous environments. Batch experiments were performed as a function of pH, sorbent dose, dye concentration, temperature and contact time. The per­cent dye removal increased with increasing sorbent dose and temperature of the aqueous solution, and decreased with increasing dye concentration; the re­quired contact time was five hours. The Freundlich, Langmuir, Dubinin–Ra­du­shkevich and Tempkin adsorption isotherms were used to describe the equi­librium sorption data and to determine the corresponding isotherm constants. The thermodynamic parameters, ΔG, ΔH and ΔS, were also determined. These parameters indicated that the sorption of reactive dye onto sunflower seed shells was a spontaneous, endothermic and entropy-driven process. The kinetic data were evaluated by pseudo-first order, pseudo-second order and intra-par­ticle diffusion kinetic models. The results of the kinetic study indicated that the sorption of Orange 16 reactive dye onto sunflower seed shells is a complex process and both chemical surface sorption and intra-particle diffusion contri­bute to the rate-limiting step. Therefore, the sunflower seed shell showed itself to be a promising cheap sorbent for the decolourization of aqueous coloured solutions or effluents.

  18. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  19. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    DEFF Research Database (Denmark)

    Zhang, Yifeng

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater......-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main...... efficiency were investigated. The effects of hydraulic retention time, external resistance, other ionic species in the groundwater and external nitrification on the system performance were also elucidated. Over 90% of nitrate was removed from groundwater without energy input, water pressure, draw solution...

  20. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  1. Industrial symbiosis: high purity recovery of metals from Waelz sintering waste by aqueous SO2 solution.

    Science.gov (United States)

    Copur, Mehmet; Pekdemir, Turgay; Colak, Sabri; Künkül, Asim

    2007-10-22

    Sintering operation in the production of Zn, Cd, and Pb by Waelz process produces a powdery waste containing mainly (about 70%) ZnO, CdO, and PbO. The waste may be referred to as Waelz sintering waste (WSW). The aim of this study is to develop a process for the separation and recovery of the metals from WSW with high purities. The process is based on the dissolution of the WSW in aqueous SO2 solution. The research reported here concentrated on the effect of some important operational parameters on dissolution process. The parameters investigated and their ranges were as follows: SO(2) gas flow rate (V); 38-590 ml/min, stirring speed (W); 100-1000 rpm, reaction temperature (T); 13-60 degrees C, reaction time (t); 1-16 min, and solid-liquid ratio (S/L); 0.1-0.5 g/ml. The results showed that the dissolution rate increased with increasing W, V, and S/L and decreasing T. The best dissolution conditions were found to be V=325 ml/min, W=600 rpm, t=6 min, T=21 degrees C, and S/L=0.1g/ml. Separation of Zn from Cd involved precipitation of ZnSO3 from a mixture solution. The best pH level for the precipitation was observed to be 6. PMID:17482352

  2. Comparison of methods for the measurement of trace metals in power plant waste streams

    International Nuclear Information System (INIS)

    Over the last eight years, the Electric Power Research Institute has sponsored a project (RP 1851-1) to compile data on aqueous discharges from steam electric power plants and to validate the monitoring methods used for measuring trace metals. The validation work has consisted of a series of interlaboratory round robin validation programs using samples of known concentration prepared from typical utility matrices. Matrices that have been used for these tests include: river water, ash pond overflow, seawater, seawater with metal cleaning wastes, and treated chemical metal cleaning wastes. Techniques and metals studied include: Graphite Furnace Atomic Absorption Spectroscopy (As, Cd, Cr, Cu, Ni, Pb, Se), Cold Vapor AAS (Hg), Flame AAS (Fe, Zn) , and Inductively Coupled Plasma (ICP) for 14 elements (Al , Ba, Be, B, Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn). Results were evaluated using a statistical program developed under RP 1851-1. The resulting single operator and overall precision were used to compute limits of detection and quantitation for each of the elements in each matrix. These limits of detection were compared to published EPA detection limits and interpretations of the differences were made. The influence of matrix effects was also examined

  3. Metal Oxide Nanoparticles in Electrospun Polymers and Their Fate in Aqueous Waste Streams

    Science.gov (United States)

    Hoogesteijn von Reitzenstein, Natalia

    Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays---water-soil, water-octanol, water-wastewater sludge and water-surfactant---were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO˙) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO˙ is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3 - were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO 2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.

  4. Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2002-03-01

    The aim of this study is to demonstrate the potential of coals as a low-cost reactive barrier material for environmental protection applications, with the ability to prevent leaching of toxic Cr(VI) and other transition metals. Depending upon the type of ion and the surface functionalities, the uptake can involve ion sorption, ion exchange, chelation and redox mechanisms with the surface functionalities being considered as partners in electron transfer processes. The capacity for Cr(VI) uptake of low rank coals and oxidized bituminous coals has been found to lie within the range 02-0.6 mM g{sup -1}. Air oxidation of bituminous coals can increase their Cr(VI) removal capacities. The effect of air oxidation of coals on uptake capacity was more pronounced for Cr(VI) than Cr(III) but less than for Hg(II) and the other ions (Ca{sup 2+}, Ba{sup 2+}, Zn{sup 2+}, Cd{sup 2}) investigated. As previously found for Hg(II), redox mechanisms plays an important role in Cr(VI) uptake, with resultant Cr(III) is exchanged back into solution by hydrogen ions, but some of the sorbed chromium is irreversibly bound to the coal. The reduction of Cr(VI) alone is often considered a satisfactory solution in view of Cr(III) being essentially nontoxic. 56 refs., 11 figs., 1 tab.

  5. ANALISIS WASTE DALAM ALIRAN MATERIAL INTERNAL DENGAN VALUE STREAM MAPPING PADA PT XYZ

    Directory of Open Access Journals (Sweden)

    Ketut Gita Ayu

    2012-05-01

    Full Text Available The main focus of the research is excess inventory and motion waste which commonly occur in warehouse and production floor. This research is carried out to minimize the average level and eliminate unnecessary motions, with consideration of electronic pull and traceability system characteristics. Product X, the highest-selling product, is the object of this research. To identify the current condition, the current state Value Stream Mapping (VSM is developed as the basis to arrange improvement plan to minimize the wastes. Safety stock is determined through average and maximum consumption difference; and reorder point is determined to comply with pull approach. Average inventory level is calculated using continuous review method. The simulation was conducted and it was shown that 8.29 minutes is the maximum lateness. Thus, safety stock and reorder point are adjusted accordingly to anticipate stockout due to lateness. The improvement of process cycle efficiency is shown to increase from 4.1 % to 5.1 % as projected in future state VSM.

  6. Radionuclides in process and waste streams at an operating uranium mill

    International Nuclear Information System (INIS)

    A survey was carried out at the Nabarlek uranium mill, located in the Alligator Rivers Region of the Northern Territory of Australia, to determine the distribution of radium-226, thorium-230, lead-210 and polonium-210 in process and waste streams. Particular emphasis was placed on waste treatment processes. The survey showed that 20% of the 230Th and only small fractions of the 226Ra, 210Pb and 210Po were mobilized in the leaching circuit. Neutralization of tailings/raffinate slurry to pH 8.5 removed over 99% of the 230Th, 210Pb and 210Po, but the concentration of dissolved 226Ra increased. The performance of barium chloride treatment circuits for the removal of 226Ra was examined. Under optimum conditions, more than 98% of the total radium was removed from decant tailings water containing 80 to 150 Bq 226Ra.L-1 by a mixing tank and a reactor-clarifier. Addition of barium chloride had only a small effect on the long-term concentration of 226Ra in the presence of tailings. (author)

  7. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    Science.gov (United States)

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted. PMID:26250546

  8. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company

  9. Case study and presentation of the DOE treatability group concept for low-level and mixed waste streams

    International Nuclear Information System (INIS)

    The Federal Facility Compliance Act of 1992 requires the US Department of Energy (DOE) to prepare an inventory report of its mixed waste and treatment capacities and technologies. Grouping waste streams according to technological requirements is the logical means of matching waste streams to treatment technologies, and streamlines the effort of identifying technology development needs. To provide consistency, DOE has developed a standard methodology for categorizing waste into treatability groups based on three characteristic parameters: radiological, bulk physical/chemical form, and regulated contaminant. Based on category and component definitions in the methodology, descriptive codes or strings of codes are assigned under each parameter, resulting in a waste characterization amenable to a computerized format for query and sort functions. By using only the applicable parameters, this methodology can be applied to all waste types generated within the DOE complex: radioactive, hazardous, mixed, and sanitary/municipal. Implementation of this methodology will assist the individual sites and DOE Headquarters in analyzing waste management technology and facility needs

  10. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Directory of Open Access Journals (Sweden)

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  11. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    Science.gov (United States)

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program. PMID:25462673

  12. Removal of arsenate and arsenite from aqueous solution by waste cast iron

    Institute of Scientific and Technical Information of China (English)

    Nag-Choul Choi; Song-Bae Kim; Soon-Oh Kim; Jae-Won Lee; Jun-Boum Park

    2012-01-01

    The removal of As(Ⅲ) and As(Ⅴ) from aqueous solution was investigated using waste cast iron,which is a byproduct of the iron casting process in foundries.Two types of waste cast iron were used in the experiment:grind precipitate dust (GPD) and cast iron shot (CIS).The X-ray diffraction analysis indicated the presence of Fe0 on GPD and CIS.Batch experiments were performed under different concentrations of As(Ⅲ) and As(Ⅴ) and at various initial pH levels.Results showed that waste cast iron was effective in the removal of arsenic.The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result.In the adsorption of both As(Ⅲ) and As(Ⅴ),the adsorption capacity of GPD was greater than CIS,mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS.Results also indicated the removal of As(Ⅲ) and As(Ⅴ)by GPD and CIS was influenced by the initial solution pH,generally decreasing with increasing pH from 3.0 to 10.5.In addition,both GPD and CIS were more effective at the removal of As(Ⅲ) than As(Ⅴ) under given experimental conditions.This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  13. Solidification of aqueous tritium-containing wastes with calcium oxide and asphalt

    International Nuclear Information System (INIS)

    A simple method is proposed for solidifying aqueous tritium-containing wastes with calcium oxide and asphalt. We incorporated tritiated calcium hydroxide into molten asphalt at 100-210/degree/C and studied the evolution of tritium (T) oxides there from as well as the extent to which calcium and tritium are leached out of the solidified product. Depending on temperature and heating time, the evolution of HTO from a Ca(OH)OT-asphalt mixture was low (between 5.6 x 10/sup /minus/4/ and 5.9 x 10/sup /minus/4/ wt.% of the original amount). Tritium evolution rates and leaching coefficients of tritium and calcium showed the solidified product to have high stability in water. Conclusions were drawn as to the usefulness of the proposed method

  14. Removal of Lead (II Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-01-01

    Full Text Available The removal of lead (II ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS analysis after adsorption reveals the accumulation of lead (II ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  15. Material stream management of biomass wastes for the optimization of organic wastes utilization; Stoffstrommanagement von Biomasseabfaellen mit dem Ziel der Optimierung der Verwertung organischer Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Boess, Andreas; Fehrenbach, Horst; Giegrich, Juergen; Vogt, Regine [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Dehoust, Guenter; Schueler, Doris; Wiegmann, Kirsten; Fritsche, Uwe [Oeko-Institut, Inst. fuer Angewandte Oekologie, Darmstadt (Germany)

    2007-02-15

    The effective use of the valuable substances found in waste materials can make an important contribution to climate protection and the conservation of fossil and mineral resources. In order to harness the potential contribution of biomass waste streams, it is necessary to consider the potential of the waste in connection with that of the total biomass. In this project, relevant biogenous material streams in the forestry, the agriculture as well as in several industries are studied, and their optimization potentials are illustrated. Scenarios are then developed, while taking various other environmental impacts into considerations, to explore possible optimized utilization of biomass streams and biomass waste substances for the future. Straw that is not needed for humus production and currently left on the field can be used for its energy content. The realisation of this potential would be significant contribution towards climate protection. The energetic use of liquid manure without negatively influencing its application as commercial fertilizer can also be similarly successful because of its large volume. The results of our study also support an increased energetic use of saw residues as fuel (in form of pellets) in small furnaces. For household organic wastes, the report suggests the fermentation with optimized energy use and intensified marketing of the aerobically treated compost as peat substitution. While for waste cooking fat that is currently disposed in the residual waste, a separate collection and direct use in motors that are used as combined heat and power generation are recommended. For meat and bone meal and communal sludge that are not being used substantial currently or in the future, phosphorus can be recovered with promising success from the ash produced when the waste is burnt in mono incinerators. These technical options should however be tested against disposal standard. (orig.)

  16. A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Koel Banerjee

    2012-01-01

    Full Text Available The present study deals with the application of Watermelon Shell, an agricultural waste, for the adsorptive removal of Cu(II from its aqueous solutions. This paper incorporates the effects of time, dose,temperature, concentration, particle size, agitation speed and pH. Analytical techniques have been employed to find pore properties and characteristics of adsorbent materials. Batch kinetic and isotherm studies have also been performed to understand the ability of the adsorbents. The adsorption behavior of the Cu(II has beenstudied using Freundlich, Langmuir and Tempkin adsorption isotherm models. The monolayer adsorption capacity determined from the Langmuir adsorption equation has been found as 111.1 mg/g. Kineticmeasurements suggest the involvement of pseudo-second-order kinetics in adsorptions and is controlled by a particle diffusion process. Adsorption of Cu(II on adsorbents was found to increase on decreasing initial concentration, increasing pH up to 8, increasing temperature, increasing agitation speed and decreasing particlesize. Overall, the present findings suggest that watermelon outer shell is environmentally friendly, efficient and low-cost biosorbent which is useful for the removal of Cu(II from aqueous media.

  17. Adsorption of Reactive Red 198 Azo Dye fromAqueous Solution onto theWaste Coagulation Sludge of theWater Treatment Plants

    Directory of Open Access Journals (Sweden)

    M. Mahmoudi

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives:Much attention has been recently paid on using waste materials as adsorbents for removal of contaminants from water and wastewater. A new low cost waste was examined for its capacity to adsorb RR198, an azo reactive model dye, from an aqueous solution."nMaterials andMethods: The waste was dried, powdered and characterized before being used as an adsorbent. The effects of pH (3-10, adsorbent dose (0.2-3 g, dye concentration and contact time on the adsorption efficiency were investigated. Equilibrium study data were modeled using Langmuir and Freundlich models."nResults: The characterization analysis indicated that itwas composedmainly of ferric hydroxide. The powder had a BET and average pore size of 107 m2/g and 4.5 nm, respectively. The results showed that dye removal was highest at a solution pH of 7 to 8 and a powder dose of 2 g/L. The RR198 removal percentage decreased from 100& to 43& at 140 min contact time when the concentration of dye was increased from 25 mg/L to 100 mg/L, at optimum pH and dosage. The Langmuir equation provided the best fit for the experimental data. The maximum adsorption capacity was calculated to be 34.4 mg/g."nConclusion: According to the obtained results, the water coagulation waste sludge appears to be a suitable low cost and effcient adsorbent for removing reactive azo dyes from waste streams.

  18. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  19. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    Science.gov (United States)

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. PMID:26616933

  20. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    International Nuclear Information System (INIS)

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics

  1. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    International Nuclear Information System (INIS)

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 105 mg kg−1 As and concentrations in stream sediments of up to 2.5 × 104 mg kg−1 As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining mineralogical and

  2. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Rieuwerts, J.S., E-mail: jrieuwerts@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Mighanetara, K.; Braungardt, C.B. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Rollinson, G.K. [Camborne School of Mines, CEMPS, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ (United Kingdom); Pirrie, D. [Helford Geoscience LLP, Menallack Farm, Treverva, Penryn, Cornwall TR10 9BP (United Kingdom); Azizi, F. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2014-02-01

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 10{sup 5} mg kg{sup −1} As and concentrations in stream sediments of up to 2.5 × 10{sup 4} mg kg{sup −1} As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining

  3. Remediation of alkaline intermediate level radioactive aqueous liquid waste stored along with organic waste at PREFRE Tarapur for ion exchange process: a laboratory scale study

    International Nuclear Information System (INIS)

    Dibutyl phosphate (DBP) and monobutyl phosphate (MBP) are formed during reprocessing of spent fuel as degradation products of Tributyl phosphate (TBP). To maintain the efficiency of TBP solvent during its repeated use, the degraded products are removed by sodium carbonate washing of the solvent. This radioactive sodium carbonate solution is stored in a separate tank along with the exhausted TBP solvent. The presence of degraded products of TBP and their complexes, ion exchange treatment of this waste is creating problems during alpha decontamination step. The present paper deals with the remediation of the aqueous phase of the above waste. For the treatment of the aqueous phase of waste, first the TBP degraded products are required to be removed so that the normal ion exchange treatment can be adopted. (author)

  4. Removal of cadmium from aqueous solutions by adsorption onto orange waste

    International Nuclear Information System (INIS)

    The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3 h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data

  5. Removal of cadmium from aqueous solutions by adsorption onto orange waste

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Marin, A.B. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Zapata, V. Meseguer [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)]. E-mail: vzapata@um.es; Ortuno, J.F. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Aguilar, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Saez, J. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Llorens, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)

    2007-01-02

    The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3 h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data.

  6. Purification and characterization of polyphenol oxidase from waste potato peel by aqueous two-phase extraction.

    Science.gov (United States)

    Niphadkar, Sonali S; Vetal, Mangesh D; Rathod, Virendra K

    2015-01-01

    Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel. PMID:25036474

  7. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  8. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles.

    Science.gov (United States)

    Abdur Rahman, Md; Bakker, M C M

    2012-07-01

    A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1-6mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 ± 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external interference and noise when applied in an eddy current separator, make the hybrid sensor suitable for applications such as quality control and sensor controlled separation. PMID:22498575

  9. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent: Part I. the absorption of hydrogen sulfide in metal sulfate solutions

    OpenAIRE

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    The desulfurization of gas streams using aqueous iron(II)sulfate (Fe(II)SO4), zinc sulfate (ZnSO4) and copper sulfate (CuSO4) solutions as washing liquor is studied theoretically and experimentally. The desulfurization is accomplished by a precipitation reaction that occurs when sulfide ions and metal ions are brought into contact with each other. A thermodynamic study has been used to determine a theoretical operating window, with respect to the pH of the scrubbing solution, in which the met...

  10. Sampling and analysis plan for sampling of liquid waste streams generated by 222-S Laboratory Complex operations

    International Nuclear Information System (INIS)

    This Sampling and Analysis Plan (SAP) establishes the requirements and guidelines to be used by the Waste Management Federal Services of Hanford, Inc. personnel in characterizing liquid waste generated at the 222-S Laboratory Complex. The characterization process to verify the accuracy of process knowledge used for designation and subsequent management of wastes consists of three steps: to prepare the technical rationale and the appendix in accordance with the steps outlined in this SAP; to implement the SAP by sampling and analyzing the requested waste streams; and to compile the report and evaluate the findings to the objectives of this SAP. This SAP applies to portions of the 222-S Laboratory Complex defined as Generator under the Resource Conservation and Recovery Act (RCRA). Any portion of the 222-S Laboratory Complex that is defined or permitted under RCRA as a treatment, storage, or disposal (TSD) facility is excluded from this document. This SAP applies to the liquid waste generated in the 222-S Laboratory Complex. Because the analytical data obtained will be used to manage waste properly, including waste compatibility and waste designation, this SAP will provide directions for obtaining and maintaining the information as required by WAC173-303

  11. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream

    Directory of Open Access Journals (Sweden)

    Letricia Barbosa-Pereira

    2013-01-01

    Full Text Available The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE and supercritical fluid extraction (SFE—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v of methanol displayed the highest antioxidant activity (0.20 g L−1, similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1 was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6% as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries.

  12. Screening of Phosphorus-Accumulating Fungi and Their Potential for Phosphorus Removal from Waste Streams.

    Science.gov (United States)

    Ye, Yulin; Gan, Jing; Hu, Bo

    2015-11-01

    While bacteria have been primarily studied for phosphorus (P) removal in wastewater treatment, fungi and their ability to accumulate intracellular polyphosphate are less investigated. P-accumulating fungal strains were screened from soybean plants and surrounding soil by flask cultivation with potato dextrose broth and KH2PO4 in this study. Mucor circinelloides was selected for its high efficiency in P removal efficiency and high cellular P content. Neisser staining and growth-curve analysis confirmed that M. circinelloides stored polyphosphate intracellularly by luxury phosphate uptake. The effect of culture medium compositions on P removal efficiency and cellular P content was also investigated. Monosaccharides (such as glucose and fructose) and organic nitrogen (N, such as urea, and peptone) promoted fungi growth and P accumulation. M. circinelloides also preferred organic phosphates. When glucose, urea, and phytic acid sodium salt were used as the carbon, N, and P source, respectively, the maximum utilization efficiency was 40.1% for P and 7.08% for cellular P content. In addition, the potential of M. circinelloides for P removal from waste streams was investigated. Compared with the non-inoculated control culture, inoculation with M. circinelloides improved the soluble P removal in treating wastewater centrate, screened manure, and digested manure. PMID:26280802

  13. Evaluation of the capabilities of the Hanford Reservation and Envirocare of Utah for disposal of potentially problematic mixed low-level waste streams

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE's mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m3 of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare's commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m3 exceeds the WAC for disposal at Hanford, and about 4,500 m3 exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE's total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams

  14. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    Science.gov (United States)

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems. PMID:24507146

  15. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  16. Method for solidification of aqueous, radioactive wastes in a glass, glass ceramic or glass ceramic-like matrix

    International Nuclear Information System (INIS)

    The invention deals with an improvement of the known method to solidify aqueous, highly radioactive waste in a glass matrix or in a glass ceramic matrix in which the previously denitrated waste water is spray-dried and calined. The calined product occuring can then be mixed with glass-forming substances or with ground glass grit and then be melted in a crucible or oven to a homogeneous mass. By applying such a method however, the spray nozzle in the spray calcinator gets blocked up after a time. In order to avoid this the invention suggests to add kieselguhr-like material in solid form to the aqueous waste solution prior to spray drying. The kieselguhr has a composition of about 90 wt.% SiO2; 4 wt.% Al2O3; 3.3 wt.% Na2O+K2O; 1.3 wt.% Fe2O3, as well as MgO, CO, TiO2 and P2O5 with grain sizes of more than 70 wt.% grain size distribution between 10 and 40 mum. The kieselguhr is added to the aqueous waste solution in a quantity of 50 to 60 g/l. (orig./PW)

  17. Recovery of fish communities in receiving streams after improvements in waste water treatment at Department of Energy (DOE) facilities

    International Nuclear Information System (INIS)

    Biological monitoring programs have documented recovery of fish communities in four receiving streams associated with three DOE facilities in Oak Ridge, Tennessee. Since 1985, twice-yearly electrofishing surveys have been conducted at sites immediately downstream of each facility. These surveys indicated that increases in abundance and species richness of fish communities were associated with the implementation of various remedial actions such as new waste water treatment facilities, closure of waste disposal ponds, and waste stream dechlorination. Increased abundance was the initial indicator of fish community recovery. Density increased from 0--0.1 fish/m2 to 3.0--29.7 fish/m2 at the four stream sites. Species richness also increased from 0--5 species per sample to 4--12 species per sample at the four sites. The increases in species number involved only fish species that were not sensitive to environmental disturbance. Fish community responses corresponded with treatment start-up dates; the responses generally were incremental, as increments of treatment occurred. Although recovery was evident at each site, the extent of recovery varied and did not match density and species richness patterns in the fish communities of suitable upstream or offsite reference sites

  18. Model of truly closed circuit of waste stream flow in metallurgical enterprise

    OpenAIRE

    Gajdzik, B.; E. Michlowicz; Zwolińska, B.; P. Kisiel

    2014-01-01

    The publication presents flows of metallurgical waste in manufacturing metallurgical enterprise. On the basis of analysis the structure of waste flows and the way of waste management within the enterprise or outside it were described. In the observation of the metallurgical waste flow a universal model of waste flow structure was created. It may be used in waste management of a metallurgical enterprise with full production cycle (from raw materials processes, through steel production up to fi...

  19. Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    2001-10-02

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

  20. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution.

    Science.gov (United States)

    Manoj Kumar Reddy, P; Mahammadunnisa, Sk; Ramaraju, B; Sreedhar, B; Subrahmanyam, Ch

    2013-06-01

    Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ∼585 m(2)/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H(2)O(2)-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics. PMID:23233187

  1. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    Science.gov (United States)

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar. PMID:26100325

  2. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass

    International Nuclear Information System (INIS)

    In the present study adsorption of Cr(VI) from aqueous solutions onto different agricultural wastes, viz., sugarcane bagasse, maize corn cob and Jatropha oil cake under various experimental conditions has been studied. Effects of adsorbent dosage, Cr(VI) concentration, pH and contact time on the adsorption of hexavalent chromium were investigated. The concentration of chromium in the test solution was determined spectrophotometrically. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of chromium ions on to studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents. Maximum adsorption was observed in the acidic medium at pH 2 with a contact time of 60 min at 250 rpm stirring speed. Jatropha oil cake had better adsorption capacity than sugarcane bagasse and maize corn cob under identical experimental conditions. The applicability of the Langmuir and Freundlich adsorption isotherms was tested. The results showed that studied adsorbents can be an attractive low cost alternative for the treatment of wastewaters in batched or stirred mode reactors containing lower concentrations of chromium

  3. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  4. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen

    2011-12-01

    Present study explores the potentiality of locally available cellulose, hemicellulose and lignin-rich agricultural by-product sugarcane bagasse (SB) for the removal of erythrosin B (EB) and methylene blue (MB) from aqueous waste. The SB has been characterized by Fourier transform infrared and scanning electron microscopy analytical techniques. Batch experiments have been carried out to determine the influence of parameters like initial dye concentration, pH of the medium, contact time between the adsorbate and adsorbent, weight of adsorbent and system temperature on the removal of EB and MB. Optimum conditions for adsorption are found to be pH 9, temperature 308 K and an equilibration time of 1 h. Under these conditions equilibrium isotherms have been analysed by Langmuir and Freundlich isotherm equations. Based on the Langmuir adsorption isotherm model, the predicted maximum monolayer adsorption capacities of SB for EB and MB are found to be 500 mg g-1 (at 328 K) and 1,000 mg g-1 (at 308 K), respectively. The separation factor reveals the favourable nature of the isotherm for the studied dyes—SB system. The thermodynamic study indicates that the adsorptions of dyes are spontaneous and endothermic process. High temperatures favour EB adsorption whereas optimum temperature for MB adsorption is 318 K.

  5. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  6. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles

    International Nuclear Information System (INIS)

    Highlights: ► A new sensor system is developed for metal grade measurement of falling bottom ash particles. ► The system is hybrid, consisting of an optical and an electromagnetic sensor. ► Grade of ECS concentrated bottom ash in 1–6 mm sieve size accurately measured up to 143 p/s feed rate. ► Accuracy reached was 2.4% with respect to manual analysis. ► Measures for elimination of both stationary and stochastic errors are discussed. - Abstract: A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1–6 mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 ± 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external

  7. Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam

    OpenAIRE

    Nguyen, Hoa Huu; Heaven, Sonia; Banks, Charles

    2014-01-01

    Anaerobic digestion (AD) was introduced in Vietnam more than 10 years ago, but at a small scale to deal with agricultural wastes, manure, etc. Despite its many advantages, AD does not yet make a significant contribution to resolving Vietnams urban waste issues due to a lack of information, data and experience. This paper, using an energy model of food waste digestion, provides a usable source of information regarding energy potential of food waste generated from urban areas in Vietnam in form...

  8. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera abyssinica)

    OpenAIRE

    Dula, Tamirat; Siraj, Khalid; Kitte, Shimeles Addisu

    2014-01-01

    This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order k...

  9. Spatio-Temporal Statistical Modeling of Livestock Waste in Streams. Livestock Series Report 5

    OpenAIRE

    Noel Cressie; James J. Majure

    1996-01-01

    Surface water runoff from large livestock operations finds its way into streams, rivers, and ultimately the larger watershed area. In this paper, the model measures the nitrate concentrations in the upper North Bosque (Texas) watershed, which is a region of concentrated dairy operations. Using 15 months of daily data collected at 17 stream monitoring sites allows the authors to obtain optimal predictions of unknown nitrate concentration at all stream locations at any given time, along with a ...

  10. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK.

    Science.gov (United States)

    Rieuwerts, J S; Mighanetara, K; Braungardt, C B; Rollinson, G K; Pirrie, D; Azizi, F

    2014-02-15

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1-5 orders of magnitude, with a maximum concentration in mine wastes of 1.8×10(5)mgkg(-1) As and concentrations in stream sediments of up to 2.5×10(4)mgkg(-1) As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. PMID:24295744

  11. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1999-08-23

    Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

  12. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream

    Institute of Scientific and Technical Information of China (English)

    TIAN Bao-guo; SI Ji-tao; ZHAO Yan; WANG Hong-tao; HAO Ji-ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  13. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    Science.gov (United States)

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases. PMID:17915696

  14. Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig 639 Resin

    International Nuclear Information System (INIS)

    A proposed facility is being designed for the immobilization of Hanford underground storage tank radioactive waste. The waste is pretreated to split it into Low Activity Waste (LAW) and High Level Waste (HLW) streams for separate vitrification. One unit process in the facility is designed to remove radioactive technetium by ion-exchange from a highly alkaline aqueous phase

  15. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  16. Liquid secondary waste. Waste form formulation and qualification

    International Nuclear Information System (INIS)

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford's IDF.

  17. Characterization of past and present waste streams from the 325 Radiochemistry Building

    Energy Technology Data Exchange (ETDEWEB)

    Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-01

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site.

  18. Characterization of past and present waste streams from the 325 Radiochemistry Building

    International Nuclear Information System (INIS)

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site

  19. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    International Nuclear Information System (INIS)

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  20. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  1. The exploitation of municipal solid waste (MSW) and related waste paper streams in the production of bioalcohol

    OpenAIRE

    Elliston, Adam

    2012-01-01

    An organic fraction from municipal solid waste (MSW) comprised 38.9% (w/w) glucose (cellulose and starch) indicating its potential as a substrate for bioalcohol production. Microscopy indicated that the fraction was rich in waste paper fibres. Much paper waste comes from shredded office paper (50.4% w/w glucose) which is unrecyclable because of poor fibre length. This, and microbiological hazards associated with the use of MSW led to its choice as model substrate for study. Saccharificatio...

  2. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    International Nuclear Information System (INIS)

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H2SO4, HNO3, NaOH, Na2CO3, CaCl2 and NaCl. Among these reagents, 0.1 M HNO3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔGo, ΔHo and ΔSo, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined

  3. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: Implication for the nuclear waste storage

    Science.gov (United States)

    Truche, Laurent; Berger, Gilles; Destrigneville, Christine; Pages, Alain; Guillaume, Damien; Giffaut, Eric; Jacquot, Emmanuel

    2009-08-01

    Sulphate reduction by hydrogen, likely to occur in deep geological nuclear waste storage sites, was studied experimentally in a two-phase system (water + gas) at 250-300 °C and under 4-16 bars H 2 partial pressure in hydrothermal-vessels. The calculated activation energy is 131 kJ/mol and the half-life of aqueous sulphate in the presence of hydrogen and elemental sulphur ranges from 210,000 to 2.7 × 10 9 years at respective temperatures of 90 °C, the thermal peak in the site and 25 °C, the ambient temperature far from the site. The features and rate of the sulphate reduction by H 2 are close to those established for TSR in oil fields. The experiments also show that the rate of sulphate reduction is not significantly affected in the H 2 pressure range of 4-16 bars and in the pH range of 2-5, whereas a strong increase is measured at pH below 2. We suggest that the condition for the reaction to occur is the speciation of sulphate dominated by non symmetric species ( HSO4- at low pH), and we propose a three steps reaction, one for each intermediate-valence sulphur species, the first one requiring H 2S as electron donor rather than H 2. We distinguish two possible reaction pathways for the first step, depending on pH: reduction of sulphate into sulphur dioxide below pH 2 or into thiosulphate or sulphite + elemental sulphur in the pH range 2-5.

  4. Heterogeneous catalysis contribution for the denitration of aqueous nuclear radioactive waste with formic acid

    International Nuclear Information System (INIS)

    The chemical denitration aims to reduce the nitric acid concentration in nuclear fuel reprocessing aqueous wastes by adding formic acid as a reducing agent. The denitration reaction exhibits an induction period, which duration is related to the time needed by the key intermediate of the reaction, i.e. nitrous acid, to reach a threshold concentration in the reaction medium. The addition of a Pt/SiO2 catalyst in the reaction mixture suppresses the induction period of the chemical denitration. The aim of the present work is to identify the role of Pt/SiO2 in the catalytic denitration mechanism. The experimental work is based on the comparison of catalytic tests performed with various catalysts, in order to identify the intrinsic characteristics of Pt/SiO2 that might influence its activity for the reaction. Catalytic denitration results show that Pt/SiO2 acts only by speeding up the nitrous acid generation in the solution until its concentration reaches the threshold level of 0,01 mol L-1 in the experimental conditions. Catalysts activity is evaluated by quantifying the nitrous acid generated on the platinum surface during the induction period of the homogeneous denitration reaction. The large platinum aggregates reactivity is greater than the one of nano-sized particles. The study of the key step of the catalytic denitration reaction, the catalytic generation of nitrous acid, clarifies the role of Pt/SiO2. The homogeneous denitration is initiated thanks to a redox cycle on the catalyst surface: an initial oxidation of Pt0 by nitric acid, which is reduced into nitrous acid, followed by the reduction of the passivated 'Ptox' by formic acid. Furthermore, a platinum reduction by formic acid prior to the catalytic test prevents any platinum leaching from the catalyst into the nitric solution, being all the more significant as platinum dispersion is high. (author)

  5. Manipulation of the ash flow temperature and viscosity of a carbonaceous Sasol waste stream

    Energy Technology Data Exchange (ETDEWEB)

    J.C. van Dyk; M.J. Keyser; F.B. Waanders; M. Conradie [Syngas and Coal Technologies, Sasolburg (South Africa). Sasol Technology, R& amp; D Division

    2010-01-15

    In 2001 Sasol investigated selected the Lurgi Multi Purpose Gasification (MPG) process for converting a Sasol-Lurgi MK III fixed bed dry bottom coal gasifier at the former Sasolburg coal-to-liquids plant to a slagging gasification process. The MPG process was considered anoption suitable for the gasification of feedstocks which are difficult to manage. The most obvious differences between the feedstocks previously gasified, compared to the Sasol dusty tar, were found to be the viscosity and melting point of the dusty tar. The viscosity of the Sasol dusty tar mixture was higher than a factor of 10 ofpreviously used feedstocks. Another important feedstock property is the ash melting point of the feed within the gasifier. Ash particles fed with the tar melt in the high temperature zone of the flame. Molten ash particles which hit the gasifier wall will solidify and stick to the wall if the wall temperature is below the melting point of the ash. The melting point of the dusty tar ash is 1380{sup o}C and a fluxing agent has to be added to reduce the melting temperature below 1250{sup o}C to limit excessive wear of the refractory lining. It was concluded that the viscosity of dusty tar can be decreased with the addition of specific waste solvent streams. The ash fusion temperatures of dusty tar can be lowered by adding a fluxing agent. The addition of spent Fe-catalyst as fluxing agent was found to be less effective than limestone. The addition of Fe can cause the acid/base ratio to change so that the ash fusion temperature increases. The results show in both oxidizing and reducing atmospheres the Fe-catalyst was transformed into the slag melt as either Fe{sub 2}O{sub 3} under oxidizing conditions and FeO under reducing conditions. The slag showed no sign of metallic Fe and was very homogeneous under oxidizing and reducing conditions. 17 refs., 7 figs., 8 tabs.

  6. The influence of non-aqueous radiochemical processes on radiation parameters of spent fuel and radioactive wastes

    International Nuclear Information System (INIS)

    The influence of the technology applied for separation of radioactive elements on radiation parameters of fuel and wastes when using non-aqueous radiochemical processing of spent fuels are studied. The results of calculational modelling the fuel recycle in the BREST-1200 reactor closed fuel cycle are considered. The data characterizing contribution of separate elements in potential biological danger (dose) and the dependence of the potential biological danger of the wastes on regenerated fuel cooling time are discussed. It is shown that plutonium and americium give the main contributions into the fuel potential biological danger in time period of 40-1000 years. For monitored cooling of 120-150 years the balance between natural uranium potential biological danger and that of wastes at different waste compositions is achievable. The fission product contributions into potential biological danger differ slightly for different variants of the processing technology. The 99Tc contribution is noticeable only in the case of metallurgical processing. The conclusion is made that differences in radiochemical technologies applied for waste fracturing and fuel purification degree do not influence in principle on capabilities for radiation balance achieving. For a long-time perspective the radiation balance is determined by plutonium, americium and their decay products. The technology peculiarities may change radiation characteristics of wastes only at separate stages of cooling and do not affect greatly the radiation balance as a whole

  7. High-temperature incineration of radioactive waste. Exploitation of the FLK-60 slagging incinerator for the treatment of different waste streams contaminated with plutonium

    International Nuclear Information System (INIS)

    During the years 1983 and 1984 the FLK-60 high-temperature slagging incinerator at Mol was used for incineration of simulated plutonium waste and BWR power-station waste after extensive technical adaptations. A total of 10 tons of simulated waste containing 15 g of plutonium and 6 tons of simulated waste containing 624 MBq of 60Co and 393 MBq of cesium isotopes was successfully treated. The average volume reduction factor was 18. Global decontamination factors of 280 000 for 137Cs and 22 000 000 for 239Pu were measured. Routine working and interventions for maintenance and repair could be carried out safely in alpha-conditions. The report describes in detail the technical adaptations and the behaviour of the various parts of the installation during the 39 runs carried out in the contract period. It also gives the chemical and radiochemical composition of the granules and secondary waste streams. The plutonium-based leach rate of the granules is in the range of 2 x 10-5 to 3.5 x 10-4 g/cm2. d. Finally typical mass, energy and radioactivity balances of the installation are given and various options for the final conditioning of the granules are briefly discussed. 6 refs, 6 figs, 29 tables

  8. Characterization of past and present solid waste streams from 231-Z

    International Nuclear Information System (INIS)

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 8% of the TRU waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium Metallurgy Laboratory (231-Z) Facility. The purpose of this report is to characterize the radioactive solid wastes generated by 231-Z using process knowledge, existing records and oral history interviews. Since 1944 research and development programs utilizing plutonium have been conducted at 231-Z in the fields of physical metallurgy, property determination, alloy development, and process development. The following are sources of solid waste generation at the 231-Z Facility: (1) General Weapons Development Program, (2) process waste from gloveboxes, (3) numerous classified research and development programs, (4) advanced decontamination and decommissioning technologies, including sectioning, vibratory finishing, electropolishing, solution process, and small bench-scale work, (5) general laboratory procedures, (6) foundry area, (7) housekeeping activities, and (8) four cleanout campaigns. All solid wastes originating at 231-Z were packaged for onsite-offsite storage or disposal. Waste packaging and reporting requirements have undergone significant changes throughout the history of 231-Z. Current and historical procedures are provided in Section 4.0. Information on the radioactive wastes generated at 231-Z can be found in a number of documents and databases, most importantly the Solid Waste Information and Tracking System database and Solid Waste Burial Records. Facility personnel also provide excellent information about past waste generation and the procedures used to handle that waste. Section 5.0 was compiled using these sources

  9. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [NSTec

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  10. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O3/H2O2 and O3/γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  11. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  12. MEASUREMENT OF ENTRAINED ORGANIC DROPLET SIZES AND TOTAL CONCENTRATION FOR AQUEOUS STREAMS FROM THE CAUSTIC-SIDE SOLVENT EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C; Samuel Fink, S; Michael Restivo, M; Dan Burns, D; Wallace Smith, W; S Crump, S; Zane Nelson, Z; Thomas Peters, T; Fernando Fondeur, F; Michael Norato, M

    2007-02-01

    The Modular Caustic-Side Solvent Extraction Unit (MCU) and the Salt Waste Processing Facility will remove radioactive cesium from Savannah River Site supernate wastes using an organic solvent system. Both designs include decanters and coalescers to reduce carryover of organic solvent droplets. Savannah River National Laboratory personnel conducted experimental demonstrations using a series of four 2-cm centrifugal contactors. They also examined organic carryover during operation of a CINC (Costner Industries Nevada Corporation) V-5 contactor under prototypical conditions covering the range of expected MCU operation. This report details the findings from those studies and the implications on design for the MCU.

  13. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K. PMID:27177317

  14. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K. [Division of Environmental and Chemical Engineering, Research Institute of Industrial Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: drkvijy@chonbuk.ac.kr; Yun, Yeoung-Sang [Division of Environmental and Chemical Engineering, Research Institute of Industrial Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: ysyun@chonbuk.ac.kr

    2007-03-06

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H{sub 2}SO{sub 4}, HNO{sub 3}, NaOH, Na{sub 2}CO{sub 3}, CaCl{sub 2} and NaCl. Among these reagents, 0.1 M HNO{sub 3} gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined.

  15. Applying value stream mapping techniques to eliminate non-value-added waste for the procurement of endovascular stents

    International Nuclear Information System (INIS)

    Objectives: To eliminate non-value-adding (NVA) waste for the procurement of endovascular stents in interventional radiology services by applying value stream mapping (VSM). Materials and methods: The Lean manufacturing technique was used to analyze the process of material and information flow currently required to direct endovascular stents from external suppliers to patients. Based on a decision point analysis for the procurement of stents in the hospital, a present state VSM was drawn. After assessment of the current status VSM and progressive elimination of unnecessary NVA waste, a future state VSM was drawn. Results: The current state VSM demonstrated that out of 13 processes for the procurement of stents only 2 processes were value-adding. Out of the NVA processes 5 processes were unnecessary NVA activities, which could be eliminated. The decision point analysis demonstrated that the procurement of stents was mainly a forecast driven push system. The future state VSM applies a pull inventory control system to trigger the movement of a unit after withdrawal by using a consignment stock. Conclusion: VSM is a visualization tool for the supply chain and value stream, based on the Toyota Production System and greatly assists in successfully implementing a Lean system.

  16. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    2012-09-15

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater desalination, and biosensors. Although the technologies are promising, a number of hurdles need to be overcome before that field applications are economically feasible. The main purpose of this work was to improve the performance, reduce the construction cost, and expand the application scopes of MFC-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main removal mechanism of nitrogen and phosphorus was algae biomass uptake, while nitrification and denitrification process contributed to part of nitrogen removal. The key factors such as algae concentration, COD/N ratios and photoperiod were systemically studied. A self-powered submersible microbial electrolysis cell was developed for in situ biohydrogen production from anaerobic reactors. The hydrogen production increased along with acetate and buffer concentration. The hydrogen production rate of 32.2 mL/L/d and yield of 1.43 mol-H2/mol-acetate were achieved. Alternate exchanging the function between the two cell units was found to be an effective approach to inhibit methanogens. A sensor, based on a submersible microbial fuel cell, was developed for in situ monitoring of microbial activity and biochemical oxygen demand in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Temperature, pH, conductivity and inorganic solid content were significantly affecting the sensitivity of the sensor. The sensor showed

  17. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  18. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  19. REDUCING THE WASTE STREAM: BRINGING ENVIRONMENTAL, ECONOMICAL, AND EDUCATIONAL COMPOSTING TO A LIBERAL ARTS COLLEGE

    Science.gov (United States)

    The Northfield, Minnesota area contains three institutions that produce a large amount of compostable food waste. St. Olaf College uses a large-scale on-site composting machine that effectively transforms the food waste to compost, but the system requires an immense start-up c...

  20. Kinetic and Equilibrium Studies of Cesium-137 Adsorption on Olive Waste from Aqueous Solutions Kinetic and Equilibrium Studies of Cesium-137 Adsorption on Olive Waste from Aqueous Solutions

    International Nuclear Information System (INIS)

    The agricultural by-product olive pomace either in its raw material or carbonized form was used for the removal of 137Cs from aqueous solutions. Experimental studies were conducted to evaluate and optimize some affecting factor such as contact time, adsorbent dosage, ph value and initial 137Cs concentration ions. The sorption process was described by pseudo first-order, pseudo second-order and Intra-particle diffusion models. Data have been interpreted in terms of Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The obtained data showed that 120 minutes are sufficient time to attain equilibrium and maximum % removal of 137Cs was found 80% and 99% for raw olive pomace and its carbonized form, respectively. The maximum sorption capacity of raw and carbonized adsorbent for cesium removal was 0.360 and 0.565 mol/g respectively.

  1. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2011-01-01

    Full Text Available Beyond energy efficiency, there are now urgent challenges around the supply of resources, materials, energy, food and water. After debating energy efficiency for the last decade, the focus has shifted to include further resources and material efficiency. In this context, urban farming has emerged as a valid urban design strategy, where food is produced and consumed locally within city boundaries, turning disused sites and underutilized public space into productive urban landscapes and community gardens. Furthermore, such agricultural activities allow for effective composting of organic waste, returning nutrients to the soil and improving biodiversity in the urban environment. Urban farming and resource recovery will help to feed the 9 billion by 2050 (predicted population growth, UN-Habitat forecast 2009. This paper reports on best practice of urban design principles in regard to materials flow, material recovery, adaptive re-use of entire building elements and components (‘design for disassembly’; prefabrication of modular building components, and other relevant strategies to implement zero waste by avoiding waste creation, reducing wasteful consumption and changing behaviour in the design and construction sectors. The paper touches on two important issues in regard to the rapid depletion of the world’s natural resources: the built environment and the education of architects and designers (both topics of further research. The construction and demolition (C&D sector: Prefabricated multi-story buildings for inner-city living can set new benchmarks for minimizing construction wastage and for modular on-site assembly. Today, the C&D sector is one of the main producers of waste; it does not engage enough with waste minimization, waste avoidance and recycling. Education and research: It’s still unclear how best to introduce a holistic understanding of these challenges and to better teach practical and affordable solutions to architects, urban

  2. Characterization of past and present solid waste streams from the plutonium finishing plant

    International Nuclear Information System (INIS)

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE)

  3. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  4. Continuous environmental monitoring for aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Jones, G. Jr.

    1980-05-01

    An aquatic environmental monitor has been developed that will continuously monitor aqueous waste streams from coal processing plants. The monitor contains three different instruments: a continuous chemical oxygen demand monitor and two continuous-flow fluorometers with different excitation-emission characteristics. A prototype instrument was fabricated and evaluated for several different applications. The details of the instrument design and results of its evaluation are presented in this report.

  5. Recovery, purification and concentration of plutonium and americium from the aqueous wastes discharged in the reprocessing process studies

    International Nuclear Information System (INIS)

    For recovering and purifying plutonium and americium from the aqueous wastes occurring in the process studies on reprocessing, a standard procedure has been established for use in the laboratory works, through the preliminary tests of the precipitation as hydroxides and the anion exchange in nitrate media. The procedure was proven in the treatment of actual wastes, of which the results were contributed to determine the process conditions in the plutonium purification and product concentration of the JAERI Reprocessing Test Plant. The preliminary tests also include washing of U and Am recovery from the anion-exchanger in nitrate media, direct ion-exchange recovery of Pu from the TBP phase and elution of Am from the cation-exchanger. (auth.)

  6. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  7. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  8. Removal of Xylene fromWaste Air Stream Using Catalytic Ozonation Process

    Directory of Open Access Journals (Sweden)

    H Mokarami

    2010-10-01

    Full Text Available "n "n "nBackgrounds and Objectives: Volatile organic compounds (VOCs are one of the common groups of contaminants encountered in the industrial activities, emitted through air stream into the atmosphere. To prevent the human and environmental health from the adverse effects of VOCs, air streams containing VOCs need to be treated before discharging to environment. This study was aimed at investigating the catalytic ozonation process for removing xylene from a contaminated air stream."nMaterials and Methods: In the present work, a bench scale experimental setup was constructed and used for catalytic ozonation of xylene. The performance of catalytic ozonation process was compared with that of single adsorption and ozonation in removal of several concentration of xylene under the similar experimental conditions."nResults: The results indicated that the efficiency of catalytic ozonation was higher than that of single adsorption and ozonation in removal of xylene. The emerging time and elimination capacity of xylene for inlet concentration of 300 ppm was 1.4 and 5.8 times of those in adsorption system. The activated carbon acted as catalyst in the presence of ozone and thus attaining the synergistic effect for xylene degradation."nConclusion: catalytic ozonation process is an efficient technique the treatment of air streams containing high concentrations of xylene. The adsorption systems can also be simply retrofitted to catalytic ozonation process and thereby improving their performance for treating VOCs.

  9. A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste And Orange Peel for Adsorption of Violet B Dye from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2014-12-01

    Full Text Available Adsorption of violet B azo dye from aqueous solutions was studied by different cellulose agriculturalwaste materials (almond shell (AS, pistachio shell (PS, walnut shell (WS, Tea waste (TW and orange peel (OP. Cellulose agricultural waste sorbents characterized by FTIR and SEM methods. The effects of different parameters such as contact time, pH, adsorbent dosage and initial dye concentration were studied.Maximum removal of dye was obtained at contact time of 90 min and pH 11.The adsorption of violet B was fitted by pseudo-second-order kinetic model.The Langmuir isotherm model was better fitted than Freundlichmodel. The results showed that the adsorption efficiency of violet B by cellulose agricultural waste materials is as followed: Almond shell > Orange peel > Pistachio shell > Tea waste> Walnut shell.The maximum adsorption capacity was obtained 96, 82, 71.4, 55.5 and 48.7 mg g−1 for AS, OP, PS, TW and WS, respectively.

  10. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  11. Development of column grade ammonium molybdo phosphate granules for the separation of cesium from acidic waste streams in reprocessing plants (Paper No. AL-44)

    International Nuclear Information System (INIS)

    Ammonium molybdo phosphate(AMP) microcrystals can be converted into granular form suitable for column operations if a suitable binder is used. The column filled with such AMP granules, can be effectively used to remove cesium from the reprocessing waste streams prior to final disposal. But difficulty arises as most of the monomers affect AMP. A process has been developed to obtain AMP in granualar form suitable for column operations which does not alter the capacity, kinetics and stability of the exchanger. The performance of the grunular form AMP in treating acidic waste streams of reprocessing plants has been described here. (author)

  12. PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS

    Science.gov (United States)

    Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...

  13. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years....

  14. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years....

  15. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  16. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  17. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II from aqueous solution using formaldehyde treated waste tea leaves

    Directory of Open Access Journals (Sweden)

    Jasmin Shah

    2015-05-01

    Full Text Available The sorption characteristic of Ni (II from aqueous solution using formaldehyde treated waste tea leaves as a low cost sorbent has been studied. The effect of pH, contact time, sorbent dose, initial metal ion concentration and temperature were investigated in batch experiments. The equilibrium data were fitted into four most common isotherm models; Freundlich, Langmuir, Tempkin and Dubinin–Radushkevich (D–R. The Langmuir model described the sorption isotherm best with maximum monolayer sorption capacity of 120.50 mg g−1. Four kinetic models, pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich were employed to explain the sorption mechanism. The kinetics of sorption data showed that the pseudo-second-order model is the best with correlation coefficient of 0.9946. The spontaneous and exothermic nature of the sorption process was revealed from thermodynamic investigations. The effect of some common alkali and alkaline earth metal ions were also studied which showed that the presence of these ions have no effect on the sorption of Ni (II. The results showed that waste tea leaves have the potential to be used as a low cost sorbent for the removal of Ni (II from aqueous solutions.

  18. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution

    International Nuclear Information System (INIS)

    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe3O4-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe3O4) were prepared by chemical precipitation of a Fe2+ and Fe3+ salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe3O4 were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90 x 10-2 min-1 at 100 mg L-1 and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L-1. It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Qo, was found to be (38.3) mg g-1. The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.

  19. Development of a novel process for the removal of selected organic compounds from waste streams

    OpenAIRE

    Enright, Deirdre

    2015-01-01

    peer-reviewed The aim of this research work was to develop a solid regenerable catalytic adsorbent for the removal of organics from industrial wastewater. This was to be achieved by a two-step process. The first step involved the removal of the aqueous contaminant of concern by adsorption onto a selective adsorbent/catalyst. The second step involved the oxidation of this adsorbed pollutant into carbon dioxide, water and nitrogen whilst minimising the formation of nitrogen oxides. 2-nitroph...

  20. Partitioning and recovery of neptunium from high level waste streams of PUREX origin using 30% TBP

    International Nuclear Information System (INIS)

    237Np is one of the longest-lived nuclides among the actinides present in the high level waste solutions of reprocessing origin. Its separation, recovery and transmutation can reduce the problem of long term storage of the vitrified waste to a great extent. With this objective, the present work was initiated to study the extraction of neptunium into TBP under the conditions relevant to high level waste, along with uranium and plutonium by oxidising it to hexavalent state using potassium dichromate and subsequently recovering it by selective stripping. Three types of simulated HLW solutions namely sulphate bearing (SB), with an acidity of ∼ 0.3 M and non-sulphate wastes originating from the reprocessing of fuels from pressurised heavy water reactor (PHWR) and fast breeder reactor (FBR) with acidities of 3.0 M HNO3 were employed in these studies. The extraction of U(VI), Np(VI) and Pu(VI) was very high for PHWR- and FBR-HLW solutions, whereas for the SB-HLW solution, these values were less but reasonably high. Quantitative recovery of neptunium and plutonium was achieved using a stripping solution containing 0.1 M H2O2 and 0.01 M ascorbic acid at an acidity of 2.0 M. Since, cerium present in the waste solutions is expected to undergo oxidation in presence of K2Cr2O7, its extraction behaviour was also studied under similar conditions. Based on the results, a scheme was formulated for the recovery of neptunium along with plutonium and was successfully applied to actual high level waste solution originating from the reprocessing of research reactor fuels. (author). 19 refs., 2 figs., 17 tabs

  1. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS, TEST PLAN 09T1690-1

    International Nuclear Information System (INIS)

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  2. Assessment of the Regenerative Potential of Organic Waste Streams in Lagos Mega-City

    Science.gov (United States)

    Opejin, Adenike Kafayat

    There is never a better time for this study than now when Nigeria as a country is going through the worst time in power supply. In Lagos city about 12,000 tons of waste is generated daily, and is expected to increase as the city adds more population. The management of these waste has generated great concern among professionals, academia and government agencies. This study examined the regenerative management of organic waste, which accounts for about 45% of the total waste generated in Lagos. To do this, two management scenarios were developed: landfill methane to electricity and compost; and analyzed using data collected during field work and from government reports. While it is understood that landfilling waste is the least sustainable option, this study argued that it could be a viable method for developing countries. Using U.S EPA LandGEM and the IPCC model, estimates of capturable landfill methane gas was derived for three landfills studied. Furthermore, a 35-year projection of waste and landfill methane was done for three newly proposed landfills. Assumptions were made that these new landfills will be sanitary. It was established that an average of 919,480,928m3 methane gas could be captured to generate an average of 9,687,176 MW of electricity annually. This makes it a significant source of power supply to a city that suffers from incessant power outages. Analysis of composting organics in Lagos was also done using descriptive method. Although, it could be argued that composting is the most regenerative way of managing organics, but it has some problems associated with it. Earthcare Compost Company processes an average of 600 tons of organics on a daily basis. The fraction of waste processed is infinitesimal compared to the rate of waste generated. One major issue identified in this study as an obstacle to extensive use of this method is the marketability of compost. The study therefore suggests that government should focus on getting the best out of the

  3. Cleaning of ammonium-polluted streams of waste water; Reinigung von ammoniumbelasteten Abwasserstroemen

    Energy Technology Data Exchange (ETDEWEB)

    Breithaupt, A. [Prantner GmbH, Verfahrenstechnik, Reutlingen (Germany); Gulde, A. [Prantner GmbH, Verfahrenstechnik, Reutlingen (Germany); Weigert, M. [Prantner GmbH, Verfahrenstechnik, Reutlingen (Germany)

    1996-02-01

    Heavily ammonium-polluted waste water accrues from many different sectors. Depending on the type of the waste water and special cleaning requirements, it must be treated by biological or physico-chemical processes. A combination method consisting of ammonia stripping and catalytic oxidation is described. (orig./SR) [Deutsch] Stark mit Ammonium belastete Abwaesser fallen in einer Vielzahl von verschiedenen Entstehungsbereichen an. Diese muessen, abwasserspezifisch und in Abhaengigkeit von den speziellen Reinigungsanforderungen, durch biologische oder physikalisch-chemische Verfahren behandelt werden. Ein Kombinationsverfahren aus Ammoniakstrippung und katalytischer Oxidation wird beschrieben. (orig.)

  4. Methods and Production of Cementation Materials for Immobilisation into Waste Form. Research of Cementation Processes for Specific Liquid Radioactive Waste Streams of Radiochemical Plants

    International Nuclear Information System (INIS)

    In the near future Russian Federation is planning to use industrial cementation facilities at two radiochemical combines - PA 'Mayak' and Mountain Chemical Combine. Scope of the research within the IAEA CRP contact No. 14176 included the development of cementation processes for specfic liquid radioactive waste streams that are present in these enterprisers. The research on cementation of liquid waste from spent nuclear fuel reprocessing at PA 'Mayak' allowed obtaining experimental data characterizing the technological process and basic characteristics of the produced cement compounds (e.g. mechanical strength, water resistance, frost resistance, flowability, etc.) immobilizing different streams of waste (e.g. hydrated-salt sludges, filter material pulps, mixture of hydrated salt slurries and filter material pulps, tritium liquid waste). Determined optimum technological parameters will allow industrial scale production of cement compound with required quality and higher flowability that is necessary for providing uniform filling of compartments of storage facilities at these sites. The research has been also carried out for the development of cementation technology for immobilization of pulps from storage tanks of Mountain Chemical Combine radiochemical plant. Cementation of such pulps is a difficult technological task because pulps are of complex chemical composition (e.g. hydroxides of manganese, iron, nickel, etc., as well as silicon oxide) and a relatively high activity. The research of cementation process selection for these pulps included studies of the impact of sorbing additive type and content on cement compounds leachability, flowability, impact of cement compound age to its mechanical strength, heat generation of cement compounds and others. The research results obtained allowed testing of cementation facility with a pulse type mixer on the full-scale. Use of such mixer for pulp cementation makes possible to prepare a homogeneous cement compound with the

  5. Recent results of the investigation of a micro-fluidic sampling chip and sampling system for hot cell aqueous processing streams

    International Nuclear Information System (INIS)

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and micro-fluidic sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. Different sampling volumes have been tested. It appears that the 10 μl volume has produced data that had much smaller relative standard deviations than the 2 μl volume. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The micro-fluidic-based robotic sampling system's mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of micro-fluidic sampling chips. (authors)

  6. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  7. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  8. Solidification Of The Hanford Law Waste Stream Produced As A Result Of Near-Tank Continuous Sludge Leaching And Sodium Hydroxide Recovery

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  9. Valorization of waste streams, "From food by-products to worm biomass"

    NARCIS (Netherlands)

    Laarhoven, B.; Elissen, H.J.H.; Temmink, B.G.; Buisman, C.J.N.

    2013-01-01

    A new technology is investigated to produce a high quality animal feed source by converting safe industrial food wastes into worm biomass. The freshwater worm Lumbriculus variegatus (common name: blackworm) has been selected for this purpose. This species can be used to reduce and concentrate munici

  10. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  11. BioREFINE-2G project – Engineering of industrial yeast strains for production of dicarboxylic acids from side and waste streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina;

    2014-01-01

    compounds can be polymerised to biodegradable polymersthat can find application as plastics, coatings or adhesives. To reach the goals, the identification of relevant metabolic routes, strain engineering and the development of a toolbox for manipulation of industrial S. cerevisiae strains are required. Here......, we present advanced genetic engineering tools applicable for generally hardly amenable strains with industrial background. This involves tools forstable heterologous gene (over-)expression and a strategy for fast performance of gene disruption inmultiple ploidy strains. The use of the developed...... generation biorefineries utilize less than 20% of the biomass feedstock for ethanol production. Major side-streams are produced such as pentose and lignin waste streams that are used for biogas and energy production. Converting the carbon from these waste streams into added-value products would improve the...

  12. Management of high-level waste arisen from SNF reprocessing by non-aqueous methods

    International Nuclear Information System (INIS)

    Composition, properties and outputs of high-active products and waste have been studied after pyro-electrochemical reprocessing of BN-350 and BOR-60 reactor irradiated MOX fuel. The main amount of fission products, actinides and impurities is concentrated in a small volume of solid recycled products - uranium dioxides of two types and high-active waste - phosphate deposit and spent salt electrolyte. The phosphate deposit and electrolyte are subject to the final disposal but uranium dioxides are returned to the cycle after a certain period of storage. Based on the study of waste properties it was concluded that they can be kept in sealed stainless steel containers without treatment for a long time. Both types of waste may be immobilized in phosphate glass or in monazite-type and kosnarite-type (NZP) ceramics to make an additional safety barrier before the final disposal. (authors)

  13. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  14. Revised Arrangements for the Management of Solid and Non-Aqueous Radioactive Waste - 12452

    International Nuclear Information System (INIS)

    In 2010, Atomic Weapons Establishment (AWE) identified a requirement to implement revised management arrangements for the generation, storage and disposal of radioactive waste. A thorough review of the current arrangements/processes was undertaken which included both legal compliance requirements and the identification of business improvement opportunities. On completion of this review a suitable project team was established and in 2011 an integrated Radioactive Waste Management process was implemented throughout the business. Initial results have shown measurable improvements within Radioactive Waste management compliance, operator understanding and increased business efficiency. Through the development and implementation of the revised working arrangements AWE has been able to continue to demonstrate both legal compliance to its regulators along with business efficiency and effectiveness improvements. Simple to follow process maps have improved employees understanding of Radioactive Waste management requirements, provided them with easily accessible information and ensured the business operates in a single coherent manner. The implementation of a modern electronic data management system has ensured all waste related information is easily retrievable and appropriately maintained. The additional functions that have been built into the system have reduced the potential for human error and increased the overall efficiency of the Waste Management department through the use of the automated report generation functionality. (authors)

  15. Pretreatment of different waste streams for improvement in biogas production; Foerbehandlingsteknikers betydelse foer oekat biogasutbyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarvari Horvath, Ilona (Hoegskolan i Boraas (Sweden)); del Pilar Castillo, Maria (JTI (Sweden)); Loren, Anders; Brive, Lena; Ekendahl, Susanne; Nordman, Roger (SP, Boraas (Sweden)); Kanerot, Mija (Boraas Energi och Miljoe AB (Sweden))

    2010-07-01

    Biological breakdown of organic municipal and industrial waste to biogas is already in use today. The technology is of outmost importance to attain the environmental goals that our society has set regarding to sustainable development. Of decisive economic importance is the ability to obtain an increased amount of biogas from the same amount of substrate. Alternative resources for biogas production are at the same time of great interest in order to enable a large expansion of biogas production. The goal of applying a suitable pre-treatment step before anaerobic digestion is to open up the molecular structure of inaccessible biopolymers in order to facilitate access to the carbon for microorganisms involved in biological breakdown and fermentation to biogas. Our study shows that introducing a pretreatment step opens new perspectives for biogas production. Treatment of paper residuals by steam explosion increased methane production up to 400 Nm3/ton dry matter, to a double amount of methane yield compared to that of untreated paper. A novel method for pretreatment with an environment-friendly solvent N-methylmorpholine-N-oxide (NMMO) was also tested on lignocellulose-rich waste fractions from forest and agricultural. The NMMO-treatment increased the methane yields of spruce chips and triticale straw by 25 times (250 Nm3/ton dry matter), and by 6 times (200 Nm3/ton dry matter), respectively, compared to that of the untreated materials. Keratin-rich feather waste yielded around 200 Nm3 methane/ton dry matter, which could be increased to 450 Nm3/ton after enzymatic treatment and to 360 Nm3/ton after either chemical treatment with lime, or after biological treatment with a recombinant bacterial strain of Bacillus megaterium. However, the gain in increased amount of methane after a pretreatment step should be weighted against a possible increase in energy usage generated by the pretreatment. We have therefore performed a case study in which the energy balance for a biogas

  16. Material-stream-specific waste treatment with particular regard to thermal processes; Stoffstromspezifische Abfallbehandlung im Hinblick auf thermische Verfahren. Fachseminar

    Energy Technology Data Exchange (ETDEWEB)

    1998-09-01

    The experts` seminar on ``Material-stream-specific waste treatment with particular regard to thermal processes`` is the third event of its kind to be held by the Zentrum fuer Abfallforschung (ZAF=Centre for Waste Research). The purpose of the seminar is to de-emotionalise the debate going on between environment-oriented citizens, authorities, scientists, operators, and manufacturers and to find solutions that are acceptable in terms of costs as well as environmental impact. The seminar deals with traditional methods such as grate firing as well as with new methods such as low-temperature carbonisation, thermoselect, Noell-KRC, or RCP processes. [Deutsch] Das Fachseminar `Stoffstromspezifische Abfallbehandlung im Hinblick auf thermische Verfahren` ist die 13. Veranstaltung dieser Art, die durch das Zentrum fuer Abfallforschung (ZAF) durchgefuehrt wird. Das Seminar soll dazu beitragen, die Diskussion zwischen umweltbewuessten Bevoelkerungsgruppen, Behoerden, Wissenschaft, Betreibern und Herstellern zu versachlichen und dabei Loesungen zu finden, die hinsichtlich der Kosten und der Umweltbeeintraechtigung vertretbar sind. Es werden sowohl die traditionellen Verfahren wie Rostfeuerung als auch neue Verfahren wie Schwelbrenn-, Thermoselekt-, Noell-KRC- oder RCP-Verfahren behandelt. (orig.)

  17. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    International Nuclear Information System (INIS)

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less

  18. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  19. Recovery of Pd(II) and Ru(III) from aqueous waste using inorganic ion-exchanger

    International Nuclear Information System (INIS)

    The applicability of mica minerals and zeolites for the efficient removal of valuable platinum group metals (PGMs), Pd(II) and Ru(III) from aqueous waste by sorption has been investigated. The sorption of PGMs Pd(II) onto mica-mineral, muscovite and Ru(III) onto natrolite as zeolite have been studied as a function of (i) exchanger composition, (ii) temperature at which sorption process takes place and (iii) the presence of competing cations such as Na+, K+, Mg2+. These three factors have remarkable effect on the sorption process. The synthesized gel was characterized by X-ray powder diffraction, energy dispersive spectrometry, thermogravimetric analysis and scanning electron microscopy. (author)

  20. Lixiviation of plutonium contaminated solid wastes by aqueous solution of electro-generated reducing agents

    International Nuclear Information System (INIS)

    This study concerns the development of the new concept for the decontamination of plutonium bearing solid wastes, based on the lixiviation of the wastes using electro-generated reducing agents. First, a comparative study of the kinetics of the dissolution of pure PuO2 (prepared by calcination of Pu (IV) oxalate at 450 C) in sulfuric acid media, with different reducing agents, was realized. Qualitatively these reagents can be sorted in three groups: 1 / fast kinetics for Cr(II), V(II) and U(III); 2 / slow kinetics for Ti(III); 3 / very slow kinetics for V(III) and U(VI). In order to contribute to the design of an electrochemical reactor for the generation of the reducing agents usable for the lixiviation of plutonium bearing solid wastes, the study of the diffusion coefficients of both oxidized and reduced forms of different redox couples, at different temperatures, was undertaken. The results of this study also permits, from the knowledge of the diffusional activation energy of the ions, to conclude that the dissolution of pure plutonium dioxide under the action of these reducing agents is not diffusion limited. The feasibility of the plutonium decontamination treatment of synthetic or real solid wastes was then studied at laboratory scale using electro-generated V(II), which is with Cr(II) among the best reagents. The efficiency of the treatment was good, (80 pc Pu solubilisation yield), especially in the case of cellulosic or miscellaneous organic wastes. (author)

  1. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Radioactive cesium (primarily 137Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO2/Al2O3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  2. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  3. Simultaneous production of high-quality water and electrical power from aqueous feedstock’s and waste heat by high-pressure membrane distillation

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Hanemaaijer, J.H.; Brouwer, H.; Medevoort, J. van; Jansen, A.; Altena, F.; Vleuten, P. van der; Bak, H.

    2015-01-01

    A new membrane distillation (MD) concept (MemPower) has been developed for the simultaneous production of high-quality water from various aqueous feedstocks with cogeneration of mechanical power (electricity). Driven by low-grade heat (waste, solar, geothermal, etc.) a pressurized distillate can be

  4. Removal of Pb (II) from Aqueous Solutions Using Waste Tea Leaves

    OpenAIRE

    Mehrdad Cheraghi; Soheil Sobhanardakani; Raziyeh Zandipak; Bahareh Lorestani; Hajar Merrikhpour

    2015-01-01

    Background: The presence of lead in natural waters has become an important issue around the world. Lead has been identified as a highly toxic metal that can cause severe environmental and public health problems and its decontamination is of utmost importance. The aim of this work was to evaluate the adsorption of lead (Pb(II)) on waste tea leaves as a cheap purification method. Methods: In this experimental study, prepared waste tea leaves were used as adsorbent for the removal of Pb (II) ...

  5. Using CaO- and MgO-rich industrial waste streams for carbon sequestration

    International Nuclear Information System (INIS)

    To prevent rapid climate change, it will be necessary to reduce net anthropogenic CO2 emissions drastically. This likely will require imposition of a tax or tradable permit scheme that creates a subsidy for negative emissions. Here, we examine possible niche markets in the cement and steel industries where it is possible to generate a limited supply of negative emissions (carbon storage or sequestration) cost-effectively. Ca(OH)2 and CaO from steel slag or concrete waste can be dissolved in water and reacted with CO2 in ambient air to capture and store carbon safely and permanently in the form of stable carbonate minerals (CaCO3). The kinetics of Ca dissolution for various particle size fractions of ground steel slag and concrete were measured in batch experiments. The majority of available Ca was found to dissolve on a time scale of hours, which was taken to be sufficiently fast for use in an industrial process. An overview of the management options for steel slag and concrete waste is presented, which indicates how their use for carbon sequestration might be integrated into existing industrial processes. Use of the materials in a carbon sequestration scheme does not preclude subsequent use and is likely to add value by removing the undesirable qualities of water absorption and expansion from the products. Finally, an example scheme is presented which could be built and operated with current technology to sequester CO2 with steel slag or concrete waste. Numerical models and simple calculations are used to establish the feasibility and estimate the operating parameters of the scheme. The operating cost is estimated to be US$8/t-CO2 sequestered. The scheme would be important as an early application of technology for capturing CO2 directly from ambient air

  6. Adsorption of Reactive Red 198 Azo Dye fromAqueous Solution onto theWaste Coagulation Sludge of theWater Treatment Plants

    OpenAIRE

    Mahmoudi, M; G.R Moussavi; H. Asilian

    2010-01-01

    "n "n "nBackgrounds and Objectives:Much attention has been recently paid on using waste materials as adsorbents for removal of contaminants from water and wastewater. A new low cost waste was examined for its capacity to adsorb RR198, an azo reactive model dye, from an aqueous solution."nMaterials andMethods: The waste was dried, powdered and characterized before being used as an adsorbent. The effects of pH (3-10), adsorbent dose (0.2-3 g), dye concentration and contact time on the adsorptio...

  7. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    Science.gov (United States)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  8. Utilization of multiple waste streams for acid gas sequestration and multi-pollutant control

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Dilmore, R.M.; Hedges, S.W.; Howard, B.H.; Romanov, V. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA (United States)

    2012-03-15

    A novel CO{sub 2} sequestration concept is reported that combines SO{sub 2} removal and CO{sub 2} capture and sequestration, using a bauxite-processing residue which is a waste product and with waste brine water from oil/gas production. The bauxite residue/brine mixture of 46/54 v/v exhibited a CO{sub 2} sequestration capacity of > 0.078 mol L{sup -1} when exposed to pure CO{sub 2} at 20 C and 2.73 MPa. At a higher temperature of 140 C, a bauxite residue/brine mixture of 80/20 v/v indicated a CO{sub 2} sequestration capacity of > 0.094 mol L{sup -1} when exposed to pure CO{sub 2} at 3.85 MPa. Under the same reaction conditions, an identical ratio of reaction mixture exposed to simulated flue gas at a similar initial pressure was capable of sequestering 0.16 mol of CO{sub 2} and > 99.9 % of the applied SO{sub 2}. Calcite formation was verified as a product of bauxite/brine mixture carbonation. The caustic bauxite residues (pH 12.5-13.5) and acidic wastewater brine (pH 3-5) are also effectively neutralized after participating as reactive reagents in the conceptual process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Processing of materials and waste streams by electron and ion beams

    International Nuclear Information System (INIS)

    The use of electron beams on an industrial scale is well-established. Some 700 accelerators with electron energies ranging from 0.12 to 16 MeV are producing a wide range of products based largely on polymer crosslinking, sterilization of biomedical supplies and curing of coatings. Of the three categories, only the last involves major energy savings. The main benefits associated with the other two categories are product properties not readily obtained by competitive methods. Radiation treatment of sewage sludge and waste water have had some minor triumphs. Simultaneous removal of NOx and SOx from flue gases by electron irradiation has been demonstrated; the potential market for powerful accelerators required for this field is many hundreds. A wide range of environmental problems ranging from organic chlorides in drinking water to military wastes (biological, nuclear and chemical) are the subject of research programs based on electron processing. Attention is also directed to the recent development of several ingenious products based on high energy ion beams (> 10 MeV/nucleon) including smart porous membranes and organic nonlinear optical devices

  10. Use of thermal analysis techniques (TG–DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    International Nuclear Information System (INIS)

    Highlights: ► Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. ► Results were compared with C mineralization during 90-day incubation, FTIR and 13C NMR. ► Thermal analysis reflected the differences between the organic wastes before and after the incubation. ► The calculated energy density showed a strong correlation with cumulative respiration. ► Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO2 respired indicated that the organic matter in the TS was the least stable, while that in the CS was the

  11. Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers

    Science.gov (United States)

    Chowdhury, Shamik; Saha, Papita Das

    2012-09-01

    Biosorption potential of hen feathers (HFs) to remove methylene blue (MB) from aqueous solutions was investigated. Batch experiments were carried out as function of different process parameters such as pH, initial dye concentration, biosorbent dose and temperature. The optimum conditions for removal of MB were found to be pH 7.0, biosorbent dose = 1.0 g, and initial dye concentration = 50 mg L-1. The temperature had a strong influence on the biosorption process. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms with the Langmuir isotherm showing the best fit at all temperatures studied. The maximum monolayer sorption capacity was determined as 134.76 mg g-1 at 303 K. According to the mean free energy values of sorption ( E) calculated using the D-R isotherm model, biosorption of MB onto HFs was chemisorption. Kinetic studies showed that the biosorption of MB followed pseudo second-order kinetics. The activation energy ( E a) determined using the Arrhenius equation confirmed that the biosorption involved chemical ion-exchange. Thermodynamic studies showed that the biosorption process was spontaneous and exothermic. To conclude, HFs is a promising biosorbent for MB removal from aqueous solutions.

  12. Thermodynamic study of the adsorption of chromium ions from aqueous solution on waste corn cobs material

    Directory of Open Access Journals (Sweden)

    Rafael A. Fonseca-Correa

    2014-12-01

    Full Text Available The paper shows the results of a study obtaining activated carbon from corn cobs and determining its use as an adsorbent for the removal of Cr3+ from aqueous solutions. The finely ground precursor was subjected to pyrolysis at 600 and 900 °C in a nitrogen atmosphere and chemical activation with H2O2 and HNO3. The effects of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained were tested. The samples were characterised chemically and texturally. Were obtained microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and exhibited differences acid-base character of the surface. The results obtained shows that a suitable good option of the activation procedure for corncobs permits the production of economic adsorbents with high sorption capacity for Cr3+ from aqueous solutions. A detailed study of immersion calorimetry was performed with carbons prepared from corn cobs to establish possible relationships with these materials between the enthalpies of immersion and textural and chemical parameters.

  13. AUTOMATED REMOVAL OF BROMINATED FLAME RETARDANT MATERIAL FROM A MIXED E-WASTE PLASTICS RECYCLING STREAM - PHASE II

    Science.gov (United States)

    p>Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to there concerns e-waste recycling is a rapidly growing...

  14. AUTOMATED IDENTIFICATION AND SORTING OF RARE EARTH ELEMENTS IN AN E-WASTE RECYCLING STREAM - PHASE I

    Science.gov (United States)

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to these concerns, e-waste recycling is a rapidly gro...

  15. Idaho Chemical Processing Plant (ICPP) injection well: Operations history and hydrochemical inventory of the waste stream

    International Nuclear Information System (INIS)

    Department of Energy (DOE), United States Geological Survey (USGS), and Idaho Chemical Processing Plant (ICPP) documents were searched for information regarding service disposal operations, and the chemical characteristics and volumes of the service waste emplaced in, and above, the Eastern Snake River Plain aquifer (ESRP) from 1953-1992. A summary database has been developed which synthesizes available, but dispersed, information. This assembled data records spatial, volumetric and chemical input patterns which will help establish the initial contaminant water characteristics required in computer modeling, aid in interpreting the monitoring well network hydrochemical information, and contribute to a better understanding of contaminant transport in the aquifer near the ICPP. Gaps and uncertainties in the input record are also identified with respect to time and type. 39 refs., 5 figs., 5 tabs

  16. Cleanup of hydrochloric acid waste streams from actinide processes using extraction chromatography

    International Nuclear Information System (INIS)

    Extraction chromatography is under development as a method to lower actinide activity levels in hydrochloric acid (HCl) effluent steams. Successful application of this technique would allow recycle of the largest portion of HCl, while lowering the quantity and improving the form of solid waste generated. The extraction of plutonium and americium from HCl solutions was examined for several commercial and similar laboratory-produced resins coated with n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and either tributyl phosphate (TBP), or diamyl amylphosphonate (DAAP). Distribution coefficients for Pu and Am were measured by contact studies in 1-10 M HCl, while varying REDOX conditions, actinide loading levels, and contact time intervals. Significant differences in the actinide distribution coefficients, and in the kinetics of actinide removal were observed as a function of resin formulation

  17. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deyi, E-mail: xixizhang@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Luo, Heming; Zheng, Liwen; Wang, Kunjie; Li, Hongxia; Wang, Yi; Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A novel approach on recycle of waste phosphogypsum was exploited. Black-Right-Pointing-Pointer Phosphogypsum was utilized to prepare hydroxyapatite nanoparticles with high purity. Black-Right-Pointing-Pointer nHAp derived from PG exhibits excellent adsoprtion capacity for fluoride. Black-Right-Pointing-Pointer Fluoride adsorbs onto nHAp mainly by electrostatic interaction and hydrogen bond. - Abstract: In the present study, waste phosphogypsum (PG) was utilized firstly to prepare hydroxyapatite nanoparticles (nHAp) via microwave irradiation technology. The nHAp derived from PG exhibited a hexagonal structure with the particle size about 20 nm Multiplication-Sign 60 nm and high purity. Meanwhile, the adsorption behaviour of fluoride onto the nHAp derived from PG was investigated to evaluate the potential application of this material for the treatment of the wastewater polluted with fluoride. The results indicate that the nHAp derived from PG can be used as an efficient adsorbent for the removal of fluoride from aqueous solution. The maximum adsorption capacities calculated from Langmuir-Freundlich model were 19.742, 26.108, 36.914 and 40.818 mg F{sup -}/g nHAp for 298, 308, 318 and 328 K, respectively. The pseudo-second order kinetic model was found to provide the best correlation of the used experimental data compared to the pseudo-first order and the adsorption isotherm could be well defined by Langmuir-Freundlich equation. The adsorption mechanism investigation shows that electrostatic interaction and hydrogen bond are the main driving force for fluoride uptake onto nHAp derived from waste PG.

  18. Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Suthor, Vishandas; Rafique, Ejaz; Yasin, Muhammad

    2015-02-01

    The adsorption of cadmium (Cd), chromium (Cr), and lead (Pb), widely detected in wastewater, by unmodified and modified banana stalks, corn cob, and sunflower achene was explored. The three agricultural wastes were chemically modified with sodium hydroxide (NaOH), in combination with nitric acid (HNO3) and sulfuric acid (H2SO4), in order to improve their adsorptive binding capacity. The experiments were conducted as a function of contact time and initial metal ion concentrations. Of the three waste materials, corn cob had the highest adsorptive capacity for Pb than Cr and Cd. The NaOH-modified substrates had higher adsorptive capacity than the acid modified samples. The chemical treatment invariably increased the adsorption capacity between 10 and 100 %. The Langmuir maximum sorption capacity (q m) of Pb was highest (21-60 mg g(-1) of banana, 30-57 mg g(-1) of corn cob, and 23-28 mg g(-1) of sunflower achene) and that of Cd was least (4-7 mg g(-1) of banana, 14-20 mg g(-1) of corn cob, and 11-16 mg g(-1) of sunflower achene). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. The results demonstrate that the agricultural waste materials used in this study could be used to remediate water polluted with heavy metals. PMID:25626568

  19. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes

    International Nuclear Information System (INIS)

    The adsorption of U(VI) onto dried and pyrolyzed tea and coffee wastes was investigated. The adsorption properties of the materials were characterized by measuring uranium uptake as a function of solution pH, kinetics and adsorption isotherms. pH profile of uranium adsorption where UO22+ is expected to be the predominant species was measured between pH 0 and 4. Both Langmuir and Freundlich adsorption models were used to describe adsorption equilibria, and corresponding constants evaluated. Using the Langmuir model, the maximum adsorption capacity of uranium by dried tea and coffee wastes was 59.5 and 34.8 mg/g, respectively at 291 K. Adsorption thermodynamic constants, ΔHdeg ΔSdeg and ΔGdeg were also calculated from adsorption data obtained at three different temperatures. Adsorption thermodynamics of uranyl ions on dried tea and coffee systems indicated spontaneous and endothermic processes. Additionally, a Lagergren pseudo-second-order kinetic model was used to fit the kinetic experimental data for both adsorbents and the constants evaluated. Dried tea and coffee wastes proved to be effective adsorbents with high capacities and significant advantage of a very low cost. (author)

  20. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions.

    Science.gov (United States)

    Ibrahim, M N Mohamad; Ngah, W S Wan; Norliyana, M S; Daud, W R Wan; Rafatullah, M; Sulaiman, O; Hashim, R

    2010-10-15

    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism. PMID:20619537

  1. Oxidative degradation of spent ion-exchange resins and alpha-bearing wastes in aqueous medium

    International Nuclear Information System (INIS)

    Different treatment processes of spent ion-exchange resins aiming at volume reduction are under development or on fullscale operation. A new volume reduction technique for treatment of ion-exchange resin materials was developed using hydrogen peroxide as oxidizing agent in presence of catalyst. Details information for this technique is introduced in this report. A newly developed simple and economically attractive technique for oxidative decomposition of spent ion-exchange resins was studied aiming at achieving remarkable volume and weight reduction. Different factors affecting semi-continuous oxidative degradation process e.g. effect of addition rate of oxidant, pH value, grain size of resin as well as type and concentration of catalyst were studied, keeping the reaction time and weight of resins constant for both cationite and anionite forms. In conclusion, the oxidative degradation of ion-exchange resin in aqueous medium could be considered as a very attractive process. (M.N.)

  2. Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass

    International Nuclear Information System (INIS)

    This paper reports the feasibility of using various agricultural residues viz. sugarcane bagasse (SCB), maize corncob (MCC) and Jatropha oil cake (JOC) for the removal of Cd(II) from aqueous solution under different experimental conditions. Effect of various process parameters, viz., initial metal ion concentration, pH, and adsorbent dose has been studied for the removal of cadmium. Batch experiments were carried out at various pH (2-7), adsorbent dose (250-2000 mg), Cd(II) concentration (5-500 mgl-1) for a contact time of 60 min. The maximum cadmium removal capacity was shown by JOC (99.5%). The applicability of Langmuir and Freundlich isotherm suggests the formation of monolayer of Cd(II) ions onto the outer surface of the adsorbents. Maximum metal removal was observed at pH 6.0 with a contact time of 60 min at stirring speed of 250 rpm with an adsorbent dose of 20 g l-1 of the test solution. The maximum adsorption of cadmium (II) metal ions was observed at pH 6 for all the adsorbents viz; 99.5%, 99% and 85% for JOC, MCC, and SCB, respectively. Order of Cd(II) removal by various biosorbents was JOC > MCC > SCB. JOC may be an alternative biosorbent for the removal of Cd(II) ions from the aqueous solution. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of Cd(II) ions on to studied adsorbents. These results can be helpful in designing a batch mode system for the removal of cadmium from dilute wastewaters

  3. Radiological assessment of petroleum pipe scale waste streams from dry rattling operations - 16323

    International Nuclear Information System (INIS)

    Petroleum pipe scale consists of inorganic solids, such as barium sulfate. These solids can precipitate out of brine solutions that are pumped out of oil wells as part of normal oil field operations. The precipitates can nucleate on down hole pipe walls, causing the buildup of hard scales in some tubular in a pipe string, while leaving others virtually untouched. Once the scale buildup is sufficient to restrict flow in the string significantly, the tubular are removed from service. Once removed, tubular are transported to storage yards for storage, subsequent inspection, and possible recycling. Many of the tubular are never returned to service, either because the threads were too damaged, pipe walls too thin, or the scale buildup too thick. Historically, the tubular refurbishment industry used primarily one of two processes, either a high-pressure water lance or a dry, abrasive 'rattling' process to ream pipes free of scale buildup. The dry rattling process was primarily for touching up new pipes that have rusted slightly during storage; however, pipes with varying levels of scale were reamed, leaving only a thin coating of scale on the inner diameter, and then returned to service. Chemically, radium is an analog for barium, and radium is present in parts-per-million quantities in the brines produced from downhole pumping operations. Thus, some of the scales contain radium salts. When the radium-bearing scales are reamed with a dry process there is the possibility of generating radioactive aerosols, as well as bulk waste materials. At Texas A and M University, and under the university's radioactive materials broad scope license, an outdoor laboratory was constructed and operated with dry rattling equipment restored to the 'as was' condition typical of historical pipe cleaning yards. A battery of measurements were obtained to determine the radiological and aerodynamic properties of scale-waste products liberated from the inner surfaces of a variety of tubular

  4. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    Science.gov (United States)

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-01

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. PMID:22191490

  5. Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

    Directory of Open Access Journals (Sweden)

    Paolo Viotti

    2015-11-01

    Full Text Available The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP. The two-stage air process combines a water scrubber and a biotrickling filter (BTF in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively. Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

  6. Adsorption of lanthanides in aqueous solution aiming to study of nuclear wastes

    International Nuclear Information System (INIS)

    The problem of radioactive wastes is a concern of world-wide scope, a time that does not still have a defined local for the construction of a repository for radioactive wastes of high level. One of the preliminary stages for the choice of the place more appropriate is the geologic study associated to the experimental studies of adsorption of the involved chemical species in the process. In this work, a sample of basaltic rock was used, of the South Region of the Formation Serra Geral, collected in Frederico Westphalen Town (RS), that it will be probably a candidate to the rock hostess for location of radioactive wastes. Two experiments have been carried out through, namely: 'Test Batch' and Percolating, both under atmospheric pressure, at the ambient temperature of 25 deg C, with the purpose to study the capacity of sorption of the rare earth elements - REE. The REE are used in this work in function of its analogy with the actinides, aiming at to investigate the chemistry behavior and the speciation of the same in natural waters, searching the possibility of geologic storage of radioactive wastes, a time that the adsorption of the REE depends on variables of the environment as pH, ionic strength, temperature and presence of ligands, as carbonates and constituent of surfaces of minerals. Experiment of percolating of the REE was carried through, 100ppb, in the basalt (with 80 mesh) in solutions with ionic strength 1= 0,025 M and 1=0,5 M of NaCl. pH was controlled in a range of 5,6 the 7,6 with HNO3 addition. The concentrations were analyzed by ICP-MS. The 'Batch Test' is an efficient form of studying sorption/desorption isotherms, beyond values of the reason between the distributions solid/solution and estimation of the solubility. The percolating experiment, was carried through under pH controlled around 6, and allowed to verify the behaviour of heavy REE in comparison with the light REE. (author)

  7. Partitioning of plutonium from aqueous acidic wastes using a hollow fiber supported liquid membrane technique

    International Nuclear Information System (INIS)

    Transport of Pu(IV) from 3M HNO3 solutions across Aliquat-336/ Solvesso-100 by hollow fiber supported liquid membrane (HFSLM) was studied. Permeability of Pu(IV) through a bundle of hollow fibers made-up with 20 lumens, of 67 cm2 surface area, 9 cm length and operated at a flow rate of 10-8 m3/s on recycle mode was examined. More than 80% Pu from oxalate bearing wastes generated during reconversion process could be transported through 10% Aliquat-336/Solvesso-100 into hydroxylamine hydrochloride strippant in about three runs. (author)

  8. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  9. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  10. Quality control in the recycling stream of PVC cable waste by hyperspectral imaging analysis

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Rem, Peter

    2005-05-01

    In recent years recycling is gaining a key role in the manufacturing industry. The use of recycled materials in the production of new goods has the double advantage of saving energy and natural resources, moreover from an economic point of view, recycled materials are in general cheaper than the virgin ones. Despite of these environmental and economic strengths, the use of recycled sources is still low compared to the raw materials consumption, indeed in Europe only 10% of the market is covered by recycled products. One of the reasons of this reticence in the use of secondary sources is the lack of an accurate quality certification system. The inputs of a recycled process are not always the same, which means that also the output of a particular process can vary depending on the initial composition of the treated material. Usually if a continuous quality control system is not present at the end of the process the quality of the output material is assessed on the minimum certified characteristics. Solving this issue is crucial to expand the possible applications of recycled materials and to assign a price based on the real characteristic of the material. The possibility of applying a quality control system based on a hyperspectral imaging (HSI) technology working in the near infrared (NIR) range to the output of a separation process of PVC cable wastes is explored in this paper. The analysed material was a residue fraction of a traditional separation process further treated by magnetic density separation. Results show as PVC, PE, rubber and copper particles can be identified and classified adopting the NIR-HSI approach.

  11. Sorption of copper(II) from aqueous phase by waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nagendra Rao, C.R. (Government Polytechnic, Anantapur (India)); Iyengar, L.; Venkobachar, C. (Indian Inst. of Tech., Kanpur (India))

    The objective of the present investigation is to compare three biomasses for copper uptake under different experimental conditions so as to choose the most suitable one for scaleup purposes. Ganoderma lucidum is a macrofungi, growing widely in tropical forests. Sorbent preparation requires its collection from the field. Asperigillus niger is obtained as a waste biomass from the fermentation industry. Activated sludge biomass is available from the biological waste treatment plants. The results of their potential to remove copper are presented. The copper uptake by biosorbents though, varied significantly, showed an increased trend in the range of pH 4 to 6. The increase in metal binding after alkali treatment was marginal for G. lucidum, significant for A. niger, and dramatic for sludge. Copper sorption capacities of M and M[sub c] were much higher than for other sorbents at pH 5.0. The effect of anionic ligands, like acetate and tartrate on copper uptake by raw and alkali treated biosorbents, was negligible as the predominant species in the presence of these ligands is divalent copper ion. Pyrophosphate, citrate, and EDTA had varying degrees of adverse effects on metal uptake. Thus, among the sorbents G. lucidum in its raw form is best suited for the practical application of copper removal from industrial effluents.

  12. Processing effects on the behavior of titanate waste forms in aqueous solutions

    International Nuclear Information System (INIS)

    Titanate processing parameters including temperature, waste loading, redox conditions, and additives used to promote specific phases were evaluated with respect to their effect on leaching of Cs, Mo, Ca, Sr, Ba, U, Gd, and Ti in the range of 220 to 1500C in leachates which included deionized water, acidic (pH 2), and basic (pH 12) solutions. Surface analyses and microstructural characterization were used to relate observed leaching behavior to processing parameters. Redox conditions were found to be very important with respect to Cs (and Mo) retention. Two Cs-bearing phases were found in titanate prepared under oxidizing conditions. One had a hollandite structure and the other contained Cs, Mo, Ca, and Fe as major constituents. The latter phase, which was more susceptible to leaching, was not observed in titanates prepared using adequate reducing conditions. Where applicable, a reference glass (PNL 76 to 68) was included in the leaching tests. Comparative leach rates for elements common to both waste forms were generally one to four orders of magnitude lower for the titanates within the range of conditions used. 5 figures, 1 table

  13. Systems analysis of stock buffering: development of a dynamic substance flow-stock model for the identification and estimation of future resources, waste streams and emissions

    OpenAIRE

    Elshkaki, Ayman

    2007-01-01

    The research presented in this thesis falls within a relatively new scientific field of research: Industrial Ecology, which is concerned with studying society’s metabolism to analyze the causes of environmental problems and indicate possibilities for more sustainable management of materials. The research is aimed at developing a dynamic substance flow-stock model that can be used to estimate future resource availability, emissions and waste streams. The developed model extends the currently a...

  14. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  15. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    The purpose of this study was to investigate the net energy potential of single stage mesophilic reactor and two phase mesophilic reactor (hydrogeniser followed by methaniser) using the mix of process industrial food waste (IFW) and sewage sludge (SS). Two-phase reactor efficiency was analysed based on individual optimum influent/environmental (C:N and pH) and reactor/engineering (HRT and OLR) conditions achieved using the batch and continuous reactor study for the hydrogen and methane. Optimum C:N 20 and pH 5.5{+-}0.5 was observed using the Bio-H{sub 2} potential (BHP) and C:N 15 and pH 6.5{+-}0.3 for the biochemical methane potential (BMP) test. The maximum hydrogen content of 47% (v/v) was achieved using OLR 6 g VS/L/d and HRT of 5 days. Increase in hydrogen yield was noticed with consistent decrease in OLR. The volatile solids (VS) removal and hydrogen yield was observed in range 41.3 to 47% and 112.3 to 146.7 mL/ gVS{sub removed}. The specific hydrogen production rate improved at low OLR, 0.2 to 0.4 L/(L.d) using OLR 7.1 and 6 g VS/L/d respectively was well corroborated comparable to previous reported results at OLR 6 gVS/L/d using the enriched carbohydrate waste stream in particular to food wastes. A significant increase in VFA concentrations were noticed shifting OLR higher from 6 g VS/L/d thereby unbalancing the reactor pH and the biogas yield respectively. In similar, maximum methane content of 70% (v/v) was achieved using OLR of 3.3 gVS/L/d and HRT of 10 days. Slight decrease in methane content was noticed thereby increasing HRT to 12 and 15 days respectively. The volatile solids (VS) removal and specific methane production rate was observed in range 57.6 to 68.7 and 0.22 to 1.19 L/(L.d). The specific methane production potential improved thereby reducing the HRT and optimum yield was recorded as 476.6 mL/gVS{sub removed} using OLR 3.3 gVS/L/d. The energy potential of optimum condition in single stage hydorgeniser is 2.27 MW/tonne VS{sub fed}. Using the

  16. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. [University of Nottingham Malaysia Campus, Semenyih, Selangor (Malaysia)

    2012-04-15

    Biosorption of cadmium(II) ions (Cd{sup 2+}) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd{sup 2+} uptake was highly dependent on the initial pH and Cd{sup 2+} removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd{sup 2+} concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd{sup 2+} from aqueous solution. (orig.)

  17. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities

  18. Inventory of miscellaneous streams

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1998-08-14

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities.

  19. Removal of radioactive contaminants from aqueous laboratory wastes by chemical treatment

    International Nuclear Information System (INIS)

    The following conclusions can be drawn from the studies reported. The presence of suspended matter (i.e., clay) in the spiked tapwater solution improved the plutonium removals; however, the addition of clinoptilolite to the plant raw feed did not provide any noticeable improvement for plutonium removal. The addition of powdered clinoptilolite to the regular treatment in the plant significantly improved the removal of 137Cs, but had little effect on plutonium or 90Sr removal. Magnesium sulfate-lime-TSP (trisodium phosphate) treatment in the plant performed adequately, but not as well as the regular ferric sulfate-lime-TSP treatment. However, magnesium appears to be an adequate alternate during occasions of non-typical influents. A large portion of the plutonium is associated with the suspended solids matter in the waste. Autoradiographs indicate that the plutonium is generally evenly distributed, with some occasional hot spots

  20. Efficiency Study of Nickel (II and Cadmium (II Biosorption by Powder of Waste Activated Sludge from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    A.A Ebrahimi

    2011-01-01

    Full Text Available "n "n "nBackground and Objective: Nickel (II and cadmium (II are important in environmental pollutant. Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions because of the decrease in sludge problems, economical issues, high efficiency and compatibility with the environment."nMaterials and Methods: power of wasted activated sludge have been contact with nickel (II and cadmium (II solutions in 0.25 and 0.75 milli molar invarious pHs and mixing pace, at 24-26 0C temperature on batch reactor system .After two hours (continuously 5-420 min in kinetic study samples were analyzed with atomic absorption spectrophotometer."nResults:The kinetic study results show that equilibrium adsorption time for nickel (II and cadmium"n(II reached within 2 hr, but the profile curve of cadmium (II biosorption was smoother than nickel (II biosorption. Both metals adsorption followed the Langmuir model and the maximum adsorption capacity (qmax for nickel (II and cadmium (II was 0.195 and 0.37 milli mole per gram respectively. The increase in pH resulted in adsorption increase for both metals. For cadmium (II at 0.25 and 0.75 mMinitial concentration there was no adsorption at pH 2 where as nickel (0.25 mM adsorption was observed at the same pH. The optimum mixing rate for both metals was 200 rpm and this effect was more obviously in greater concentration."nConclusion: Like othe biosorbents ,wasted activated sludge showed greater capacity for cadmium(II biosorption than nickel (II. Cadmium (II in modeling and biosorption characteristics study had more conformity than nickel (II.

  1. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc. PMID:27261730

  2. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  3. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla) Skin Waste.

    Science.gov (United States)

    Dailey, Adriana; Vuong, Quan V

    2015-01-01

    The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM). Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C), time (min), and sample-to-solvent ratio (g/100 mL), and their interactions, did not significantly affect phenolic compound (TPC), flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity. PMID:26783954

  4. The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue

    Directory of Open Access Journals (Sweden)

    Mohammed Nsaif

    2013-12-01

    Full Text Available This study is deal with study the potential of Iraqi Rice Husk (IRH on the removal of three heavy metals pollutant which were (Mg, Mn and Mo ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26 % for heavy metal (Mg, Mn and Mo respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absorbance material bed height, pH and feeding temperature. Statistical model is achieved to find an expression relates the overall operating parameters with the removal efficiency for each metal ions used in this investigation in a general equation (each one alone. The samples of (IRH remaining after using it in the removal of (Mg, Mn and Mo heavy metal ions above from Simulated Synthetic Aqueous Solutions (SSAS to investigate the capitalized of it in different methods. Different benefits possess which are: remove the three toxic heavy metals ions contaminated the water, get rid of agricultural waste (IRH, in the same time, produce light and more benefit hydrocarbons from n-heptane isomerization using a type Y-zeolite catalyst synthesis from remaining (IRH and prepare a cheap and active rodenticide.

  5. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla Skin Waste

    Directory of Open Access Journals (Sweden)

    Adriana Dailey

    2015-11-01

    Full Text Available The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM. Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C, time (min, and sample-to-solvent ratio (g/100 mL, and their interactions, did not significantly affect phenolic compound (TPC, flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity.

  6. Biosorption kinetic studies of heavy metal ions from aqueous solution by a mixture of vegetable waste (abstract)

    International Nuclear Information System (INIS)

    Biosorption potential of a new bio sorbent prepared from vegetable waste composed of mixture of potato and carrot peels for the removal of heavy metals such as Ni (II) and Cu (II) from aqueous solution was determined. Batch experiments were conducted to optimize parameters i.e. initial pH, temperature, contact time, initial metal concentration and bio sorbent dose and it was observed that maximum adsorption of nickel (78%) was achieved by stirring the contents for 75 min at pH 4 and 35 deg. C by using 3.0 g of bio sorbent while in the case of copper maximum removal of copper occurred at pH 2, temperature of 50 deg. C, contact time of 45 minutes, metal concentration of 30 ppm and bio sorbent dose of 2.5 g. Kinetic studies of these reactions showed that they follow a pseudo-second order reaction, while these systems fit well in the Langmuir isotherm model and Freundlich isotherm model for Ni (II) and Cu (II) ions respectively. Both neat and metal loaded bio sorbent samples were analyzed using FT-IR spectrophotometer and X-Ray Florescence spectrometer in order to confirm the bio sorption of Ni (II) and Cu (II) and results have revealed that the metals are present in the spent bio sorbent. (author)

  7. Development of materials for the removal of metal ions from radioactive and non-radioactive waste streams

    Science.gov (United States)

    Hasan, Md. Shameem

    Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth

  8. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Science.gov (United States)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    tillage and ratoon (no-till) harvest. We expect that the physical soil differences due to tillage versus no-tillage with vegetative regrowth on the biochar-amended soil will increase the diversity of soil microbial community structure, potential for C sequestration, and overall valuation of biochar as a soil amendment for factors such as waste-stream diversion, nutrient holding capacity, and C sequestration in addition to crop yield and GHG flux. These different treatments paired with intensive biochar characterization will aid in identifying how specific biochar properties translate to soil quality changes and increase the ability to target specific soil deficiencies with a tailored biochar for maximum holistic benefits.

  9. Long-term safety assessment for the disposal of radioactive and non-radioactive contaminants found in common low level radioactive waste streams

    International Nuclear Information System (INIS)

    Low level radioactive waste (LLW) can contain non-radioactive as well as radioactive contaminants. However, very few long-term safety assessments of LLW disposal have included quantitative evaluation of the environmental impacts of the non-radioactive contaminants in the wastes since it is commonly assumed that their impacts will be small compared with those of the radioactive contaminants. To test this assumption, QuantiSci Limited has undertaken two studies for the European Commission. The first study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of non-radioactive contaminants in LLW. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. Generic, acceptable disposal levels were calculated for a variety of nonradioactive contaminants that would allow the presence of the waste streams in the range of disposal facilities considered. The second study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The more detailed system and waste stream specific calculations generally implied less restrictive disposal limits for the non-radioactive contaminants. The calculations also indicated that it is prudent to consider non-radioactive as well as radioactive contaminants when assessing the impacts of LLW disposal. (author)

  10. Ultrasound-assisted mineralization of organic compounds in aqueous liquid wastes

    International Nuclear Information System (INIS)

    Full text of publication follows: The rinsing of the nuclear installations used for the reprocessing of fuel irradiated before their final shutdown dismantling is considered by use of surface-active compounds diluted in nitric acid medium. In order to comply with the industrial vitrification specifications (carbon concentration in solution), mineralization (carbon decomposition into CO2) of liquid wastes has to be performed. An oxidation using H2O2 with nickel nitrate used as catalyst (Fenton reaction) is an efficient method for organics compounds destruction but it involves an important dilution because of added amounts of H2O2. Ultrasound associated or not with the Fenton reaction could be interesting with an aim of reducing H2O2 consumption. Indeed, it is known that water sono-lysis generates H2O2 involving radicals formation which may oxidize organics compounds. Laboratory tests have shown poor carbon oxidation performances even if associated with Fenton reaction. Efficiency is limited by nitrous acid, formed from nitric acid sono-lysis, enhancing H2O2 consumption. However, reaction mechanisms are complex and further tests, still in progress, will involve an anti nitrous agent in order to neutralize all nitrous acid and so let H2O2 operate on the organics compounds. (authors)

  11. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    Science.gov (United States)

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ. PMID:24649668

  12. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  13. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jellali, Salah, E-mail: salah.jallali@certe.rnrt.tn [Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, Soliman (Tunisia); Wahab, Mohamed Ali; Anane, Makram [Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, Soliman (Tunisia); Riahi, Khalifa [School of Engineering in Rural Equipment of Medjez El Bab, Laboratory of Chemistry and Water Quality, Medjez El Bab (Tunisia); Bousselmi, Latifa [Water Research and Technologies Centre (CERTE), Wastewater Treatment and Recycling Laboratory, Soliman (Tunisia)

    2010-12-15

    Phosphate mine slimes (PMS), an abundant waste generated from phosphate mines, was used in this study as a cost-effective adsorbent to investigate the phosphate anions removal from synthetic and urban secondary treated wastewater solutions. Dynamic experiments using laboratory reactors were carried out to study the effect of phosphate influent concentration, PMS dosage and feed flow rate on phosphate removal and a kinetic model was used to determine the phosphate mass transfer coefficients. The results show that the phosphate removal increases with influent phosphate concentration and PMS dosage. The feed flow rate has no significant effect. On the other hand, the phosphate removal from wastewater is less efficient than the synthetic solution due to anions competition process. The evaluation of phosphates mass transfer coefficients confirms the presence of anion competition phenomena and the necessity of increasing PMS dosage to provide more adsorption sites. The cost-effective and high adsorptive capability of PMS make them attractive materials for phosphate anions removal and recovery from secondary treated wastewaters with the possibility of agronomic reuse as fertilizer.

  14. Monitoring of Plutonium Contaminated Solid Waste Streams. A technical guide to design and analysis of monitoring systems

    International Nuclear Information System (INIS)

    The basic information on the Pu content in Pu Contaminated Materials (PCM) is the measurement of radiation emitted by Pu isotopes either spontaneously or due to irradiation by external neutron or gamma-sources. Requirements on measurement accuracy and detection limits should be defined by the operator of a Pu-handling facility in accordance with monitoring objectives in the very beginning of the planning of a monitoring system. Monitoring objectives reflect nuclear safety and radiological protection regulations and the needs for Pu-accountancy of nuclear materials management and safeguards. On considering the possibilities and limitations of radiometric techniques a solution of the monitoring problem is based on appropriate segregation and packaging procedures and records upon matrix and isotopic composition of PCM-items to be measured. The general interrelations between waste item characteristics and measurement uncertainty and detection limit are outlined in the first chapter which is addressed to the system planner. Chapter 2 is devoted to the attention of instrument developers and analysts. It presents in a general approach the correlations between the observed radiation leakage rate, respectively detection signal, and the generating source, e.g. Pu-isotopic content of the examined PCM item. Some practical measurement methods are reviewed and their limitations are indicated. The possible radiometric techniques based on detection of gamma rays from alpha decay (and 241Am), neutrons from spontaneous fission and (α,n)-reaction and from induced fission reactions by neutron irradiation of Pu isotopes are presented. The measurement uncertainty of a single PCM item measurement is estimated on the basis of the uncertainty of the spatial distributions of source (Pu) and matrix materials. For the estimation of the cumulative error over a large collection of PCM items from a defined PCM-stream a probabilistic approach is suggested

  15. Clay minerals in aqueous alteration of meteorites as analogue materials for the long term disposal of nuclear waste

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Introduction: The long term disposal of nuclear waste provides a big challenge for material science. The material waste has to be stored safely for at least 105 years. The nuclides are embedded as particles in silica glass, which is conditioned in steel containers, which again are emplaced in a clay-rich environment. Since it is difficult to estimate the long-term stability of materials in such a time frame, certain types of meteorites are used as an analogue material. Precursor materials of meteorites formed 4.56 Gy ago in the protoplanetary disk, a disk of gas and dust particles around the young sun. One of the first components to be formed was the chondrules. These spherical, silicate-rich objects formed by the quenching of silicate droplets in the protoplanetary disk. Chondrules mainly consist of silicates like olivine and pyroxene, metal and sulfide grains. These phases are often embedded in a silicate-rich glass, the mesostasis. Chondrules and other components accreted together with finer particles to form larger parent bodies, planetesimals. On some of these bodies, accreted ices melted as result of the heat created by the decay of short-lived nuclides. In the following aqueous alteration phase circulating fluids altered the materials on these bodies to varying degrees. This probably lasted more than 1 my, so meteoritic materials allow to study alteration and corrosion in a much longer time frame than possible in laboratory. Abundant larger metal grains (up to several 100 μm in size) can help to estimate corrosion processes of the steel containment. These components are embedded in a phyllosilicate-rich matrix, similar to the clay material in which the waste packages are emplaced. CR chondrites are a group of meteorites that show alteration over the whole range from type 3 (pristine, unaltered material) to 1 (completely hydrated), thus allowing the investigation of all steps in corrosion of the materials

  16. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  17. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  18. Waste Stream Input Model

    OpenAIRE

    ALS-NSCORT,

    2004-01-01

    5 worksheets Provider Notes:This model calculates the exact quantities of fecal matter, inedible biomass, food, and water needed to make Solid Thermophilic Aerobic Reactor (STAR)'s input feedstock. It also calculates HRT. The model is based off the desired solids content, scale, volume, diet, and other assumptions. Previous versions are also included in this page. Related Documents:WS152, WWAS17a, WWAS17b

  19. Stripping of TBP degraded product along with actinides from organic phase generated during the remediation of the aqueous phase of spent organic waste storage tank

    International Nuclear Information System (INIS)

    Degraded products of Tri butyl phosphate (TBP) are generated during extraction of U and Pu by PUREX due to high radiation field. Sodium carbonate wash is given to clean up the TBP solvent and the wash liquid is in a separate tank along with the spent organic waste. Though the aqueous phase from this tank comes intermediate level liquid waste category, presence of the degrade products of TBP are creating problem during its treatment by ion exchange process. To remediate this waste for ion exchange treatment, the degraded products of TBP are removed by solvent extraction using spent TBP stored in the same tank as solvent. Present paper details the stripping of the TBP degraded product along with alpha activity from the organic phase

  20. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g−1. The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  1. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  2. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  3. New developments and improvements in processing of 'problematic' radioactive waste. Results of a coordinated research project 2003-2007

    International Nuclear Information System (INIS)

    This report addresses a category of wastes termed 'problematic wastes', wastes for which safe, efficient and cost effective methods for processing are not readily available. Processing options for many of these are identified and addressed. Results presented, illustrate the strategy for breaking 'problematic' waste streams down into a sequence of 'standard' issues which are amenable to solution. Decision makers and facility managers faced with problematic waste streams should be able to use this information to identify and pursue solutions to meet their needs. In this report, processing options for a total of 27 problematic waste streams that were identified and addressed by the individual laboratories participating in the Coordinated Research Project are discussed. These waste streams covered an extremely broad spectrum, ranging from simple, one component aqueous solutions originating from a research laboratory to very complex aqueous concentrates of waste resulting from reprocessing activities or reactor operation. These challenging wastes included: waste contaminated by tritium, wastes containing transuranic elements, and solid health care waste. The range of aqueous wastes included those contaminated by organic complexing agents and surfactants to pure organic waste such as contaminated oil. Correspondingly, the scale of approaches and technologies used to address these wastes is very broad. Use of this report is likely to be most effective as an initial screening tool to identify technologies best able to meet specific waste management objectives in terms of the waste generated, the technical complexity, the available economic resources, the environmental impact considerations, and the desired end product (output) of the technology. The report should assist the user to compare technologies and to reach an informed decision based on safety, technological maturity, economics, and other local needs

  4. Bitumen immobilization of aqueous radwaste by thin-film evaporation

    International Nuclear Information System (INIS)

    In the early 1980s, AECL built a Waste Treatment Centre (WTC) for managing low-level solid and aqueous liquid wastes for converting CANDU wastes. At present, two liquid waste streams are being treated at the WTC. The liquid waste streams are volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis (TRO) membrane technologies. The concentrate produced from the TRO system and the volume-reduced MF backwash solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200-L galvanized steel drums for storage. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200-L drum ranges from 25 to 35%. Encapsulated in the bitumen matrix are a variety of nonradiochemical salts, which comprise the bulk of the total solids that are in the product drum. This report discusses the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Simulated bituminized waste forms were leached in accordance with the ANS/ANSI 16.1 leach test. In this test, the waste form is immersed under water for an extended period of time, and the leachate is periodically removed and chemically analysed. The Leachability index varied between 7 and 9 for the emulsified bitumen waste forms produced at the WTC. Bitumen samples were unconfined and subjected to immersion and frequent leachate replenishment. The results of leach tests will be a lower bound for the performance of the bitumen waste product in an unsaturated environment. The Leachability indexes reported exceeds the USNRC minimum requirement for wasteform criteria. Adding protective overcoats of either Portland cement or oxidized bitumen enhanced the Leachability index. 8 refs., 3 tabs., 6 figs

  5. Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso Solid waste from tanneries as adsorbent for the removal of dyes in aqueous medium

    OpenAIRE

    Rogério Marcos Dallago; Alessandra Smaniotto; Luiz Carlos Alves de Oliveira

    2005-01-01

    The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather). Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AU...

  6. Electron injection system for treatment of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, M.N. [Raychem Corp., Fuquay-Varina, NC (United States); Vroom, D.A.; St. Remy, E. de [Raychem, Menlo Park, CA (United States)

    1995-12-31

    Considerable interest exists in the use of fast electrons for the destruction of hazardous material in aqueous and gaseous streams. Numerous investigations have shown that the chemistry is well understood, and the major obstacle to implementation has been the economics of the process. We have developed a robust, cost-effective, highly efficient electron beam accelerator for the treatment of aqueous waste streams containing hazardous organic materials. This conventional direct-current accelerator uses an improved radio-frequency (rf) high-voltage power supply and a unique window design to get high power efficiency, and the low energy of the electrons minimizes shielding requirements.

  7. Influence of the contaminated wastes/soils on the geochemical characteristics of the Bodelhão stream waters and sediments from Panasqueira mine area, Portugal

    Science.gov (United States)

    Abreu, Maria Manuela; Godinho, Berta; Magalhães, Maria Clara F.; Anjos, Carla; Santos, Erika

    2013-04-01

    Panasqueira is a famous Portuguese tin-tungsten mine operating more or less continuously since the end of the nineteenth century. This mine is located in the Central Iberian Zone, northwest of Castelo Branco, about 35 km from Fundão, being the greatest producer of tungsten in Europe. Panasqueira mine also produces copper and tin. The ore exploitation has caused huge local visual and chemical impact from the large waste tailings, together with water drainage from mine galleries, seepage and effluents from water plant treatment. The objective of this work was to evaluate the influence of the contaminated wastes and soils on the water and sediments characteristics of the Bodelhão stream. This stream crosses the mine area at the bottom of the main tailings, receiving sediments, seepage and drainage waters from wastes and/or soils developed on the waste materials which cover the host rocks (schists), and also from the water treatment plant. Waste materials contain different levels of hazardous chemical elements depending on their age and degree of weathering (mg/kg - As: 466-632; Cd: 2.6-4.2; Cu: 264-457; Zn: 340-456; W: 40-1310). Soils developed on old wastes (60-80 years old) are mainly silty loam, acidic (except one soil (pH 8.2) developed on waste materials covered by leakage mud from a pipe conducting effluent to a pond), with relatively high concentration of organic carbon (median 48.6 g/kg). The majority of soils are heavily contaminated in As (158-7790 mg/kg), Cd (0.6-138 mg/kg), Cu (51-4081 mg/kg), W (19-1450 mg/kg), and Zn (142-12300 mg/kg). The fraction of these elements extracted with DTPA solution, relatively to total concentration, varies from low to As (plant are less acidic (pH: 5.6-6.5) than those collected upper stream (pH 4.9) and showed high electric conductivity (up to 1.5 mS/cm), high concentrations of sulfate (618-1030 mg/L), and hazardous elements: up to 12.4 µg As/L; 83.7 µg Cd/L; 210 µg Cu/L; 5.8 mg Zn/L. The highest concentrations of

  8. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  9. A novel bio-adsorbent of mint waste for dyes remediation in aqueous environments: study and modeling of isotherms for removal of methylene Blue

    Directory of Open Access Journals (Sweden)

    Tarik Ainane

    2014-09-01

    Full Text Available The objective of this study was to investigate the possibility of using mint waste as a bioadsorbent for the removal of dye (Methylen Blue from aqueous solutions. Batch adsorption studies were carried out by monitoring the pH, the bio-adsorbent dose and the initial dye concentration. Attempts have also been made to monitor the adsorption process through Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin adsorption isotherm models. These results have demonstrated the immense potential of mint waste as a bioadsorbent for dyes remediation in polluted water and wastewater. Finally followed by the process of adsorption phenomenon was achieved by fourier transform infrared spectrometer (FTIR, the results shows that the adsorption is mechanical trapping.

  10. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, A.S.; Singh, D.; Jeong, S.Y. [Argonne National Lab., IL (United States). Energy Technology Div.

    1995-11-01

    A novel newberyite-rich magnesium-phosphate ceramic, intended for the stabilization of the US Department of Energy`s low-level mixed-waste streams, has been developed by an acid-base reaction between magnesium oxide and a phosphoric acid solution. The reaction slurry, formed at room temperature, sets rapidly and forms a lightweight hard ceramic with low open porosity and a high compression strength of {approx} 6,200 psi. It is a composite of stable mineral phases of newberyite, luenebergite, and residual Mg oxide. Using this matrix, the authors developed superior waste forms for a surrogate ash waste stream. The final waste form is a low-permeability structural-quality ceramic, in which hazardous contaminants are chemically fixed and physically encapsulated. The compression strength of the waste form is an order of magnitude higher than the land disposal requirement, even at high waste loading. The high compression strength is attributed to stronger bonds in the waste form that result from participation of ash waste in the setting reactions. Long-term leaching studies show that the waste form is stable in an aqueous environment. The chemically bonded phosphate ceramic approach in this study may be a simple, inexpensive, and efficient method for fabricating high-performance waste forms either for stabilizing waste streams or for developing value-added construction materials from high-volume benign waste streams.

  11. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic

    International Nuclear Information System (INIS)

    A novel newberyite-rich magnesium-phosphate ceramic, intended for the stabilization of the US Department of Energy's low-level mixed-waste streams, has been developed by an acid-base reaction between magnesium oxide and a phosphoric acid solution. The reaction slurry, formed at room temperature, sets rapidly and forms a lightweight hard ceramic with low open porosity and a high compression strength of ∼ 6,200 psi. It is a composite of stable mineral phases of newberyite, luenebergite, and residual Mg oxide. Using this matrix, the authors developed superior waste forms for a surrogate ash waste stream. The final waste form is a low-permeability structural-quality ceramic, in which hazardous contaminants are chemically fixed and physically encapsulated. The compression strength of the waste form is an order of magnitude higher than the land disposal requirement, even at high waste loading. The high compression strength is attributed to stronger bonds in the waste form that result from participation of ash waste in the setting reactions. Long-term leaching studies show that the waste form is stable in an aqueous environment. The chemically bonded phosphate ceramic approach in this study may be a simple, inexpensive, and efficient method for fabricating high-performance waste forms either for stabilizing waste streams or for developing value-added construction materials from high-volume benign waste streams

  12. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation.

    Science.gov (United States)

    Jin, Hongmei; Capareda, Sergio; Chang, Zhizhou; Gao, Jun; Xu, Yueding; Zhang, Jianying

    2014-10-01

    Biochar converted from waste products is being considered as an alternative adsorbent for removal of aqueous heavy metal(loid)s. In this work, experimental and modeling investigations were conducted to examine the effect of biochars pyrolytically produced from municipal solid wastes on removing aqueous As(V) before and after activated by 2M KOH solution. Results showed that the highest adsorption capacity of pristine biochars was 24.49 mg/g. The pseudo-second-order model and Langmuir adsorption isotherm model can preferably describe the adsorption process. The activated biochar showed enhanced As(V) adsorption ability with an adsorption capacity of 30.98 mg/g, which was more than 1.3 times of pristine biochars, and 2-10 times of modified biochars reported by other literatures. Increase of surface area and changes of porous texture, especially the functional groups on the surface of activated biochars are the major contributors to its more efficient adsorption of As(V). PMID:25103038

  13. Exploitation of the FLK-60 slagging incinerator for different alpha waste streams and study of the feasibility of medium-level alpha-beta-gamma waste incineration in FLK-60

    International Nuclear Information System (INIS)

    The FLK-60 high temperature slagging incinerator and its peripherals were developed by SCK/CEN with the help of the Commission of the European Communities in the framework of contract no. EUR-017-76-7 WAS-B. This second contract, which covered the period between October 1980 and December 1982, aimed at gaining exploitation experience by running the FLK-60 installation with beta-gamma radioactive waste in semi-industrial conditions. At the end of those 27 months, the system was ready for exploitation in alpha-conditions with plutonium-containing materials. This report describes the various plant parameters during the 25 runs carried out in the framework of this contract and the results of characterization tests carried out on the final product and the secondary waste streams. In the meantime, typical operation balances are computed

  14. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, Richland, WA (United States); Mahoney, J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  15. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    International Nuclear Information System (INIS)

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  16. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  17. The Potential For Efficient Biological Pre-Treatment Of Exploration Based Waste Streams For Potable Water Production Using A Membrane Reactor Capable Of Simultaneous Nitrification-Denitrification

    Science.gov (United States)

    Jackson, William; Morse, Audra; Landes, Nick

    Long term space habitation and exploration require high efficiency water recycling systems. Waste streams from space habitation contain high concentrations of both organic nitrogen and ammonium and high ratios of N to organic C compared to terrestrial wastewater. As with terrestrial systems wastewater must be highly treated to remove organic carbon, nitrogen compounds, salts, and trace constituents. In general, either some type of reverse osmosis or distillation step is required as the final treatment prior to disinfection. However, the high waste strength of the waste can seriously impact the efficiency of these post-processors. Biological pre-treatment is one process capable of significant reductions in organic carbon and nitrogen. Biological systems are self sustaining and require minimal inputs of energy or consumables. Research in our lab has been conducted to evaluate a number of micro-gravity compatible biological reactor systems. Both nitrification-denitrification coupled systems, in which oxygen consumption is reduced by using nitrate as an electron acceptor, and single reactor systems for organic removal and nitrification have been extensively investigated. Reactor types include tubular pulsed flow reactors, packed bed reactors, and membrane reactors. Recently a single vessel membrane reactor capable of simultaneous nitrification-denitrification (sNDN) has been developed and evaluated for its ability to potentially replace other proposed systems. Results to be presented include a review of past system performance and limitations with comparison to the performance of the new sNDN reactor system. Conversion efficiency, stability, and volumetric reaction rates will be discussed.

  18. Investigations of actinides in the context of final disposal of high-level radioactive waste - trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    This contribution presents a small piece of research work at KIT-INE dealing with the speciation of redox sensitive trivalent actinides like Pu(III), Np(III), and U(III) in aqueous solution. The redox preparation, stabilization, and speciation of trivalent actinide in aqueous systems are discussed here. The reductants investigated were rongalite, HYA (hydroxylamine hydrochloride), and AHA (acetohydroxamic acid). The time dependence of An(III) stability at different pH values was investigated. The An(III) species in aqueous solution have been characterized by UV-Vis and XANES spectroscopy. A broader overview of the work at KIT-INE is given in the oral presentation at the NUCAR2013 conference. (author)

  19. The DMC process for radioactive waste treatment

    International Nuclear Information System (INIS)

    This paper describes AEA Technology's patented Direct Membrane Cleaning (DMC) technology for enhancing the filtration of finely divided solids from aqueous streams. Electrolytically generated, microscopic gas bubbles at the membrane surface remove the superficial fouling layer, enching the permeation rate of the membrane. DMC technology has been demonstrated for ultrafilters and microfilters; several applications are summarized, including radioactive waste treatment and non-nuclear applications

  20. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    International Nuclear Information System (INIS)

    Laboratory results of a comprehensive regulatory performance test program, using an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). The testing has shown that the relatively viscous form of oxidized bitumen that was used has been able to meet all performance requirements. Using a 53-mm Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of ASTM D312, type III, air-blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, was used. The mixed liquid waste contained approximately 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium, and strontium. Samples tested contained three levels of waste loading: that is, 40, 50, and 60 wt % salt. Performance test results include the 90-day American Nuclear Society (ANS) 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP toxicity test, at all levels of waste loading. Additionally, test results presented include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy (SEM). Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements

  1. Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts.

    Science.gov (United States)

    Zhang, Linghong; Champagne, Pascale; Charles Xu, Chunbao

    2011-09-01

    Supercritical water gasification (SCWG) of glucose solution (50-200 g/L), a simulated aqueous organic waste (composed of glucose, acetic acid and guaiacol) and a real aqueous organic waste stream generated from a sludge hydrothermal liquefaction process was performed in a bench-scale continuous down-flow tubular reactor with novel 0.1 RuNi/γ-Al(2)O(3) or 0.1 RuNi/activated carbon (AC) catalyst (10 wt.% Ni with a Ru-to-Ni molar ratio of 0.1). 0.1 RuNi/γ-Al(2)O(3) was very effective in catalyzing SCWG of glucose solution and the simulated aqueous organic waste, attaining an H(2) yield of 53.9 mol/kg dried feedstock at 750°C, 24 MPa and a WHSV of 6h(-1). However, the γ-Al(2)O(3)-supported catalyst was not resistant to the attack of alkali and nitrogen compounds in the real waste during the SCWG of the real aqueous organic waste, whereas the AC-based catalyst exhibited higher stability. This research provides a promising approach to the treatment and valorization of aqueous organic waste via SCWG. PMID:21741235

  2. Waste acid detoxification and reclamation

    International Nuclear Information System (INIS)

    Economically feasible processes that reduce the volume, quantity, and toxicity of metal-bearing waste acids by reclaiming, reusing, and recycling spent acids and metal salts are being developed and demonstrated. The acids used in the demonstrations are generated during metal-finishing operations used in nuclear fuel fabrication; HF-HNO3, HNO3, and HNO3-H2SO4 wastes result from Zr etching, Cu stripping, and chemical milling of U. At discharge, wastes contain high concentrations of acid and one major metal impurity. The waste minimization process used to reclaim acid from these three streams incorporates three processes for acid regeneration and reclamation. Normally, HNO3 remains in the bottoms when an aqueous acid solution is distilled; however, in the presence of H2SO4, HNO3 will distill to the overhead stream. In this process, nitrates and fluorides present as free acid and metal salts can be reclaimed as acid for recycle to the metal-finishing processes. Uranium present in the chemical milling solution can be economically recovered from distillation bottoms and refined. Using acid distillation, the volume of chemical milling solution discharged as waste can be reduced by as much as 60% depending on the H2SO4 concentration. A payback period of 2.2 years has been estimated for this process. The development and demonstration of precipitation and distillation processes for detoxification and reclamation of waste acid is supported by the US Department of Energy's Hazardous Waste Remedial Actions Program (HAZWRAP)

  3. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement.

    Science.gov (United States)

    Singh, I B; Singh, D R

    2002-01-01

    In this study, iron-bearing industrial solid wastes iron filings, ETP sludge of steel and red mud of aluminium industries; were used for Cr(VI) removal at pH 3. A complete removal of Cr(VI) was found for initial 10 mg 1(-1) of 100 ml solutions in the presence of 2.5 g iron filings, 8 g ETP sludge and 10 g red mud for up to one hour of shaking at room temperature. After Cr(VI) removal, inclusion of chromium on the reacted iron filing surface was demonstrated by EDAX analysis. Leachability of chromium and iron from the reacted wastes was determined by using Toxicity Characteristics Leaching Procedure (TCLP). This test showed a very low level of leachability of chromium as Cr(III) and iron from the reacted wastes. To minimise their leachability further, Cr(VI)-reacted solid wastes were stabilised with Portland cement in their 3:1 ratio. Leachability tests of stabilised wastes by TCLP indicated a considerable decrease in leachability of chromium and iron compared with the that of reacted wastes alone. To explore the possibility of utilisation in building materials, bricks of cement-mixed Cr(VI)-reacted wastes were made and their comprehensive strength, durability and leachability under immersion conditions were measured. PMID:11918404

  4. Comparative evaluation of DHDECMP [dihexyl-N,N-diethylcarbamoyl-methylphosphonate] and CMPO [octylphenyl-N,N,-diisobutylcarbamoylmethylphosphine oxide] as extractants for recovering actinides from nitric acid waste streams

    International Nuclear Information System (INIS)

    Certain neutral, bifunctional organophosphorous compounds are of special value to the nuclear industry. Dihexyl-N,N-diethylcarbomoylmethylphosphonate (DHDECMP) and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) are highly selective extractants for removing actinide and lanthanide elements from nitric acid. We obtained these two extractants from newly available commercial sources and evaluated them for recovering Am(III), Pu(IV), and U(VI) from nitric acid waste streams of plutonium processing operations. Variables included the extractant (DHSECMP or CMPO), extractant/tributylphosphate ratio, diluent, nitrate concentration, nitrate salt/nitric acid ratio, fluoride concentration, and contact time. Based on these experimental data, we selected DHDECMP as the perferred extractant for this application. 18 refs., 30 figs

  5. Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments.

    Science.gov (United States)

    Surita, Sharon C; Tansel, Berrin

    2014-01-15

    Siloxane use in consumer products (i.e., fabrics, paper, concrete, wood, adhesive surfaces) has significantly increased in recent years due to their excellent water repelling and antimicrobial characteristics. The objectives of this study were to evaluate the release mechanisms of two siloxane compounds, octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), which have been detected both at landfills and wastewater treatment plants, estimate persistence times in different media, and project release quantities over time in relation to their increasing use. Analyses were conducted based on fate and transport mechanisms after siloxanes enter waste streams. Due to their high volatility, the majority of D4 and D5 end up in the biogas during decomposition. D5 is about ten times more likely to partition into the solid phase (i.e., soil, biosolids). D5 concentrations in the wastewater influent and biogas are about 16 times and 18 times higher respectively, in comparison to the detected levels of D4. PMID:24012894

  6. Combined Waste Form Cost Trade Study

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; Steve Piet; Timothy Trickel; Joe Carter; John Vienna; Bill Ebert; Gretchen Matthern

    2008-11-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE.

  7. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  8. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    International Nuclear Information System (INIS)

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a 60Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of 60Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 μg/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. 60Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants

  9. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1999-06-14

    This report is fully responsive to the requirements of Section 4.0 Acceptable Knowledge from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  10. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    International Nuclear Information System (INIS)

    This report is fully responsive to the requirements of Section 4.0 ''Acceptable Knowledge'' from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge

  11. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  12. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Science.gov (United States)

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  13. Selective Reduction of Cr(VI in Chromium, Copper and Arsenic (CCA Mixed Waste Streams Using UV/TiO2 Photocatalysis

    Directory of Open Access Journals (Sweden)

    Shan Zheng

    2015-02-01

    Full Text Available The highly toxic Cr(VI is a critical component in the Chromated Copper Arsenate (CCA formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI to less toxic Cr(III in the presence of arsenate, As(V, and copper, Cu(II. The rapid conversion of Cr(VI to Cr(III during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI reduction demonstrating the reduction of Cr(VI is independent of dissolved oxygen. Reduction of Cu(II and As(V does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI reduction. The Cr(VI reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI in mixed waste streams under a variety of conditions.

  14. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    Science.gov (United States)

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-01-01

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions. PMID:25654531

  15. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique.

    Science.gov (United States)

    Van Wagenen, Jon; Pape, Mathias Leon; Angelidaki, Irini

    2015-05-15

    Industrial wastewaters can serve as a nutrient and water source for microalgal production. In this study the effluent of an internal circulation (IC) reactor anaerobically treating the wastes of a biotechnology production facility were chosen as the cultivation medium for Chlorella sorokiniana in batch and continuous cultures. The aim was to evaluate the rates of nutrient removal and biomass production possible at various dilution rates. The results demonstrate that the industrial wastewater served as a highly effective microalgae culture medium and that dilution rate strongly influenced algae productivity in a short light-path photobioreactor. Batch culture on undiluted wastewater showed biomass productivity of 1.33 g L(-1)day(-1), while removing over 99% of the ammonia and phosphate from the wastewater. Deceleration-stat (D-stat) experiments performed at high and low intensities of 2100 and 200 (μmol photon m(2)s(-1)) established the optimal dilution rates to reach volumetric productivity of 5.87 and 1.67 g L(-1)day(-1) respectively. The corresponding removal rates of nitrogen were 238 and 93 mg L(-1)day(-1) and 40 and 19 mg L(-1)day(-1) for phosphorous. The yield on photons at low light intensity was as high as had been observed in any previous report indicating that the waste stream allowed the algae to grow at its full potential. PMID:25792276

  16. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    International Nuclear Information System (INIS)

    One man's trash is another man's treasure. Not everything called 'waste' is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented

  17. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  18. Nutrient recovery from biodigestion waste (water) streams and reuse as renewable fertilizers: a two-year field experiment

    OpenAIRE

    Vaneeckhaute, Céline; Ghekiere, Greet; Michels, Evi; Vanrolleghem, Peter A; Meers, Erik; Tack, Filip

    2013-01-01

    The aim of this study was to evaluate the impact of using bio-digestion waste derivatives as substitute for synthetic fertilizers and/or as P-poor equivalent for animal manure on soil and crop production. In a field trial, nutrient balances were assessed and the physicochemical soil fertility and quality were evaluated. The biogas yield of the harvested energy crops was also determined. An economical and ecological evaluation was conducted. The highest biomass yields were obtained when the li...

  19. Analysis and Development of Potential Material & By-Product Synergies between Zero-Emissions Industries and Urban Waste Streams.

    OpenAIRE

    Rahman, Md. Arafat

    2013-01-01

    The concept of integration of industries in urban setup is the current trend among researchers and engineers in the field of industrial ecology and environmental engineering. Trend of urbanization forces an increasing human demand for energy, materials, water and other resources. Urban symbiosis nowadays is closely related to the controlling of urban metabolism. Closing material loops works as an effective way for a circular economy where theoretically no waste is generated. In this thesis wo...

  20. Design of efficient catalysts for gasification of biomass-derived waste streams in hot compressed water. Towards industrial applicability.

    OpenAIRE

    Vlieger, de, J.J.

    2013-01-01

    The energy required for the globalized living standards of our society depends currently on fossil fuels. The availability and use of fossil fuels were taken for granted during the last century, but depletion of cheap oil and the environmental concerns related to combustion of fossil fuels force us to shift to alternative energy sources. Biomass is believed to be a promising renewable energy source for the future. Conversion of biomass waste to liquid fuels or hydrogen is projected to provide...

  1. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  2. Liberation of chromium from ferrochrome waste materials utilising aqueous ozonation and the advanced oxidation process / Yolindi van Staden

    OpenAIRE

    Van Staden, Yolindi

    2014-01-01

    During ferrochrome (FeCr) production, three types of generic chromium (Cr) containing wastes are generated, i.e. slag, bag filter dust (BFD) and venturi sludge. The loss of these Cr units contributes significantly to the loss in revenue for FeCr producers. In this study, the liberation of Cr units was investigated utilising two case study waste materials, i.e. BFD from a semi-closed submerged arc furnace (SAF) operating on acid slag and the ultrafine fraction of slag (UFS) orig...

  3. Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso Solid waste from tanneries as adsorbent for the removal of dyes in aqueous medium

    Directory of Open Access Journals (Sweden)

    Rogério Marcos Dallago

    2005-06-01

    Full Text Available The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather. Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AUREA tanning company in Erechim-RS (Brazil showed that this material presents high adsorption capacities of the reactive textile dyes.

  4. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  5. Saltstone Vault Classification Samples Modular Caustic Side Solvent Extraction Unit/Actinide Removal Process Waste Stream April 2011

    International Nuclear Information System (INIS)

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock and Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B and W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B and W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B and W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most

  6. Literature survey on solid and aqueous species of importance for nuclear waste repositories: The elements uranium, neptunium and cesium

    International Nuclear Information System (INIS)

    This document contains extensive tables listing all possible chemical compounds of species that might occur in a proposed nuclear waste repository. Most are listed as unlikely to occur under conditions predicted for the repository. Extensive data tables and reference sources are provided for those compounds that might occur on form

  7. Waste generation reduction: nitrates. FY 1984 status report

    International Nuclear Information System (INIS)

    A study was initiated at Rocky Flats Plant (RFP) to develop and demonstrate technology to eliminate nitrates in low-level waste streams without generating objectionable oxides of nitrogen. Various chemical and thermal methods of denitrification were investigated earlier in this program. Work in FY 1984 was conducted on the Thagard High Temperature Fluid Wall Reactor (HTFWR) and on an aqueous two-step process. Preliminary tests were conducted on a plasma torch system. Testing was completed with actual RFP nitrate wastes on an aqueous process consisting of formic and sulfuric acid reflux, followed by evaporation of the liquid to dryness. Results from this process show promising nitrate destruction, but with production of some NO/sub x/ in the off-gas. Also completed in aqueous testing were laser excitation techniques, indicating that the high activation energy of the nitrate ion can be overcome with a simpler chemical reaction with additional energy applied. Experiments were conducted using an HTFWR to determine its nitrate/nitrite destruction efficiency on simulated RFP and Savannah River Plant waste streams. These streams included nitrate-contaminated soils and feeds containing surrogate fission products. Various additives were tested to enhance nitrate destruction, reduce NO/sub x/ off-gas generation, and produce an acceptable final waste form

  8. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  9. Extraction of Theanine from Waste Liquid of Tea Polyphenol Production in Aqueous Two-phase Systems with Cationic and Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junwei; WANG Yan; PENG Qijun

    2013-01-01

    Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactant two-phase system (ASTP) with cationic suffactant (CTAB) and anionic surfactant (SDS).Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant.The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP.Theanine concentration in the bottom phase increases with increasing concentration of theanine,whereas the partition coefficient and extraction rate only change a little when the concentration of theanine is above 0.2 g· L-1.With the increase of SDS concentration,the phase ratio and the partition coefficient decrease,while the extraction efficiency of theanine increases and the concentration of theaninc changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio.The temperature has a notable effect on the concentration of theanine in the bottom phase,partition coefficient and extraction rate of theanine.The increase of waste liquid decreases the phase ratio,increases the concentration and extraction rate of theanine in the bottom phase,since the protein and the saccharide enter the bottom phase with theanine.

  10. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g-1 for 10 g L-1 of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 oC. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  11. The application of fish scales in removing heavy metals from energy-produced waste streams: the role of microbes

    Energy Technology Data Exchange (ETDEWEB)

    Mustafiz, S. [Dalhousie University, halifax, Nova Scotia (Canada). Faculty of Engineering

    2003-09-01

    In energy production, heavy metals pose significant contamination hazards. For example, the petroleum industry generates wastes that are often high in heavy metal concentrations. Heavy metals are very toxic and extremely deleterious to humans, plants, and animals. Application of fish scale to remove heavy metals is a very recent innovation. It is an environmentally appealing and economically attractive alternative to current heavy metal adsorbing materials. Previously, the adsorption phenomenon on this exotic waste material was explained by only physical-chemical reactions. Biological effects on adsorption of heavy metals such as lead, arsenic, and chromium were studied using Atlantic Cod scale. The difference in results between nonsterilized and sterilized experiments shows the microbial contribution to heavy metal removal. Results show a wide range of microbial contribution in removing chromium cations. For lead and arsenic cations, the effect is less. Measurement of pH gives some indication of the microbial role in the biosorption process and of the presence of possible microbial species. (author)

  12. The application of fish scales in removing heavy metals from energy-produced waste streams: the role of microbes

    International Nuclear Information System (INIS)

    In energy production, heavy metals pose significant contamination hazards. For example, the petroleum industry generates wastes that are often high in heavy metal concentrations. Heavy metals are very toxic and extremely deleterious to humans, plants, and animals. Application of fish scale to remove heavy metals is a very recent innovation. It is an environmentally appealing and economically attractive alternative to current heavy metal adsorbing materials. Previously, the adsorption phenomenon on this exotic waste material was explained by only physical-chemical reactions. Biological effects on adsorption of heavy metals such as lead, arsenic, and chromium were studied using Atlantic Cod scale. The difference in results between nonsterilized and sterilized experiments shows the microbial contribution to heavy metal removal. Results show a wide range of microbial contribution in removing chromium cations. For lead and arsenic cations, the effect is less. Measurement of pH gives some indication of the microbial role in the biosorption process and of the presence of possible microbial species. (author)

  13. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  14. Geochemical assessment of nuclear-waste isolation. Testing of methods for the separation of solid and aqueous phases

    International Nuclear Information System (INIS)

    Measurement of the solubilities of certain waste radionuclide compounds will be necessary to adequately assess and predict the ability of potential underground waste storage facilities to meet federally established performance criteria. During such measurements, it is usually necessary to physically separate solid and solution phases. Experiments have been conducted to test and compare the relative efficacy of three commonly used separation methods, i.e. gravity settling, centrifugation and filtration. The results indicated that sorption of solution species onto filters can occur and could potentially lead to erroneous results in solubility measurements when one is dealing with trace amounts of radionuclides in solution. The degree of retention by filters depended on the solution pH and the nature of the filter material. Of the three methods, centrifugation appeared to give the most reliable and consistent results. Filtration was found to give results comparable to centrifugation if care is taken in the selection of filter type

  15. Mercury separation from mixed wastes. Annual report

    International Nuclear Information System (INIS)

    This is an assessment of new sorbents for removing Hg from wastes at US DOE sites. Four aqueous wastes were used for the laboratory tests: a simulant of a high-salt, acidic waste currently stored at INEL, a simulant of a high-salt, alkaline waste stored at Savannah River (SRS), a dilute LiOH solution stored at Y-12, and a low-salt, neutral groundwater generated at Y-12. Eight adsorbents covering a wide range of cost and capability were tested. Screening tests identified the most promising adsorbents, and column tests were performed using at least two adsorbents for each waste stream. No one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility, the most effect adsorbents to date are SuperLig 618 for the INEL tank waste simulant, Mersorb and Ionac SR-3 for the SRS tank waste simulant, Durasil 70 and Ionac SR-3 for the LiOH solution, and Ionac SR-3, followed by Ionac SR-4 and Mersorb, for the Y-12 groundwater

  16. Nitrifying Community Analysis in a Single Submerged Attached-Growth Bioreactor for Treatment of High-Ammonia Waste Stream

    DEFF Research Database (Denmark)

    Gu, April Z.; Pedros, Philip B; Kristiansen, Anja;

    2007-01-01

    was used to quantify the identified AOB, and it was estimated that Nitrosomonas europaea/eutropha-like AOB accounted for 4.3% of the total volume of the biofilm, while Nitrosococcus mobilis-like AOB made up 1.2%; these numbers summed up to a total AOB fraction of 5.5% of the total volume on the...... biofilm. Nitrite-oxidizing bacteria (NOB) were not detectable in the biofilm samples with probes for either Nitrospira sp. or Nitrobacter sp., which indicated that NOB were either absent from the biofilters or present in numbers below the detection limit of FISH (<0.1% of the total biofilm). Nitrite...... in a SAGB reactor described in this study is applicable for high-ammonia-strength wastewater treatment, such as centrate or industrial wastes. Udgivelsesdato: December 2007...

  17. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  18. A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution.

    Science.gov (United States)

    Jiang, Ruixue; Tian, Jiyu; Zheng, Hao; Qi, Jinqiu; Sun, Shujuan; Li, Xiaochen

    2015-05-15

    A new magnetic bioadsorbent, magnetic litchi peel (MLP), was synthesized by coating powdered litchi peel with Fe3O4, and was used for removing Pb(II) from aqueous solutions. The influencing factors, adsorption isotherms, kinetics, and thermodynamics of Pb(II) adsorption by MLP were investigated using batch assays. Optimum Pb(II) adsorption by MLP was achieved using a contact time of 120 min, an adsorbent dose of 5 g/L, and pH of 6.0. The adsorption equilibrium data conformed to the Langmuir isotherm model, yielding a maximum Pb(II) adsorption capacity of 78.74 mg/g. The adsorption kinetics for Pb(II) adsorption by MLP followed a pseudo-second-order model. The thermodynamic results suggested that Pb(II) adsorption by MLP was spontaneous and exothermic. Additionally, the magnetic adsorbent was easily and rapidly separated out of solution under an external magnetic field. PMID:25770959

  19. Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk-An agricultural waste

    International Nuclear Information System (INIS)

    The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix golden yellow 3 RFN from aqueous solution. In this work, adsorption of Reactofix golden yellow 3 RFN on wheat husk and charcoal has been studied by using batch studies. The equibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from wastewater

  20. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Seal, Robert R., II; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was

  1. ADSORPTION OF PHENOL AND Pb2+ FROM AQUEOUS SOLUTIONS BY A NEW DI-FUNCTION ADSORBENT WITH SULFHYDRYL GROUPS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinnan; LI Aimin; ZHANG Bo; ZHANG Quanxing

    2007-01-01

    A new di-function adsorbent (JN-3) was prepared by sulfhydryl modified. Comparing with Amberlite XAD-4 and NDA-150, the equilibrium adsorption for phenol on the JN-3 from aqueous solutions was tested, perfect adsorption capacity was shown. Pb2+ can be also removed by JN-3 because of the chelate interaction between sulfhydryl groups and metal ions. This adsorbent could be used in removal of combine pollutants such as phenolic compounds and heavy metal ions from waste streams.

  2. Liquidus Temperature Studies In Support Of The Incorporation Of Small Column Ion Exchange Streams In Defense Waste Processing Facility High Level Waste Glass

    International Nuclear Information System (INIS)

    This report documents the last of a series of studies on the potential impacts of Small Column Ion Exchange (SCIX) on Defense Waste Processing Facility (DWPF) glass. It was previously recommended that full liquidus temperature (TL) measurements be completed for those glasses where a TL range had only been estimated. These data would then be available to support refitting of the TL model to allow for the application of the model to glasses with higher TiO2 concentrations. It was also recommended that all further TL experiments utilize glass compositions that include noble metals, since the noble metals can act as nucleation sites and lead to enhanced crystallization. The KT07- and KT10-series glasses were recommended for further TL measurements since these glasses included noble metals. The KT06-series glasses were also recommended for further TL measurements since they targeted a broad range of compositions for potential DWPF operation. However, since these glasses did not contain noble metals, it was necessary to fabricate additional glasses with noble metals added, designated as the KT06NMseries. Chemical composition measurements showed that there were only minor difficulties in meeting the targeted concentrations for the KT06NM glasses. Some deviations from the targeted composition were seen for composition KT06NM-04, although the deviations did not impact the outcome of the study since the measured composition for this glass will be used in future evaluations of TL. The measured TL for the KT07- and KT10-series glasses were all higher than the upper bounds of the 95% confidence intervals of the model predicted values. The model under predicted the TL for all of these glasses that had elevated TiO2 concentrations (approximately 4 to 7 wt %). One must keep in mind that the TiO2 concentrations of these glasses are well above the region of applicability defined for the current TL model of 0-1.85 wt % TiO2; therefore, this prediction bias is not necessarily

  3. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  4. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    International Nuclear Information System (INIS)

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput

  5. A review of methods for the decontamination of alpha-bearing waste streams to very low-levels of activity

    International Nuclear Information System (INIS)

    This report reviews the processes presently available for the decontamination of alpha-bearing waste effluents. Evaporation, chemical precipitation, organic and inorganic ion exchange, solvent extraction, ultrafiltration, electrical and microbiological processes are considered in turn. Each type of process and its applications in the nuclear industry are briefly described together with the results from any recent development studies. From the information available the advantages and limitations of the process for alpha removal to low-levels (10-2-10-3 Bq/msup(l)) are assessed. It is concluded that no single process is capable of removing the actinides to these very low levels but that this level of decontamination should be achieved by the use of two or more processes either sequentially or in combination; e.g. the use of ultrafiltration or precipitation processes in combination with finely divided inorganic ion exchange materials. Processes involving a good solid-liquid separation, such as ultrafiltration appear to be the most appropriate for actinides which show a tendency to hydrolyse and form colloids. However, there is very limited information available on the removal of actinides by such processes, particularly at levels < Bq/ml. Electrical and biological processes are not yet sufficiently developed for their potential to be properly assessed. (author)

  6. Feasibility study for an on-line inventory of the Dutch activities in the area of energy production from biomass and waste streams. Bio-MASSTER

    International Nuclear Information System (INIS)

    Based on the results of questionnaires and interviews with experts in the field it appears that there is an interest in an up-to-date overview of the activities in the Netherlands with respect to the subject of energy production from biomass and waste streams. Three applications of the information system were considered to be important: (a) the system can contribute to the marketing of Dutch activities, knowledge and technology. Potential customers are found within and outside the Netherlands; (b) the system can be used in the networking process, since it aims for establishing direct contacts between different parties, which can result into new co-operations; (c) the system, as a source of knowledge, can be used for knowledge management. Governments and groups of organisations can easily get an overview of skills, expertise and experience. This overview can be used for supporting joint projects. Implementation of the system on the World Wide Web (WWW) is appreciated for the possibility to keep it up-to-date and user-friendly. 10 figs., 3 appendices

  7. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Organic anion exchange resins are evaluated for 99-TcO4- (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I-, NO3-, SO4=, CO3=, Cl- and OH-. Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  8. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO3-, OH- and BO3- environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  9. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst.

    Science.gov (United States)

    Rezaei, Fatemeh; Moussavi, Gholamreza; Bakhtiari, Alireza Riyahi; Yamini, Yadollah

    2016-04-01

    This paper investigates the catalytic potential of MgO/GAC composite for toluene elimination from waste air in the catalytic ozonation process (COP). The MgO/GAC composite was a micro-porous material with the BET surface area of 1082m(2)/g. Different functional groups including aromatic CC, saturated CO of anhydrates, hydroxyl groups and SH bond of thiols were identified on the surface of MgO/GAC. Effects of residence time (0.5-4s), inlet toluene concentration (100-400ppmv) and bed temperature (25-100°C) were investigated on degradation of toluene in COP. Impregnation of GAC with MgO increased the breakthrough time and removal capacity by 73.9% and 64.6%, respectively, at the optimal conditions. The catalytic potential of the GAC and MgO/GAC for toluene degradation was 11.1% and 90.6%, respectively, at the optimum condition. The highest removal capacity using MgO/GAC (297.9gtoulene/gMgO/GAC) was attained at 100°C, whereas the highest removal capacity of GAC (128.5mgtoulene/gGAC) was obtained at 25°C. Major by-products of the toluene removal in COP with GAC were Formic acid, benzaldehyde, O-nitro-p-cresol and methyl di-phenyl-methane. MgO/GAC could greatly catalyze the decomposition of toluene in COPand formic acid was the main compound desorbed from the catalyst. Accordingly, the MgO/GAC is an efficient material to catalyze the ozonation of hydrocarbon vapors. PMID:26784452

  10. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. The US Department of Energy Low-Level Radioactive Waste Management Program is directed toward a coordinated program covering the period from low-level radioactive waste generation through the decommissioning of the disposal site. This paper addresses the treatment portion of the program. The development efforts include: mechanical methods for metal and compactible waste volume reduction; incineration of trash or other combustibles through the use of controlled air, cyclone, or molten glass furnaces; ultrafiltration, reverse osmosis, biological or chemical destruction of nitrates; adsorption treatment of low-concentration aqueous waste streams; combustion of organic liquids; and smelting of metal wastes to reduce their volume and conserve our natural resources. (author)

  11. Low-temperature-setting phosphate ceramics for low-level mixed waste stabilization

    International Nuclear Information System (INIS)

    Chemically bonded phosphate ceramics (CBCs) were investigated for low-temperature stabilization and solidification of DOE mixed wastes where conventional high-temperature treatments cannot be used due to presence of volatiles and pyrophorics in the wastes. This article deals with stabilization of chemical contaminants. Phosphate ceramics of Mg, Mg-Na and Zr are being investigated as candidate materials. The authors discuss the basic properties of the phosphate waste forms made with surrogates of typical DOE mixed wastes with an emphasis on ash waste stream. The performance of the final waste forms, including leachability of the contaminants durability of the final waste forms in aqueous environment, and strength of the waste forms are discussed in detail. Based on the results, the authors present possible economic applications of these materials

  12. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    International Nuclear Information System (INIS)

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g-1. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  13. Evaluation of an Adsorbent Based on Agricultural Waste (Corn Cobs for Removal of Tyrosine and Phenylalanine from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Cibele C. O. Alves

    2013-01-01

    Full Text Available Adsorption of phenolic amino acids, such as phenylalanine and tyrosine, is quite relevant for the production of protein hydrolysates used as dietary formulations for patients suffering from congenital disorders of amino acid metabolism, such as phenylketonuria. In this study, an adsorbent prepared from corn cobs was evaluated for the removal of tyrosine (Tyr from both a single component solution and a binary aqueous solution with phenylalanine (Phe. The adsorption behavior of tyrosine was similar to that of phenylalanine in single component solutions, however, with a much lower adsorption capacity (14 mg g−1 for Tyr compared to 109 mg g−1 for Phe. Tyr adsorption kinetics was satisfactorily described by a pseudosecond-order model as it was for Phe. In adsorption equilibrium studies for binary mixtures, the presence of Tyr in Phe solutions favored Phe faster adsorption whereas the opposite behavior was observed for the presence of Phe in Tyr solutions. Such results indicate that, in binary systems, Phe will be adsorbed preferably to Tyr, and this is a welcome feature when employing the prepared adsorbent for the removal of Phe from protein hydrolysates to be used in dietary formulations for phenylketonuria treatment.

  14. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  15. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. PMID:27474855

  16. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. PMID:24656549

  17. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  18. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  19. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor

    International Nuclear Information System (INIS)

    Highlights: • Fe3O4 nanoparticles prepared from waste liquor were functionalized with EDA. • EDA-Fe3O4 nanoparticles had high adsorption capacity and selectivity for Cr(VI). • The adsorption kinetics, thermodynamics and isotherm were studied. • Electrostatic attraction and complexation were postulated as adsorption mechanisms. • EDA-Fe3O4 nanoparticles retained high capacity after several adsorption processes. - Abstract: In this study, Fe3O4 nanoparticles (NPs) prepared from steel pickling waste liquor were functionalized with ethylenediamine (EDA) to form EDA-Fe3O4 NPs for engineering applications. The obtained EDA-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface analyzer and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the EDA-Fe3O4 NPs had a crystalline structure with a particle size range of 20–50 nm and a BET surface area of 28 m2 g−1. Functionalization with EDA was able to improve the adsorption selectivity of Fe3O4 for Cr(VI) in Cr(VI)/Cl−or Cr(VI)/SO42− double-mixture systems. The adsorption isotherm data fitted better to the Langmuir adsorption model, and the adsorption kinetics was better described by the pseudo-second order equation. The spontaneous and endothermic characteristics of this adsorption reaction were confirmed by thermodynamic study. Based on the results of X-ray photoelectron spectroscopy (XPS), electrostatic attraction and surface complexation between Cr(VI) and EDA-Fe3O4 NPs are postulated as mechanisms for the adsorption of Cr(VI) from aqueous solution. The EDA-Fe3O4 NPs retained a high adsorption capacity after several consecutive adsorption–desorption processes, indicating that EDA-Fe3O4 NPs serve as an excellent regenerable adsorbent for Cr(VI)

  20. Value stream analysis

    OpenAIRE

    Hrnčíř, Roman

    2013-01-01

    The aim of the diploma thesis “Value stream mapping” is to analyse the montage workplace of the company IFE-CR, a.s. with focus on the value stream and the methods of lean production. The thesis aims to identify priorities for applying lean production methods at the montage workplace and to propose concrete measures in order to reduce different types of wasting. The first part of the thesis is dealing with the theory, understanding the main principles and methods of lean production, as well a...