WorldWideScience

Sample records for aqueous salt systems

  1. Ionic Liquid-salt Aqueous Two-phase System, a Novel System for the Extraction of Abused Drugs

    Institute of Scientific and Technical Information of China (English)

    She Hong LI; Chi Yang HE; Hu Wei LIU; Ke An LI; Feng LIU

    2005-01-01

    A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93%was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.

  2. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    Science.gov (United States)

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation.

  3. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  4. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  5. Salt effect on the (polyethylene glycol 8000 + sodium sulfate) aqueous two-phase system: Relative hydrophobicity of the equilibrium phases

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luisa A., E-mail: laferreira@deb.uminho.pt [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Teixeira, Jose A. [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2011-08-15

    Highlights: > Gibbs free energy of transfer of a methylene group on PEG 8000 - Na{sub 2}SO{sub 4} ATPS. > Influence of salt additive on the hydrophobic character of the coexisting phases. > Partitioning behavior of a series of five sodium salts of DNP-amino acids. > A relationship between {Delta}G(CH{sub 2}), TLL and I of the salt additive was established. - Abstract: The relative hydrophobicity of the phases of several {l_brace}polyethylene glycol (PEG) 8000 + sodium sulfate (Na{sub 2}SO{sub 4}){r_brace} aqueous two-phase systems (ATPSs), all containing 0.01 mol . L{sup -1} sodium phosphate buffer (NaPB, pH 7.4) and increasing concentration of a salt additive, NaCl or KCl, up to 1.0 mol . L{sup -1}, was measured by the free energy of transfer of a methylene group between the phases, {Delta}G(CH{sub 2}). The {Delta}G(CH{sub 2}) of the systems was determined by partitioning of a homologous series of five sodium salts of dinitrophenylated (DNP) - amino acids with aliphatic side chains in three different tie-lines of each biphasic system. The relative hydrophobicity of the phases ranged from -0.125 to -0.183 kcal . mol{sup -1}, being the NaCl salt the one to provide the more effective changes. The results show that, within each system, there is a linear relationship between the {Delta}G(CH{sub 2}) and the tie-line length (TLL), and biphasic systems with high salt additive concentration present the most negative {Delta}G(CH{sub 2}) values. Therefore, the feasibility of establishing a relationship between the relative hydrophobicity of the phases in a given TLL and the ionic strength of the salt additive was investigated and a satisfactory correlation was found for each salt.

  6. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    Science.gov (United States)

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  7. Extraction and purification of anthraquinones derivatives from Aloe vera L. using alcohol/salt aqueous two-phase system.

    Science.gov (United States)

    Tan, Zhi-jian; Li, Fen-fang; Xu, Xue-lei

    2013-08-01

    An alcohol/salt aqueous two-phase system (ATPS) composed of 1-propanol and (NH4)2SO4 was employed to purify anthraquinones (AQs) extracted from Aloe vera L. The main influencing system parameters such as type of alcohol, type and concentration of salt, temperature and pH were investigated in detail. Under the optimal extraction conditions, AQs can be extracted into alcohol-rich phase with high extraction efficiency, meanwhile majority polysaccharides, proteins, mineral substances and other impurities were extracted into salt-rich phase. Partitioning of AQs is dependent on hydrophobic interaction, hydrogen bond interaction, and salting-out effect in ATPS. Temperature also played a great role in the partitioning. After ATPS extraction, alcohol can be recycled by evaporation; moreover, salt can be recycled by dilution crystallization method. Compared with other liquid-liquid extractions, this alcohol/salt system is much simpler, lower in cost with easier recovery of phase-forming components, which has the potential scale-up in down-processing of active ingredients in plant.

  8. Measurement and Correlation of Partition Coefficients of Baicalin in EOPO/Salt Aqueous Two-Phase Systems

    Institute of Scientific and Technical Information of China (English)

    李伟; 朱自强

    2002-01-01

    The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide(EOPO)/salt aqueous two-phase systems at 298.15K,It was found that most of baicalin partitioned into EOPO-rich phase.The partition coefficients of baicalin varied from 10 to 120.The effect of various factors,including tie-line lngth,salt composition,molecular weight of EOPO,and solution pH,on the partition behavior was investigated on EOPO/salt systems.Furthermore the partition coefficients of baicalin were correlated using the modified Diamond-Hsu model.Good agreement with experimental data is obtained.The average relative deviations are less than 5.0%.

  9. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) - Water-salt systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Iliuta, Maria Cornelia; Rasmussen, Peter

    2004-01-01

    -Redlich-Kwong equation of state. The model only requires binary, temperature-dependent interaction parameters. It has previously been used to describe the excess Gibbs energy for aqueous electrolyte mixtures and aqueous electrolyte systems containing methanol. It has been found to be an adequate model for representing...... solid-liquid-vapor equilibrium and thermal property data for strongly non-ideal systems. In this work, the model is extended to aqueous salt systems containing higher alcohols. The calculations are based on an extensive database consisting of salt solubility data, vapor liquid equilibrium data...

  10. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  11. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  12. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    . The calculations are based on an extensive database consisting of salt solubility data in pure and mixed solvents, VLE data for solvent mixtures and mixed solvent-electrolyte systems and thermal properties for mixed solvent solutions. Application of the model to the methanol-water system in the presence of several...... to aqueous salt systems containing non-electrolytes in order to demonstrate its ability in representing solid-liquid-vapour (SLV) equilibrium and thermal property data for these strongly non-ideal systems. The model requires only pure component and binary temperature-dependent interaction parameters...... behaviour of methanol-water-three salts systems is illustrated. (C) 2000 Elsevier Science Ltd. All rights reserved....

  13. Electrochemical synthesis of nanocrystalline In2O3:Sn (ITO) in an aqueous system with ammonium acetate as conducting salt.

    Science.gov (United States)

    Veith, M; Rabung, B; Grobelsek, I; Klook, M; Wagner, F E; Quilitz, M

    2009-04-01

    Nanoscaled so called indium tin oxide In2O3:Sn (ITO) with a specific BET surface area of 50 m2/g to 60 m2/g was prepared via an electrochemical method in an aqueous system containing ammonium acetate as conductive salt. As an intermediate product of the synthesis nanocrystalline In(OH)3 is obtained which serves as a precursor for the subsequent calcinations accompanied by tin doping resulting in ITO powders with various tin concentrations. Its phase transitions and the reduction behaviour of hydroxide to oxide during the calcination process in air flow and forming gas atmosphere of N2 to H2 ratio of 95 to 5 respectively, have been investigated by high temperature X-ray diffraction, TG/DSC/MS, HRTEM and SEM analysis. Depending on the atmosphere dehydration of tin doped In(OH)3 started at 150 degrees C, cubic ITO solid solution formed between 190 degrees C and 300 degrees C. The total weight loss of the hydroxide of approx. 21% occurred mainly below 360 degrees C and the burn-out of organic components mainly between 308 degrees C and 316 degrees C. The results of DSC and MS analyses were in good agreement with the results of the X-ray diffraction. In addition, the products have been characterized by EDX associated with TEM, XPS, ICP-AES, BET analysis and 119Sn Mössbauer spectroscopy. Completely reacted samples of ITO have been processed to pellets, calcined and sintered in the temperature range between 900 degrees C and 1100 degrees C and characterized by measurements of the electrical conductivities of bulk and surface in the reduced as well as in the oxidized state giving values up to 1400 Scm(-1).

  14. Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds.

    Science.gov (United States)

    Liu, Dan; Hong, Zhilai; Gao, Mingzhe; Wang, Zhixin; Gu, Ming; Zhang, Xiaozhe; Xiao, Hongbin

    2016-05-27

    The essential attributes of a solvent system for separation polar compounds on CCC are polarity, selectively and performance. Here, hydrophilic organic/salt-containing aqueous two-phase system (HO/S TPS) was evaluated as an alternative solvent system for CCC separation of polar compounds. Polarity measurements based on Rohrschneider-Snyder parameter was developed as quantitative assessing the polarity of HO/S TPS and comparing with an organic/aqueous system. All investigated 1-butanol/ethanol/saturated ammonium sulfate solution/water (BEAsWat) and 1-butanol/ethanol/saturated dipotassium hydrogen phosphate solution/water (BEDhpWat) systems with polarity values of organic phase from 4.5 to 6.8, were more polar than chloroform/methanol/water (1/1/1). The considerable water content of BEAsWat and BEDhpWat (0/1/1/1/) was 45.4 and 42.6% (w%) of hydrophilic organic phase, and 66.4 and 51.2% (w%) of salt-containing aqueous phase, respectively, closed to conventional aqueous two-phase system. Therefore, the polarity of HO/S TPS is in the middle of organic/aqueous and aqueous two-phase system. The LogKC values of twenty four polar compounds as model mixture confirmed that the polarities of HO/S TPSs were matched to that of the polar compounds and shown to be a very selective technique capable of separating positional isomers. Moreover, BEAsWat and BEDhpWat systems can be easily retained in CCC column with suitable elution mode. The hydrodynamic behavior reversion of HO/S TPS on hydrodynamic CCC was observed and was tentatively explained based on the density difference. Finally, caffeoylquinic acid isomers and dihydroxybenzoic acid isomers were successfully separated with HO/S TPS on CCC, respectively. Those results demonstrate that HO/S TPS on CCC is a performant and stable way to separate polar compounds from natural products.

  15. PEG-salt aqueous two-phase systems: an attractive and versatile liquid-liquid extraction technology for the downstream processing of proteins and enzymes.

    Science.gov (United States)

    Glyk, Anna; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid-liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG-salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid-liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.

  16. 黄芩甙在EOPO/盐双水相系统中的分配系数测定及关联%Measurement and Correlation of Partition Coefficients of Baicalin in EOPO/Salt Aqueous Two-Phase Systems

    Institute of Scientific and Technical Information of China (English)

    李伟; 朱自强

    2002-01-01

    The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide (EOPO)/salt aqueous two-phase systemsat 298.15K. It was found that most of baicalin partitioned into EOPO-rich phase. The partition coefficients of baicalin varied from 10 to 120.The effect of various factors, including tie-line length, salt composition, molecular weight of EOPO, and solution pH, on the partition behaviorwas investigated in EOPO/salt systems. Furthermore the partition coefficients of baicalin were correlated using the modified Diamond-Hsumodel. Good agreement with experimental data is obtained. The average relative deviations are less than 5.0%.

  17. Direct Purification of Pectinase from Mango (Mangifera Indica Cv. Chokanan Peel Using a PEG/Salt-Based Aqueous Two Phase System

    Directory of Open Access Journals (Sweden)

    Abdul Manap Mohd Yazid

    2011-10-01

    Full Text Available An Aqueous Two-Phase System (ATPS was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000–10,000, potassium phosphate composition (12–20%, w/w, system pH (6–9, and addition of different concentrations of neutral salts (0–8%, w/w on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%. Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.

  18. Direct purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel using a PEG/salt-based Aqueous Two Phase System.

    Science.gov (United States)

    Mehrnoush, Amid; Sarker, Md Zaidul Islam; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2011-10-10

    An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.

  19. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Han, Juan; Wang, Yun; Yu, Cuilan; Li, Chunxiang; Yan, Yongsheng; Liu, Yan; Wang, Liang

    2011-01-31

    Ionic liquid-salt aqueous two-phase flotation (ILATPF) is a novel, green, non-toxic and sensitive samples pretreatment technique. ILATPF coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol, which combines ionic liquid aqueous two-phase system (ILATPS) based on imidazolium ionic liquid (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl) and inorganic salt (K(2)HPO(4)) with solvent sublation. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C(4)mim]Cl-K(2)HPO(4) ILATPF was influenced by the types of salts, concentration of K(2)HPO(4) in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C(4)mim]Cl. Under the optimum conditions, the average sublation efficiency is up to 98.5%. The mechanism of ILATPF contains two principal processes. One is the mechanism of IL-salt ILATPS formation, the other is solvent sublation. This method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5-500 ng mL(-1). The method yielded limit of detection (LOD) of 0.1 ng mL(-1) and limit of quantification (LOQ) of 0.3 ng mL(-1). The recovery of CAP was 97.1-101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid-liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules.

  20. SWELLING EQUILIBRIUM OF NONIONIC POLYACRYLAMIDE HYDROGEL IN AQUEOUS SALT SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of nonionic polyacrylamide hydrogels, using acrylamide as monomer and N,N’-methylene diacrylamide as crosslinking agent, were prepared by the free radical polymerization in aqueous solution. Swelling equilibria for the gels were carried out in aqueous solutions of NaCl, KCl, CaCl2, Na2HPO4 and K2HPO4 with concentration ranging from 10-3 to 5mol/kgH2O at 25℃. Experimental results revealed that the chlorides and phosphates cause a different behavior at higher salt concentration. The swelling ratio increases with increasing concentration of chlorides salts, while decreases with the increased phosphates salt concentration. The phenomena seem to be related to the different interactions of chloride and hydrogen phosphate ions with the network groups. Furthermore, the effects of different concentration of crosslinking agent and total monomers on gel swelling performance were also investigated.

  1. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary, Ternary, and Multicomponent Systems. Part I. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Water and Aqueous Systems

    Science.gov (United States)

    Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi

    2011-03-01

    The solubility data for well-defined binary, ternary, and multicomponent systems of solid-liquid type are reviewed. One component, which is 2-, 3-, and 4-hydroxybenzoic acids, 4-hydroxybenzoate alkyl esters (parabens), or hydroxybenzoic acid salts, is in the solid state at room temperature and another component is liquid water, meaning that all of the systems are aqueous solutions. The ternary or multicomponent systems include organic substances of various classes (hydrocarbons of several structural types, halogenated hydrocarbons, alcohols, acids, ethers, esters, amides, and surfactants) or inorganic substances. Systems reported in the primary literature from 1898 through 2000 are compiled. For seven systems, sufficient binary data for hydroxybenzoic acids or parabens in water are available to allow critical evaluation. Almost all data are expressed as mass and mole fractions as well as the originally reported units, while some data are expressed as molar concentration.

  2. 双水相体系在无机盐分离中的应用%Application of Aqueous - two Phase System in the Separation of Inorganic Salts

    Institute of Scientific and Technical Information of China (English)

    史许娜; 韩清华

    2016-01-01

    Different separation methods of potassium chloride and ammonium chloride mixture are ana-lyzed. The present situation for separating mixed solution of potassium chloride and ammonium chloride by aqueous two - phase system(1 - propanol - KCl - NH4 Cl - H2 O aqueous two - phase system)is intro-duced,and the application of aqueous two - phase system is expanded.%分析了氯化钾和氯化铵混合溶液的不同分离方法,介绍了双水相体系(正丙醇—氯化钾—氯化铵—水双水相体系)对该混合溶液的分离现状,拓展了双水相体系的应用范围。

  3. Metal separations using aqueous biphasic partitioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  4. Electrical conductivity of aqueous solutions of aluminum salts

    Science.gov (United States)

    Vila, J.; Rilo, E.; Segade, L.; Cabeza, O.; Varela, L. M.

    2005-03-01

    We present experimental measurements of the specific electrical conductivity (σ) in aqueous solutions of aluminum salts at different temperatures, covering all salt concentrations from saturation to infinite dilution. The salts employed were AlCl3 , AlBr3 , AlI3 , and Al(NO3)3 , which present a 1:3 relationship between the electrical charges of anion and cation. In addition, we have measured the density in all ranges of concentrations of the four aqueous electrolyte solutions at 298.15K . The measured densities show an almost linear behavior with concentration, and we have fitted it to a second order polynomial with very high degree of approximation. The measurement of the specific conductivity at constant temperature reveals the existence of maxima in the conductivity vs concentration curves at molar concentrations around 1.5M for the three halide solutions studied, and at approximately 2M for the nitrate. We present a theoretical foundation for the existence of these maxima, based on the classical Debye-Hückel-Onsager hydrodynamic mean-field framework for electrical transport and its high concentration extensions, and also a brief consideration of ionic frictional coefficients using mode-coupling theory. We also found that the calculated values of the equivalent conductance vary in an approximately linear way with the square root of the concentration at concentrations as high as those where the maximum of σ appears. Finally, and for completeness, we have measured the temperature dependence of the electrical conductivity at selected concentrations from 283to353K , and performed a fit to an exponential equation of the Vogel-Fulcher-Tamman type. The values of the calculated temperatures of null mobility of the four salts are reported.

  5. Aqueous gel formation from sodium salts of cellobiose lipids.

    Science.gov (United States)

    Imura, Tomohiro; Yamamoto, Shuhei; Yamashita, Chikako; Taira, Toshiaki; Minamikawa, Hiroyuki; Morita, Tomotake; Kitamoto, Dai

    2014-01-01

    Cellobiose lipids (CLs) are asymmetric bolaform biosurfactants, which are produced by Cryptococcus humicola JCM 10251 and have fungicidal activity. In this study, the sodium salts of CLs (CLNa) were prepared to improve aqueous solubility of the CLs, and their surface and gelation properties in aqueous solutions were examined by surface tension, rheology, and freeze-fracture transmission electron microscopy (FF-TEM) measurements. The surface tension measurements revealed that the CLNa have high surface activity: CMC1 and γCMC1 are 0.1 mg/mL and 34.7 mN/m, respectively. It was also found that the CLNa form giant micelles above their CMC, whose average size is 116.6 ± 31.9 nm. Unlike conventional surfactants, the surface tension reduced further with an increase in concentration and the aqueous solution became viscous at the minimum gelation concentration (MGC: 5.0 mg/mL). In rheological studies, the obtained gels proved to be rather soft and their sol-gel temperature was found to be approximately 50℃. FF-TEM observation of the gels showed 3D supramolecular structures with an entangled fibrous network. Since the present CLNa aqueous gels have a degree of fungicidal activity, they could be useful for novel multifunctional soft materials applicable to the food and cosmetic industries.

  6. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Rita Mehra; Aditi Soni

    2002-02-01

    The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts towards corrosion has also been studied, which is found to be different from previous studies. The total immersion test parameters viz. weight loss, corrosion rate as well as potentiostatic parameters, open circuit potential, corr, Tafel slopes, corrosion rate, have been calculated by standard methods. Besides these the relative increase in corrosion rate with time as well as the percentage to which corrosion rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions. For the reliability of results the data has been statistically analysed.

  7. 异丙醇/盐双水相分离制备高色价栀子黄%Separation of Gardenia Yellow by Isopropanol Alcohol/Salt Aqueous Two-Phase System

    Institute of Scientific and Technical Information of China (English)

    郭晶莹; 张红萍

    2016-01-01

    Abstrat:Gardenia yellow was separated by employing isopropanol-salt aqueous two-phase system. The factors such as kinds of salt, concentration of the salt, pH and temperture on the gardenia yellow separation efficiency were investigated, and the gardenia yellow was analyzed by spectrophotometric method and HPLC. The results showed that the aqueous two-phase system which was formed by isopropanol alcohol(2mL) and sodium citrate (1.6g)was effective for the separation of gardenia yellow from gardenia fruit in 35℃and pH=8.7,and the color value and the OD of the gardenia yellow were 542 and 0.382,respectively.%采用异丙醇/盐组成的双水相体系分离栀子黄。综合考察了盐的种类、浓度、pH值和温度等因素对栀子黄分离效果的影响,并且采用紫外-可见分光光度法和HPLC对异丙醇/盐双水相体系分离得到的栀子黄进行评价。结果表明,在35℃条件下由1.6g的柠檬酸三钠和2mL的异丙醇组成双水相体系,pH等于8.7,分离得到栀子黄和OD值分别为0.382、542。

  8. Study on aqueous two-phase extraction of L-phenylalanine by polyethylene glycol/salt system%聚乙二醇/盐双水相萃取L-苯丙氨酸的研究

    Institute of Scientific and Technical Information of China (English)

    孙晨; 刘文举; 刘宁宁

    2012-01-01

    研究了聚乙二醇/盐双水相体系的成相行为及L-苯丙氨酸在双水相中的分配规律,其中包括聚乙二醇的分子量、聚乙二醇质量分数、盐的种类及加入量、L-苯丙氨酸初始浓度和pH对萃取分离的影响。当聚乙二醇1000的质量分数为27%,磷酸氢二钾的质量浓度为O.15g/mL,L-苯丙氨酸的质量浓度为10g/L,体系的pH为8.5时,L-苯丙氨酸的萃取率最高为99.5%,分配系数最大为186.5。%An aqueous two- phase system of polyethylene glycol (PEG)/salt with the behavior of forming aqueous two-phase and the distribution rules of L-phenylalanine in the aqueous two-phase system were studied.Effects of the molecular weight of polyethylene glycol ,the mass fraction of polyethylene glycol ,the types and concentrations of salts,the initial concentration of L-phenylalanine and pH value were investigated.When the mass fraction of PEG1000 was 27% ,the mass concentration of K2HPO4was 0.]5g/mL,the initial concentration of L-phenylalanine was 10g/L and pH value was about 8.5,the highest extraction yield of L-phenylalanine could reach 99.5 %, partition coefficient of L-phenylalanine could reach 186.5.

  9. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 136-713 (Korea, Republic of); Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Heejae; Kim, Seongheun [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  10. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  11. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  12. The solubility of toluene in aqueous salt solutions.

    Science.gov (United States)

    Poulson, S; Harrington, R; Drever, J

    1999-03-01

    The solubility of toluene has been measured in distilled water, and in various inorganic salt solutions. Values of the Setschenow constant, K(S), which quantify toluene solubility versus salt concentration, have been determined for each salt. Values of K(S) are compared to the activity of water for the salt solutions. Data from this study, consistent with earlier data, suggests that the effects of salts upon toluene solubility are non-additive. This contrasts the additive behavior of inorganic salts upon the solubility of nonpolar organic compounds, such as benzene and naphthalene, reported in the literature. Specific interaction between slightly polar toluene and ions in solution is suggested as a possible explanation for the non-additive effect of salts on the solubility of toluene.

  13. Extraction of Tartrazine from Food Colorants by PEG/Salt Aqueous Two-Phase System%PEG/盐双水相萃取食用色素柠檬黄的研究

    Institute of Scientific and Technical Information of China (English)

    姜彬; 李冬梅; 冯志彪

    2014-01-01

    采用PEG/盐双水相体系萃取食用色素柠檬黄。考察了成相物质对柠檬黄吸光度的影响,在此基础上考察了PEG相对分子量、PEG浓度、盐的种类及浓度、p H 对萃取效果的影响,确定了萃取柠檬黄的最佳条件:18% PEG2000,15%(NH4)2SO4,pH 为6。该体系对柠檬黄色萃取效果不受外加无机盐的影响,但表面活性剂的存在对萃取效果有较大影响。%An aqueous two-phase system (ATPS )is presented with polyethylene glycol (PEG )and salt for the extraction of tartrazine in this paper.The extraction of tartrazine in ATPS is investigated. Concentration of (NH4 )2 SO4 and PEG,pH value and other factors are evaluated to determine their effects on the extraction yield of tartrazine.The results show that the extraction yield strongly de-pends on the concentration of PEG and (NH4 )2 SO4 .A high extraction yield around 98% is achieved with the following parameters:(NH4)2SO4 15%,PEG2000 18%,pH 6.It is found that the extrac-tion yield undepends on the additional salt,but the presence of surfactant influences the extraction yield evidently.

  14. Forces between Hydrophobic Solids in Concentrated Aqueous Salt Solution

    OpenAIRE

    Mastropietro, Dean J; Ducker, William A.

    2012-01-01

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108 degrees. Thus, in 1 M salt solution, it is unnecessar...

  15. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Janich, M.; Hildebrand, A. [Martin-Luther-University, Halle (Saale) (Germany); Strunz, P. [Berlin Neutron Scattering Center, HZB, Berlin (Germany); Neubert, R.H.H. [Martin-Luther-University, Halle (Saale) (Germany); Lombardo, D., E-mail: lombardo@me.cnr.it [CNR–IPCF, Istituto per i Processi Chimico Fisici – (Sez. Messina), I-98158, Messina (Italy)

    2013-10-16

    Highlights: • Self-assembly in model DPPC lipids and NaDC bile salt by SANS and DLS experiments. • Bile salt creates structural interference against cohesive tendency of DPPC bilayers. • NaDC steric interactions cause transition toward different supramolecular structures. - Abstract: Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid–bile salt mixtures as well as stimulate new routes for liposome reconstitution–solubilisation processes suitable for technological applications.

  16. Forces between hydrophobic solids in concentrated aqueous salt solution.

    Science.gov (United States)

    Mastropietro, Dean J; Ducker, William A

    2012-03-09

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108°. Thus, in 1 M salt solution, it is unnecessary to invoke the presence of a hydrophobic force at separations greater than 5 nm. Through measurement in salt solution, we avoid the necessity of accounting for large electrostatic forces that frequently occur in pure water and may obscure resolution of other forces.

  17. Gibbs free energy of transfer of a methylene group on {UCON + (sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects

    OpenAIRE

    Silvério, Sara C.; Rodríguez, Oscar; Teixeira, J. A.; Macedo, Eugénia

    2010-01-01

    The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH2) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 °C, in three different tie-lines of the biphasic systems: (UCON + K2HPO4), (UCON + potassium phosph...

  18. Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline

    DEFF Research Database (Denmark)

    Paul, Subham; Thomsen, Kaj

    2012-01-01

    The absorption of carbon dioxide (CO2) into aqueous solution of potassium prolinate (KPr) are studied at 303, 313, and 323K within the salt concentration range of 0.5–3.0kmolm−3 using a wetted wall column absorber. The experimental results are used to interpret the kinetics of the reaction of CO2...

  19. Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2015-01-01

    Full Text Available A roller electrospinning system was used to produce nanofibres by using different solution systems. Although the process of electrospinning has been known for over half a century, knowledge about spinning behaviour is still lacking. In this work, we investigated the effects of salt for two solution systems on spinning performance, fibre diameter, and web structure. Polyurethane (PU and polyethylene oxide (PEO were used as polymer, and tetraethylammonium bromide and lithium chloride were used as salt. Both polymer and salt concentrations had a noteworthy influence on the spinning performance, morphology, and diameter of the nanofibres. Results indicated that adding salt increased the spinnability of PU. Salt created complex bonding with dimethylformamide solvent and PU polymer. Salt added to PEO solution decreased the spinning performance of fibres while creating thin nanofibres, as explained by the leaky dielectric model.

  20. Origin of salt giants in abyssal serpentinite systems

    Science.gov (United States)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-03-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  1. Temperature and concentration effects on the solvophobic solvation of methane in aqueous salt solutions.

    Science.gov (United States)

    Holzmann, Jörg; Ludwig, Ralf; Geiger, Alfons; Paschek, Dietmar

    2008-12-22

    We perform molecular dynamics (MD) simulations of aqueous salt (NaCl) solutions using the TIP4P-Ew water model (Horn et al., J. Chem. Phys. 2004, 120, 9665) covering broad temperature and concentration ranges extending deeply into the supercooled region. In particular we study the effect of temperature and salt concentration on the solvation of methane at infinite dilution. The salt effect on methane's solvation free energy, solvation enthalpy and entropy, as well as their temperature dependence is found to be semi-quantitatively in accordance with the data of Ben-Naim and Yaacobi (J. Phys. Chem. 1974, 78, 170). To distinguish the influence of local (in close proximity to ions) and global effects, we partition the salt solutions into ion influenced hydration shell regions and bulk water. The chemical potential of methane is systematically affected by the presence of salt in both sub volumes, emphasizing the importance of the global volume contraction due to electrostriction effects. This observation is correlated with systematic structural alterations similar to water under pressure. The observed electrostriction effects are found to become increasingly pronounced under cold (supercooled) conditions. We find that the influence of temperature and salt induced global density changes on the solvation properties of methane is well recovered by simple scaling relation based on predictions of the information theory model of Garde et al. (Phys. Rev. Let. 1999, 77, 4966).

  2. Study on Properties of Microemulsion AEO-9/Butanol/Cyclohexane/Salt Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanming; Chen Yongjie; Tian Yiguang; Fang Li; Xiao Linjiu; Sun Yanbin

    2004-01-01

    The microemulsion AEO-9/butanol/cyclohexane/nitrate aqueous solution (or ammonium salt aqueous solution) was studied, which was used as 'micro-reactor' in preparing long afterglow phosphor materials SrAl2O4: Eu2+ ,Dy3+. The phase behavior of microemulsion was investigated. The radius of inner water droplet Rw and the change of standard free energy ΔG*o→i were obtained by means of dilution method and theoretical calculation. The result shows that with the increase of W/S, the area of microemulsion region decreases, Rw and ΔG*o→i increase and the microemulsion stability decreases. The structure change and formation area of microemulsion AEO-9/butanol/cyclohexane/nitrate aqueous solution ( or ammonium salt aqueous solution) were offered for the adoption of a synthesis method with newly high efficiency and utility. The particular size and its distribution theory gist, fluorescence life-span, and quenching concentration parameter data were expected. A new approach was explored for finding a new preparation method of rare earths afterglow materials and increasing luminescence intensity without crashing.

  3. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    Science.gov (United States)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  4. Aqueous biphasic systems involving alkylsulfate-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Deive, Francisco J. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Rodriguez, Ana [Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Marrucho, Isabel M., E-mail: imarrucho@itqb.unl.pt [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Rebelo, Luis P.N. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal)

    2011-11-15

    Highlights: > K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4} act as phase promoter in aqueous solutions of ILs. > Remarkable influence of alkyl-chain length on solubility curves of alkylsulfate-based ILs. > Merchuck correlation was used for describing these systems. > {Delta}S{sub hyd} and Hofmeister series were used to discuss the different salting out effects. - Abstract: The specific effects of K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4}, as high charge-density inorganic salts and thus inducers of the formation of aqueous biphasic systems (ABS) containing several ethyl-methylimidazolium alkylsulfate ionic liquids, C{sub 2}MIM C{sub n}SO{sub 4} (n = 2, 4, 6, or 8), have been assessed at T = 298.15 K. The results are analyzed in the light of the Hofmeister series. The influence of different alkyl chain lengths in the anion, together with the ability of the selected inorganic salts to induce the formation of ABS, is discussed. Phase diagrams have been determined through turbidimetry, including tie lines assignments from mass phase ratios according to the lever - arm rule. The Merchuck equation was satisfactorily used to correlate the solubility curve.

  5. Aqueous geochemistry on Mars: Possible clues from salts and clays in SNC meteorites

    Science.gov (United States)

    Gooding, James L.

    1992-01-01

    All subgroups of the shergottite, nakhlite, and chassignite (SNC) meteorites contain traces of water precipitated minerals that include various combinations of carbonates, sulfates, halides, ferric oxides, and aluminosilicate clays of preterrestrial origin. Oxygen three-isotope analysis of thermally extracted bulk water has confirmed that at least some of the water in SNC's is, indeed, extraterrestrial. A mixture of aqueous precipitates found in the SNC's, comprising smectite, illite, and gypsum (with minor halite +/- calcite and hematite), provides a self-consistent, though not unique, model for the bulk elemental composition of surface sediments at the Viking Lander sites. Therefore, if the salts and clays in SNC's are truly linked to aqueous alteration and soil formation on Mars, then the suite of SNC secondary minerals might provide the best currently available insight into near-surface martian chemistry.

  6. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts

    DEFF Research Database (Denmark)

    Mørup, Steen; Knudsen, J. E.; Nielsen, M. K.

    1976-01-01

    Frozen aqueous solutions (FAS) of Fe3+ salts have been investigated by use of Mössbauer spectroscopy in order to study the conditions for formation of glasses. A general discussion of spin–spin relaxation in glasses is given, and we discuss how changes in the spin–spin relaxation time can...... concentration of the solution increases. At low temperatures the crystallization terminates and the remaining liquid solidifies into a glass. During exposure at 200 K, the dilute samples change irreversibly. This is discussed in terms of a metastable phase diagram. The properties of frozen solutions with other...

  7. Characterization of reaction products of iron and iron salts and aqueous plant extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, J.A. [Universidad de Panama, Centro de Investigaciones con Tecnicas Nucleares/Depto. de Quimica (Panama); Garcia de Saldana, E.; Hernandez, C. [Universidad de Panama, Maestria en Ciencias Quimicas (Panama)

    1999-11-15

    The complexes formed in aqueous solution as a result of a reaction of iron and iron salts (Fe{sup 2+} and Fe{sup 3+}) and some plant extracts were analyzed using Moessbauer spectroscopy and Fourier transform infrared. The extracts were obtained from Opuntia elatior mill., Acanthocereus pentagonus (L.) Britton, Mimosa tenuiflora, Caesalpinia coriaria (Jacq.) Willd., Bumbacopsis quinata (Jacq.) Dugand and Acacia mangium Willd., plants growing wildly in different zones of the Isthmus of Panama. Results suggest the formation of mono- and bis-type complexes, and in some cases, the occurrence of a redox reaction. The feasibility of application of the studied extracts as atmospheric corrosion inhibitors is discussed.

  8. Characterization of reaction products of iron and iron salts and aqueous plant extracts

    Science.gov (United States)

    Jaén, J. A.; García de Saldaña, E.; Hernández, C.

    1999-11-01

    The complexes formed in aqueous solution as a result of a reaction of iron and iron salts (Fe2+ and Fe3+) and some plant extracts were analyzed using Mössbauer spectroscopy and Fourier transform infrared. The extracts were obtained from Opuntia elatior mill., Acanthocereus pentagonus (L.) Britton, Mimosa tenuiflora, Caesalpinia coriaria (Jacq.) Willd., Bumbacopsis quinata (Jacq.) Dugand and Acacia mangium Willd., plants growing wildly in different zones of the Isthmus of Panama. Results suggest the formation of mono- and bis-type complexes, and in some cases, the occurrence of a redox reaction. The feasibility of application of the studied extracts as atmospheric corrosion inhibitors is discussed.

  9. Salting-Out of Methane in the Aqueous Solutions of Urea and Glycine-Betaine.

    Science.gov (United States)

    Dixit, Mayank Kumar; Siddique, Asrar A; Tembe, B L

    2015-08-27

    We have studied the hydrophobic association and solvation of methane molecules in aqueous solutions of urea and glycine betaine (GB). We have calculated the potentials of mean force (PMFs) between methane molecules in water, aqueous GB, aqueous urea and aqueous urea-GB mixtures. The PMFs and equilibrium constants indicate that both urea and GB increase the hydrophobic association of methane. Calculation of thermodynamic parameters shows that the association of methane is stabilized by entropy whereas solvation is favored by enthalpy. In the case of the water-urea-GB mixture, both hydrophobic association and solvation are stabilized by entropy. From the investigation of radial distribution functions, running coordination numbers and excess coordination numbers, we infer that both urea and GB are preferentially excluded from methane surface in the mixtures of osmolytes and methane is preferentially solvated by water molecules in all the mixtures. The favorable exclusion of both urea and GB from the methane surface suggests that both urea and GB increase the interaction between methane molecules, i.e., salting-out of methane. We observe that addition of both urea and GB to water enhances local water structure. The calculated values of diffusion constants of water also suggest enhanced water-water interactions in the presence of urea and GB. The calculated free energies of methane in these mixtures show that methane is less soluble in the mixtures of urea and GB than in water. The data on solvation free energies support the observations obtained from the PMFs of methane molecules.

  10. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins.

    Science.gov (United States)

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua

    2016-02-01

    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.

  11. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models.

  12. Affinity partitioning of human antibodies in aqueous two-phase systems

    NARCIS (Netherlands)

    Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; de Vries, J.; Korporaal, R.; Verhoef, H. J.; Visser, T. J.; Aires-Barros, M. R.

    2007-01-01

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the t

  13. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt.

    Science.gov (United States)

    Ali, Samim; Bandyopadhyay, Ranjini

    2016-01-01

    Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand

  14. Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid

    Science.gov (United States)

    Frenzel, A.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T.

    The loss rates of PAN in several dilute aqueous salt solutions (NaBr, Na 2SO 3, KI, NaNO 2, FeCl 3, and FeSO 4) and in sulphuric acid were measured at 279 K with a simple bubbler experiment. They are little different from that in pure water. For 5 M sulphuric acid hydrolysis and solubility were determined in the temperature range of 243-293 K. The hydrolysis rate kh=3.2×10 -4 s -1 at 293 K is close to that in water. The observed temperature dependence of the Henry's Law constant H=10- 6.6±0.6exp((4780±420)/T) M atm -1 leads to enthalpy and entropy of solvation Δ Hsolv=-39.7±3.5 kJ mol -1 and Δ Ssolv=-126±11 J mol -1 K -1, respectively.

  15. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts.

    Science.gov (United States)

    Xu, Long; Gong, Houjian; Dong, Mingzhe; Li, Yajun

    2015-11-05

    Rheological properties of a new microbial polysaccharide, diutan gum in aqueous solution have been systematically investigated. It is found that molecular aggregates of diutan gum can be formed at a very low concentration (0.12 g/L), and the mechanism of thickening by diutan gum is proposed. The viscosity retention rate of diutan gum changes little when increasing the temperature from 298 K to 348 K or in a high salinity solution (55.5 g L(-1)). Gel structure can be formed in the diutan gum solution, owing to the finding that the dynamic modulus has an exponential relationship with the concentration. The gel properties of diutan gum are not sensitive to temperature, and are virtually independent of cationic environment (Na(+) and Ca(2+)). The temperature/salt tolerance of the diutan gum solution is mainly attributed to its perfect double helix molecular conformation, the location of the side chains of its molecules, and its water retention capacity.

  16. Characteristics and quantitative of negative ion in salt aqueous solution by Raman spectroscopy at -170℃

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The results from Raman spectroscopy analysis of salt aqueous solutions at -170℃ demonstrate that for those clearly sharp iron peaks whose Raman wavenumber is close to each other such as and , their original shape could be restorable by the stripping technique, and that ice's sharp characteristic peak (3090-3109 cm-1) is steady, while the spectrum band of the complex compound (nCl--[H+-OH-]n) chlorine ion combined chemically with water molecule is 3401-3413 cm-1. On the other hand, the research shows that the higher the negative iron concentration, the stronger its Raman characteristic peak intensity and the smaller the ice's. Based on the number of data and theoretical work, the strong correlation of the molar concentration of negative ion with the band area ratio is built up. Moreover, the developed Raman method is successfully used in the component analysis of the field fluid inclusions from Silurian sandstone in Tarim basin.

  17. Gibbs free energy of transfer of a methylene group on {l_brace}UCON + (sodium or potassium) phosphate salts{r_brace} aqueous two-phase systems: Hydrophobicity effects

    Energy Technology Data Exchange (ETDEWEB)

    Silverio, Sara C. [LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Rodriguez, Oscar [LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto. Portugal (Portugal); Teixeira, Jose A. [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Macedo, Eugenia A., E-mail: eamacedo@fe.up.p [LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto (Portugal)

    2010-08-15

    The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH{sub 2}) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 {sup o}C, in three different tie-lines of the biphasic systems: (UCON + K{sub 2}HPO{sub 4}), (UCON + potassium phosphate buffer, pH 7), (UCON + KH{sub 2}PO{sub 4}), (UCON + Na{sub 2}HPO{sub 4}), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH{sub 2}PO{sub 4}). The Gibbs free energy of transfer of CH{sub 2} units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.

  18. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  19. A new method for preparation of magnetite from iron oxyhydroxide or iron oxide and ferrous salt in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kahani, S.A. [Department of Chemistry, Faculty of Science, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)], E-mail: Kahani@kashanu.ac.ir; Jafari, M. [Department of Chemistry, Faculty of Science, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)

    2009-07-15

    In this study, a new method is proposed for the preparation of Fe{sub 3}O{sub 4} from iron oxyhydroxides (goethite, akaganeite, lepidocrocite, feroxyhyte and ferrihydrite) or iron oxide (hematite) and ferrous salt in aqueous solution. The product is magnetite with various particle sizes. Products are characterized by X-ray powder diffraction, IR spectra and vibrating sample magnetometery.

  20. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  1. Corrosion inhibitor for aqueous ammonia absorption system

    Science.gov (United States)

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  2. Conductivity and Viscosity Measurements for Binary Lysozyme Chloride Aqueous Solution and Ternary Lysozyme-Salt-Water Solution

    CERN Document Server

    Buzatu, D; Buzatu, F D

    2004-01-01

    We use the conductimetric method, adequate to electrolytes, to determine the lysozyme charge in lys-water and ternary lys-salt-water systems. We measured also the viscosities for the above binary and ternary systems in the same conditions at pH$=4.5$ and T$=298$ K, measurements that allow us to see any effect of viscosity on cations mobilities and implicitly on the lysozyme charge. The method is illustrated for the lysozyme chloride aqueous solution system at 25$^o$ C, using the data reported here for pH$=4.5$ at 0.15, 0.6, 0.8, 1., 1.5, 2., 2.5, 3., 3.5 mM (mg/mL) lysozyme chloride concentrations. The method was also applied to ternary lys-salt-water systems in the same conditions at pH$=4.5$ and T$=25^o$ C. Ternary conductivities are reported for a mean concentration 0.6 mM of lysozyme chloride in all systems and a mean concentration 0.01, 0.025, 0.05, 0.1, 0.175, 0.2, 0.5, 0.7, 0.9, 1.2, 1.3 and 1.4 M for NaCl; 0.005, 0.01, 0.05, 0.1, 0.175, 0.2, 0.5, 0.7, 0.9, 1.2, 1.3, 1.4 and 1.5 M for KCl; 0.005, 0.01,...

  3. Simultaneous determination of dorzolomide and timolol in aqueous humor: a novel salting out liquid-liquid microextraction combined with HPLC.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud Ismail; Abdel-Wadood, Hanaa Mohammed; Mousa, Heba Salah

    2014-12-01

    A Snovel method for the simultaneous separation and determination of two antiglaucoma drugs namely, dorzolamide hydrochloride (DOR) and timolol maleate (TIM) in aqueous humor samples (AH) was developed by using salting-out assisted liquid-liquid microextraction (SALLME) combined with HPLC-UV method. Box-Behnken experimental design and response surface methodology were employed to assist the optimization of SALLME conditions, including salt concentration, the pH of sample solution and vortex time as variable factors. The optimal extraction conditions were as follows: to 50 µL of AH sample, 100 µL of phosphate buffer (100 mmol L(-1), pH 11.9), 90 µL of acetonitrile (ACN) and 0.11 g of (NH4)2SO4 salt were added into an Eppendorf vial (1 mL) then vortexed for 1.1 min. As an effort to miniaturize SALLE system, a 1 mL syringe adapted with a capillary tube was employed as the phase separation device. Once the phase separation occurred, the upper layer could be narrowed into the capillary tube by pushing the plunger; thus, the collection of the upper layer solvent was simple and convenient. By miniaturization, the consumption of the organic solvent was decreased as low as possible. The chromatographic separation was achieved on Gemini C18 column using a mobile phase of ACN: 30 mmol L(-1) potassium dihydrogen phosphate buffer containing 0.1% triethylamine, pH 3.5 (20:80, v/v) at a flow rate of 1 mL min(-1) and UV detection at 254 and 295 nm for DOR and TIM, respectively. Mepivacaine hydrochloride was used as an internal standard. The described method showed better separation with enhanced sensitivities than the previously reported methods with limits of quantitation of 8.75 and 10.32 ng mL(-1) in aqueous solution and 15.97 and 23.53 ng mL(-1) in AH for DOR and TIM, respectively. The simple, rapid and eco-friendly SALLME-HPLC method has been successfully applied for the simultaneous pharmacokinetic studies of DOR and TIM in rabbit AH.

  4. Partition behaviors of oxytetracycline hydrochloride (OTC) in small molecule alcohol/salt binary aqueous two-phase system%小分子醇/盐二元双水相体系中盐酸土霉素的分配行为

    Institute of Scientific and Technical Information of China (English)

    关卫省; 柴丽; 韩娟

    2012-01-01

    Based on the aqueous two-phase system,a new method of using ethanol and re-propanol with sodium dihydrogen phosphate binary aqueous two-phase system for extracting of oxytetracycline hydrochloride (OTC) was set up. The influence factors on partition behaviors of oxytetracyeline hydrochloride (OTC) were studied,including the system composition,type and amount of salts,the pH value,the extraction temperature, and standing time after centrifuge. The results showed that the binary aqueous two-phase system can be used to study the distribution of antibiotics. When the system was ethanol and n-pro-panol, NaH2 PO4 concentration of 48% , the pH value was 4~ 5, temperature was 25℃, and standing 12 h ,the partition coefficient of oxytetracycline hydrochloride ( OTC) was 21.95, and extraction rate was 86.09%.%在双水相体系研究的基础上,建立了乙醇与正丙醇和磷酸二氢钠形成的二元双水相体系萃取盐酸土霉素的新方法,考察了小分子醇的用量、盐种类和浓度、pH值、温度以及静置时间对盐酸土霉素分配行为的影响.结果表明,小分子醇/盐二元双水相体系可用于抗生素分配行为的研究,其中体系组成为乙醇和正丙醇,磷酸二氢钠浓度在48%,pH值在4~5,温度25℃,以及静置12 h左右,盐酸土霉素在该二元双水相体系中的分配系数达到21.95,萃取率达86.09%.

  5. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  6. Picosecond dynamics of proton transfer of a 7-hydroxyflavylium salt in aqueous-organic solvent mixtures.

    Science.gov (United States)

    Freitas, Adilson A; Quina, Frank H; Maçanita, António A L

    2011-10-13

    The intermediacy of the geminate base-proton pair (A*···H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH(+)* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base-proton pair A*···H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*···H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec), of A*···H(+)) from the diffusion controlled rates (dissociation, k(diss), and formation, k(diff)[H(+)], of A*···H(+)), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).

  7. Salting-out of methane in the aqueous solutions of urea and sarcosine

    Indian Academy of Sciences (India)

    M K Dixit; Anupam Chatterjee; B L Tembe

    2016-04-01

    Hydrophobic association and solvation of methane molecules in aqueous solutions of urea and sarcosine (sa) have been studied using MD simulations. The potentials of mean force (PMFs) between methane molecules in water, water-sa, water-urea and water-urea-sa mixtures show an enhancement of methane association on the addition of these osmolytes. These observations are well supported by calculation of equilibrium constants. Calculation of thermodynamic parameters shows that the association of methane is stabilized by entropy and favored by enthalpy. The hydrophobic solvation of methane is stabilized by enthalpy and destabilized by entropy. The calculated solvation free energies of methane in these mixtures show that methane is less soluble in the mixtures of urea and sarcosine than in water. The solubility is the least in the water-urea-sa mixture. Analysis of distributions of solvent and co-solvent around methane suggests that the local densities of both urea and sarcosine are diminished around the methane in the mixtures of these osmolytes. The selective reduction of both urea and sarcosine from methane surface suggests that both urea and sarcosine push methane molecules towards water and increase the interaction between methane molecules i.e., salting-out of methane.

  8. Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

    Science.gov (United States)

    Deshmukh, Ruchi; Mehra, Anurag

    2017-01-01

    Aggregation and self-assembly are influenced by molecular interactions. With precise control of molecular interactions, in this study, a wide range of nanostructures ranging from zero-dimensional nanospheres to hierarchical nanoplates and spindles have been successfully synthesized at ambient temperature in aqueous solution. The nanostructures reported here are formed by aggregation of spherical seed particles (monomers) in presence of quaternary ammonium salts. Hydroxide ions and a magnetic moment of the monomers are essential to induce shape anisotropy in the nanostructures. The cobalt nanoplates are studied in detail, and a growth mechanism based on collision, aggregation, and crystal consolidation is proposed based on a electron microscopy studies. The growth mechanism is generalized for rods, spindles, and nearly spherical nanostructures, obtained by varying the cation group in the quaternary ammonium hydroxides. Electron diffraction shows different predominant lattice planes on the edge and on the surface of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics.

  9. Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

    Indian Academy of Sciences (India)

    M L Parmar; M K Guleria

    2005-07-01

    Relative viscosities for the solutions of oxalic acid and its salts, viz. ammonium oxalate, sodium oxalate and potassium oxalate, at different concentrations have been determined in water and in binary aqueous mixtures of tetrahydrofuran (THF) [5, 10, 15 and 20% by weight of THF] at 298.15 K, and in water and in 5% (w/w) THF + water at five different temperatures. The data have been evaluated using the Jones-Dole equation and the obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. The activation parameters of viscous flow have been obtained which depicts the mechanism of viscous flow. The oxalic acid and its salts behave as structure breakers in water and in binary aqueous mixtures of THF.

  10. Electronic Tongue for Qualitative Analysis of Aqueous Solutions of Salts Using Thick-film Technology and Metal Electrodes

    Directory of Open Access Journals (Sweden)

    Juan Soto

    2006-09-01

    Full Text Available An electronic tongue for the qualitative analysis of aqueous solutions of salts hasbeen developed. The following set of electrodes was used: RuO2, Ag, and Cu in thick-filmtechnology and Au, Pb, Zn and Ni as small bars of the corresponding metal. The response ofthe designed “electronic tongue” was tested on a family of samples containing pure salt andcomplex mixtures. The electrodes were used as potentiometric un-specific sensors and thee.m.f. of each electrode in contact with a certain aqueous solution was used as input signalfor a PCA analysis. The study showed that the set of electrodes were capable to discriminatebetween aqueous solutions of salts basically by their different content in anions and cations(the anions SO42-, Cl-, PO4H2-, CO3H-, NO3- and cations Na+ and K+ were studied. In orderto better analyze the basis for the discrimination power shown by the electronic tongue, aquantitative analysis was also envisaged. A fair estimation of the concentrations of thedifferent ions in the solutions studied appeared to be possible using this electronic tonguedesign.Keywords:

  11. Salt-enhanced removal of 2-ethyl-1-hexanol from aqueous solutions by adsorption on activated carbon.

    Science.gov (United States)

    Chang, Ganggang; Bao, Zongbi; Zhang, Zhiguo; Xing, Huabin; Su, Baogen; Yang, Yiwen; Ren, Qilong

    2013-12-15

    2-Ethyl-1-hexanol has extensive industrial applications in solvent extraction, however, in view of its potential pollution to environment, the removal and recovery of 2-ethyl-1-hexanol is considered an essential step toward its sustainable use in the future. In this work, we report the removal of 2-ethyl-1-hexanol from aqueous solutions containing salts in high concentrations by adsorption on a coal-based activated carbon. Adsorption thermodynamics showed that the experimental isotherms were conformed well to the Langmuir equation. Also it was found that inorganic salts, i.e. MgCl2 and CaCl2 in high concentration significantly enhanced the adsorption capacity from 223 mg/g in the deionized water to 277 mg/g in a saline water. This phenomenon of adsorption enhancement could be ascribed to the salt-out effect. Kinetic analysis indicated that adsorption kinetics follows the pseudo-second-order equation and the adsorption rate constants increase with the salt concentration. The dynamic breakthrough volume and adsorbed amount of 2-ethyl-1-hexanol were significantly elevated when the salt is present in the water. The dynamic saturated adsorption amount increased from 218.3mg/g in the deionized water to 309.5mg/g in a salt lake brine. The Tomas model was well applied to predict the breakthrough curves and determine the characteristics parameters of the adsorption column.

  12. Effect of the salting-out agent anion nature on the phase separation of a potassium salt-potassium bis(alkyl polyoxyethylene)phosphate-water systems

    Science.gov (United States)

    Elokhov, A. M.; Lesnov, A. E.; Kudryashova, O. S.

    2016-10-01

    The effect the salting-out agent anion nature has on the temperature and concentration intervals of the existence of the separation area is established by analyzing the phase diagrams of pseudoternary KCl (KBr, KI, KNO3, K2SO4, K4P2O7)-potassium bis(alkyl polyoxyethylene)phosphate (oxyphos B)-water systems. It is concluded that the anionic salting-out capability is reduced in the order P2O 7 4- > SO 4 2- > Cl- > Br‒> NO 7 4- > SO 3 - > I-. The thermodynamic parameters of phase separation used to interpret the results are calculated. The observed pattern of a change in the salting-out ability of the investigated salts relative to aqueous solutions of the surfactants is in good agreement with the lyotropic (Hofmeister) series.

  13. SANS from Salt-Free Aqueous Solutions of Hydrophilic and Highly Charged Star-Branched Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    François Boué

    2016-06-01

    Full Text Available Scattering functions of sodium sulfonated polystyrene (NaPSS star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars, peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function – through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

  14. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    Science.gov (United States)

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved.

  15. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content.

    Science.gov (United States)

    Appiani, Elena; Ossola, Rachele; Latch, Douglas E; Erickson, Paul R; McNeill, Kristopher

    2017-02-28

    The rate constant for the reaction between furfuryl alcohol (FFA) and singlet oxygen ((1)O2) in aqueous solution was measured as a function of temperature, pH and salt content employing both steady-state photolysis (β value determination) and time-resolved singlet oxygen phosphorescence methods. The latter provided more precise and reproducible data. The reaction rate constant, krxn,FFA, had a relatively small temperature dependence, no pH dependence and showed a small increase in the presence of high salt concentrations (+19% with 1 M NaCl). A critical review of the available literature suggested that the widely used value of 1.2 × 10(8) M(-1) s(-1) is likely overestimated. Therefore, we recommend the use of 1.00 × 10(8) M(-1) s(-1) for reactions performed in low ionic strength aqueous solutions (freshwater) at 22 °C. Furthermore, corrections are provided that should be applied when working at higher or lower temperatures, and/or at high salt concentrations (seawater).

  16. Rheological properties of aqueous Pluronic-alginate systems containing liposomes.

    Science.gov (United States)

    Grassi, G; Crevatin, A; Farra, R; Guarnieri, G; Pascotto, A; Rehimers, B; Lapasin, R; Grassi, M

    2006-09-01

    Rheological and erosion studies regarding a liposome-containing polymeric blend that is propaedeutic to its use in paving techniques in tubular organs, such as blood vessels, are reported. Attention is focused on an aqueous polymeric blend composed of Pluronic (PF127) and alginate (Protanal LF 10/60) because both polymers, when dissolved in water at a sufficiently high concentration, are subjected to different structural mechanisms, which are driven by temperature increase and addition of bivalent cations, respectively, and both result in marked viscoelastic and plastic properties. After proving the compatibility between PF127 and alginate, we show that the structural transition temperature of the blend, T(ST), can be properly modulated. In particular, we found that T(ST) for an aqueous solution of pure Pluronic 20% w/w is about 21 degrees C and that even slight reductions in polymer concentration result in considerable T(ST) decrease. The addition of salts or alginate (provided as Na-alginate) provokes a substantial decrease of T(ST) and thus the alginate concentration in the blend should not exceed 1% w/w. In addition, liposomes slow down the structural transition but do not substantially affect the rheological properties of the system in the final state at higher temperatures, thus showing that they can be added to the polymeric blend without significant effects. Finally, erosion tests show that after contact with a source of bivalent cations, the polymeric blend containing PF127 and alginate shows an erosion resistance neatly improved with respect to the simple structured Pluronic system having the same polymer concentration. As a whole, all these results constitute the basis for future potential applications of the considered polymeric blend in tubular organs such as blood vessels.

  17. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions

    Directory of Open Access Journals (Sweden)

    Cristina Cavallari

    2012-09-01

    Full Text Available The following bases: monoethylamine (EtA, diethylamine (DEtA, triethylamine (TEtA, monoethanolamine (MEA, diethanolamine (DEA, triethanolamine (TEA, pyrrolidine (Py, piperidine (Pp, morpholine (M, piperazine (Pz and their N-2-hydroxyethyl (HE analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4; a saturated solution (5 mL of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane.

  18. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  19. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    Science.gov (United States)

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss.

  20. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  1. Density, Viscosity, Solubility, and Diffusivity of N2O in Aqueous Amino Acid Salt Solutions

    NARCIS (Netherlands)

    Kumar, P. Senthil; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2001-01-01

    Solubility and diffusivity of N2O in aqueous solutions of potassium taurate are reported over a wide range of concentration and temperature. Also, the solubility of N2O in aqueous potassium glycinate solution is reported at 295 K. The ion specific constants are reported for taurate and glycinate ani

  2. Palladium-Catalyzed Heck Coupling Reaction of Aryl Bromides in Aqueous Media Using Tetrahydropyrimidinium Salts as Carbene Ligands

    Directory of Open Access Journals (Sweden)

    İsmail Özdemir

    2010-01-01

    Full Text Available An efficient and stereoselective catalytic system for the Heck cross coupling reaction using novel 1,3-dialkyl-3,4,5,6-tetrahydropyrimidinium salts (1, LHX and Pd(OAc2 loading has been reported. The palladium complexes derived from the salts 1a-f prepared in situ exhibit good catalytic activity in the Heck coupling reaction of aryl bromides under mild conditions.

  3. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  4. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Science.gov (United States)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid

  5. Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of Cr(VI) from aqueous medium

    Indian Academy of Sciences (India)

    PURNIMA BARUAH; DEBAJYOTI MAHANTA

    2016-06-01

    In this study, we have reported the removal of Cr(VI) ions by polyaniline (PANI) particles from aqueous medium. PANI in its emeraldine salt (ES) form can interact with Cr(VI), which is present as HCrO$^{−}_4$ in two ways. The adsorption of HCrO$^{−}_4$ ions due to the electrostatic interaction between partially positively charged PANI backbone and Cr(VI) anions causes the major portion of Cr(VI) removal and a small portion of Cr(VI) is reduced to Cr(III) by PANI (ES). The adsorption follows Langmuir adsorption isotherm and second-order kinetic model. It is observed that the removal of Cr(VI) is negligibly effected by the presence of other anions in the aqueous medium. The adsorption capacity of PANI (ES) is found to be 123 mg g$^{−1}$, which is very high compared to activated carbonbased materials. The adsorbed anions can be desorbed by converting PANI emeraldine salt (ES) to PANI emeraldinebase (EB). The EB form of PANI can be converted into ES form by treating with acid, which can be reused as adsorbent. It is important to note that the PANI (ES) is oxidized by HCrO$^{−}_4$ ions which decrease the hydrophilicity of thesurface of PANI particles. This causes the decrease in adsorption capacity of recycled PANI.

  6. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  7. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  8. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  9. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    Science.gov (United States)

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára

    2007-06-01

    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  10. [Aqueous and salt solutions of quinine of low concentrations: self-organization, physicochemical properties and actions on the electrical characteristics of neurons].

    Science.gov (United States)

    Murtazina, L I; Ryzhkina, I S; Mishina, O A; Andrianov, V V; Bogodvid, T Kh; Gaĭnutdinov, Kh L; Muranova, L N; Konovalov, A I

    2014-01-01

    Self-organization, the physicochemical properties of aqueous and salt solutions of quinine and the effects of salt quinine solutions in a wide range of concentrations (1 x 10(-22) - 1 x 10(-3) M) on the electrical characteristics of the edible snail's identified neurons were studied. Similar non-monotonic concentration dependencies of physicochemical properties of aqueous and salt quinine solutions at low concentrations are obtained. This allows of predicting the occurrence of biological effects at low concentrations of quinine solutions. Intrinsic (within 5% of the interval) changes in membrane potential, the amplitude and duration of the neuron action potential under the influence of quinine salt solutions at concentrations of quinine of 1 x 10(-20), 1 x 10(-18), 1 x 10(-10) M are found. For these concentrations the extreme values of specific conductivity and pH are shown.

  11. Correlations for the partition behavior of proteins in aqueous two-phase systems

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Andrews, B.A.; Asenjo, J.A.

    1996-01-01

    was lower than that of subtilisin which was probably due to its higher hydrophobicity and, hence, a stronger salting-out effect. The protein concentration in each of the two phases was correlated with a ''saturation''-type equation. The partition coefficient could be satisfactorily predicted, as a function...... of the overall protein concentration, by the ratio between the ''saturation'' equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein......The effect of protein concentration in partitioning in PEG/ salt aqueous two-phase systems has been investigated. PEG 4000/phosphate systems in the presence of 0% w/w and 8.8% w/w NaCl have been evaluated using amyloglucosidase, subtilisin, and trypsin inhibitor. Also, a PEG 4000/phosphate system...

  12. Salt movements within the Central European basin system

    Energy Technology Data Exchange (ETDEWEB)

    Maystrenko, Yuriy; Bayer, Ulf; Scheck-Wenderoth [GeoForschungsZentrum (GFZ), Potsdam (Germany); Littke, Ralf [RWTH Aachen (Germany). Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle

    2010-04-15

    Evolution of salt structures in relation to tectonic events within central part of the Central European Basin System is described by summarizing results which have been obtained and published in frame of the research project DFG-SPP 1135. These results illustrate main phases of salt tectonics within the basin system from the Triassic to present day. During the Buntsandstein and Muschelkalk, extension triggered raft tectonics and salt movements within the Ems Trough, the Glueckstadt and the Horn Grabens. The next phase of salt movements occurred in response to a Middle-Late Keuper regional extensional event which was strongest within the Triassic depocenters of the Central European Basin System, such as the Horn Graben, the Glueckstadt Graben, the Ems and the Rheinsberg Troughs. Regional erosion truncated the study area during the Late Jurassic-Early Cretaceous time. The magnitude of Late Jurassic-Early Cretaceous erosion is declining towards southern margin of the basin system where a dextral transtensional regime was established in the Lower Saxony Basin and neighboring areas during the Late Jurassic-Early Cretaceous. The late Early Cretaceous-early Late Cretaceous is characterized by a relative tectonic quiescence without strong salt movements. The Late Cretaceous-Early Cenozoic inversion provocated renewed salt movements, causing the thick-skinned salt tectonics along the Elbe Fault System and the thin-skinned character of salt movements towards the north from the area of strain localisation. Post-inversion Cenozoic subsidence was accompanied by salt movements, related either to diapiric rise due to regional shortening and/or to local almost E-W directed extension. (orig.)

  13. KINETICS OF THE HYDROXYETHYLATION OF STARCH IN ALKALINE SALT-CONTAINING AQUEOUS SLURRIES

    NARCIS (Netherlands)

    VANWARNERS, A; STAMNHUIS, EJ; BEENACKERS, AACM

    1994-01-01

    A two-phase kinetic model is presented for the base-catalyzed hydroxyethylation of potato starch using ethylene oxide at temperatures between 293 and 318 K in aqueous starch slurries containing sodium sulfate. The rate of the hydroxyethylation of starch as a function of starch anion concentration (c

  14. A Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation

    DEFF Research Database (Denmark)

    Bonalumi, Davide; Valenti, Gianluca; Lillia, Stefano

    2016-01-01

    Post-combustion carbon capture technologies seem to be necessary to realize the CO2 mitigation policies internationally shared for the next future, despite none of them appears to be ready for full-scale applications. This work considers the aqueous ammonia based process for a coal-fired Ultra...

  15. Ionic interactions. Subnanoscale hydrophobic modulation of salt bridges in aqueous media.

    Science.gov (United States)

    Chen, Shuo; Itoh, Yoshimitsu; Masuda, Takuya; Shimizu, Seishi; Zhao, Jun; Ma, Jing; Nakamura, Shugo; Okuro, Kou; Noguchi, Hidenori; Uosaki, Kohei; Aida, Takuzo

    2015-05-01

    Polar interactions such as electrostatic forces and hydrogen bonds play an essential role in biological molecular recognition. On a protein surface, polar interactions occur mostly in a hydrophobic environment because nonpolar amino acid residues cover ~75% of the protein surface. We report that ionic interactions on a hydrophobic surface are modulated by their subnanoscale distance to the surface. We developed a series of ionic head groups-appended self-assembled monolayers with C2, C6, C8, and C12 space-filling alkyl chains, which capture a dendritic guest via the formation of multiple salt bridges. The guest release upon protonolysis is progressively suppressed when its distance from the background hydrophobe changes from 1.2 (C2) to 0.2 (C12) nanometers, with an increase in salt bridge strength of ~3.9 kilocalories per mole.

  16. Nuclear Hybrid energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.; Sabharwall, P.; Yoon, S. J.; Bragg-Sitton, S. B.; Stoot, C.

    2014-07-01

    Without growing concerns in reliable energy supply, the next generation in reliable power generation via hybrid energy systems is being developed. A hybrid energy system incorporates multiple energy input source sand multiple energy outputs. The vitality and efficiency of these combined systems resides in the energy storage application. Energy storage is necessary for grid stabilization because stored excess energy is used later to meet peak energy demands. With high thermal energy production the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct thermal properties. This paper discusses the criteria for efficient energy storage and molten salt energy storage system options for hybrid systems. (Author)

  17. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  18. Solid-state materials for anion sensing in aqueous solution: highly selective colorimetric and luminescence-based detection of perchlorate using a platinum(II) salt.

    Science.gov (United States)

    Taylor, Stephen D; Howard, Whitney; Kaval, Necati; Hart, Robert; Krause, Jeanette A; Connick, William B

    2010-02-21

    The PF(6)(-) salt of a platinum(II) complex changes from yellow to red and becomes intensely luminescent upon exposure to aqueous ClO(4)(-). The response is remarkably selective. Spectroscopic changes are consistent with anion exchange resulting in shortening of the intramolecular PtPt distances between the square planar cations.

  19. Solid-state materials for anion sensing in aqueous solution: highly selective colorimetric and luminescence-based detection of perchlorate using a platinum(II) salt

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stephen D.; Howard, Whitney; Kaval, Necati; Hart, Robert; Krause, Jeanette A.; Connick, William B. (UCIN); (Shepherd)

    2010-07-23

    The PF{sub 6}{sup -} salt of a platinum(II) complex changes from yellow to red and becomes intensely luminescent upon exposure to aqueous ClO{sub 4}{sup -}. The response is remarkably selective. Spectroscopic changes are consistent with anion exchange resulting in shortening of the intramolecular Pt***Pt distances between the square planar cations.

  20. Salt-induced vesicle formation from single anionic surfactant SDBS and its mixture with LSB in aqueous solution.

    Science.gov (United States)

    Zhai, Limin; Zhao, Mei; Sun, Dejun; Hao, Jingcheng; Zhang, Lungjun

    2005-03-31

    Vesicles can be formed spontaneously in aqueous solution of a single anionic surfactant sodium dodecyl benzenesulfonate (SDBS) just under the inducement of salt, which makes the formation of vesicle much easier and simpler. The existence of vesicles was demonstrated by TEM image using the negative-staining method. The mechanism of the formation may be attributed to the compression of salt on the electric bilayer of the surfactant headgroups, which alters the packing parameter of the surfactant. The addition of the zwitterionic surfactant lauryl sulfonate betaine (LSB) makes the vesicles more stable, expands the range of formation and vesicle size, and reduces the polydispersity of the vesicles. The vesicle region was presented in a pseudoternary diagram of SDBS/LSB/brine. The variations of vesicle size with the salinity and mixing ratios, as well as the surfactant concentration, were determined using the dynamic light scattering method. It is found that the vesicle size is independent of the surfactant concentration but subject to the salinity and the mixing ratio of the two surfactants.

  1. Salt dependent stability of stearic acid Langmuir-Blodgett films exposed to aqueous electrolytes.

    Science.gov (United States)

    Kumar, Naveen; Wang, Lei; Siretanu, Igor; Duits, Michel; Mugele, Frieder

    2013-04-30

    We use contact angle goniometry, imaging ellipsometry, and atomic force microscopy to study the stability and wettability of Langmuir-Blodgett (LB) monolayers of stearic acid on silica substrates, upon drying and exposure to aqueous solutions of varying salinity. The influences of Ca(2+) and Na(+) ions are compared by varying their concentrations, both in the subphase before the LB transfer, and in the droplets to which the dried LB layers are exposed. Ca(2+) ions in the subphase are found to enhance the stability, leading to contact angles up to 100°, as compared to less than 5° for Na(+). Consistent with the macroscopic wettability, AFM images show almost intact films with few holes exposing bare substrate when prepared in the presence of Ca(2+), while subphases containing Na(+) result in large areas of bare substrate after exposure to aqueous drops. The observations on varying the composition of the droplets corroborate the stabilizing effect of Ca(2+). We attribute these findings to the cation-bridging ability of Ca(2+) ions, which can bind the negatively charged stearate groups to the negatively charged substrates. We discuss the relevance of our findings in the context of enhanced oil recovery.

  2. Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present work,it was found that aqueous solution of a hydrophilic ionic liquid (IL),1-butyl-3-methylimidazolium dicyanamide ([C4mim][N(CN)2]),could be separated into an aqueous two-phase system (ATPS) by inorganic salts such as K2HPO4 and K3PO4.The top phase is IL-rich,while the bottom phase is phosphate-rich.It was shown that 82.7%-100% bovine serum albumin (BSA) could be enriched into the top phase and almost quantitative saccharides (arabinose,glucose,sucrose,raffinose or dextran) were preferentially extracted into the bottom phase in a single-step extraction by [C4mim][N(CN)2] + K2HPO4 ATPS.The extraction efficiency of BSA from the aqueous saccharide solutions was influenced by the molecular structure of saccharides.The conductivity,dynamic light scattering (DLS) and transmission electron microscopy (TEM) were combined to investigate the microstructure of the IL-rich top phase and the possible mechanism for the selective separation.It is suggested that the formation of the IL aggregate and the IL aggregate-BSA complex plays a significant role in the separation of BSA from aqueous saccharide solutions.This is the first example for the selective separation by ILs-based ATPSs.It is expected that these findings would have potential applications in bio-analysis,separation,and IL recycle.

  3. Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios; Thomsen, Kaj

    2013-01-01

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles...... in the electrical field surrounding ions. Kinetic depolarization may explain 25–75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however...... to associating mixtures. Wertheim’s association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion–solvent association. Finally, we compare the Debye–Hückel Helmholtz energy obtained using an empirical model with the new physical model...

  4. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  5. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    Science.gov (United States)

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations.

  6. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model.

    Science.gov (United States)

    Østergaard, Jesper; Larsen, Susan W; Parshad, Henrik; Larsen, Claus

    2005-11-01

    In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.

  7. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt.

    Science.gov (United States)

    Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz

    2016-02-10

    Monolithic cellulose aerogels are prepared using a salt hydrate melt based on cheap zinc chloride tetrahydrate (ZnCl2·4H2O) that can be washed out of the wet gel-body by using common solvents such as water, ethanol, isopropanol or acetone. Cellulose aerogels with concentrations of 1-5 wt.% cellulose were produced. These aerogels are characterized with respect to shrinkage, density and surface area as well as mechanical properties and micro-structure via SEM. Cellulose aerogels regenerated in acetone show a specific surface area of around 340 m(2)g(-1) being 60% higher than those regenerated in water. The onset of irreversible plastic deformation under compressive load is around 0.8 MPa for acetone-regenerated aerogels and thus a factor of two larger compared to ethanol regenerated ones. The Young's modulus depends almost linearly on the cellulose concentration which is observed for all regenerative fluids with the exception of water. The results achieved are presented in light of the polarity and ability of solvation of ZnCl2·4H2O in the regenerative fluids used.

  8. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  9. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  10. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: Application to the determination of Pb and Cd

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Seyed Reza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Shemirani, Farzaneh, E-mail: shemiran@khayam.ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-11

    A new ionic liquid-based dispersive liquid-liquid microextraction method was developed for preconcentration and determination of compounds in aqueous samples containing very high salt concentrations. This method can solve the problems associated with the limited application of the conventional IL-based DLLME in these samples. This is believed to arise from dissolving of the ionic liquids in aqueous samples with high salt content. In this method, the robustness of microextraction system against high salt concentration (up to 40%, w/v) is increased by introducing a common ion of the ionic liquid into the sample solution. The proposed method was applied satisfactorily to the preconcentration of lead and cadmium in saline samples. After preconcentration, the settled IL-phase was dissolved in 100 {mu}L ethanol and aspirated into the flame atomic absorption spectrometer (FAAS) using a home-made microsample introduction system. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 10 mL of sample, the enhancement factors of 273 and 311 and the detection limits of 0.6 {mu}g L{sup -1} and 0.03 {mu}g L{sup -1} were obtained for lead and cadmium, respectively. Validation of the method was performed by both an analysis of a certified reference material (CRM) and comparison of results with those obtained by ISO standard method.

  11. Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Frydenvang, Karla Andrea; Liljefors, Tommy;

    2005-01-01

    Quaternary prodrug types of poorly water-soluble tertiary amines have been shown to exhibit significantly enhanced solubilities as compared to the parent amine. In the present study the combined effect of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines have been...... tertiary amine (up to a factor of 3200 at pH 8). A moderate reduction in solubility with increasing length of the alkyl chain was observed for the iodide salts of the N-alkylated bupivacaine derivatives. In case of the N-methyl-bupivacaine derivative variation of the counterion had a significant impact...

  12. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    Science.gov (United States)

    Dutt, G B

    2005-11-08

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules.

  13. Phosphate-dependent root system architecture responses to salt stress

    NARCIS (Netherlands)

    Kawa, D.; Julkowska, M.M.; Montero Sommerfeld, H.; ter Horst, A.; Haring, M.A.; Testerink, C.

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced ma

  14. Recovery of endo-polygalacturonase using polyethylene glycol-salt aqueous two-phase extraction with polymer recycling

    OpenAIRE

    Wu, You-Ting; Pereira, Martinha; Venâncio, Armando; Teixeira, J. A.

    2000-01-01

    The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio a...

  15. Cr(VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: Kinetics and thermodynamics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barassi, Giancarlo; Valdes, Andrea; Araneda, Claudio; Basualto, Carlos; Sapag, Jaime; Tapia, Cristian [Laboratorio de Operaciones Unitarias, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Av. Vicuna Mackenna 20, Santiago (Chile); Valenzuela, Fernando, E-mail: fvalenzu@uchile.cl [Laboratorio de Operaciones Unitarias, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Av. Vicuna Mackenna 20, Santiago (Chile)

    2009-12-15

    This work studies the adsorption of Cr(VI) ions from an aqueous acid solution on hydrophobic polymeric microcapsules containing a long-chain quaternary ammonium salt-type extractant immobilized in their pore structure. The microcapsules were synthesized by adding the extractant Aliquat 336 during the in situ radical copolymerization of the monomers styrene (ST) and ethylene glycol dimethacrylate (EGDMA). The microcapsules, which had a spherical shape with a rough surface, behaved as efficient adsorbents for Cr(VI) at the tested temperatures. The results of kinetics experiments carried out at different temperatures showed that the adsorption process fits well to a pseudo-second-order with an activation energy of 82.7 kJ mol{sup -1}, confirming that the sorption process is controlled by a chemisorption mechanism. Langmuir's isotherms were found to represent well the experimentally observed sorption data. Thermodynamics parameters, namely, changes in standard free energy ({Delta}G{sup 0}), enthalpy ({Delta}H{sup 0}), and entropy ({Delta}S{sup 0}), are also calculated. The results indicate that the chemisorption process is spontaneous and exothermic. The entropy change value measured in this study shows that metal adsorbed on microcapsules leads to a less chaotic system than a liquid-liquid extraction system.

  16. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    Science.gov (United States)

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections.

  17. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  18. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-01-01

    The downstream processing of therapeutic proteins is a challenging task. Key information needed to estimate applicable workup strategies (e.g. crystallization) are the interactions of the proteins with other components in solution. This information can be deduced from the second osmotic virial coefficient B22 , measurable by static light scattering. Thermodynamic models are very valuable for predicting B22 data for different process conditions and thus decrease the experimental effort. Available B22 models consider aqueous salt solutions but fail for the prediction of B22 if an additional polymer is present in solution. This is due to the fact that depending on the polymer concentration protein-protein interactions are not rectified as assumed within these models. In this work, we developed an extension of the xDLVO model to predict B22 data of proteins in aqueous polymer-salt solutions. To show the broad applicability of the model, lysozyme, γ-globulin and D-xylose ketol isomerase in aqueous salt solution containing polyethylene glycol were considered. For all proteins considered, the modified xDLVO model was able to predict the experimentally observed non-monotonical course in B22 data with high accuracy. When used in an early stage in process development, the model will contribute to an efficient and cost effective downstream processing development.

  19. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems.

    Science.gov (United States)

    Chakraborty, Arabinda; Sen, Kamalika

    2016-02-12

    The phase diagrams of aqueous biphasic systems impart a distinct idea regarding the feasibility of biphase formation by different water soluble substances at their optimum concentrations. Depending on nature of the components viz., the water soluble polymers, surfactants, salts, amino acids or ionic liquids, a general trend of the biphase formation with varying temperature, pH and concentration has been studied over the recent years. This critical review is an endeavor to assess the general trends of these phase forming components to form biphasic systems with varying conditions of temperature and pH in light of the reported phase diagrams. Suitable explanations for the mechanisms of such behavior have been sorted out. The avenue yet to be explored has been addressed as these systems have a tremendous potential to be the future platform to solve different analytical issues.

  20. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  1. On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems.

    Science.gov (United States)

    Gowen, A A; Marini, F; Tsuchisaka, Y; De Luca, S; Bevilacqua, M; O'Donnell, C; Downey, G; Tsenkova, R

    2015-01-01

    This research work evaluates the feasibility of NIRS to detect contaminants in water using single salt solutions as model systems. Previous research has indicated the potential of near infrared spectroscopy (NIRS) for detecting solutes in water; however, a comprehensive investigation of the limit of detection of this technique has not been carried out. Near infrared transmittance spectra of aqueous salt solutions in the concentration range 0.002-0.1 mol L(-1) (equivalent to 117-13,334 ppm or 0.0001-0.01% mass/mass) were investigated. The first overtone region of the near infrared spectrum (1300-1600 nm) was found to be the most effective wavelength range for prediction of salt concentration in aqueous solutions. Calibration models built using this wavelength range and employing the extended multiplicative scatter spectral pre-treatment resulted in root mean squared error of prediction values ranging from 0.004 to 0.01 mol L(-1). The limit of detection (LOD) was estimated to be of the order of 0.1% (mass/mass) or 1000 ppm. Within the framework of Aquaphotomics, it was possible to examine the effect of different salts on the NIR spectra of water in the first overtone range. Our results were confirmed through test experiments at various geographical locations employing dispersive and Fourier transform type NIRS instruments.

  2. Development of counter current salting-out homogenous liquid-liquid extraction for isolation and preconcentration of some pesticides from aqueous samples.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Afshar Mogaddam, Mohammad Reza

    2015-07-23

    In this paper, a new version of salting-out homogenous liquid-liquid extraction based on counter current mode combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some pesticides from aqueous samples and their determination by gas chromatography-flame ionization detection. In order to perform the method, aqueous solution of the analytes containing acetonitrile and 1,2-dibromoethane is transferred into a narrow bore tube which is filled partially with NaCl. During passing the solution through the tube, fine droplets of the organic phase are produced at the interface of solution and salt which go up through the tube and form a separated layer on the aqueous phase. The collected organic phase is removed and injected into de-ionized water for more enrichment of the analytes. Under the optimum extraction conditions, the method shows broad linear ranges for the target analytes. Enrichment factors and limits of detection for the selected pesticides are obtained in the ranges of 3480-3800 and 0.1-5μgL(-1), respectively. Relative standard deviations are in the range of 2-7% (n=6, C=50 or 100μgL(-1), each analyte). Finally, some aqueous samples were successfully analyzed using the developed method.

  3. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yinglian [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); College of Food Science and Engineering, Qingdao Agricultural University of China, Qingdao 266109, Shandong Province (China); Li, Chunsheng; Xu, Ying [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); Wang, Dongfeng, E-mail: wangdf@ouc.edu.cn [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China)

    2014-09-01

    Highlights: • Ultrasonic promotes formation of crystal nucleus and QDs were synthesized in 0.5 h. • The new heating method provides a PLQY of up to 97.13%. • The synthesis mechanism of the core shell structure of the CdTe/CdS QDs was inferred. • The preparation method was efficient, simple and clean. - Abstract: A novel simple method for fast and efficient synthesis of aqueous CdTe/CdS quantum dots (QDs) with core–shell structure was developed by using salt water bath heating with the ultrasonic-assisted technique in this paper. The formation of crystal nucleus was promoted by ultrasonic and CdTe/CdS QDs with blue fluorescence were synthesized only in 0.5 h. The heat source was bath heating in salt water solution at 60% NaCl and the heating temperature could reach 105 °C. The heating method solved the biggest drawback of low photoluminescence quantum yield (PLQY) of ordinal bath heating in water. The preparation was cheap, simple and had less pollution to the environment. The properties of the CdTe/CdS QDs were thoroughly investigated by ultraviolet–visible (UV–vis), photoluminescence (PL), transmission electron microscope (TEM), laser size analysis, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Different CdTe/CdS QDs with core shell structure were efficiently synthesized and the maximum PLQY could reach 97.13% when refluxing at 105 °C for 2 h. These QDs exhibited uniform dispersity, high fluorescence intensity, good optical property and long life of fluorescent. The synthesis mechanism of the core shell structure of the QDs was inferred that the Cd{sup 2+} might coordinate with sulfur (S) as well as thiol propionate (–SCH{sub 2}CH{sub 2}COO{sup −1}) to constitute two relatively thick compound layers on the QDs surface as passive shells.

  4. Crystalline fibrillar gel formation in aqueous surfactant-antioxidant system.

    Science.gov (United States)

    Joseph, Linet Rose; Tata, B V R; Sreejith, Lisa

    2015-08-01

    Cetyltrimethylammonium bromide (CTAB) is a well-known cationic surfactant capable to micellize into diverse morphologies in aqueous medium. We observed the formation of an opaque gel state from aqueous CTAB solution in the presence of the aromatic additive, para-coumaric acid (PCA). Optical microscopic images revealed the presence of large fibrils in the system at room temperature. Gel nature of the fibrils was confirmed by rheological measurements. Presence of interstitial water in the fibrils was recognized with Raman spectroscopy. On heating the sample above 30 (°) C, the fibrillar gel state changes to a transparent liquid state with Newtonian flow properties. Dynamic light scattering study hinted the presence of small micelles in the solution above 30 (°) C. Thus the system showed a temperature-dependent structural transition from opaque water-swollen gel to transparent micellar liquid. The formation of water-swollen fibrillar network is attributed to surfactant-additive intermolecular interactions in aqueous medium. Transition to micelle phase above 30 (°) C is related to Kraft transition which is observed at significantly lower temperature for CTAB in the absence of PCA. The structural features of PCA play a key role in promoting fibrillar network formation and elevating the Kraft transition in aqueous solution of CTAB.

  5. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  6. New Solvents for Cellulose. II. Ethylenediamine/Thiocyanate Salt System

    OpenAIRE

    HATTORI, Kazuyuki; ABE, Emiko; Yoshida, Takashi; CUCULO, John A.; 服部,和幸; 吉田, 孝

    2004-01-01

    The ethylenediamine/thiocyanate salt system was found to be a new solvent for cellulose. The solubility, dissolution behavior, solution properties, and cellulose recovered from the solutions were investigated. The dissolution took place at room temperature, and the maximum solubility achieved was 16% (w/w) for cellulose of DP210 in the ethylenediamine/sodium thiocyanate 54/46 (w/w).The dependence of cellulose solubility on DP is also described. Tracing the dissolution behavior of the cellulos...

  7. Effects of salt concentrations of the aqueous peptide-amphiphile solutions on the sol-gel transitions, the gelation speed, and the gel characteristics.

    Science.gov (United States)

    Otsuka, Takahiro; Maeda, Tomoki; Hotta, Atsushi

    2014-10-02

    Hydrogels made of peptide amphiphiles (PA) have attracted a lot of interest in biomedical fields. Considering the applications of PA hydrogels, the control of the gelation speed and the gel characteristics is essential to predominantly determine the usefulness and practicability of the hydrogels. In this work, the effects of the salt concentrations using sodium dihydrogenorthophosphate (NaH2PO4) on the sol-gel transition behaviors, especially the gelation speed and the gel characteristics of the designed PA (C16-W3K) hydrogels in aqueous solution were discussed. It was found that the original solution state before rheological testing was independent of the salt concentration, which was confirmed by observing the self-assembly structures and the peptide secondary structures of PA through transmission electron microscopy (TEM) and circular dichroism spectroscopy (CD). The PA solutions with different salt concentrations, however, presented a profound difference in the gelation speed and the gel characteristics: the solution exhibited higher gelation speeds and higher mechanical properties at higher salt concentrations. Concurrently, the density, the length of wormlike micelles, and the conformational ratio of β-sheets to α-helices in the equilibrium PA solutions all increased with the increase in the salt concentrations.

  8. Partition behavior of surfactants, butanol, and salt during application of density-modified displacement of dense non-aqueous phase liquids

    Energy Technology Data Exchange (ETDEWEB)

    Damrongsiri, S. [Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Phaya-Thai Rd., Bangkok (Thailand); Tongcumpou, C., E-mail: tchantra@chula.ac.th [Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Phaya-Thai Rd., Bangkok (Thailand); Environmental Research Institute, Chulalongkorn University (Thailand); Sabatini, D.A. [School of Civil Engineering and Environmental Science, The University of Oklahoma, Oklahoma (United States)

    2013-03-15

    Highlights: ► Aqueous surfactant increases the partition of butanol aqueous phase. ► Water partition to NAPL phase via butanol and surfactant in NAPL phase. ► PCE partition to aqueous phase by solubilization into micelles. ► Surfactants cause the dramatically partition of water to NAPL phase. ► Aqueous salt dispels surfactant to NAPL phase. -- Abstract: Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique.

  9. Enhanced tunability afforded by aqueous biphasic systems formed by fluorinated ionic liquids and carbohydrates†

    Science.gov (United States)

    Boal-Palheiros, Isabel; Pereiro, Ana B.; Rebelo, Luís Paulo N.; Freire, Mara G.

    2016-01-01

    This work unveils the formation of novel aqueous biphasic systems (ABS) formed by perfluoroalkylsulfonate-based ionic liquids (ILs) and a large number of carbohydrates (monosaccharides, disaccharides and polyols) aiming at establishing more benign alternatives to the salts commonly used. The respective ternary phase diagrams were determined at 298 K. The aptitude of the carbohydrates to induce phase separation closely follows their hydration capability, while the length of the IL cation/anion fluorinated chain also plays a crucial role. Finally, these systems were investigated as liquid–liquid extraction strategies for four food dyes. Single-step extraction efficiencies for the carbohydrate-rich phase up to 94% were obtained. Remarkably and contrarily to the most investigated IL-salt ABS, most dyes preferentially migrate for the most hydrophilic and biocompatible carbohydrate-rich phase – an outstanding advantage when envisaging the products recovery and further use. On the other hand, more hydrophobic dyes preferentially partition to the IL-rich phase, disclosing therefore these novel systems as highly amenable to be tuned by the proper choice of the phase-forming components. PMID:27667966

  10. Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems.

    Science.gov (United States)

    Montalvo-Hernández, Bertha; Rito-Palomares, Marco; Benavides, Jorge

    2012-05-04

    Crocins are carotenoid derivates that have recently attracted the interest of the scientific community due to their nutraceutical properties. Saffron (dry Crocus sativus stigmas) is one of the main known sources of crocins. In this study the potential use of aqueous two-phase system (ATPS) for the extraction of crocins from C. sativus stigmas was evaluated. The partitioning behavior of crocins in different types of ATPS (polymer-polymer, polymer-salt, alcohol-salt and ionic liquid-salt) was evaluated. Ethanol-potassium phosphate ATPS were selected based on their high top phase recovery yield and low cost of system constituents. The evaluation and optimization of system parameters rendered conditions (V(R)=3.2, ethanol 19.8% (w/w), potassium phosphate 16.5% (w/w), TLL of 25% (w/w), 0.1M NaCl and 2% (w/w) of sample load) under which more than 75% of total crocins were recovered in the top (ethanol rich) phase, whereas the wasted stigmas accumulated in the bottom phase. Lastly, a comparison between an optimized solid-liquid extraction using ethanol:water as solvent and ATPS was conducted demonstrating that similar yields are achieved with both strategies (76.89 ± 18% and 79.27 ± 1.6%, respectively). However, ATPS rendered a higher extraction selectivity of 1.3 ± 0.04 mg of crocins for each mg of phenolic compound, whereas ethanolic extraction showed a selectivity of 0.87 ± 0.01. The results reported herein demonstrate the potential application of ATPS, particularly ethanol-potassium phosphate systems, for the recovery of crocins from C. sativus stigmas.

  11. Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute-solvent interactions.

    Science.gov (United States)

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-10-09

    Partition behavior of nine small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.5M osmolyte (sorbitol, sucrose, trehalose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. It was found out that the partition coefficient of all compounds examined (including proteins) may be described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system differ from those in polyethylene glycol-dextran system.

  12. High-temperature molten salt thermal energy storage systems

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.

    1980-02-01

    The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.

  13. Stabilized aqueous foam systems, concentrate for producing a stabilized aqueous foam and method of producing said foam

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams. The stable foams have utility in security systems.

  14. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  15. Use of multifactorial analysis to develop aqueous two-phase systems for isolation of non-native IGF-I.

    Science.gov (United States)

    Hart, R A; Ogez, J R; Builder, S E

    1995-04-01

    A high yield procedure was developed to solubilize and extract IGF-I from recombinant E. coli by adding chaotrope and disulfide reductant to alkaline fermentation broth. To enhance centrifugation performance and recovery yield, a salt/polymer aqueous two-phase extraction procedure was developed whereby soluble non-native IGF-I and biomass solids are enriched in separate liquid phases. To develop this extraction system a multifactorial experimental approach was used to simultaneously map the phase diagram and identify conditions to suitably partition IGF-I and cell remnants. The presence of urea in these systems tended to disrupt two-phase formation and solids sedimentation. This, in turn, constrained the concentrations of phase forming solutes which could be effectively used. Systems containing low levels of salt (less than about 4% w/w) and polymer (less than about 10% w/w) did not form two phases. Systems containing high levels of salt (greater than about 7% w/w) and polymer (greater than about 18% w/w) formed two phases with floating solids. Intermediate levels of salt (between about 4% and 7% w/w) and polymer (between about 10% and 18% w/w) formed two phases in which solids were enriched in the heavy phase. Systems in this latter desired category were produced with a variety of different salts and polymers and all enriched non-native IGF-I in the light phase. Highest recovery yield (about 90%) was obtained with systems composed of 5% sodium sulfate and 14% PEG-8000.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems and the effect of added electrolytes.

    Science.gov (United States)

    Shrestha, Rekha Goswami; Rodriguez-Abreu, Carlos; Aramaki, Kenji

    2009-01-01

    The formation of viscoelastic wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems in the presence of different counterions and salts is reported, and the effects of the different electrolytes on the rheological behavior are discussed. N-dodecanoylglutamic acid (LAD) is neutralized with biologically relevant L-lysine and L-arginine to obtain anionic surfactants (LAD-Lys2, LAD-Arg2) which form aqueous micellar solutions at 25 degrees C. Addition of a nonionic surfactant, tri-ethyleneglycol mono n-tetradecyl ether (C14EO3), to the aqueous solutions of both LAD-Lys2 and LAD-Arg2 causes the zero-shear viscosity (eta(0)) to increase with C14EO3 concentration gradually at first, and then sharply, indicating one-dimensional growth of the aggregates and eventual formation of entangled wormlike micelles. Further addition of C14EO3 ultimately leads to phase separation of liquid crystals. Such a phase separation, which limits the maximum attainable viscosity, takes place at lower C14EO3 concentrations for LAD-Lys2 compared to LAD-Arg2 systems. It was found that the rheological behavior of micellar solutions is significantly affected by the addition of Na+X(-) salts (X = Cl(-), Br(-), I(-), NO3(-)). The maximum viscosities obtained for the systems with added salt are all higher than that of the salt-free system, and the onset of wormlike micelle formation shift towards lower nonionic surfactant concentrations upon addition of electrolyte. The maximum attainable thickening effect of anions increases in the order NO3(-)>I(-)>Br(-)>Cl(-). The effect of temperature was also investigated. Phase separation takes place at certain temperature, which depends on the type of anion in the added salt, and decreases in the order I(-)>NO3(-)>Br(-) approximately equal Cl(-), in agreement with Hofmeister's series in terms of amphiphile solubility. The thermoresponsive rheological behavior was also found to be highly dependent on the type of anion, and anomalous

  17. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems.

    Science.gov (United States)

    Passos, Helena; Luís, Andreia; Coutinho, João A P; Freire, Mara G

    2016-02-04

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  18. Excellent dynamic stability under saturated salt solution for aqueous quantum dots capped by multi-branched ligands

    Science.gov (United States)

    Xu, Jingkun; Xu, Shuhong; Lv, Changgui; Wang, Chunlei; Cui, Yiping

    2016-09-01

    Preparing quantum dots (QDs) with strong stability against salts is extremely important in some environments with ultrahigh salts concentration, such as the oil exploitation, wastewater treatment and biological markers. In this paper, we reported a simple new method to prepared highly stable QDs by using multi-branched ligands. Our results suggested that multi-branched ligands-capped QDs have extremely good dynamic stability even in salt-saturated solution. Unlike to traditional dynamic stability theory, which considers the electrostatic repulsion of QDs dominant QD stability, the current work found a new determined factor: the steric hindrance of ligand structure. The high steric hindrance effect of multi-branched ligands can maintain the single dispersity of QDs even at extremely low electrostatic repulsion. As a result, QDs with ultrahigh stability against salts can be realized.

  19. Specific Na+ and K+ Cation Effects on the Interfacial Water Molecules at the Air/Aqueous Salt Solution Interfaces Probed with Non-resonant Second Harmonic Generation (SHG)

    CERN Document Server

    Bian, Hong-tao; Guo, Yuan; Wang, Hong-fei

    2008-01-01

    Here we report the polarization dependent non-resonant second harmonic generation (SHG) measurement of the interfacial water molecules at the aqueous solution of the following salts: NaF, NaCl, NaBr, KF, KCl, and KBr. Through quantitative polarization analysis of the SHG data,the orientational parameter D value and the relative surface density of the interfacial water molecules at these aqueous solution surfaces were determined. From these results we found that addition of each of the six salts caused increase of the thickness of the interfacial water layer at the surfaces to a certain extent. Noticeably, both the cations and the anions contributed to the changes, and the abilities to increase the thickness of the interfacial water layer were in the following order: KBr > NaBr > KCl > NaCl ~ NaF > KF. Since these changes can not be factorized into individual anion and cation contributions, there are possible ion pairing or association effects, especially for the NaF case. We also found that the orientational ...

  20. Secondary Organic Aerosol and Brown Carbon Formation in the Sunlit Aqueous Phase: Aldehyde Photooxidation in the Presence of Ammonium Salts and Amines

    Science.gov (United States)

    De Haan, D. O.; Galloway, M. M.; Sharp, K. D.; Jiménez, N. G.

    2014-12-01

    The chemistry of water-soluble carbonyl compounds in clouds is now acknowledged as an important source of secondary organic aerosol. These reactive carbonyl compounds are oxidized to carboxylic acids and form oligomers by radical-radical reactions and by "dark reactions" with ammonium salts (AS) and/or amines. The latter class of reactions also produces light-absorbing brown carbon compounds, especially reactions involving methylglyoxal or glyoxal and amines. However, recent work has found that UV light fades the color of glyoxal + AS and methylgyloxal + AS reaction mixtures. We recently studied aldehyde-AS-amine reactions in sunlight and in control vessels at the same temperature to determine the effects of solar radiation on the aqueous-phase production of brown carbon. In sunlight, methylglyoxal reaction mixtures lost their initial color and failed to brown, indicating the photolytic loss of reactants and/or pre-brown intermediates. In many other reactions, brown products are lost to photolysis, reducing the overall browning of solutions exposed to sunlight. In other experiments, hydrogen peroxide was added to generate OH radicals by photolysis. In the presence of OH radicals, some carbonyl compound mixtures (e.g. those containing hydroxyacetone or glycolaldehyde) browned more rapidly when exposed to sunlight. This indicates the existence of uncharacterized photooxidative browning pathways involving aqueous-phase OH radicals, carbonyls, ammonium salts, and/or amine compounds.

  1. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  2. pH-distribution of cerium species in aqueous systems

    Institute of Scientific and Technical Information of China (English)

    B.Bouchaud; J.Balmain; G.Bonnet; F.Pedraza

    2012-01-01

    Cerium-based oxide coalings can be obtained through either chemical or electrochemical processes on various conductor and semiconductor substrates.In both cases the films develop through a precipitation mechanism,which strongly depends on the solution chemistry.In the particular case of the electrolytic approach,the elaboration parameters play a key role on the interfacial pH modification thereby leading to an indirect precipitation mechanism.Indeed,the nucleation and growth mechanisms of crystallites and the composition of the resulting layers have been shown to be also strongly affected by the deposition conditions as well as by the substrate composition,which could in turn modify the protectiveness provided by such coatings.Therefore a better fundamental understanding of the system is required,in particular of the distribution of cerium-containing species in aqueous solution.To this end,the present work intended to develop a diagram showing the distribution as well as the relative amount of Ce(Ⅲ)/Ce(Ⅳ) species in aqueous media as a function of the pH range.The resulting pH-distribution diagram turned out to be a useful tool to predict the relevant precipitation mechanisms and species involved during the growth of cerium-containing films and to draw correlations with the characteristics of the as-deposited films.

  3. Effective extraction of elastase from Bacillus sp. fermentation broth using aqueous two-phase system

    Institute of Scientific and Technical Information of China (English)

    XU Ying; HE Guo-qing; LI Jing-jun

    2005-01-01

    This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KH2PO4-K2HPO4, in which elastase is mainly partitioned into the PEG-rich phase,while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KH2PO4-K2HPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2 000 and 11.7% (w/w) KH2PO4-K2HPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.

  4. Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems.

    Science.gov (United States)

    Rocha, Maria Victoria; Nerli, Bibiana Beatriz

    2013-10-01

    The partitioning patterns of papain (PAP) and bromelain (BR), two well-known cysteine-proteases, in polyethyleneglycol/sodium citrate aqueous two-phase systems (ATPSs) were determined. Polyethyleneglycols of different molecular weight (600, 1000, 2000, 4600 and 8000) were assayed. Thermodynamic characterization of partitioning process, spectroscopy measurements and computational calculations of protein surface properties were also carried out in order to explain their differential partitioning behavior. PAP was observed to be displaced to the salt-enriched phase in all the assayed systems with partition coefficients (KpPAP) values between 0.2 and 0.9, while BR exhibited a high affinity for the polymer phase in systems formed by PEGs of low molecular weight (600 and 1000) with partition coefficients (KpBR) values close to 3. KpBR values resulted higher than KpPAP in all the cases. This difference could be assigned neither to the charge nor to the size of the partitioned biomolecules since PAP and BR possess similar molecular weight (23,000) and isoelectric point (9.60). The presence of highly exposed tryptophans and positively charged residues (Lys, Arg and His) in BR molecule would be responsible for a charge transfer interaction between PEG and the protein and, therefore, the uneven distribution of BR in these systems.

  5. Condensation of Self-Assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene Glycol and Doped with Salt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heung-Shik; Kang, Shin-Woong; Tortora, Luana; Kumar, Satyendra; Lavrentovich, Oleg D. (Chonbuk); (Kent)

    2012-10-10

    We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of interaggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates and (b) decrease of the persistence length of SSY aggregates.

  6. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  7. Photodegradation of chlorbromuron, atrazine, and alachlor in aqueous systems under solar irradiation

    Directory of Open Access Journals (Sweden)

    Cristina Lizama Bahena

    2006-01-01

    Full Text Available Homogeneous and heterogeneous aqueous systems of the herbicides of chlorbromuron, atrazine, and alachlor were irradiated with a nonexpensive solar irradiation using a photoreactor with recirculation. Photodegradation of these herbicides occurred in both aqueous systems; however the presence of TiO2 clearly accelerated the degradation of the three herbicides in comparison with direct photolysis. Degradation was followed by measuring the chemical oxygen demand (COD as a function of reaction time for each aqueous system. Over 90% of COD abatement in the heterogeneous aqueous system was obtained in a short time period showing that mineralization of chlorbromuron, atrazine, and alachlor was achieved.

  8. Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems.

    Science.gov (United States)

    Ferreira, Ana M; Faustino, Vânia F M; Mondal, Dibyendu; Coutinho, João A P; Freire, Mara G

    2016-10-20

    Immunoglobulins G (IgG) could become widespread biopharmaceuticals if cost-efficient processes for their extraction and purification are available. In this work, aqueous biphasic systems (ABS) composed of polyethylene glycols and a buffered salt, and with ionic liquids (ILs) as adjuvants, have been studied as alternative extraction and purification platforms of IgG from a rabbit serum source. Eleven ILs were investigated to provide insights on the chemical features which maximize the IgG partitioning. It is shown that in polymer-salt systems pure IgG preferentially partitions to the polymer-rich phase; yet, the complete extraction was never attained. Remarkably, after the addition of 5wt% of adequate ILs to polymer-salt ABS, the complete extraction of pure IgG in a single-step was accomplished. The best systems and conditions were then applied to the extraction and purification of IgG directly from rabbit serum samples. The complete extraction of IgG in a single-step was maintained while its purity in the polymer-rich phase was enhanced by ca. 37% as compared to the IL-free ABS. The antibody stability was also evaluated revealing that appropriate ILs are able to maintain the IgG stability and can be used as phase-forming components of ABS when envisaging the purification of high-cost biopharmaceuticals.

  9. Radiation effects on hydroxypropyl methylcellulose phthalate in aqueous system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ling; Yue Zhiying; Wang Min [Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhai Maolin [Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: mlzhai@pku.edu.cn; Yoshii, Fumio; Seko, Noriaki [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki 370-1292 (Japan); Peng Jing; Wei Genshuan; Li Jiuqiang [Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2007-12-15

    A water-insoluble cellulose derivative, hydroxypropyl methylcellulose phthalate (HPMCP) hydrogels, was converted to Na type to form hydrogel in paste-like status by radiation crosslinking. Mechanism for radiation crosslinking of cellulose-derivatives in paste-like status was discussed. Crosslinkers, i.e. methyl N,N-bis-acrylamide (MBA) or ethyleneglycol dimethacrylate (EGDMA) has been used to decrease gelation dose (Dg) of synthesis HPMCP hydrogels and improve its mechanical properties. HPMCP-MBA hydrogels were found to be more rigid and HPMCP-EGDMA hydrogels were more flexible. Swelling degree of HPMCP hydrogel in many kinds of salt solutions followed Hofmeister series, which is ubiquitous in polyelectrolyte hydrogel. Specific reswelling was observed in concentrated KF solution, implying a very strong F{sup -} binding ability of benzyl group. The comprehensive results obtained in this study will be utilized on the design of HPMCP-based controlled release system.

  10. Radiation effects on hydroxypropyl methylcellulose phthalate in aqueous system

    Science.gov (United States)

    Xu, Ling; Yue, Zhiying; Wang, Min; Zhai, Maolin; Yoshii, Fumio; Seko, Noriaki; Peng, Jing; Wei, Genshuan; Li, Jiuqiang

    2007-12-01

    A water-insoluble cellulose derivative, hydroxypropyl methylcellulose phthalate (HPMCP) hydrogels, was converted to Na type to form hydrogel in paste-like status by radiation crosslinking. Mechanism for radiation crosslinking of cellulose-derivatives in paste-like status was discussed. Crosslinkers, i.e. methyl N, N-bis-acrylamide (MBA) or ethyleneglycol dimethacrylate (EGDMA) has been used to decrease gelation dose (Dg) of synthesis HPMCP hydrogels and improve its mechanical properties. HPMCP-MBA hydrogels were found to be more rigid and HPMCP-EGDMA hydrogels were more flexible. Swelling degree of HPMCP hydrogel in many kinds of salt solutions followed Hofmeister series, which is ubiquitous in polyelectrolyte hydrogel. Specific reswelling was observed in concentrated KF solution, implying a very strong F - binding ability of benzyl group. The comprehensive results obtained in this study will be utilized on the design of HPMCP-based controlled release system.

  11. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... of the biodegradable commercial kinetic inhibitor (Luvicap-Bio) on natural gas hydrate formation with and without crude oil (30%) was investigated. The strength of kinetic inhibitor was not affected by salts, but decreased significantly in the presence of crude oil. Data for hydrate formation at practical conditions...... can contribute to the safe operation of sub sea pipelines in the oil and gas industry....

  12. Radiation-Engineered Functional Nanoparticles in Aqueous Systems.

    Science.gov (United States)

    Dispenza, Clelia; Grimaldi, Natascia; Sabatino, Maria Antonietta; Soroka, Inna L; Jonsson, Mats

    2015-05-01

    Controlled synthesis of nanoscalar and nanostructured materials enables the development of novel functional materials with fine-tuned optical, mechanical, electronic, magnetic, conductive and catalytic properties that are of use in numerous applications. These materials have also found their potential use in medicine as vehicles for drug delivery, in diagnostics or in combinations thereof. In principle, nanoparticles can be divided into two broad categories, organic and inorganic nanoparticles. For both types of nanoparticles there are numerous possible synthetic routes. Considering the large difference in nature of these materials and the elementary reactions involved in the synthetic routes, most manufacturing techniques are complex and only suitable for one type of particle. Interestingly, radiation chemistry, i.e., the use of ionizing radiation from radioisotopes and accelerators to induce nanomaterials or chemical changes in materials, has proven to be a versatile tool for controlled manufacturing of both organic and inorganic nanoparticles. The advantages of using radiation chemistry for this purpose are many, such as low energy consumption, minimal use of potentially harmful chemicals and simple production schemes. For medical applications one more advantage is that the material can be sterile as manufactured. Radiation-induced synthesis can be carried out in aqueous systems, which minimizes the use of organic solvents and the need for separation and purification of the final product. The radiation chemistry of water is well known, as are the various ways of fine-tuning the reactivity of the system towards a desired target by adding different solutes. This, in combination with the controllable and adjustable irradiation process parameters, makes the technique superior to most other chemical methods. In this review, we discuss the fundamentals of radiation chemistry and radiation-induced synthesis of nanoparticles in aqueous solutions. The impact of dose and

  13. DESIGN OF ROBOTIC COLONIZER CONTROL SYSTEM FOR AQUEOUS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    C.VENKATESH

    2013-05-01

    Full Text Available Now a days there is a huge interest on underwater communication systems for various applications in order to explore aqueous environments. Intelligent robots and cooperative multi- agent robotic systems can be very efficient tools to speed up search and research operations in remote areas. Robots are also useful to do jobs inareas and in situations that are hazardous for human, they can go anywhere that is not reachable my humans and can go into gaps and move trough small holes that are impossible for humans and even trained dogs. in this paper, a wireless underwater mobile robot system is designed in order to study the behavior of artemia group. anew idea has been presented for underwater mobile robot system which is consists of two parts, first is the underwater mechanical robot and the second is ZigBee wireless based mobile robot which controls and moves the first part. by this system different patterns motion control (linear, circular, zigzag, etc. has been performed and proved the ability to control group of robot by controlling the group of artemia and monitoring the underwater mobile robot control with the help of water proof RF wireless camera and also explore the details present around the mobile robot

  14. Single-Step Purification of Ovalbumin from Egg White Using Aqueous Biphasic Systems.

    Science.gov (United States)

    Pereira, Matheus M; Cruz, Rafaela A P; Almeida, Mafalda R; Lima, Álvaro S; Coutinho, João A P; Freire, Mara G

    2016-06-01

    The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale.

  15. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins.

  16. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    Directory of Open Access Journals (Sweden)

    D.A. Zimnyakov

    2016-06-01

    Full Text Available Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction.

  17. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    Science.gov (United States)

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance.

  18. Multi-stage mixer-settler planet centrifuge. Preliminary studies on partition of macromolecules with organic-aqueous and aqueous-aqueous two-phase solvent systems.

    Science.gov (United States)

    Ito, Y; Zhang, T Y

    1988-03-11

    A rotary-seal-free planetary centrifuge holds a separation column which consists of multiple partition units (ca. 200) connected in series with transfer tubes. In the cavity of each partition unit the transfer tube extends to form a mixer which vibrates to stir the contents under an oscillating force field generated by the planetary motion of the centrifuge. Consequently, solutes locally introduced at the inlet of the column are subjected to an efficient partition process in each partition unit and separated according to their partition coefficients. The mixer tube equipped with a flexible silicone rubber joint was found to produce excellent results for partition with viscous polymer phase systems. The capability of the method was demonstrated on separation of cytochrome c and lysozyme using a PEG-aqueous dibasic potassium phosphate-aqueous two-phase solvent system.

  19. Effects of Na2SO4 or NaCl on sonochemical degradation of phenolic compounds in an aqueous solution under Ar: Positive and negative effects induced by the presence of salts.

    Science.gov (United States)

    Uddin, Md Helal; Nanzai, Ben; Okitsu, Kenji

    2016-01-01

    Sonochemical degradation of 4-chlorophenol, phenol, catechol and resorcinol was studied under Ar at 200 kHz in the absence and presence of Na2SO4 or NaCl. The rates of sonochemical degradation in the absence of salts decreased in the order 4-chlorophenol>phenol>catechol>resorcinol and this order was in good agreement with the order of log P (partition coefficient) value of each phenolic compound. The effects of salts on the rates of sonochemical degradation consisted of no effect or slight negative or positive effects. We discussed these unclear results based on two viewpoints: one was based on the changes in pseudo hydrophobicity and/or diffusion behavior of phenolic compounds and the other was based on the changes in solubility of Ar gas. The measured log P value of each phenolic compound slightly increased with increasing salt concentration. In addition, the dynamic surface tension for 4-chlorophenol aqueous solution in the absence and presence of Na2SO4 or NaCl suggested that phenolic compounds more easily accumulated at the interface region of bubbles at higher salt concentration. These results indicated that the rates of sonochemical degradation should be enhanced by the addition of salts. On the other hand, the calculated Ar gas solubility was confirmed to decrease with increasing salt concentration. The yield of H2O2 formed in the presence of Na2SO4 or NaCl decreased with increasing salt concentration. These results suggested that sonochemical efficiency decreased with decreasing gas amount in aqueous solution: a negative effect of salts was observed. Because negative and positive effects were induced simultaneously, we concluded that the effects of salts on the rates of sonochemical degradation of phenolic compounds became unclear. The products formed from sonochemical degradation of 4-chlorophenol were also characterized by HPLC analysis. The formation of phenol and 4-chloro-1,3-dihydroxy benzene was confirmed and these concentrations were affected by the

  20. Computation of Accurate Activation Barriers for Methyl-Transfer Reactions of Sulfonium and Ammonium Salts in Aqueous Solution.

    Science.gov (United States)

    Gunaydin, Hakan; Acevedo, Orlando; Jorgensen, William L; Houk, K N

    2007-05-01

    The energetics of methyl-transfer reactions from dimethylammonium, tetramethylammonium, and trimethylsulfonium to dimethylamine were computed with density functional theory, MP2, CBS-QB3, and quantum mechanics/molecular mechanics (QM/MM) Monte Carlo methods. At the CBS-QB3 level, the gas-phase activation enthalpies are computed to be 9.9, 15.3, and 7.9 kcal/mol, respectively. MP2/6-31+G(d,p) activation enthalpies are in best agreement with the CBS-QB3 results. The effects of aqueous solvation on these reactions were studied with polarizable continuum model, generalized Born/surface area (GB/SA), and QM/MM Monte Carlo simulations utilizing free-energy perturbation theory in which the PDDG/PM3 semiempirical Hamiltonian for the QM and explicit TIP4P water molecules in the MM region were used. In the aqueous phase, all of these reactions proceed more slowly when compared to the gas phase, since the charged reactants are stabilized more than the transition structure geometries with delocalized positive charges. In order to obtain the aqueous-phase activation free energies, the gas-phase activation free energies were corrected with the solvation free energies obtained from single-point conductor-like polarizable continuum model and GB/SA calculations for the stationary points along the reaction coordinate.

  1. Influence of Salts on the Partitioning of 5-Hydroxymethylfurfural in Water/MIBK.

    Science.gov (United States)

    Mohammad, Sultan; Held, Christoph; Altuntepe, Emrah; Köse, Tülay; Sadowski, Gabriele

    2016-04-28

    This study investigates the influence of electrolytes on the performance of extracting 5-hydroxymethylfurfural (HMF) from aqueous media using methyl isobutyl ketone (MIBK). For that purpose, liquid-liquid phase equilibria (LLE) of quaternary systems containing HMF, water, MIBK and salts were measured at atmospheric pressure and 298.15 K. The salts under investigation were composed of one of the anions NO(3-), SO4(2-), Cl(-), or CH3COO(-) and of one of the alkali cations Li(+), Na(+), or K(+). On the basis of these LLE data, the partition coefficient of HMF between the aqueous and the MIBK phase KHMF was determined. It could be shown that KHMF significantly depends on the kind and concentration of the added salt. Weak electrolytes (e.g., sulfates, acetates) caused salting-out, whereas nitrates caused salting-in of HMF to the aqueous phase. Unexpectedly, LiCl caused salting-out at low LiCl concentrations and salting-in at LiCl concentrations higher than 3 mol/kgH2O. The model electrolyte perturbed-chain SAFT (ePC-SAFT) was used to predict the salt influence on the LLE in the quaternary systems water/MIBK/HMF/salt in good agreement with the experimental data. On the basis of ePC-SAFT, it could be concluded that the different salting-out/salting-in behavior of the various salts is mainly caused by their different tendency to form ion pairs in aqueous solutions.

  2. Effects of an aqueous leaf extract of Sansevieria senegambica Baker on plasma biochemistry and haematological indices of salt-loaded rats

    Directory of Open Access Journals (Sweden)

    Jude C. Ikewuchi

    2011-11-01

    Full Text Available The effects of an aqueous extract of the leaves of Sansevieria senegambica on plasma marker enzymes, plasma chemistry and the haematological profile of salt-loaded rats were studied. The control group received only a commercial feed, whilst the four test groups received a diet consisting of the commercial feed and salt, although the reference treatment group was reverted to the normal feed at the end of 6 weeks. The extract was orally administered daily at 150 mg/kg or 200 mg/kg body weight to two test groups, respectively; whilst the test control, reference and control groups received equivalent volumes of water by the same route. The extract had no negative effects on markers of liver and kidney functions, but it did produce leukocytosis, significantly increased (p < 0.05 plasma calcium and potassium levels and significantly decreased (p < 0.05 plasma sodium and chloride levels in the test animals compared to the test control animals. This result supports the traditional use of Sansevieria senegambica in the management of hypertension, whilst suggesting that the extract may be a potassium-sparing diuretic whose mechanism of antihypertensive action may be achieved through alteration of plasma sodium and potassium balances, or through calcium-mediated changes in vascular muscle tone.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    Science.gov (United States)

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  4. A critical assessment of the mechanisms governing the formation of aqueous biphasic systems composed of protic ionic liquids and polyethylene glycol†

    Science.gov (United States)

    Cláudio, Ana Filipa M.; Pereira, Jorge F. B.; McCrary, Parker D.; Freire, Mara G.; Coutinho, João A. P.; Rogers, Robin D.

    2017-01-01

    An extensive study on the formation of aqueous biphasic systems (ABS) using aqueous solutions of protic ionic liquids (PILs) and polyethylene glycol (PEG) was performed in order to understand the mechanisms underlying the phase separation. Aqueous solutions of PEG polymers with different molecular weights (600, 1000, 2000, and 3400 g mol−1) and several N-alkyl-, dialkyl-, and trialkyl-ammonium salts of acetate, propanoate, butanoate, hexanoate and octanoate were prepared and their ability to form ABS at several temperatures assessed. The ternary liquid–liquid phase diagrams were determined at several temperatures, as well as binary PIL (or salt)-PEG-1000 and salt-water solubility data to better clarify the mechanisms responsible for the phase separation. All data gathered indicate that the formation of PEG–PIL-based ABS is mainly governed by the PIL–PEG mutual interactions, where PILs with a higher solubility in the polymer exhibit a lower aptitude to form ABS displaying thus a smaller biphasic region, for which a direct correlation was identified. The effects of the molecular weight and temperature of the polymer were also addressed. The increase of the PEG hydrophobicity or molecular weight favours the phase separation, whereas the effect of temperature was found to be more complex and dependent on the nature of the PIL, with an increase or decrease of the biphasic regime with an increase in temperature. PMID:27774550

  5. System Requirements Document for the Molten Salt Reactor Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  6. Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method

    Directory of Open Access Journals (Sweden)

    Jakov Stamenkovic

    2006-06-01

    Full Text Available The DSC method has been employed to monitor the kinetics of reticulation ofaqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium(CAT®XC-6212 and the highly selective manganese catalyst, the complex Mn(III-diacetylacetonemaleinate (MAM. Among the polyol components, the acrylic emulsions wereused for reticulation in this research, and as suitable reticulation agents the water emulsiblealiphatic polyisocyanates based on hexamethylendoisocyanate with the different contents ofNCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger,Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reactionof aqueous systems were determined. The temperature of the examination ranged from 50oC to450oC with the heat rate of 0.5oC/min. The reduction of the activation energy and the increaseof the standard deviation indicate the catalytic action of the selective catalysts of zirconium andmanganese. The impact of the catalysts on the reduction of the activation energy is thestrongest when using the catalysts of manganese and applying all the three afore-said methods.The least aberrations among the stated methods in defining the kinetic parameters wereobtained by using the manganese catalyst.

  7. Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems.

    Science.gov (United States)

    Rito-Palomares, M; Hernandez, M

    1998-06-26

    A practical study is described to characterise some problems encountered in the application of aqueous two-phase systems (ATPS) to protein recovery. These factors include practical design of extraction stages and the impact of ATPS compounding methods and biological suspension upon process performance. They were addressed using the recovery of whey proteins as a model. The known effects of system parameters (i.e. tie-line length, volume ratio and system pH) were exploited to define the specific operating conditions of a two-stage ATPS process for the recovery of whey proteins. The partition of whey proteins in ATPS assembled using different methods resulted in changes in the partition coefficient of the proteins. Such changes were associated with the initial location of the proteins in the polymer or salt-rich solutions of the ATPS. Cheese whey loaded into the ATPS caused the displacement of the binodal curve from the origin. Such behaviour was attributed to the residual fat present in the whey. These findings highlight those factors perceived as negative constraints on the wider adoption of ATPS processes for protein recovery from complex biological systems.

  8. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  9. Statistical mechanics of sum frequency generation spectroscopy for the liquid-vapor interface of dilute aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.

    2009-01-02

    We demonstrate a theoretical description of vibrational sum frequency generation (SFG) at the boundary of aqueous electrolyte solutions. This approach identifies and exploits a simple relationship between SFG lineshapes and the statistics of molecular orientation and electric field. Our computer simulations indicate that orientational averages governing SFG susceptibility do not manifest ion-specific shifts in local electric field, but instead, ion-induced polarization of subsurface layers. Counterbalancing effects are obtained for monovalent anions and cations at the same depth. Ions held at different depths induce an imbalanced polarization, suggesting that ion-specific effects can arise from weak, long ranged influence on solvent organization.

  10. Aqueous two phase system based on ionic liquid for isolation of quinine from human plasma sample.

    Science.gov (United States)

    Flieger, J; Czajkowska-Żelazko, A

    2015-01-01

    Aqueous two phase system was applied for selective extraction of quinine from human plasma. Bi-phase was constructed from ionic liquid: butyl-methyl-imidazolium chloride after addition kosmotropic salts K₃PO₄ or KH₂PO₄. Quinine was determined in plasma samples after drinking of tonic containing quinine. Determination was performed by HPLC on 5-μm Zorbax SB-CN column and eluent containing 40% acetonitrile (v/v), 20 mM phosphate buffer at pH 3 and 40 mM NaPF₆ using external standard method. The spectrophotometric detection was set λ=214 nm. Selective fluorescence detection was performed at excitation of 325 nm and emission of 375 nm. Proposed strategy provides suitable sample purification and gives extraction yields in the range of 89-106%. The determination coefficient (R(2)) has a value ≥0.997 in the range of 50-800 ng/ml quinine concentration. The limit of quantification was set at 27.9 ng/ml and the detection limit was found to be 8.4 ng/ml under fluorescence detection.

  11. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid.

    Science.gov (United States)

    Zeng, Qun; Wang, Yuzhi; Li, Na; Huang, Xiu; Ding, Xueqin; Lin, Xiao; Huang, Songyun; Liu, Xiaojie

    2013-11-15

    Eight kinds of green ionic liquids were synthesized, and an ionic liquid aqueous two-phase system (ILATPS) based on 1,1,3,3-tetramethylguandine acrylate (TMGA) guanidine ionic liquid was first time studied for the extraction of proteins. Single factor experiments proved that the extraction efficiency of bovine serum albumin (BSA) was influenced by the mass of IL, K2HPO4 and BSA, also related to the separation time and temperature. The optimum conditions were determined through orthogonal experiment by the five factors described above. The results showed that under the optimum conditions, the extraction efficiency could reach up to 99.6243%. The relative standard deviations (RSD) of extraction efficiencies in precision experiment, repeatability experiment and stability experiment were 0.8156% (n=5), 1.6173% (n=5) and 1.6292% (n=5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and ionic liquid in the extraction process, and the conformation of the protein was not changed after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interaction, hydrogen bonding interaction and the salt out effect played important roles in the transferring process, and the aggregation and embrace phenomenon was the main driving force for the separation. All these results proved that guanidine ionic liquid-based ATPSs have the potential to offer new possibility in the extraction of proteins.

  12. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  13. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  14. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  15. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    Science.gov (United States)

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  16. Assessment of fructooligosaccharides production from sucrose in aqueous and aqueous-organic systems using immobilized inulinase from Kluyveromyces marxianus NRRL Y-7571

    Directory of Open Access Journals (Sweden)

    Fernanda Vaz Alves Risso

    2012-06-01

    Full Text Available This work investigated the fructooligosaccharides (FOS synthesis by immobilized inulinase obtained from Kluyveromyces marxianus NRRL Y-7571 in aqueous and aqueous-organic systems using sucrose as substrate. The sequential strategy of experimental design was used to optimize the FOS conversion in both systems. For the aqueous-organic system, a 2(6-2 fractional design was carried out to evaluate the effects of temperature, sucrose concentration, pH, aqueous/organic ratio, enzyme activity, and polyethylene glycol concentration. For the aqueous system, a central composite design for the enzyme activity and the sucrose concentration was carried out. The highest fructooligosaccharides yield (Y FOS for the aqueous-organic system was 18.2 ± S0.9 wt%, at 40 ºC, pH 5.0, sucrose concentration of 60% (w/w, enzyme activity of 4 U.mL-1, and aqueous/organic ratio of 25/75 wt%. The highest Y FOS for the aqueous system was 14.6 ± 0.9 wt% at 40 ºC, pH 5.0, sucrose concentration of 60 wt%, and enzyme activity of 4.0 U.mL-1.

  17. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); mckellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most

  18. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    Science.gov (United States)

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.

  19. Interactions between high salt intake and the musculoskeletal system

    Science.gov (United States)

    Heer, Martina; Frings-Meuthen, Petra; Buehlmeier, Judith; Baecker, Natalie

    Lowering mechanical load like in microgravity is the dominant stimulus leading to muscle and bone loss. However, high dietary salt (NaCl) intake is also considered as a risk factor for osteoporosis and thereby might exacerbate the microgravity induced bone loss. We have recently shown that a very high salt intake leads to an increased bone resorption most likely because of a low-grade metabolic acidosis (Frings-Meuthen et al. JBMR, Epub Dec 2007). A decrease in pH, however, is on the one hand mandatory to activate osteoclast activity, on the other hand it might affect protein metabolism and thereby muscle mass. In head-down bed rest (HDBR) studies physiological adaptation as seen in microgravity is mimicked. In a recent short-term HDBR study of 14 days, we combined high salt intake and low mechanical loading to test if low-grade metabolic acidosis induced by high NaCl intake is an additive stimulus for increased bone resorption and muscle protein loss. The results show that high NaCl intake combined with low mechanical load exaggerates the increase in calcium excretion as well as the rise in bone resorption marker C-telopeptide (both: p ¡ 0.001). Bone alkaline phosphatase, a bone formation marker, was not different according to NaCl intake (p = 0.74). Additionally, the slightly negative nitrogen balance in HDBR ( 0.34 ± 1.2 g/d) was exacerbated 3 fold by high NaCl intake ( 1.34 ± 1.0 g/d; p ¡ 0.001). These results were accompanied by reduced bicarbonate (p = 0.018) and base excess (p = 0.009) concentrations during high salt intake. In conclusion, HDBR and high salt intake cause -like in ambulatory test subjectsa low-grade metabolic acidosis. This may exacerbate bone resorption and nitrogen loss, which may then exaggerate disuse induced bone and muscle loss.

  20. Cerebral salt wasting syndrome in children with acute central nervous system injury.

    Science.gov (United States)

    Jiménez, Raquel; Casado-Flores, Juan; Nieto, Monserrat; García-Teresa, María Angeles

    2006-10-01

    The purpose of this investigation was to describe the causes, clinical pattern, and treatment of cerebral salt wasting syndrome in children with acute central nervous system injury. This retrospective study focused on patientscerebral salt wasting syndrome, over a period of 7 years, in the pediatric intensive care unit of a tertiary care hospital. Selection criteria included evidence of hyponatremia (serum sodium120 mEq/L), and volume depletion. Fourteen patients were identified with cerebral salt wasting syndrome, 12 after a neurosurgical procedure (8 brain tumor, 4 hydrocephalus) and 2 after severe brain trauma. In 11 patients the cerebral salt wasting syndrome was diagnosed during the first 48 hours of admission. Prevalence of cerebral salt wasting syndrome in neurosurgical children was 11.3/1000 surgical procedures. The minimum sodium was 122+/-7 mEq/L, the maximum urine osmolarity 644+/-59 mOsm/kgH2O. The maximum sodium supply was 1 mEq/kg/h (range, 0.1-2.4). The mean duration of cerebral salt wasting syndrome was 6+/-5 days (range 1-9). In conclusion, cerebral salt wasting syndrome can complicate the postoperative course of children with brain injury; it is frequently present after surgery for brain tumors and hydrocephalus and in patients with severe head trauma. Close monitoring of salt and fluid balance is essential to prevent severe neurologic and hemodynamic complications.

  1. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt

    CERN Document Server

    Simakin, A V

    2010-01-01

    Laser exposure of suspension of either gold or palladium nanoparticles in aqueous solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power from 1011 to 1013 W/cm2 at the wavelength of 1064 and 355 nm were used as well as a visible-range Cu vapor laser at peak power of 1010 W/cm2. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy between 0.06 and 1 MeV range of photon energy. A real-time gamma-spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both 238U and 235U nuclei via different channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by gaseous H2 and D2 on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed.

  2. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    Energy Technology Data Exchange (ETDEWEB)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  3. Collection and evaluation of salt mixing data with the real time data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, S.; Chiu, C.; Todreas, N.E.

    1977-09-01

    A minicomputer based real time data acquisition system was designed and built to facilitate data collection during salt mixing tests in mock ups of LMFBR rod bundles. The system represents an expansion of data collection capabilities over previous equipment. It performs steady state and transient monitoring and recording of up to 512 individual electrical resistance probes. Extensive real time software was written to govern all phases of the data collection procedure, including probe definition, probe calibration, salt mixing test data acquisition and storage, and data editing. Offline software was also written to permit data examination and reduction to dimensionless salt concentration maps. Finally, the computer program SUPERENERGY was modified to permit rapid extraction of parameters from dimensionless salt concentration maps. The document describes the computer system, and includes circuit diagrams of all custom built components. It also includes descriptions and listings of all software written, as well as extensive user instructions.

  4. The Audio Frequency Conductance Study of Some Metal Succinate Salts in Aqueous Medium at Different Temperatures (Part I: Magnesium, Manganese (II, Barium and Copper Succinates

    Directory of Open Access Journals (Sweden)

    Kosrat N. Kaka

    2013-01-01

    Full Text Available The audio electrical conductances of aqueous solutions of magnesium, manganese II, barium, and copper succinates have been measured at various temperatures in the range of 298.15 K to 313.15 K, using an audio frequency conductance bridge. The evaluation of conductance data was carried out by minimisation technique using the theoretical equations of the complete and modified forms of Pitts (P and Fuoss-Hsia (F-H, each a three-parameter equation, association constant (KA, molar conductance (Λm, and distance parameter (a. Quantitative results showed that these salts do not behave as “strong” electrolytes, and that their dissociations are far from complete. The abnormally low conductances of these electrolytes are not due to the presence of electrically neutral molecules but to the ion-pair formation. The Walden product values, as well as the standard thermodynamics functions (ΔH∘, ΔG∘, ΔS∘ for the association reaction at the four temperatures studied, have been evaluated.

  5. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    OpenAIRE

    Ilić Sanja M.; Đaković Sanja D.; Cvejić Jelena H.; Antov Mirjana G.; Zeković Zoran P.

    2005-01-01

    The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  6. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Ilić Sanja M.

    2005-01-01

    Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  7. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.

    Science.gov (United States)

    Rudolph, Wolfram W; Irmer, Gert

    2015-01-01

    Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121-3.050 mol L(-1)) range at room temperature (23 °C). A very weak mode at 343 cm(-1) with a full width at half height at 49 cm(-1) in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La(3+) nona-hydrate was also detected in a 1.2 mol L(-1) La(CF3SO3)3(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5-3.050 mol L(-1). The chloro-complexes in LaCl3(aq) are fairly weak and disappear with dilution. At a concentration complexes disappeared. In LaCl3 solutions, with additional HCl, a series of chloro-complexes of the type [La(OH2)(9-n)Cln](+3-n) (n = 1-3) were formed. The La(NO3)3(aq) spectra were compared with a spectrum of a 0.409 mol L(-1) NaNO3(aq) and it was concluded that in La(NO3)3(aq) over the concentration range from 0.121-1.844 mol L(-1), nitrato-complexes, [La(OH2)(9-n)(NO3)n](+3-n) (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution La(OH2)9](3+) with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La-O stretching mode at 328.2 cm(-1), is only slightly smaller than the experimental one.

  8. Signatures of Biogeomorphic Feedbacks in Salt-Marsh Systems

    Science.gov (United States)

    D'Alpaos, Andrea; Marani, Marco

    2015-04-01

    Salt-marsh ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. Dense stands of halophytic vegetations which populate salt marshes largely control the dynamics of these ecosystems influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. Moreover, plants are also known to increase vertical accretion through direct organic accretion. Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we develop a two-dimensional model which describes the mutual interaction and adjustment between tidal flows, sediment transport and morphology mediated by vegetation influence. The model allows us describe the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios were modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that biogeomorphic feedbacks critically affect the response and the resilience of salt-marsh landscapes to changes in the environmental forcing.

  9. The Fate of De-icing Salts in Stormwater Management Systems

    Science.gov (United States)

    Ballestero, T. P.; Roseen, R. M.; Houle, J. J.

    2005-05-01

    The traditional paradigm behind the design of stormwater management systems is to minimize the water quantity and water quality impacts resulting from land modification. The intent is to yield post-development hydrology similar to pre-development hydrology. The water quality aspect has been primarily focused on sediment removal, however, rarely are stormwater management systems designed for removal of de-icing salt. Chloride toxicity effects upon aquatic organisms resulting from snowmelt runoff are pronounced, routine, and problematic in northern climates. The capacity of current management strategies to treat chloride is in question. This paper explores the fate of de-icing salt through 13 different stormwater management systems. The systems include swales, retention pond, infiltration systems, bioretention systems, wetlands, manufactured devices, and porous asphalt. All systems exist at a field site and are delivered the same runoff (quantity and quality). The devices were designed and installed in accordance with existing drainage manual recommendations. None were designed for salt removal. As expected, devices with minimal water storage do not remove salt. Devices that do have significant amounts of storage do not remove salt, however the effluent concentrations are not as high as the influent concentrations: the peak influent salt concentration is attenuated similar to how the peak inflow discharge is attenuated by storage routing. The porous asphalt has displayed some remarkable characteristics. This surface has remained permeable throughout the winter, even though in addition to the de-icing chemicals, sand is applied. It appears that very little de-icing salt is needed on the surface, which has enormous economic and environmental implications.

  10. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    Science.gov (United States)

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.

  11. Potential application of aqueous two-phase systems and three-phase partitioning for the recovery of superoxide dismutase from a clarified homogenate of Kluyveromyces marxianus.

    Science.gov (United States)

    Simental-Martínez, Jesús; Rito-Palomares, Marco; Benavides, Jorge

    2014-01-01

    Superoxide dismutase (SOD; EC 1.15.1.1) is an antioxidant enzyme that represents the primary cellular defense against superoxide radicals and has interesting applications in the medical and cosmetic industries. In the present work, the partition behavior of SOD in aqueous two-phase systems (ATPS) (using a standard solution and a complex extract from Kluyveromyces marxianus as sample) was characterized on different types of ATPS (polymer-polymer, polymer-salt, alcohol-salt, and ionic liquid (IL)-salt). The systems composed of PEG 3350-potassium phosphate, 45% TLL, 0.5 M NaCl (315 U/mg, 87% recovery, and 15.1-fold purification) and t-butanol-20% ammonium sulfate (205.8 U/mg, 80% recovery and 9.8-fold purification), coupled with a subsequent 100 kDa ultrafiltration stage, allowed the design of a prototype process for the recovery and partial purification of the product of interest. The findings reported herein demonstrate the potential of PEG-salt ATPS for the potential recovery of SOD.

  12. Internally consistent thermodynamic data for aqueous species in the system Na-K-Al-Si-O-H-Cl

    Science.gov (United States)

    Miron, George D.; Wagner, Thomas; Kulik, Dmitrii A.; Heinrich, Christoph A.

    2016-08-01

    A large amount of critically evaluated experimental data on mineral solubility, covering the entire Na-K-Al-Si-O-H-Cl system over wide ranges in temperature and pressure, was used to simultaneously refine the standard state Gibbs energies of aqueous ions and complexes in the framework of the revised Helgeson-Kirkham-Flowers equation of state. The thermodynamic properties of the solubility-controlling minerals were adopted from the internally consistent dataset of Holland and Powell (2002; Thermocalc dataset ds55). The global optimization of Gibbs energies of aqueous species, performed with the GEMSFITS code (Miron et al., 2015), was set up in such a way that the association equilibria for ion pairs and complexes, independently derived from conductance and potentiometric data, are always maintained. This was achieved by introducing reaction constraints into the parameter optimization that adjust Gibbs energies of complexes by their respective Gibbs energy effects of reaction, whenever the Gibbs energies of reactant species (ions) are changed. The optimized thermodynamic dataset is reported with confidence intervals for all parameters evaluated by Monte Carlo trial calculations. The new thermodynamic dataset is shown to reproduce all available fluid-mineral phase equilibria and mineral solubility data with good accuracy and precision over wide ranges in temperature (25-800 °C), pressure (1 bar to 5 kbar) and composition (salt concentrations up to 5 molal). The global data optimization process adopted in this study can be readily repeated any time when extensions to new chemical elements and species are needed, when new experimental data become available, or when a different aqueous activity model or equation of state should be used. This work serves as a proof of concept that our optimization strategy is feasible and successful in generating a thermodynamic dataset reproducing all fluid-mineral and aqueous speciation equilibria in the Na-K-Al-Si-O-H-Cl system within

  13. Inhibition Effect of Mace Extract Microemulsion on Vitamin C Photooxidation in Aqueous Systems

    Directory of Open Access Journals (Sweden)

    Hasbullah Hasbullah

    2014-01-01

    Full Text Available Photooxidation in food systems cause nutritional losses and produces undesirable flavor, toxic and color compounds, which make foods less acceptable or unacceptable to consumers. The objective of this research was to know the effectiveness of mace extract microemulsion to inhibit vitamin C photooxidation in aqueous systems. Aqueous food systems used are both beverage model system and apple juice beverage, where in each system enriched by 100 ppm vitamin C as substrate and 20 ppm erytrosin as photosensitiser. It is about one percent and two percent of microemulsion that contain mace extract of 0, 500 and 750 ppm were added into each of aqueous food system. Inhibition effect of mace extract microemulsion toward vitamin C photooxidation based on the rate of vitamin C degradation in aqueous food systems that illuminated by fluorescent light with 2000 lux intensity within eight hours. The result indicated the mace extract microemulsion has anti-photooxidation activity and ability to inhibit vitamin C photooxidation in aqueous systems.

  14. Salt Effect on the Cloud Point Phenomenon of Amphiphilic Drug-Hydroxypropylmethyl Cellulose System

    Directory of Open Access Journals (Sweden)

    Mohd. Sajid Ali

    2014-01-01

    Full Text Available Effect of two amphiphilic drugs (tricyclic antidepressant, nortriptyline hydrochloride (NORT, and nonsteroidal anti-inflammatory drug, sodium salt of ibuprofen (IBF on the cloud point of biopolymer hydroxypropylmethyl cellulose (HPMC was studied. Effect of NaCl was also seen on the CP of HPMC-drug system. CP of HPMC increases uniformly on increasing the (drug. Both drugs, though one being anionic (IBF and other cationic (NORT, affect the CP in almost the same manner but with different extent implying the role of hydrophobicity in the interaction between drug and polymer. Salt affects the CP of the drug in a dramatic way as low concentration of salt was only able to increase the value of the CP, though not affecting the pattern. However, in presence of high concentration of salts, minimum was observed on CP versus (drug plots. Various thermodynamic parameters were evaluated and discussed on the basis of the observed results.

  15. Liquid / liquid biphasic electrochemistry in ultra-turrax dispersed acetonitrile / aqueous electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D. [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Amemiya, Fumihiro; Atobe, Mahito [Tokyo Institute of Technology, Department of Electronic Chemistry, Yokohama, Kanagawa 2268502 (Japan); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank, E-mail: F.Marken@bath.ac.u [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2010-12-01

    Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid / liquid aqueous-organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid / liquid-electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase. A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile / aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH{sub 3}){sub 6}{sup 3+} in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.

  16. Chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, van W.P.M.

    1997-01-01

    This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M = NH4) systems by measuring the equilibrium composition. This reaction was allowed to proceed from both sides of the equilibrium in a suspension of Pd/C and Pd/γ-Al2O3 catalyst particles, and was carried out at 20, 40 a

  17. Study on Salt-Containing Extractive Distillation for the 2-Propanol/Water System

    Institute of Scientific and Technical Information of China (English)

    Fu Jiquan

    2008-01-01

    The salt-containing extractive distillation column and the salt-containing agent recovery column for the 2-propanol/water/ethanediol/KAc system were simulated by the NRTL model and the modified Rose Relaxation method. The simulation results showed that prediction of the salt effect in vapor-liquid equilib-rium and the correlation method (TDCM) of NRTL parameters were suitable for the said system. Four different distillation technology processes were investigated; the results showed that the salt-containing extractive distillation process was the best one. The simulating design of the extractive distillation column was performed under the conditions of different total stage number, feeding location, reflux ratio, amount of mixed agent and concentration of KAc. The results showed that such factors as 17 stages, a feeding location at the 9th stage, a reflux ratio of 1.2, and a mixed agent feeding rate of 1.141 kmol/h, might be the best suited operating conditions. The simulating design was also done for the column for recovering the salt-containing agent. The simulation method of the salt-containing extractive distillation is simple and effective in this work.

  18. Radiation formation of colloidal silver particles in aqueous systems.

    Science.gov (United States)

    Cuba, Václav; Nemec, Mojmír; Gbur, Tomás; John, Jan; Pospísil, Milan; Múcka, Viliam

    2010-01-01

    This paper reports on the formation of silver nanoparticles initiated by gamma and UV radiation in various aqueous solutions. Inorganic precursors were used for radiation and/or photochemical reduction of Ag(+) ions to a metallic form. The influence of various parameters on the nucleation and formation of colloid particles was studied. Attention was also focused on the composition of the irradiated solution. Aliphatic alcohols were used as scavengers of OH radicals and other oxidizing species. The influence of the stabilizers on the formation and stability of the nanoparticles was studied.

  19. Aqueous solubility study of salts of benzylamine derivatives and p-substituted benzoic acid derivatives using X-ray crystallographic analysis

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla Andrea; Liljefors, Tommy;

    2004-01-01

    than those reported for the corresponding salts of benzylamine (I). Thermal analysis indicated that the increased solubility was caused by reduced crystal lattice energy, which was most likely due to the reduced number of strong hydrogen bonds of the salt of (II) and (III). X-ray crystallographic...... analysis of p-hydroxybenzoic acid salt of (I), (II) and (III) suggested that the reduced number of hydrogen bonds caused the apparent higher solubility. Further analyses of seven salts of (I) were performed. It was not possible to identify any relationship between the number of hydrogen bonds......Twenty two p-substituted benzoic acid derivates were used to prepare salts of N-methylbenzylamine (II) and N,N-dimethylbenzylamine (III), respectively. Only five salts of (II) and two salts of (III) were obtained in a crystalline state. The solubility of these salts was orders of magnitude higher...

  20. Interactions and compatibility of 11 S globulin from Vicia faba seeds and sodium salt of carboxymethylcellulose in an aqueous medium.

    Science.gov (United States)

    Antonov, Yu A; Dmitrochenko, A P; Leontiev, A L

    2006-02-28

    This work studies specific interactions and compatibility between a legumin and a linear carboxylated polysaccharide using gel permeation chromatography, sedimentation analysis, SDS gel electrophoresis, viscometry and phase analysis measurements. It uses the system water/11 S globulin/CMC as a model. Carboxymethylcellulose (CMC) molecules are able to cause a partial dissociation of the protein, subsequent formation of soluble interbiopolymeric complexes and partial aggregation of the free non combined protein at room temperature and pH 6.0-6.5. The maximal binding of biopolymers is observed at their equimolar ratio. The decrease in temperature of the mixture from 293 to 277 K leads to formation of the complex coacervate. The increase in pH from 6.0 to 7.6 results in suppression of complex formation and manifestation of the phenomenon of thermodynamic incompatibility if the total concentration of biopolymers in the system exceeds the critical concentration of segregative phase separation.

  1. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    Science.gov (United States)

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  2. Kinematic Kevlar suspension system for the HAWC and SAFIRE ADR salt pills

    Science.gov (United States)

    Voellmer, George M.; Jackson, Michael; Shirron, Peter J.; Tuttle, James G.

    2003-03-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar® suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  3. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  4. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin.

    Science.gov (United States)

    Gabboun, N H; Najib, N M; Ibrahim, H G; Assaf, S

    2001-01-01

    Release of salicylic acid, diclofenac acid, diclofenac diethylamine and diclofenac sodium, from lyotropic structured systems, namely; neat and middle liquid crystalline phases, across mid-dorsal hairless rat skin into aqueous buffer were studied. Release results were compared with those from the isotropic systems. The donor systems composed of the surfactant polyoxyethylene (20) isohexadecyl ether, HCl buffer of pH 1 or distilled water and the specific drug. High performance liquid chromatography (HPLC) methods were used to monitor the transfer of the drugs across the skin barrier. Results indicated that the rate-determining step in the transport process was the release of the drug from the specified donor system. Further, apparent zero order release was demonstrated with all systems. Except for diclofenac sodium, drug fluxes decreased as the donor medium changed from isotropic to anisotropic. The decrease in fluxes was probably due to the added constrains on the movement of drug molecules. By changing the anisotropic donor medium from neat to middle phase, drug flux decreased in case of salicylic acid and diclofenac sodium. In the mean time, flux increased in case of the diethylamine salt and appeared nearly similar in case of diclofenac acid. Rates of drug transfer across the skin from the anisotropic donors seemed to be largely controlled by the entropy contribution to the transport process. The type and extent of drug-liquid crystal interactions probably influenced the latter.

  5. Molecular simulation of the salting out effect in the system H2S-H2O-NaCl.

    Science.gov (United States)

    Vorholz, Johannes; Maurer, Gerd

    2008-12-28

    The reduction of the solubility of a gas due to the presence of ionic species in a solvent is called "salting-out". The "salting-out" of hydrogen sulfide by sodium chloride in water was predicted by Gibbs ensemble Monte Carlo simulation at temperatures between 373 and 423 K and at salt molalities up to 10 mol kg(-1). The intermolecular interactions were modeled by combining Lennard-Jones potentials with Coulomb interactions. Several force fields were examined. The interactions between unlike species were estimated using two common combining rules without any adjustable parameters for the dispersion interaction. The simulations predict the "salting-out" of hydrogen sulfide by sodium chloride in aqueous solutions in an at least qualitative, partly in a quantitative manner.

  6. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    Science.gov (United States)

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan.

  7. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.

    Science.gov (United States)

    Kim, Dea-Wook; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jung, Young-Ho; Shibato, Junko; Jwa, Nam-Soo; Iwahashi, Yumiko; Iwahashi, Hitoshi; Kim, Du Hyun; Shim, Ie-Sung; Usui, Kenji

    2005-12-01

    By using an in vivo hydroponic rice seedling culture system, we investigated the physiological and biochemical responses of a model rice japonica cultivar Nipponbare to salt stress using proteomics and classical biochemical methods. Yoshida's nutrient solution (YS) was used to grow rice seedlings. YS-grown 18-day-old seedlings manifested highly stable and reproducible symptoms, prominently the wilting and browning of the 3rd leaf, reduced photosynthetic activity, inhibition in overall seedling growth, and failure to develop new (5th) leaf, when subjected to salt stress by transferring them to YS containing 130 mM NaCl for 4 days. As leaf response to salt stress is least investigated in rice by proteomics, we used the 3rd leaf as source material. A comparison of 2-DE protein profiles between the untreated control and salt-stressed 3rd leaves revealed 55 differentially expressed CBB-stained spots, where 47 spots were increased over the control. Of these changed spots, the identity of 33 protein spots (27 increased and 5 decreased) was determined by nESI-LC-MS/MS. Most of these identified proteins belonged to major metabolic processes like photosynthetic carbon dioxide assimilation and photorespiration, suggesting a good correlation between salt stress-responsive proteins and leaf morphology. Moreover, 2-DE immunoblot and enzymatic activity analyses of 3rd leaves revealed remarkable changes in the key marker enzymes associated with oxidative damage to salt stress: ascorbate peroxidase and lipid peroxidation were induced, and catalase was suppressed. These results demonstrate that hydroponic culture system is best suited for proteomics of salt stress in rice seedling.

  8. [Influence of salt stress on the genetically polymorphic system of Sinorhizobium meliloti-Medicago truncatula].

    Science.gov (United States)

    Kurchak, O N; Provorov, N A; Onishchuk, O P; Vorobyov, N I; Roumiantseva, M L; Simarov, B V

    2014-07-01

    The impacts of salt stress (75 mM NaC1) on the ecological efficiency of the genetically polymorphic Sinorhizobium meliloti-Medicago truncatula system were studied. Its impact on a symbiotic system results in an increase of the partners' variability for symbiotic traits and of the symbiosis integrity as indicated by: a) the specificity of the partners' interactions--the nonadditive inputs of their genotypes into the variation of symbiotic parameters; and b) the correlative links between these parameters. The structure of the nodDI locus and the content correlates to the efficiency of the symbiosis between S. meliloti and M. truncatula genotypes under stress conditions more sufficiently than in the absence of stress. Correlations between the symbiotic efficiency of rhizobia strains and their growth rate outside symbiosis are expressed under stress conditions, not in the absence of stress. Under salt stress symbiotic effectiveness was decreased for M. truncatula line F83005.5, which was salt sensitive for mineral nutrition. The inhibition of symbiotic activity for this line is linked with decreased nodule formation, whereas for Jemalong 6 and DZA315.16 lines it is associated with repressed N2-fixation. It was demonstrated for the first time that salt stress impairs the M. truncatula habitus (the mass : height ratio increased 2- to 6-fold), which in the salt-resistant cultivar Jemalong 6 is normalized as the result of rhizobia inoculation.

  9. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  10. Alternative (Potentially Green) Separations Media: Aqueous Biphasic and Related Systems Extending the Frontier Final Report For Period September 1, 2002 January 31, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin D

    2007-06-25

    Through the current DoE-BES funding, we have extended our fundamental understanding of the critical phase separation of aqueous polymer solutions at the molecular level, and have developed a similar understanding of their application as novel solvent systems. Our principal aims included mode of delivery of the aqueous biphasic system (ABS) solvent system and the application of this system to problems of reactive extraction. In the former case we have developed novel solid phase analogues, in the form of cross-linked polyethylene glycol hydrogels, and in the latter case we have examined the role that ABS might play in reaction engineering, with a view to greener, simpler, and safer processes. We have also developed a new salt/salt ABS and have extended our understanding of this system as well. The major outcomes are as follows: (1) Through the use of variable temperature phase diagrams, coupled with differential scanning calorimetry (DSC) measurements of the phases, a better understanding of the thermodynamics of phase formation was obtained. Evidence to the existence and role of an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) (or both) in these systems was gained. With variable temperature solute partitioning, thermodynamic parameters were calculated, and inter-system comparisons were made. Through the use of Abraham's linear solvation energy regression (LSER) the solvent-solute properties of liquid/liquid ABS were examined. We have shown that ABS are indeed very tunable and LSERs have been used as a tool to compare these systems to traditional organic/water and other liquid/liquid systems. (2) We have successfully shown the development of novel reaction media for chemical synthesis and reaction; Aqueous Biphasic Reactive Extraction (ABRE). As a proof of concept, we have shown the synthesis of adipic acid from cyclohexene in an ABS, which represents an important development in the exploitation of this technology

  11. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress.

    Science.gov (United States)

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2009-07-01

    Salt stress has become a severe global problem, and salinity is one of the most important abiotic factors limiting plant growth and yield. It is known that arbuscular mycorrhizal (AM) fungi decrease plant yield losses under salinity. With the aim of determining whether AM inoculation would give an advantage to root development under salt stress, a greenhouse experiment was carried out with AM or without AM fungi. Maize plants were grown in a sand and soil mixture with 5 NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of nonsaline pretreatment. At all salt levels, mycorrhizal plants had higher dry shoot and root mass, higher root activity, and lower root to shoot ratios than non-mycorrhizal plants. In salt-free soil, root length, root surface area, root volume, and number of root tips and forks were significantly larger in mycorrhizal plants than in non-mycorrhizal plants, whereas, under salt stress, average root diameter and root volume of mycorrhizal plants were larger than those of non-mycorrhizal plants. Regardless of the NaCl level, mycorrhizal plants had lower specific root length, lower percentage of root length in the 0-0.2 mm diameter class, and higher percentage of root length in both the 0.2-0.4 mm and 0.4-0.6 mm diameter classes, which suggests that the root system shows a significant shift towards a thicker root system when maize plants were inoculated with Glomus mosseae (Nicolson & Gerdemann). The results presented here indicate that the improvements in root activity and the coarse root system of mycorrhizal maize may help in alleviating salt stress on the plant.

  12. One-Step Generation of Cell-Encapsulating Compartments via Polyelectrolyte Complexation in an Aqueous Two Phase System.

    Science.gov (United States)

    Hann, Sarah D; Niepa, Tagbo H R; Stebe, Kathleen J; Lee, Daeyeon

    2016-09-28

    Diverse fields including drug and gene delivery and live cell encapsulation require biologically compatible encapsulation systems. One widely adopted means of forming capsules exploits cargo-filled microdroplets in an external, immiscible liquid phase that are encapsulated by a membrane that forms by trapping of molecules or particles at the drop surface, facilitated by the interfacial tension. To eliminate the potentially deleterious oil phase often present in such processes, we exploit the aqueous two phase system of poly(ethylene glycol) (PEG) and dextran. We form capsules by placing dextran-rich microdroplets in an external PEG-rich phase. Strong polyelectrolytes present in either phase form complexes at the drop interface, thereby forming a membrane encapsulating the fluid interior. This process requires considerable finesse as both polyelectrolytes are soluble in either the drop or external phase, and the extremely low interfacial tension is too weak to provide a strong adsorption site for these molecules. The key to obtaining microcapsules is to tune the relative fluxes of the two polyelectrolytes so that they meet and complex at the interface. We identify conditions for which complexation can occur inside or outside of the drop phase, resulting in microparticles or poor encapsulation, respectively, or when properly balanced, at the interface, resulting in microcapsules. The resulting microcapsules respond to the stimuli of added salts or changes in osmotic pressure, allowing perturbation of capsule permeability or triggered release of capsule contents. We demonstrate that living cells can be sequestered and interrogated by encapsulating Pseudomonas aeruginosa PAO1 and using a Live/Dead assay to assess their viability. This method paves the way to the formation of a broad variety of versatile functional membranes around all aqueous capsules; by tuning the fluxes of complexing species to interact at the interface, membranes comprising other complexing

  13. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein.

    Science.gov (United States)

    Ding, Xueqin; Wang, Yuzhi; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-07

    A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by (1)H nuclear magnetic resonance ((1)H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV-vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV-vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.

  14. Modeling interaction of fluid and salt in an aquifer/lagoon system.

    Science.gov (United States)

    Fujinawa, Katsuyuki; Iba, Takahiro; Fujihara, Yohichi; Watanabe, Tsugihiro

    2009-01-01

    To simulate the dynamic interaction between a saline lagoon and a ground water system, a numerical model for two-dimensional, variable-density, saturated-unsaturated, and coupled flow and solute transport (saltwater intrusion by finite elements and characteristics [SIFEC]) was modified to allow the volume of water and mass of salt in the lagoon to vary with each time step. The modified SIFEC allows the stage of a lagoon to vary in accordance with a functional relation between the stage and water volume of the lagoon, and also allows the salt concentration of the lagoon to vary in accordance with the salt budget of the lagoon including chemical precipitation and dissolution of salt. The updated stage and salt concentration of the lagoon are in turn used as transient boundary conditions for the coupled flow and solute transport model. The utility of the modified model was demonstrated by applying it to the eastern Mediterranean coastal region of Turkey for assessing impacts of climate change on the subsurface environment under scenarios of sea level rise, increased evaporation, and decreased precipitation.

  15. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  16. A Novel Modeling of Molten-Salt Heat Storage Systems in Thermal Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Rogelio Peón Menéndez

    2014-10-01

    Full Text Available Many thermal solar power plants use thermal oil as heat transfer fluid, and molten salts as thermal energy storage. Oil absorbs energy from sun light, and transfers it to a water-steam cycle across heat exchangers, to be converted into electric energy by means of a turbogenerator, or to be stored in a thermal energy storage system so that it can be later transferred to the water-steam cycle. The complexity of these thermal solar plants is rather high, as they combine traditional engineering used in power stations (water-steam cycle or petrochemical (oil piping, with the new solar (parabolic trough collector and heat storage (molten salts technologies. With the engineering of these plants being relatively new, regulation of the thermal energy storage system is currently achieved in manual or semiautomatic ways, controlling its variables with proportional-integral-derivative (PID regulators. This makes the overall performance of these plants non optimal. This work focuses on energy storage systems based on molten salt, and defines a complete model of the process. By defining such a model, the ground for future research into optimal control methods will be established. The accuracy of the model will be determined by comparing the results it provides and those measured in the molten-salt heat storage system of an actual power plant.

  17. Remote sensing and geographic information system for appraisal of salt-affected soils in India.

    Science.gov (United States)

    Singh, Gurbachan; Bundela, D S; Sethi, Madhurama; Lal, Khajanchi; Kamra, S K

    2010-01-01

    Quantification of the nature, extent, and spatial distribution of salt-affected soils (SAS) for India and the world is essential for planning and implementing reclamation programs in a timely and cost-effective manner for sustained crop production. The national extent of SAS for India over the last four decades was assessed by conventional and remote sensing approaches using diverse methodologies and class definitions and ranged from 6.0 to 26.1 million hectares (Mha) and 1.2 to 10.1 Mha, respectively. In 1966, an area of 6 Mha under SAS was first reported using the former approach. Three national estimates, obtained using remote sensing, were reconciled using a geographic information system, resulting in an acceptable extent of 6.73 Mha. Moderately and severely salt-encrusted lands having large contiguous area have been correctly mapped, but slightly salt-encrusted land having smaller affected areas within croplands has not been accurately mapped. Recent satellite sensors (e.g., Resourcesat-1, Cartosat-2, IKONOS-II, and RISAT-2), along with improved image processing techniques integrated with terrain and other spatial data using a geographic information system, are enabling mapping at large scale. Significant variations in salt encrustation at the surface caused by soil moisture, waterlogging conditions, salt-tolerant crops, and dynamics of subsurface salts present constraints in appraisal, delineation, and mapping efforts. The article provides an overview of development, identification, characterization, and delineation of SAS, past and current national scenarios of SAS using conventional and remote sensing approaches, reconciliation of national estimates, issues of SAS mapping, and future scope.

  18. Experimental study of evaporation of distilled water and 10% NaCl and СaCl2 aqueous salt solutions droplets under their free falling on a heated surface

    Directory of Open Access Journals (Sweden)

    Feoktistov D.V.

    2017-01-01

    Full Text Available The paper presents the experimental results of evaporation of distilled water and 10% aqueous salt solutions of NaCl and СaCl2 droplets under their free falling on a heated surface. It is proved that it is more expedient to conduct the experimental research in this field according to classical multifactorial experiment. Laser treatment of surfaces is found to increase the evaporation rate and to biases the point of boiling crisis in the region of lower surface temperatures. In this case, in the conditions of boiling crisis the frequency of contact of a droplet with a heated surface will decrease.

  19. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  20. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  1. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xueqin; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-01

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared

  2. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  3. Investigation and development of liquid-liquid extraction systems for the removal of pertechnetate from aqueous nuclear waste stream simulants

    Science.gov (United States)

    Gansle, Kristina Marie Rohal

    1998-11-01

    The solvent extraction behavior of perrhenate (ReO 4-) and pertechnetate (TcO4- ) from aqueous nuclear waste stream simulants was examined using the anion-exchange reagent Aliquat-336 nitrate. The extraction tendencies of ReO 4- followed those of TcO4- from both acidic and basic media, demonstrating that ReO4 - was a suitable nonradioactive surrogate for TcO4 -. For ICP-AES analysis of Re in high salt solutions, a V-groove nebulizer and 1:1 dilution of the sample and standards with 0.1% Triton X-100 surfactant reduced deposition of solids within the sample introduction system, thus minimizing memory effects. A new approach to waste remediation technology, Redox-Recyclable Extraction and Recovery (R2ER), was also studied. The redox-active species 1,1',3,3'-tetrakis(2-methyl-2-hexyl)ferrocene (HEP) was oxidized to its cationic form for extraction of TcO4 - or ReO4- from aqueous waste and reduced to its neutral form for recovery of the anion. The thermodynamics of liquid-liquid interfacial electron transfer for the oxidation/activation of HEP were shown to be controlled by three factors: the reduction potentials of the redox-active species in the aqueous and organic phases and the transfer of an ion across the liquid-liquid interface. The deactivation/reduction rate of HEP+NO3- by iron was affected by organic solvent diluent and improved by treating the iron with hexanes and 1 M HCl. The volume of solid secondary-waste in the R2ER cycle was reduced by a factor of 3000. In complete extraction/recovery cycles, HEP+NO3- in 2-nonanone removed greater than 99% TcO4- from the 101-SY, 103-SY, 1 M HCl and 1 M NaOH/1.5 M NaNO3 Hanford Tank waste simulants. Another redox-active extractant, bis(hydridotris(1-pyrazolyl)borato)iron(III) nitrate (FeTp2+NO3-), was also selective for ReO4- remediation from simulated aqueous waste. Organic solutions of the alkyl substituted ferricenium extractants were not stable in the presence of nucleophilic anions and/or reducing agents. HEP+NO3

  4. Salt-free vesicle-phases and their template effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Researches on the construction, structure, and formation of vesicles formed from surfactants have attracted great attention from colloid and interface chemists. The vesicles formed from salt-free cationic-anionic surfactant systems are very different from those with excess salts, having many particular properties. In this paper, we introduce the properties of vesicles prepared from salt-free surfactant systems, according to our own results, especially the vesicles formed from surfactants with divalent metal ions as counterions in aqueous solutions and room temperature ionic liquids. Moreover, the primary results on template effect of the metal-ligand vesicles have also been summarized.

  5. Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems

    NARCIS (Netherlands)

    Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.

    2010-01-01

    Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich p

  6. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon...

  7. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2008-01-01

    The impact of ligand protonation on the complexation kinetics of higher-order complexes is quantitatively described. The theory is formulated on the basis of the usual situation for metal complex formation in aqueous systems in which the exchange of water for the ligand in the inner coordination sph

  8. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours t

  9. Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design

    Directory of Open Access Journals (Sweden)

    Francine Silva Antelo

    2015-02-01

    Full Text Available C-phycocyanin from Spirulina platensis was purified in aqueous two-phase systems (ATPS of polyethylene glycol (PEG/potassium phosphate, varying the molar mass of the PEG. Results using a full factorial design showed that an increase in the concentration of salt and decrease in the concentration of PEG caused an increment in the purification factor for all the ATPS studied. Optimization of the conditions of the purification was studied using a central composite rotatable design for each molar mass of PEG. The ATPS composed of 7% (w/w PEG 1500 or 4% (w/w PEG 8000 (g/gmol and 23 or 22.5% (w/w of phosphate resulted a purification factor of 1.6-fold for C-phycocyanin, with total and 57% recovery, respectively. Process conditions were optimized for the purification factor for the system with PEG 1500. The ATPS with 4% (w/w PEG 4000 or 4% (w/w PEG 6000 and 21% (w/w phosphate resulted purification factors of 2.1 and 2.2-fold, recovering 100% and 73.5%, respectively of C-phycocyanin in the top phase.

  10. NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts.

    Science.gov (United States)

    Wang, Yu; Nordhues, Bryce A; Zhong, Dalian; De Guzman, Roberto N

    2010-05-18

    Salmonella and Shigella bacteria require the type III secretion system (T3SS) to inject virulence proteins into their hosts and initiate infections. The tip proteins SipD and IpaD are critical components of the Salmonella and Shigella T3SS, respectively. Recently, SipD and IpaD have been shown to interact with bile salts, which are enriched in the intestines, and are hypothesized to act as environmental sensors for these enteric pathogens. Bile salts activate the Shigella T3SS but repress the Salmonella T3SS, and the mechanism of this differing response to bile salts is poorly understood. Further, how SipD binds to bile salts is currently unknown. Computer modeling predicted that IpaD binds the bile salt deoxycholate in a cleft formed by the N-terminal domain and the long central coiled coil of IpaD. Here, we used NMR methods to determine which SipD residues are affected by the interaction with the bile salts deoxycholate, chenodeoxycholate, and taurodeoxcholate. The bile salts perturbed nearly the same set of SipD residues; however, the largest chemical shift perturbations occurred away from what was predicted for the bile salt binding site in IpaD. Our NMR results indicate that that bile salt interaction of SipD will be different from what was predicted for IpaD, suggesting a possible mechanism for the differing response of Salmonella and Shigella to bile salts.

  11. Design and economics of direct-contact salt hydrate storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J. D.

    1981-05-01

    A salt-hydrate latent heat storage system is described in which oil is injected at the bottom of the container and exchanges heat as it floats to the top where it is pumped back to the heat source. Experiments are described which are meant to solve two problems. The first problem is to reliably inject the oil into the salt phase. The second is to minimize the carryover of salt hydrate into the oil, which can be done using two-stage coalescer-filters. Three systems are described and compared: a standard liquid-based sensible heat storage system, a latent heat storage design where oil is the heat-transfer fluid throughout the system, and a latent heat storage system where ethylene glycol/water is used in the collectors and oil in the storage tank. Direct-contact latent heat systems have overall costs roughly equal to those for water thermal storage tanks. The primary advantage of latent heat storage is its substantially smaller volume requirement. (LEW)

  12. Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

    Directory of Open Access Journals (Sweden)

    Tuhina Tiwari

    2013-01-01

    Full Text Available The effect of different anions, namely, SCN−, I−, and ClO4−, on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

  13. Structure and dynamics of a salt-bridge model system in water and DMSO.

    Science.gov (United States)

    Lotze, S; Bakker, H J

    2015-06-01

    We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium.

  14. Probabilistic Analysis of a Rock Salt Cavern with Application to Energy Storage Systems

    Science.gov (United States)

    Mahmoudi, Elham; Khaledi, Kavan; Miro, Shorash; König, Diethard; Schanz, Tom

    2017-01-01

    This study focuses on the failure probability of storing renewable energy in the form of hydrogen or compressed air in rock salt caverns. The validation of the short- and long-term integrity and stability of rock salt cavern is a prerequisite in their design process. The present paper provides a reliability-based analysis of a typical renewable energy storage cavern in rock salt. An elasto-viscoplastic creep constitutive model is implemented into a numerical model of rock salt cavern to assess its behavior under different operation conditions. Sensitivity measures of different variables involved in the mechanical response of cavern are computed by elementary effect global sensitivity method. Subset simulation methodology is conducted to measure the failure probability of the system with a low computational cost. This methodology is further validated by a comparison with a Monte Carlo-based probabilistic analysis. The propagation of parameter uncertainties and the failure probability against different failure criteria are evaluated by utilizing a Monte Carlo-based analysis. In this stage, the original finite element model is substituted by a surrogate model to further reduce the computational effort. Finally, a reliability analysis approach is employed to obtain the minimum admissible internal pressure in a cavern.

  15. Bile salt receptor complex activates a pathogenic type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; Salomon, Dor; Tomchick, Diana R.; Grishin, Nick V.; Orth, Kim

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered thatVibrio parahaemolyticusVtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.

  16. Electric battery cell, system and method. [ambient temperature, dithionite salt in electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, R.E.

    1979-05-15

    An ambient-temperature electric cell of primary and secondary nature, characterized by the use of the dithionite salt of an active (alkali or an alkaline earth) metal as the charging agent, is described along with processes for manufacturing and for operating it. The dithionite salt is dissolved and suspended in an anhydrous electrolyte comprised of a suitable solvent, which may also contain another salt of the same active metal and may be saturated with sulfur dioxide. To form the cell, a sealed and evacuated enclosure having a negative electrode and a positive current-gathering electrode is filled with the electrolyte and subjected to a charging current sufficient to plate the active metal onto the negative electrode, while the positive electrode is saturated with sulfur dioxide. In the case of a secondary cell, the dithionite produced upon discharge is available as a partially dissolved and suspended salt in the electrolyte. Such availability may be enhanced by a system for forced circulation of the electrolyte. In the case of a primary cell, the final cell potential and discharge characteristics may be enhanced by replacing the dithionite electrolyte with other anhydrous electrolyte solutions (e.g., sulfuryl chloride or thionyl chloride) once the lithium has been plated out. The cell is characterized by extremely low internal resistance, long shelf life, and excellent performance over a wide temperature range. 72 claims.

  17. Ionic liquid-based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds.

    Science.gov (United States)

    Santos, João H; e Silva, Francisca A; Ventura, Sónia P M; Coutinho, João A P; de Souza, Ranyere L; Soares, Cleide M F; Lima, Álvaro S

    2015-01-01

    The comparative evaluation of distinct types of ionic liquid-based aqueous biphasic systems (IL-ABS) and more conventional polymer/salt-based ABS to the extraction of two antioxidants, eugenol and propyl gallate, is focused. In a first approach, IL-ABS composed of ILs and potassium citrate (C6H5K3O7/C6H8O7) buffer at pH 7 were applied to the extraction of two antioxidants, enabling the assessment of the impact of IL cation core on the extraction. The second approach uses ABS composed of polyethylene glycol (PEG) and potassium phosphate (K2HPO4/KH2PO4) buffer at pH 7 with imidazolium-based ILs as adjuvants. Their application to the extraction of the compounds allowed the investigation of the impact of the presence/absence of IL, the PEG molecular weight, and the alkyl side chain length of the imidazolium cation on the partition. It is possible to maximize the extractive performance of both antioxidants up to 100% using both types of IL-ABS. The IL enhances the performance of ABS technology. The data puts in evidence the pivotal role of the appropriate selection of the ABS components and design to develop a successful extractive process, from both environmental and performance points of view.

  18. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins.

  19. Mineralogic controls on aqueous neptunium(V) concentrations in silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, Daniel S., E-mail: daniel.alessi@epfl.ch [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Szymanowski, Jennifer E.S. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Forbes, Tori Z. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry, University of Iowa, Room E331 CB, Iowa City, IA 52242 (United States); Quicksall, Andrew N. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil and Environmental Engineering, Southern Methodist University, P.O. Box 750340, Dallas, TX 75275 (United States); Sigmon, Ginger E.; Burns, Peter C.; Fein, Jeremy B. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States)

    2013-02-15

    The presence of radioactive neptunium in commercially spent nuclear fuel is problematic due to its mobility in environmental systems upon oxidation to the pentavalent state. As uranium is the major component of spent fuel, incorporation of neptunium into resulting U(VI) mineral phases would potentially influence its release into environmental systems. Alternatively, aqueous neptunium concentrations may be buffered by solid phase Np{sub 2}O{sub 5}. In this study, we investigate both of these controls on aqueous neptunium(V) concentrations. We synthesize two uranyl silicates, soddyite, (UO{sub 2}){sub 2}SiO{sub 4}·2H{sub 2}O, and boltwoodite, (K, Na)(UO{sub 2})(SiO{sub 3}OH)·1.5H{sub 2}O, each in the presence of two concentrations of aqueous Np(V). Electron microscopy and electron diffraction analyses of the synthesized phases show that while significant neptunyl incorporation occurred into soddyite, the Np(V) in the boltwoodite systems largely precipitated as a secondary phase, Np{sub 2}O{sub 5(s)}. The release of Np(V) from each system into aqueous solution was measured for several days, until steady-state concentrations were achieved. Using existing solubility constants (K{sub sp}) for pure soddyite and boltwoodite, we compared predicted equilibrium aqueous U(VI) concentrations with the U(VI) concentrations released in the solubility experiments. Our experiments reveal that Np(V) incorporation into soddyite increases the concentration of aqueous U in equilibrium with the solid phase, perhaps via the formation of a metastable phase. In the mixed boltwoodite – Np{sub 2}O{sub 5(s)} system, the measured aqueous U(VI) activities are consistent with those predicted to be in equilibrium with boltwoodite under the experimental conditions, a result that is consistent with our conclusion that little Np(V) incorporation occurred into the boltwoodite. In the boltwoodite systems, the measured Np concentrations are likely controlled by the presence of Np{sub 2}O{sub 5

  20. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape.

    Science.gov (United States)

    Atefi, Ehsan; Mann, J Adin; Tavana, Hossein

    2014-08-19

    Aqueous solutions of different polymers can separate and form aqueous two-phase systems (ATPS). ATPS provide an aqueous, biocompatible, and mild environment for separation and fractionation of biomolecules. The interfacial tension between the two aqueous phases plays a major role in ATPS-mediated partition of biomolecules. Because of the structure of the two aqueous phases, the interfacial tensions between the phases can be 3-4 orders of magnitude smaller than conventional fluid-liquid systems: ∼1-100 μJ/m(2) for ATPS compared to ∼72 mJ/m(2) for the water-vapor interface. This poses a major challenge for the experimental measurements of reproducible interfacial tension data for these systems. We address the need for precise determination of ultralow interfacial tensions by systematically studying a series of polymeric ATPS comprising of polyethylene glycol (PEG) and dextran (DEX) as the phase-forming polymers. Sessile and pendant drops of the denser DEX phase are formed within the immersion PEG phase. An axisymmetric drop shape analysis (ADSA) is used to determine interfacial tensions of eight different ATPS. Specific criteria are used to reproducibly determine ultralow interfacial tensions of the ATPS from pendant and sessile drops. Importantly, for a given ATPS, pendant drop and sessile drop experiments return values within 0.001 mJ/m(2) indicating reliability of our measurements. Then, the pendant drop technique is used to measure interfacial tensions of all eight ATPS. Our measured values range from 0.012 ± 0.001 mJ/m(2) to 0.381 ± 0.006 mJ/m(2) and vary with the concentration of polymers in equilibrated phases of ATPS. Measurements of ultralow interfacial tensions with such reproducibility will broadly benefit studies involving partition of different biomolecules in ATPS and elucidate the critical effect of interfacial tension.

  1. Investigating the sealing capacity of a seal system in rock salt (DOPAS project)

    Energy Technology Data Exchange (ETDEWEB)

    Jantschik, Kyra; Moog, Helge C.; Czaikowski, Oliver; Wieczorek, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig (Germany)

    2016-11-15

    This paper describes research and development work on plugging and sealing repositories, an issue of fundamental importance for the rock salt option which represents one of the three European repository options, besides the clay rock and the crystalline rock options. The programme aims at providing experimental data needed for the theoretical analysis of the long-term sealing capacity of concrete- based sealing materials. In order to demonstrate hydro-mechanical material stability under representative load scenarios, a comprehensive laboratory testing programme is carried out. This comprises investigation of the sealing capacity of the combined seal system and impact of the so-called excavation-damaged zones (EDZ) as well as investigation of the hydro-chemical long-term stability of the seal in contact with different brines under diffusive and advective conditions. This paper presents experimental approaches and preliminary results from laboratory investigations on salt concrete and combined systems as obtained to date.

  2. Ionic conductivities of solid polymer electrolyte/salt systems: Group-contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jae Ho; Bae, Young Chan [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133791 (Korea, Republic of)

    2006-06-19

    We establish a new group-contribution model based on the Nernst-Einstein equation in which the diffusion coefficient is derived from the modified double-lattice (MDL) model and the Debye-Huckel (DH) theory. The model includes the combinatorial energy contribution that is responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, and the polar force and the specific energy contribution from hydrogen bonding. The Nernst-Einstein equation takes into account the mobility of the salt and the motion of the polymer host. To describe the segmental motion of the polymer chain, which is the well known conduction mechanism for solid polymer electrolyte (SPE) systems, the effective co-ordinated unit parameter is introduced. Our results show that good agreement is obtained upon comparison with experimental data of various PEO and salt systems in the interested ranges. (author)

  3. A versatile salt evaporation reactor system for SOFC operando studies on anode contamination and degradation with impedance spectroscopy

    Science.gov (United States)

    Nurk, Gunnar; Holtappels, Peter; Figi, Renato; Wochele, Jörg; Wellinger, Marco; Braun, Artur; Graule, Thomas

    2011-03-01

    The dependence of the degradation kinetics in Ni-CGO (cerium-gadolinium oxide) solid oxide fuel cell (SOFC) anodes upon salt evaporation is demonstrated operando with a custom built versatile reactor system. The system is based on evaporation and subsequent condensation of low concentration salt vapor aerosol mixtures representative of salt vapors typically present in biomass gasification processes. Fast changes in the charge transfer and ohmic resistance are observed in the anodes fuelled with a gas mixture containing a high KCl vapor concentration. Rapid condensation of salt vapors into the porous anode and partial delamination of the anode from the electrolyte surface because of salt deposits inside the porous anode is observed. The flexibility to produce vapor-aerosol mixtures with different concentrations and particle size distributions is proved, and suitability of these aerosols for anode testing in long term fuel cell test is evaluated.

  4. Prostaglandin H synthase kinetics in the two-phase aqueous-micellar system.

    Science.gov (United States)

    Ponomareva, Olga A; Trushkin, Nikita A; Filimonov, Ivan S; Krivoshey, Alexandr V; Barkhatov, Vladimir I; Mitrofanov, Sergey I; Vrzheshch, Petr V

    2016-09-01

    Reaction mixture for PGHS (prostaglandin-H-synthase) is a two-phase system including micellar hydrophobic phase and hydrophilic aqueous phase. Reagents added to the mixture are distributed between phases, thus concentrations of reagents dissolved in phases can differ significantly from their overall contents. Using dynamic light scattering we found that the hydrophobic phase produced by tween-20 consists of micelles, which radius (4-5nm) does not depend on either tween-20 overall content (0.1%-1% v/v) or arachidonic acid (AA) addition (10-1000μM) or PGHS addition (1μM). Tween-20 overall content changing from 0.1% to 2% v/v dramatically affected COX kinetic, but accounting AA distribution between phases allowed us to estimate "true" parameters, independent of the tween-20 overall content and the concentration of another substrate: KM(Ox) equals 9.8μM O2 in the aqueous phase or 0.0074bar in the gaseous phase, KM(AA) equals 5400μM AA in the phase of tween-20 micelles and 5400/PμM AA in the aqueous phase (P is the distribution ratio for the AA between the aqueous phase and the hydrophobic phase (P≫1000)). This approach allowed to evaluate PS, the distribution ratio for the AA between the hydrophobic phase and the PGHS active center (PS ~310). This coefficient indicates the AA selectivity toward the cyclooxygenase active center.

  5. Moderation of hematological and plasma biochemical indices of sub-chronic salt-loaded rats, by an aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae)

    Institute of Scientific and Technical Information of China (English)

    Ikewuchi Jude C

    2013-01-01

    Objective: To investigate the effects of an aqueous leaf extract of Acalypha wilkesiana (A. wilkesiana) on plasma chemistry and hematological indices of sub-chronic salt-loaded rats.Method:The control group received a diet consisting 100% of the commercial feed, while the four test groups were received a diet consisting 8% salt and 92% commercial feed all through, except for the reference treatment group that had its salt-loading discontinued after six weeks. The extract was orally administered daily at 200 and 250 mg/kg body weight; while the test control, reference and control groups received appropriate volumes of water by the same route.Results:The extract had no negative effects on markers of liver and kidney functions, produced hemoconcentration, significantly higher (P<0.05) plasma calcium and potassium levels, and significantly lower (P<0.05) plasma sodium and chloride levels in the test animals compared to test control. Conclusions: This result supports the traditional use of A. wilkesiana in the management of hypertension and suggests that the extract may be a potassium sparing diuretic whose mechanism of antihypertensive action may be via alteration of plasma sodium and potassium balances or calcium mediated alteration in vascular muscle tone.

  6. Extraction of natural red colorants from the fermented broth of Penicillium purpurogenum using aqueous two-phase polymer systems.

    Science.gov (United States)

    Santos-Ebinuma, Valéria Carvalho; Lopes, André Moreni; Pessoa, Adalberto; Teixeira, Maria Francisca Simas

    2015-01-01

    Safety concerns related to the increasing and widespread application of synthetic coloring agents have increased the demand for natural colorants. Fungi have been employed in the production of novel and safer colorants. In order to obtain the colorants from fermented broth, suitable extraction systems must be developed. Aqueous two-phase polymer systems (ATPPS) offer a favorable chemical environment and provide a promising alternative for extracting and solubilizing these molecules. The aim of this study was to investigate the partitioning of red colorants from the fermented broth of Penicillium purpurogenum using an ATPPS composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA). Red colorants partitioned preferentially to the top (PEG-rich phase). In systems composed of PEG 6,000 g/mol/NaPA 8,000 g/mol, optimum colorant partition coefficient (KC ) was obtained in the presence of NaCl 0.1 M (KC  = 10.30) while the PEG 10,000 g/mol/NaPA 8,000 g/mol system in the presence of Na2 SO4 0.5 M showed the highest KC (14.78). For both polymers, the mass balance (%MB) and yield in the PEG phase (%ηTOP ) were close to 100 and 79%, respectively. The protein selectivity in all conditions evaluated ranged from 2.0-3.0, which shows a suitable separation of the red colorants and proteins present in the fermented broth. The results suggest that the partitioning of the red colorants is dependent on both the PEG molecular size and salt type. Furthermore, the results obtained support the potential application of ATPPS as the first step of a purification process to recover colorants from fermented broth of microorganisms.

  7. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  8. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings

    Directory of Open Access Journals (Sweden)

    Anisur eRahman

    2016-05-01

    Full Text Available The present study investigates the regulatory role of exogenous calcium (Ca in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-d-old rice (Oryza sativa L. cv. BRRI dhan47 seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger for three days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt-induced stress caused oxidative stress in rice seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS production and methylglyoxal (MG formation. The salt-stressed rice seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the rice seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system.

  9. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings

    Science.gov (United States)

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  10. Drop volumes and terminal velocities in aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhavasar, P. M.; Jafarabad, K. R.; Pandit, A. B.; Sawant, S. B.; Joshi, J. B. [Bombay Univ. (India). Dept. of Chemical Technology

    1996-12-01

    Two phase aqueous extraction techniques employed in liquid-liquid extraction equipment such as spray columns and plate columns were studied, with particular attention to predicting drop sizes prior to jetting, and their terminal velocity. In the particular system studied, the values obtained by conventional models as found in the literature were considered inapplicable. A generalised model was constructed using video photographic measurements, and a correlation was developed for the terminal velocities of the drops in aqueous two-phase systems. This simplified model was found to be successful in expressing the terminal rise/fall velocities of droplets covering a specific range of Morton numbers (representing physical properties) from 0.00211 to 11050 and Eotvos numbers (representative of drop size) from 0.091 to 288. 22 refs., 6 figs.

  11. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-11-15

    The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions.

  12. The effects of aqueous extracts of Desmodium gangeticum DC. (Leguminosae) on the central nervous system.

    Science.gov (United States)

    Jabbar, S; Khan, M T; Choudhuri, M S

    2001-06-01

    The aqueous extract of Desmodium gangeticum DC. (Leguminosae) showed no analgesic activity in the hot plate method, but it showed severe anti-writhing activity in the acetic acid-induced abdominal writhing assay. It exhibited moderate central nervous system depressant activity in the spontaneous motor activity, hole cross, and open field tests and hole board tests. The effects of this extract on locomotion were compared with some standard CNS drugs.

  13. Dehalogenation of Aryl Halides Catalyzed by Montmorillonite Immobilized Bimetal Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel bisupported bimetal catalyst PVP-PdCl2-FeSO4/Al-Mont-PEG600 was prepared by immobilization of PVP (poly (N-vinyl-2-pyrrolidone)) supported bimetallic catalyst using alumina pillared inartificial montmorillonite as the carrier. This catalyst has good dehalogenation activity and selectivity to aryl halides-o-chlorotoluene in aqueous system in the presence of phase transfer catalyst (PEG) and sodium formate as hydrogen source. The catalyst also shows good reusability.

  14. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  15. STUDY ON ION-POLYMER INTERACTION AND MORPHOLOGIC STRUCTURE OF POLYURETHANE/SALT SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    朱卫华; 杨兵; 王新灵; 唐小真

    2001-01-01

    A poly(ethylene oxide) urethane and a model-compound of hard segment(HD) were prepared in this study. Solid polymer electrolytes were got from the blends of polyurethane, HD and NaClO4. The samples were characterized by mean of FT-IR and AFM. Effects of salt concentration on ion-polymer interaction and further on morphologic structure of the composites were investigated and some interesting results were obtained. The results show that HD and concentration of NaClO4 have an important effect on ion-polymer interaction and morphologic structure of the complex. It is also found that in AFM pictures of the samples there is a transition point and ion-polymer interaction of the polyurethane/salt systems play an extremely important role on morphologic structure.

  16. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.

    Science.gov (United States)

    Tangso, Kristian J; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick; Boyd, Ben J

    2014-08-13

    Nanostructured capsules comprised of the anionic bile salt, sodium taurodeoxycholate (STDC), and the biocompatible cationic polymer, chitosan, were prepared to assess their potential as novel tailored release nanomaterials. For comparison, a previously studied system, sodium dodecyl sulfate (SDS), and polydiallyldimethylammonium chloride (polyDADMAC) was also investigated. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified the presence of lamellar and hexagonal phase at the surfactant-polymer interface of the respective systems. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and salt concentration, respectively, and were found to influence the liquid-crystalline nanostructure formed. The hexagonal phase persisted at high temperatures, however the lamellar phase structure was lost above ca. 45 °C. Both mesophases were found to dissociate upon addition of 4% NaCl solution. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from the lamellar phase significantly increased in response to changes in the solution conditions studied, suggesting that modulating the drug release from these bile salt-chitosan capsules is readily achieved. In contrast, release from the hexagonal phase capsules had no appreciable response to the stimuli applied. These findings provide a platform for these oppositely charged surfactant and polymer systems to function as stimuli-responsive or sustained-release drug delivery systems.

  17. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    Science.gov (United States)

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration.

  18. Cytotoxicity of aqueous extracts of Rosmarinus officinalis L. (Labiatae in plant test system

    Directory of Open Access Journals (Sweden)

    GHS Cardoso

    Full Text Available This study investigated the cytotoxic activity of Rosmarinus officinalis L. (rosemary aqueous extract on the cell cycle of Allium cepa. To this end, crude aqueous leaf extracts at four concentrations, 0.02, 0.04, 0.06 and 0.08 mg/mL, were tested on A. cepa meristematic root cells, at exposure times of 24 and 48h. Slides were prepared by the crushing technique, and cells analyzed throughout the cell cycle, totaling 5,000 for each control group and concentration. The four concentrations tested, including the lowest and considered ideal for use, at all exposure times, showed a significant antiproliferative effect on the cell cycle of this test system and presented a high number of cells in prophase. Our results evidenced the cytotoxicity of rosemary extracts, under the studied conditions.

  19. Cytotoxicity of aqueous extracts of Rosmarinus officinalis L. (Labiatae) in plant test system.

    Science.gov (United States)

    Cardoso, G H S; Dantas, E B S; Sousa, F R C; Peron, A P

    2014-11-01

    This study investigated the cytotoxic activity of Rosmarinus officinalis L. (rosemary) aqueous extract on the cell cycle of Allium cepa. To this end, crude aqueous leaf extracts at four concentrations, 0.02, 0.04, 0.06 and 0.08 mg/mL, were tested on A. cepa meristematic root cells, at exposure times of 24 and 48 h. Slides were prepared by the crushing technique, and cells analyzed throughout the cell cycle, totaling 5,000 for each control group and concentration. The four concentrations tested, including the lowest and considered ideal for use, at all exposure times, showed a significant antiproliferative effect on the cell cycle of this test system and presented a high number of cells in prophase. Our results evidenced the cytotoxicity of rosemary extracts, under the studied conditions.

  20. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: In Solutions.

    Science.gov (United States)

    Yucel, Umut; Peterson, Devin G

    2015-09-01

    The influence of protein-sodium interactions on the availability of sodium in the aqueous phase of liquid samples and consequently on the perception of saltiness was investigated. The aqueous effluents of casein and casein emulsion-salt solutions were monitored for sodium availability from a tongue column system. In the aqueous protein-salt solutions, increasing the protein/salt ratio from 1:1 to 5:1 or 10:1 significantly decreased the initial salt concentration in the effluent and resulted in a higher salt concentration in the effluent over time. Sensory analysis was in agreement. Samples with increased protein were rated as having significantly lower initial saltiness and a higher salty aftertaste. However, when casein was formulated as an emulsion, the initial release of sodium in the effluent was enhanced (compared to nonemulsified protein). Increasing the emulsion interfacial area (more hydrophilic segments of the protein were structured into the aqueous phase) resulted in a higher salt concentration in the aqueous phase and greater perceived saltiness intensity. In summary, protein interactions, specifically ionic, were reported as food interactions that influence salt perception and provide a basis to develop higher flavor quality low-sodium food products.

  1. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.; Bradley, D. J.; Serne, R. J.; Soldat, J. K; Cole, C. R.; Deutsch, W. J.; Gupta, S. K.; Harwell, C. C.; Napier, B. A.; Reisenauer, A. E.; Prater, L. S.; Simmons, C. S.; Strenge, D. L.; Washburn, J. F.; Zellmer, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario

  2. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.; Raymond, J. R.; Brandley, D. J.; Serne, R. J.; Soldat, J. K.; Cole, C. R.; Deutsch, W. J.; Gupta, S. K.; Harwell, C. C.; Napier, B. A.; Reisenauer, A. E.; Prater, L. S.; Simmons, C. S.; Strenge, D. L.; Washburn, J. F.; Zellmer, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario

  3. Thermodynamic study of aqueous rubidium and cobalt selenate system at the temperature 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, Dimitar; Christov, Christomir E-mail: hhristov@chem.ucsd.edu; Ojkova, Todora

    2003-05-01

    The isopiestic method has been used to determine the osmotic coefficients of the binary solutions Rb{sub 2}SeO{sub 4}(aq) at the temperature T=298.15 K from (1.072 to 5.200) mol{center_dot}kg{sup -1}. The molalities m of (m{sub 1}Rb{sub 2}SeO{sub 4}+m{sub 2}CoSeO{sub 4})(aq) have been investigated by the physicochemical analysis method. The crystallization of a new double salt Rb{sub 2}SeO{sub 4}{center_dot}CoSeO{sub 4}{center_dot}6H{sub 2}O has been established. This double salt crystallizes in a monoclinic crystal system, space group P2{sub 1}/a, a=0.9281(2) nm, b=1.2422(2) nm, c=0.6276(9) nm, {beta}=105.70 (2) deg. , and V=0.6966(2) nm{sup 3}. The double salt is isostructural with Rb{sub 2}SeO{sub 4}{center_dot}ZnSeO{sub 4}{center_dot}6H{sub 2}O. T.g. and d.t.a measurements indicate that the double salt loses the crystallization water in two steps in the temperature interval from 393.15 K to 523.15 K. The Pitzer ion-interaction model has been used in the thermodynamic analysis of the experimental osmotic and solubility data obtained. The thermodynamic parameters needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherm has been plotted. The experimentally obtained and the calculated solubilities are in very good agreement. The standard molar Gibbs energy of the synthesis reaction {delta}{sub r}G{sup 0}{sub m} of the double salt Rb{sub 2}SeO{sub 4}{center_dot}CoSeO{sub 4}{center_dot}6H{sub 2}O from the corresponding simple salts Rb{sub 2}SeO{sub 4} and CoSeO{sub 4}{center_dot}6H{sub 2}O, as well as the standard molar Gibbs energy of formation {delta}{sub f}G{sup 0}{sub m} have been determined.

  4. Reductive Cyclodimerization of Arylidenecyanoacetates Promoted by Sm/InCl3 ·4H2O System in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    Hua Yue WU; Jin Chang DING; Le Ping FANG; Jing GAO

    2004-01-01

    Promoted by active indium produced in situ by Sm/InCl3 · 4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions in aqueous media.

  5. Partition of proteins in aqueous two-phase systems based on Cashew-nut tree gum and poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Leonie Asfora Sarubbo

    2004-09-01

    Full Text Available The partitioning of two proteins, bovine serum albumin (BSA and trypsin was studied in an aqueous poly(ethylene glycol(PEG- Cashew-nut tree gum system. The phase diagram was provided for Cashew-nut tree gum and PEG molecular weight of 1500 at two different temperatures. The influence of several parameters including concentrations of polymers, pH, salt addition and temperature on the partitioning of these proteins were investigated.. The results of this research demonstrated the importance of the protein characteristics for partitioning in aqueous biphasic system.A partição de duas proteínas, albumina de soro bovino (BSA e tripsina foi estudada no sistema bifásico aquoso Polietileno glicol(PEG - Goma do cajueiro. O diagrama de fases foi estabelecido para a Goma do Cajueiro e para PEG de peso molecular 1500 em duas diferentes temperaturas. A influência de vários parâmetros na partição destas proteínas, incluindo concentração dos polímeros, pH, adição de sal e temperatura foi investigada. Os resultados desta pesquisa demonstraram a importância das características da proteína na partição em sistemas bifásicos aquosos.

  6. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    Science.gov (United States)

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%.

  7. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems.

    Science.gov (United States)

    Dachipally, Purnachandar; Jonnalagadda, Sreekanth B

    2011-01-01

    The ozone facilitated oxidation mechanism of water soluble azo anionic dye, amaranth (Am) was investigated monitoring the depletion kinetics of the dye spectrometrically at 521 nm. The oxidation kinetics of the dye by ozone was studied under semi-batch conditions, by bubbling ozone enriched oxygen through the aqueous reaction mixture of dye, as function of flow rate, ionic strength, [O(3)] and pH variations. With excess concentration of ozone and other reagents and low [amaranth], reaction followed pseudo-first-order kinetics with respect to the dye. Added neutral salts had marginal effect on the reaction rate and the variation of pH from 7 to 2 and 7 to 12 exerted only small increases in the reaction rate suggesting molecular ozone possibly is the principle reactive species in oxidation of dye. The reaction order with respect ozone was near unity and it varied slightly with pH and flow rate variations. The overall second-order rate constant for the reaction was (105 ± 4) M(-1) min(-1). The main oxidation products immediately after amaranth decolorization were identified. The reaction mechanism and overall rate law were proposed. After spiking the seawater, river water and wastewaters with Amaranth dye, the reaction rates and trends in BOD and COD under control and natural conditions were investigated. The rate of depletion of the dye in natural waters was relatively lower, but the ozonation process significantly decreased both the BOD and COD levels.

  8. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    Science.gov (United States)

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  9. Stability of clavulanic acid in PEG/citrate and liquid–liquid extraction in aqueous two-phase system

    OpenAIRE

    Carneiro-da-Cunha, M. N.; Souza, K. P. S.; Mota, A; J.A. Teixeira; Porto, C S; Porto, Tatiana Souza; Porto, Ana L. F.

    2014-01-01

    β-Lactamases are enzymes responsible for the hydrolysis of β-lactam antibiotics, being produced by several pathogenic bacteria. Clavulanic acid is a commercially and clinically important β-lactamase inhibitor, its extraction being possible by the application of aqueous two-phase system. In this study, clavulanic acid stability was investigated at different molar mass PEG (400, 1 000 and 20 000 g mol−1) and at different citrate concentrations (5 and 20%) PEG/citrate aqueous-two phase systems (...

  10. Analysis of Abnormal Phenomena in High Magnesium Boron Containing Salt Brine System%高镁含硼盐卤体系反常现象解析

    Institute of Scientific and Technical Information of China (English)

    乌志明; 崔香梅; 郑绵平

    2012-01-01

    Such phenomena as "supersaturated solubility", "salt formation by dilution" and "solubility increase of homonymy ion" exist in high magnesium boron containing salt brine system. Our research indicates that the magnesium chloride solution is neutral with medium or low concentration. It shows acidic property with high concentration and the pH value is lower than 4.5 when saturated. But many types of magnesium borate minerals are alkaline ones with pH value higher than 8.0. We know in general acid and base could hardly co-exist in an aqueous solution, but magnesium borate and magnesium chloride in high magnesium boron containing salt brine system do owing to the possession of the homonymy ion. The above mentioned abnormal phenomena can be satisfactorily interpreted with special acidity change of magnesium chloride solution and some related phase chemistry data.%高镁含硼盐卤体系中存在“过饱和溶解度”、“稀释成盐”和同名离子“增溶”等反常现象.研究发现:氯化镁溶液在中低浓度时显中性,在高浓度时显酸性,饱和时pH值小于4.5.而各种镁硼酸盐基本都是pH值大于8.0的碱性矿物.水溶液中酸碱难共存,但镁硼酸盐与氯化镁却因具有相同离子而能够在高镁含硼盐卤体系中共存.结合氯化镁溶液特殊酸度变化规律与相关相化学数据可较圆满的解释高镁含硼盐卤体系中的反常现象.

  11. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  12. REDISTRIBUTION OF ALKALINE ELEMENTS IN ASSOCIATION WITH AQUEOUS ACTIVITY IN THE EARLY SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi; Higuchi, Takuya [Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp [Department of Science and Engineering, National Museum of Nature and Science, Tsukuba 305-0005 (Japan)

    2015-12-10

    It is known that the Sayama meteorite (CM2) shows an extensive signature for aqueous alteration on the meteorite parent body, and that most of the primary minerals in the chondrules are replaced with phyllosilicates as the result of the aqueous alteration. In this paper, it is confirmed from the observation of two-dimensional Raman spectra that a part of olivine in a chondrule collected from the Sayama chondrite is serperntinized. Ion microprobe analysis of the chondrule showed that alkaline elements such as Rb and Cs are heterogeneously redistributed in the chondrule. The result of higher Rb and Cs contents in serpentinized phases in the chondrule rather than in other parts suggested the selective adsorption of alkaline elements into the serpentine in association with early aqueous activity on the meteorite parent body. Furthermore Ba isotopic analysis provided variations of {sup 135}Ba/{sup 138}Ba and {sup 137}Ba/{sup 138}Ba in the chondrule. This result was consistent with our previous isotopic data suggesting isotopic evidence for the existence of the presently extinct nuclide {sup 135}Cs in the Sayama meteorite, but the abundance of {sup 135}Cs in the solar system remains unclear because of large analytical uncertainties.

  13. Recovery of ascorbic oxidoreductase from crude extract with an aqueous two-phase system in a perforated rotating disc contactor

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Figueiredo Porto

    2004-09-01

    Full Text Available A continuous perforated rotating disc contactor was used to extract the enzyme ascorbic oxidoreductase (E.C.1.10.3.3 from crude extract of Curcubita maxima with an aqueous two-phase system of poly (ethylene glycol and phosphate salts. The effect of dispersed phase velocity on either protein mass transfer coefficients or separation efficiency at 1, 2 and 3 mL/min was studied. An increase of the mass transfer coefficients was observed with the dispersed phase velocity, while the separation efficiency showed a small decrease with the increase of this parameter. The experimental results obtained during continuous extraction showed that the ascorbic oxidoreductase activity was partitioned preferentially into the salt-rich phase in all conditions studied. The best recovery of enzyme activity was 236%, with a purification factor of 34 in flow rates of 1 mL/min for dispersed phase.Uma coluna de discos perfurados rotativos foi utilizada na extração da enzima ascorbato oxidorredutase (E.C.1.10.3.3, obtida do extrato bruto de Curcubita maxima, através da utilização do sistema bifásico aquoso Polietilenoglicol-sais de fosfato. Os efeitos da velocidade da fase dispersa nos coeficientes de transferência de massa e na eficiência de separação para valores de 1, 2 e 3 mL/min foram estudados. Observou-se um aumento da transferência de massa com a velocidade da fase dispersa, enquanto que a eficiência de separação demonstrou uma ligeira redução com o aumento deste parâmetro. Os resultados experimentais obtidos durante a extração contínua demonstraram que a atividade da ascorbato oxidorredutase se concentrou preferencialmente na fase rica em sal para todas as condições estudadas. A maior recuperação da atividade enzimática foi de 236%, com um fator de purificação de 34 para o valor de 1 mL/min para a fase dispersa.

  14. Understanding and Exploitation of Neighboring Heteroatom Effect for the Mild N-Arylation of Heterocycles with Diaryliodonium Salts under Aqueous Conditions: A Theoretical and Experimental Mechanistic Study.

    Science.gov (United States)

    Bihari, Tamás; Babinszki, Bence; Gonda, Zsombor; Kovács, Szabolcs; Novák, Zoltán; Stirling, András

    2016-07-01

    The mechanism of arylation of N-heterocycles with unsymmetric diaryliodonium salts is elucidated. The fast and efficient N-arylation reaction is interpreted in terms of the bifunctionality of the substrate: The consecutive actions of properly oriented Lewis base and Brønsted acid centers in sufficient proximity result in the fast and efficient N-arylation. The mechanistic picture points to a promising synthetic strategy where suitably positioned nucleophilic and acidic centers enable functionalization, and it is tested experimentally.

  15. Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature.

    Science.gov (United States)

    Pandey, Sandeep; Rakholiya, Kalpna D; Raval, Vikram H; Singh, Satya P

    2012-09-01

    A haloalkaliphilic bacterium, isolated from Coastal Gujarat (India) was identified as Oceanobacillus sp. (GQ162111) based on 16S rRNA gene sequence. The organism grew and secreted extra cellular protease in presence of various organic solvents. At 30% (v/v) concentration of hexane, heptane, isooctane, dodecane and decane, significant growth and protease production was evident. The alkaline protease was purified in a single step on phenyl sepharose 6 FF with 28% yield. The molecular mass as judged by SDS-PAGE was 30 kDa. The temperature optimum of protease was 50°C and the enzyme retained 70% activity in 10% (v/v) isooctane. Effect of salt and pH was investigated in combination to assess the effect of isooctane. In organic solvents, the enzyme was considerably active at pH 8-11, with optimum activity at pH 10. Salt at 2 M was optimum for activity and enzyme maintained significant stability up to 18 h even at 3 M salt concentration. Patters of growth, protease production, catalysis and stability of the enzyme are presented. The study resumes significance as limited information is available on the interaction of haloalkaliphilic bacteria and their enzymes with organic solvents.

  16. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile.

    Science.gov (United States)

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M; Freire, Mara G; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2014-11-05

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol(-1)) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant - vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase.

  17. Liquid-Liquid Extraction-Chromogenic Systems Containing Iron(III), 4-Nitrocatechol and Tetrazolium Salts

    OpenAIRE

    Galya K. Toncheva; Teodora S. Stefanova; Gavazov, Kiril B.

    2015-01-01

    Complex formation and liquid-liquid extraction were studied in systems containing iron(III), 4-nitrocatechol (4NC),tetrazolium salt (TZS), water and organic solvent. Three different TZS were used: 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT), 3-(2-naphtyl)-2,5-diphenyl-2H-tetrazolium chloride (Tetrazolium violet, TV) and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT).The cations of the first two TZSs (TZ+: MTT+ and TV+) form intensively color...

  18. SALT segmented primary mirror: commissioning capacitive edge sensing system and performance comparison with inductive sensor

    Science.gov (United States)

    Buous, Sebastien; Menzies, John; Gajjar, Hitesh

    2008-07-01

    The SAMS (Segment Alignment Measurement System) is a capacitance-based edge sensing solution for the active alignment of the 10m SALT segmented primary mirror. Commissioning and calibrating the system has been an ongoing task in an attempt to counteract the unfavourable response of the sensors to high humidity conditions and high dust levels. Several solutions were implemented and tested including real-time feedback systems and the application of corrective functions. In parallel with the continuing efforts to improve the performance of the capacitive sensors, we have also been testing a prototype inductive sensor developed by Fogale Nanotech that is of a very similar flexible plate construction. In this paper we present the results obtained and performance gains achieved thus far with the capacitive edge-sensing system as well as a performance comparison of the Fogale inductive sensor to the capacitive edge sensor.

  19. Rapid RNA Exchange in Aqueous Two-Phase System and Coacervate Droplets

    Science.gov (United States)

    Jia, Tony Z.; Hentrich, Christian; Szostak, Jack W.

    2014-02-01

    Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells.

  20. Preparation of the multienzyme system gramicidin S-synthetase 2 with an aqueous three-phase system.

    Science.gov (United States)

    Kirchner, A; Simonis, M; von Döhren, H

    1987-06-19

    The distribution of gramicidin S-synthetase activity from disrupted cells suspended in aqueous two- and three-phase systems was investigated. An optimized three-phase system containing 5% dextran, 8% Ficoll, 11% PEG and 6.7% disrupted cells was found to be effective in extracting gramicidin S-synthetase activity. The activity yield achieved was higher in comparison to other preparation methods, and the subsequent purification steps were greatly facilitated. The time needed for the preparation of the labile gramicidin S-synthetase was considerably reduced. The combination of the aqueous phase extraction with chromatographic methods yielded 19 mg gramicidin S-synthetase 2 in essentially pure form from 30 g (wet weight) of cells.

  1. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L.) with Further Purification by an Aqueous Two-Phase System.

    Science.gov (United States)

    Tan, Zhi-Jian; Wang, Chao-Yun; Yang, Zi-Zhen; Yi, Yong-Jian; Wang, Hong-Ying; Zhou, Wan-Lai; Li, Fen-Fang

    2015-09-30

    In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE) and ionic liquid-based aqueous two-phase system (IL-ATPS) was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG) from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid-solid ratio were optimized using response surface methodology (RSM). In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH) were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w) IL and 8.27% (w/w) Na₂SO₄ at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.

  2. Comparison of capacitive behavior of activated carbons with different pore structures in aqueous and nonaqueous systems

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-yun; LI Xin-hai; WANG Zhi-xing; GUO Hua-jun; PENG Wen-jie

    2008-01-01

    The pore structures of two activated carbons from sawdust with KOH activation and coconut-shell with steam activation for supercapacitor were analyzed by N2 adsorption method. The electrochemical properties of both activated carbons in 6mol/L KOH solution and 1mol/L Et4NPF4/PC were compared, and the effect of pore structure on the capacitance was investigated by cyclic voltammetry, AC impedance and charge-discharge measurements. The results indicate that the capacitance mainly depends on effective surface area, but the power property mainly depends on mesoporosity. At low specific current (1A/g), the maximum specific capacitances of 276.3F/g in aqueous system and 123.9F/g in nonaqueous system can be obtained from sawdust activated carbon with a larger surface area of 1808m2/g, but at a high specific current, the specific capacitance of coconut-shell activated carbon with a higher mesoporosity of 75.1% is more excellent. Activated carbon by KOH activation is fitter for aqueous system and that by steam activation is fitter for nonaqueous system.

  3. Miniaturized salting-out liquid-liquid extraction in a coupled-syringe system combined with HPLC-UV for extraction and determination of sulfanilamide.

    Science.gov (United States)

    Sereshti, Hassan; Khosraviani, Marzieh; Sadegh Amini-Fazl, Mohammad

    2014-04-01

    In salting-out liquid-liquid extraction (SALLE) technique, water-miscible organic solvents are used for extraction of polar analytes from saline solutions. In this study, for the first time, a coupled 1-mL syringes system was utilized to perform a miniaturized SALLE method. Sulfanilamide antibiotic was extracted and determined via the developed method followed by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The extraction process was carried out by rapid shooting of acetonitrile as extraction solvent (syringe B) into saline aqueous sample solution (syringe A), and then the shooting was repeated several times at a rate of 1 cycles(-1). Thereby, an extremely large contact surface area was created between phases and led to a rapid equilibrium and mass transfer. In order to improve the efficiency of the method, the effect of extraction solvent (type and volume), shooting times, salt concentration, and pH on the extraction efficiency was investigated. The best performance of the method was achieved with 250 µL of acetonitrile, salt concentration of 250 mg mL(-1), pH of 7, and shooting times of 5. The linear dynamic range was 0.001-10 µg mL(-1) with the determination coefficient of 0.9999. The relative standard deviation (RSD; n=3, C=5 µg mL(-1)), and the limit of detection (LOD) were 1.55% and 0.3 ng mL(-1), respectively. The developed technique was successfully applied to genuine samples of tea, water, milk, honey, human urine, plasma and blood.

  4. Extraction of Phenylalanine Phase Systems Containing Enantiomers by Aqueous Two Combinatorial Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    陈晓青; 刘莉; 焦飞鹏; 王珍

    2012-01-01

    In order to obtain a better enantioselectivity of phenylalanine enantiomers and establish the optimal chiral ex- traction conditions, the distribution behavior was investigated in aqueous two-phase systems which were composed of polyethylene glycol and ammonium sulfate containing combinatorial chiral selector: β-cyclodextrin and HP-β-cyclodextrin. The influence of the molar concentration ratio of combinatorial chiral selectors, the total molar concentration of combinatorial chiral selectors, pH value, buffer type and its concentration were thoroughly studied, respectively. The results show that the enantioselectivity reaches 1.53 under the optimal chiral extraction conditions This extraction is a potential economical and effective way for chiral resolution.

  5. Solid phase precipitates in (Zr,Th)-OH-(oxalate, malonate) ternary aqueous system

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T.; Sasaki, T.; Takagi, I.; Moriyama, H. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2009-07-01

    The solubility-limiting solid phases in the ternary aqueous systems of Zr(IV)/OH/oxalate, Zr(IV)/OH/malonate, Th(IV)/OH/oxalate and Th(IV)/OH/malonate were characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis and differential thermal analysis. The ternary solid phase of M(IV)/OH/carboxylate was observed to form, even under acidic conditions, depending on the pH and the concentration of carboxylate ligand. In the presence of a large excess of carboxylic acid, however; the binary M(IV)-carboxylate solid phase formed. (orig.)

  6. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    Science.gov (United States)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  7. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  8. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  9. Stabilization through precipitation in a system of colloidal iron(III) pyrophosphate salts.

    Science.gov (United States)

    van Leeuwen, Y Mikal; Velikov, Krassimir P; Kegel, Willem K

    2012-09-01

    The ionic strength of a solution decreases during the precipitation of an insoluble salt, which can cause an initially unstable colloidal system to stabilize during its formation. We show this effect in the precipitation and aging of colloidal iron(III) pyrophosphate, where we observe two distinct stages in the aggregation process. The first stage is the formation of nanoparticles that immediately aggregate into clusters with sizes on the order of 200 nm. In the second stage these clusters slowly grow in size but remain in dispersion for days, even months for dialyzed systems. Eventually these clusters become macroscopically large and sediment out of dispersion. Noting the clear instability of the nanoparticles, it is interesting to find two stages in their aggregation even without the use of additives such as surface active molecules. This is explained by accounting for the rapid decrease of ionic strength during precipitation, rendering the nanoparticles relatively stable when precipitation is complete. Calculating the interaction potentials for this scenario we find good agreement with the experimental observations. These results indicate that coupling of ionic strength to aggregation state can be significant and should be taken into account when considering colloidal stability of insoluble salts.

  10. Integration of bioconversion and downstream processing: starch hydrolysis in an aqueous two-phase system.

    Science.gov (United States)

    Larsson, M; Arasaratnam, V; Mattiasson, B

    1989-02-05

    Integration of bioconversion and the first step(s) of down stream processing can be used as a means to increase the productivity of bioprocesses. This integration also gives the possibility to run the bioconversion in a continuous mode. We demonstrate the use of an aqueous two-phase system in combination with ultrafiltration to accomplish this. Conversion of native starch to glucose by alpha-amylase and glucoamylase was carried out in an aqueous two-phase system in connection with a membrane filtration unit. In this way, a continuous stream of glucose in buffer solution was obtained; the phase-forming polymers as well as the starch-degrading enzymes were recycled, and clogging of the ultrafiltration membrane was avoided. The process was carried out continuously in a mixer-settler reactor for a period of 8 days. The enzyme activities in the top and bottom phases and in the mixing chamber were monitored intermittently throughout the experiment. The optimum pH, temperature, and ionic strength for the activity of the enzyme mixture were determined. The settling time of phase systems containing varying amounts of PEG, crude dextran, and solid starch was studied. The activity and stability of enzyme mixtures was studied both in buffer medium and in the medium containing the polymers. The enzymes were found to be more active and stable in medium containing polymers than in the buffer solutions.

  11. Spectral features of guanidinium-carboxylate salt bridges. The combined ATR-IR and theoretical studies of aqueous solution of guanidinium acetate

    Science.gov (United States)

    Levina, Elena O.; Lokshin, Boris V.; Mai, Bich D.; Vener, Mikhail V.

    2016-08-01

    The spectrum of guanidinium acetate in aqueous solution has been recorded by attenuated total reflectance infrared spectroscopy (ATR-IR). Assignments of the bands have been done using the polarizable continuum model (PCM). Three IR intensive bands at 1670, 1550, and 1410 cm-1 are associated with stretching and bending vibrations of the groups forming a ring of six heavy atoms of the bidentate configuration of guanidinium acetate. The relatively weak broad band near 2200 cm-1 is tentatively assigned to the stretching vibration of the Nsbnd H⋯O fragment of the hydrogen-bonded ion pairs.

  12. Effects of a Pre-Filter and Electrolysis Systems on the Reuse of Brine in the Chinese Cabbage Salting Process.

    Science.gov (United States)

    Kim, Dong-Ho; Yoo, Jae Yeol; Jang, Keum-Il

    2016-06-01

    In this study, the effects of a pre-filter system and electrolysis system on the safe and efficient reuse of brine in the cabbage salting process were investigated. First, sediment filter-electrolyzed brine (SF-EB) was selected as brine for reuse. Then, we evaluated the quality and microbiological properties of SF-EB and Chinese cabbage salted with SF-EB. The salinity (9.4%) and pH (4.63) of SF-EB were similar to those of control brine (CB). SF-EB turbidity was decreased (from 0.112 to 0.062) and SF-EB residual chlorine (15.86 ppm) was higher than CB residual chlorine (0.31 ppm), and bacteria were not detected. Salinity (2.0%), pH (6.21), residual chlorine (0.39 ppm), chromaticity, hardness, and chewiness of cabbage salted with SF-EB were similar to those of cabbage salted with CB. The total bacterial count in cabbage salted with CB was increased as the number of reuses increased (from 6.55 to 8.30 log CFU/g), whereas bacteria in cabbage salted with SF-EB was decreased (from 6.55 to 5.21 log CFU/g). These results show that SF-EB improved the reusability of brine by removing contaminated materials and by sterilization.

  13. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    Science.gov (United States)

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH4)2SO4-H2O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions.

  14. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  15. Mechanism for defoaming by oils and calcium soap in aqueous systems.

    Science.gov (United States)

    Zhang, Hui; Miller, Clarence A; Garrett, Peter R; Raney, Kirk H

    2003-07-15

    The effect of oils, hardness, and calcium soap on foam stability of aqueous solutions of commercial surfactants was investigated. For conditions where negligible calcium soap was formed, stability of foams made with 0.1 wt% solutions of a seven-EO alcohol ethoxylate containing dispersed drops of n-hexadecane, triolein, or mixtures of these oils with small amounts of oleic acid could be understood in terms of entry, spreading, and bridging coefficients, i.e., ESB analysis. However, foams made from solutions containing 0.01 wt% of three-EO alcohol ethoxysulfate sodium salt and the same dispersed oils were frequently more stable than expected based on ESB analysis, reflecting that repulsion due to overlap of electrical double layers in the asymmetric oil-water-air film made oil entry into the air-water interface more difficult than the theory predicts. When calcium soap was formed in situ by the reaction of fatty acids in the oil with calcium, solid soap particles were observed at the surfaces of the oil drops. The combination of oil and calcium soap produced a synergistic effect facilitating the well-known bridging instability of foam films or Plateau borders and producing a substantial defoaming effect. A possible mechanism of instability involving increases in disjoining pressure at locations where small soap particles approach the air-water interface is discussed. For both surfactants with the triolein-oleic acid mixtures, calculated entry and bridging coefficients for conditions when calcium soap formed were positive shortly after foam generation but negative at equilibrium. These results are consistent with the experimental observation that most defoaming action occurred shortly after foam generation rather than at later times.

  16. Solubilization and quantification of lycopene in aqueous media in the form of cyclodextrin binary systems.

    Science.gov (United States)

    Vertzoni, Maria; Kartezini, Theodora; Reppas, Christos; Archontaki, Helen; Valsami, Georgia

    2006-02-17

    An optimized kneading method for the preparation of lycopene-cyclodextrin binary systems was developed leading to solubilization of lycopene in water and 5% (w/v) dextrose solution. Lycopene quantification in the prepared binary systems was performed by a developed spectrometric method that followed a successful single-step extraction with dichloromethane. Storage stability characteristics of the binary systems were studied at 4 degrees C in solution and at -20 degrees C in the lyophilized products. Lycopene content was monitored at lambda(max)=482 nm, the limit of detection was 0.41 microg/ml and relative standard deviation was less than 3.1%. The results obtained with the spectrometric method were confirmed by a HPLC method. In the presence of cyclodextrins, lycopene concentration in water was 8.0+/-1.0, 27.1+/-3.2 and 16.0+/-2.2 microg/ml for beta-CD, HP-beta-CD and Me-beta-CD, respectively. In 5% (w/v) aqueous dextrose solutions the corresponding values were 16.0+/-1.8, 48.0+/-5.1 and 4.0+/-0.5 microg/ml, respectively. At 4 degrees C, storage stability of lycopene-cyclodextrin binary systems in water or 5% (w/v) aqueous dextrose solutions, was limited (t(1/2)=1-4 days). Addition of the antioxidant sodium metabisulfite increased the stability of lycopene-HP-beta-CD binary system in water. At -20 degrees C, the lyophilized lycopene-cyclodextrin binary systems were stable for at least 2 weeks.

  17. Fluoride partitioning R and D programme for molten salt transmutation reactor systems in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Uhlir, J. [Nuclear Research Institute Rez plc, CZ (Czech Republic); Priman, V.; Vanicek, J. [Czech Power Company, Praha (Czech Republic)

    2001-07-01

    The transmutation of spent nuclear fuel is considered a prospective alternative conception to the current conception based on the non-reprocessed spent fuel disposal into underground repository. The Czech research and development programme in the field of partitioning and transmutation is founded on the Molten Salt Transmutation Reactor system concept with fluoride salts based liquid fuel, the fuel cycle of which is grounded on pyrochemical / pyrometallurgical fluoride partitioning of spent fuel. The main research activities in the field of fluoride partitioning are oriented mainly towards technological research of Fluoride Volatility Method and laboratory research on electro-separation methods from fluoride melts media. The Czech national conception in the area of P and T research issues from the national power industry programme and from the Czech Power Company intentions of the extensive utilization of nuclear power in our country. The experimental R and D work is concentrated mainly in the Nuclear Research Institute Rez plc that plays a role of main nuclear research workplace for the Czech Power Company. (author)

  18. Aqueous and vitreous penetration of ciprofloxacin following different modes of systemic administration.

    Science.gov (United States)

    Madu, A A; Mayers, M; Perkins, R; Liu, W; Drusano, G L; Aswani, R; Madu, C N; Miller, M H

    1996-08-01

    The overall importance of the peak or the mean serum concentrations as predictors of ocular drug penetration is unknown. To address this fundamental question with an agent which shows promise as adjunctive therapy in the treatment of endophthalmitis, we studied the penetration of ciprofloxacin into the aqueous and vitreous humors following three different modes of systemic administration. New Zealand white rabbits received either a single bolus dose (40 mg kg-1), three intermittent doses of 13.33 mg kg-1 evenly spaced over an 8 hr period, or a continuous infusion of 40 mg kg-1 over an 8 hr period. Pharmacokinetic analysis was performed using RSTRIP II, a non-linear, least square regression model analysis program. The serum area under the concentration-time curve (AUC) values for each mode of drug administration were similar: 32.9 micrograms hr ml-1 for single dose, 31.9 micrograms hr ml-1 for intermittent dose, and 33.8 micrograms hr ml-1 for continuous infusion modes. The percentage penetration into the aqueous and vitreous were also similar; 30.5% and 6.5% for a single dose, 31.6% and 7.4% for intermittent doses and 30.0% and 7.5% for continuous infusion. The penetration into the aqueous and vitreous humors was not influenced by mode of administration. As with other quinolones we have studied, elimination rates were similar for the central and peripheral compartments in the post-distributive phase. Vitreous humor ciprofloxacin concentrations achieved were below that which inhibits most Staphylococcus epidermidis, the most common isolate in patients with post-operative endophthalmitis.

  19. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension.

    Science.gov (United States)

    Katori, Makoto; Majima, Masataka

    2014-01-01

    A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.

  20. Successful full-scale deployments of advanced PGPR enhanced phytoremediation systems (PEPS) for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Yu, X.M.; Liddycoat, S.; Lu, X.; Nykamp, J.; McCallum, B.; MacNeill, G.; Mosley, P.; Gurska, J.; Knezevich, N.; Zhong, H.; Gerwing, P. [Waterloo Univ., ON (Canada)

    2010-07-01

    This PowerPoint presentation described a phytoremediation system designed to remediate salt and petroleum contaminated sites. Phytoremediation techniques are cheaper than traditional methods of remediating soils. The phytoremediation process is comprised of volatilization, phytodegradation, and chelation processes. Plants uptake contaminants via a rhizodegradation process. The plants provide biomass for rapid remediation with a restoration time frame of between 2 to 3 years. PGPR enhanced phytoremediation systems (PEPS) have been studied over a 10 year period and successfully applied at polycyclic hydrocarbon (PHC) contaminated sites, gas stations, and salt-contaminated sites throughout Canada. Soils are tilled in order to expose contaminants to sunlight. hydrocarbon-degrading bacteria are then applied, followed by the application of a plant growth promoting rhizobacteria (PGPR) phytoremediation system that is typically applied to grass species prior to planting. Case studies of full-scale sites used to prove the concept for both salt and hydrocarbon contaminated soils were presented. tabs., figs.

  1. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  2. Processing method for molten salt waste

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shuichi; Sawa, Toshio; Hoshikawa, Tadahiro; Suzuoki, Akira

    1999-01-06

    The present invention concerns a processing method for selectively adsorbing and removing radioactive metal ingredients contained in high temperature molten salts by an inorganic ion exchanger and separating radioactive metal ingredients from the molten salts as high level radioactive wastes upon reprocessing of spent nuclear fuels by using molten salts. The molten salts occluded in the inorganic ion exchanger are desorbed with highly purified water. Successively, saturation adsorbed radioactive metal ingredients are desorbed by an aqueous solution of alkali metal salt or an aqueous solution of alkaline earth metal salt. The desorbed molten salts and radioactive metal ingredients are formed into at least two kinds of radioactive waste solidification materials depending on each of radioactivity level. As the inorganic ion exchanger, at least one of aluminosilicate and hydroxides is used. Then, molten salt wastes generated upon a dry-type reprocessing can be processed as a stable borosilicate glass solidification material or as a similar homogeneous solid material. (T.M.)

  3. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).

    Science.gov (United States)

    Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B

    2013-02-01

    This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.

  4. Selective separation and enrichment of proteins in aqueous two-phase extraction system

    Institute of Scientific and Technical Information of China (English)

    Feng Qu; Hao Qin; Min Dong; Dong Xu Zhao; Xin Ying Zhao; Jing Hua Zhang

    2009-01-01

    A simple aqueous two-phase extraction system(ATPS)of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin)were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some proteins showed obviously different partition in two phases.The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics.

  5. Study of organic compounds-water interactions by partition in aqueous two-phase systems.

    Science.gov (United States)

    Madeira, Pedro P; Bessa, Ana; Teixeira, Miguel A; Álvares-Ribeiro, Luís; Aires-Barros, M Raquel; Rodrigues, Alírio E; Zaslavsky, Boris Y

    2013-12-27

    Partition coefficients of fourteen organic compounds were determined in 10 or 20 different polymer/polymer aqueous two-phase systems (ATPS) all at physiological pH (0.15M NaCl in 0.01M phosphate buffer, pH 7.4). Solute-specific coefficients characterizing different types of solute-water interactions for the compounds examined were determined by the multiple linear regression analysis. It is shown that (i) the partition behavior for the polar organic compounds is affected not only by dipole-dipole and hydrogen-bond interactions with aqueous environment but, notably, in most cases also by dipole-ion interactions; (ii) it is possible to predict partition behavior for compounds with pre-determined solute-specific coefficients in ATPS with characterized solvent features; and (iii) linear combinations of the solute-specific coefficients for the organic compounds might be useful in the development of quantitative structure-activity relationship (QSAR) analysis to describe their odor detection threshold.

  6. The effect of pressure on phase behaviors of solid polymer electrolyte/salt systems in lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Su; Bae, Young Chan [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2003-03-01

    A molecular thermodynamic model based on the theory of melting point depression and the modified double lattice model with the free-volume effect is developed to interpret phase behaviors of solid polymer electrolyte (SPE)/salt systems with various pressures. To account for the free-volume effects, we employ the hole-theory proposed by Kleintjens. Quantitative description according to the proposed model is in good agreement with the experimentally observed transition temperatures for given systems. Our results show that eutectic points move toward higher T{sub m} and lower weight fraction region of salt with increasing pressure.

  7. 天花粉蛋白的盐析工艺和亲和双水相分离工艺%Salting-out process and affinity aqueous two-phase extraction process of trichosanthin

    Institute of Scientific and Technical Information of China (English)

    汪苗苗; 丁玉

    2012-01-01

    In recent years, clinical studies showed that trichosanthin's has anti-cancer and anti- HIV virus function. The trichosanthin's production needs to be studied to meet the market needs. This experiment used two steps of tricho-santhin extraction a) purification trichosanthin with ammonium sulfate precipitation, b) affinity aqueous two-phase extraction after ammonium sulfate coarse separation. The extraction process was optimized and gel electrophoresis was used in identifying the purity and molecular weight. The salting-out method and affinity aqueous two-phase separation method were compared. The best conditions for salting-out separation were: solid-liquid ratio 1:12, soaking time 24 hours, pH 5, and the yield 0. 8ml/g. The best affinity aqueous two-phase separation conditions were; the percentage of Cibacron Blue F3GA-Tween 80 was 8% , the content of Tween 80 in aqueous two-phase was 4. 0% , content of ( NH4 )2SO4 was 2.0mol/L, mixing time 9h, stripping sodium content 0. 5mol/L, the anti-extraction time 8h, yield was 0.6mg/g. The electrophoresis showed the products had a high purity.%近年,随着天花粉蛋白(TCS)在抗癌细胞和HIV病毒方面的临床性研究进展,天花粉蛋白生产工艺也需在保证效益的前提下精细化.本实验利用硫酸铵分级沉淀、硫酸铵粗提后亲和双水相进一步纯化,得到精制的天花粉蛋白.并对提取工艺进行了优化,最后利用SDS聚丙烯酰胺凝胶电泳对其纯度进行了鉴定以及相对分子质量的测定,并对比了盐析法和亲和双水相分离法,研究结果表明:硫酸铵沉淀法最佳分离条件为固液比为1∶12、浸泡时间为24h、pH在5左右,最终得率0.8mg/g;亲和萃取最佳条件:染料CibacronBlue F3GA-吐温80在成相吐温80中的含量8%,成相吐温80的占双水相含量为4.0%,(NH4)2S04的含量2.0mol/L,充分混合的时间9h,反萃取氯化钠的含量为0.5mol/L,反萃取的时间为8h,得率0.6mg/g,但凝胶电泳显示其纯度较高.

  8. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design.

    Science.gov (United States)

    Berry, David J; Steed, Jonathan W

    2017-03-23

    As small molecule drugs become harder to develop and less cost effective for patient use, efficient strategies for their property improvement become increasingly important to global health initiatives. Improvements in the physical properties of Active Pharmaceutical Ingredients (APIs), without changes in the covalent chemistry, have long been possible through the application of binary component solids. This was first achieved through the use of pharmaceutical salts, within the last 10-15years with cocrystals and more recently coamorphous systems have also been consciously applied to this problem. In order to rationally discover the best multicomponent phase for drug development, intermolecular interactions need to be considered at all stages of the process. This review highlights the current thinking in this area and the state of the art in: pharmaceutical multicomponent phase design, the intermolecular interactions in these phases, the implications of these interactions on the material properties and the pharmacokinetics in a patient.

  9. Liquid-Liquid Extraction-Chromogenic Systems Containing Iron(III, 4-Nitrocatechol and Tetrazolium Salts

    Directory of Open Access Journals (Sweden)

    Galya K. Toncheva

    2015-03-01

    Full Text Available Complex formation and liquid-liquid extraction were studied in systems containing iron(III, 4-nitrocatechol (4NC,tetrazolium salt (TZS, water and organic solvent. Three different TZS were used: 3-(4,5-dimethyl-2-thiazol-2,5-diphenyl-2H-tetrazolium bromide (MTT, 3-(2-naphtyl-2,5-diphenyl-2H-tetrazolium chloride (Tetrazolium violet, TV and 2-(4-iodophenyl-3-(4-nitrophenyl-5-phenyl-2H-tetrazolium chloride (INT.The cations of the first two TZSs (TZ+: MTT+ and TV+ form intensively colored (molar absorptivity of 4.6´104 L mol–1 cm–1 and 4.4´104 L mol–1 cm–1, respectively chloroform extractable ion-associates with the FeIII-4NC anionic chelate. These ternary complexes can be represented with the following general formula: (TZ+3[FeIII(4NC3]3−.

  10. Basement-driven strike-slip deformation involving a salt-stock canopy system

    Science.gov (United States)

    Dooley, Tim; Jackson, Martin; Hudec, Mike

    2016-04-01

    NW-striking basement-involved strike-slip zones have been reported or inferred from the northern Gulf of Mexico (GoM). This interpretation is uncertain, because the effects of strike-slip deformation are commonly difficult to recognize in cross sections. Recognition is doubly difficult if the strike-slip zone passes through a diapir field that complicates deformation, and an associated salt canopy that partially decouples shallow deformation from deep deformation. We use physical models to explore the effects of strike-slip deformation above and below a salt-stock canopy system. Canopies of varying maturity grew from a series of 14 feeders/diapirs located on and off the axis of a dextral basement fault. Strike-slip deformation styles in the overburden vary significantly depending on: (1) the location of the diapirs with respect to the basement fault trace, and; (2) the continuity of the canopy system. On-axis diapirs (where the diapirs lie directly above the basement fault) are typically strongly deformed and pinched shut at depth to form sharp S-shapes, whereas their shallow deformation style is that of a open-S-shaped pop-up structure in a restraining bend. The narrow diapir stem acts as a shear zone at depth. Pull-apart structures form between diapirs that are arranged in a right-stepping array tangental to the basement fault trace. These grade along strike into narrow negative flower structures. Off-axis diapirs (diapirs laterally offset from the basement fault but close enough to participate in the deformation) form zones of distributed deformation in the form of arrays of oblique faults (R shears) that converge along strike onto the narrower deformation zones associated with on-axis diapirs. Above an immature, or patchy, canopy system the strike-slip structures closely match sub canopy structures, with the exception of wrench fold formation where the supracanopy roof is thin. In contrast, the surface structures above a mature canopy system consist of a broad

  11. DYE-SENSITIZED PHOTOPOLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COUMARIN DYE/IODONIUM SALT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Fang Gao; Yong-yuan Yang

    1999-01-01

    The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.

  12. Design and In Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

    Directory of Open Access Journals (Sweden)

    Diana Guzman-Villanueva

    2013-01-01

    Full Text Available Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.

  13. (Liquid + liquid) and (liquid + solid) equilibrium of aqueous two-phase systems containing poly ethylene glycol di-methyl ether 2000 and di-sodium hydrogen phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zafarani-Moattar, Mohammed Taghi, E-mail: zafarani47@yahoo.co [Physical Chemistry Department, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Nasiri, Saeed [Physical Chemistry Department, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)

    2010-09-15

    (Liquid + liquid) equilibrium (LLE) for the {l_brace}poly ethylene glycol di-methyl ether 2000 (PEGDME{sub 2000}) + Na{sub 2}HPO{sub 4} + H{sub 2}O{r_brace} system have been determined experimentally at T = (298.15, 308.15, 313.15, and 318.15) K. The effects of temperature on the binodals and tie-lines for the investigated aqueous two-phase system (ATPS) have been studied. An empirical non-linear expression developed by Merchuk was used for reproducing the experimental binodal data. In this work, the three fitting parameters of the Merchuk equation were obtained with the temperature dependence expressed in the linear form with (T - T{sub 0}) K as a variable. Furthermore, the modified local composition segment-based NRTL and Wilson models and also osmotic virial equation were used to describe the LLE data of the studied system. Also, the effects of the type of salt on LLE are discussed. In addition, the effects of end groups of the polymers PEGDME{sub 2000} and poly ethylene glycol 2000 on phase forming ability were studied. The complete phase diagram for the poly ethylene {l_brace}glycol di-methyl ether 2000 (PEGDME{sub 2000}) + Na{sub 2}HPO{sub 4} + H{sub 2}O{r_brace} system has also been determined at T = 298.15 K.

  14. Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.

    Science.gov (United States)

    Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein

    2015-09-30

    Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in

  15. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  16. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon

  17. Electrochemiluminescence of terbium (III)-two fluoroquinolones-sodium sulfite system in aqueous solution

    Science.gov (United States)

    Chen, Shi-lv; Ding, Fen; Liu, Yu; Zhao, Hui-chun

    2006-05-01

    The electrochemiluminescence (ECL) of Tb 3+-enoxacin-Na 2SO 3 system (ENX system) and Tb 3+-ofloxacin-Na 2SO 3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na 2SO 3, which is enhanced by Tb 3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na 2SO 3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb 3+, indicating that the emission is from the excited state of Tb 3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 × 10 -10-8.0 × 10 -7 mol l -1 for ENX and 6.0 × 10 -10-6.0 × 10 -7 mol l -1 for OFLX, respectively. A theoretical limit of detection is 5.4 × 10 -11 mol l -1 for ENX and 1.6 × 10 -10 mol l -1 for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.

  18. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part II: Sorption of Ni2+ from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2016-01-01

    Full Text Available sorption of Ni2+ on the sepiolite functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt, MSEAS, was studied in batch experiments as a function of the initial metal concentration, the equilibration time, pH value, and temperature. The modification of sepiolite resulted in an enhanced Ni2+ retention with a capacity of 0.261 mmol/g at 298 K. The retention of Ni2+ ions occurred dominantly by specific sorption and exchange of Mg2+ ions from the sepiolite structure. The sorption process followed pseudo-second-order kinetics. The sorption equilibrium results were best described by the non-linear form of the Langmuir Sorption Equation. The values of the thermodynamic parameters (enthalpy, free energy and entropy were calculated from temperature dependent sorption isotherms and these values showed that the sorption of Ni2+ onto modified sepiolite was endothermic. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i FP7 NANOTECH FTM No. 245916

  19. Measurement and Correlation of Equilibrium Data for Aqueous Two-phase System Ethanol+Water+K2HPO4

    Institute of Scientific and Technical Information of China (English)

    LIN Jin-qing; TAN Ping-hua; JIN Chun-ying; LI Ming-chun

    2004-01-01

    The isothermal solubility data of aqueous two-phase system ethanol+water+K2HPO4 were determined with the turbidity titration method at 303.2 K. The binodal curves were described by using the Mistry equation very well. An experimental procedure for measuring the liquid-liquid equilibrium data of the aqueous two-phase system was proposed, in which the concentrations of the coexisting phases were determined with the corresponding densities of the solution. The tie lines were satisfactorily described by using the Othmer Tobias and Bancroft equations.

  20. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  1. Thermodynamic properties of the aqueous solution of potassium salts of some 4-((alkylcarbonyl)amino)-2-hydroxybenzoic acids at 298 and 313 K.

    Science.gov (United States)

    Fisicaro, Emilia; Compari, Carlotta; Viscardi, Guido; Quagliotto, Pierluigi

    2002-11-15

    To understand the aggregation behavior of surface-active ligands with a salycilic polar head, we undertook a systematic study of some classes of anionic surfactants where the presence and the position of the -OH and the carboxylic group differ. This paper reports the dilution heats at 298 and 313 K of aqueous solutions of potassium 4-((alkylcarbonyl)amino)-2-hydroxybenzoate (KPAS-C(n) where n stands for the number of carbon atoms in the chain) in KOH at 0.1 m, measured as a function of concentration. From the experimental data, apparent and partial molar enthalpies vs concentration were obtained. By using a pseudo-phase-transition approach, the enthalpy changes upon micelle formation (DeltaH(m)) and assuming that in the restricted range of temperature examined heat capacities are constant, the heat capacity changes have been obtained. Micelle formation enthalpies are seen to be additive with a group contribution for the methylene group of -1.5+/-0.1 kJ mol(-1) per group at 298 K and -2.3+/-0.1 kJ mol(-1) per group at 313 K, comparable with that obtained for similar anionic compounds in the same experimental conditions and for N-alkylnicotinamide chlorides (cationic surfactants). The -CH(2)- group contribution to the micelle formation heat capacities is -53+/-1 J K(-1) mol(-1).

  2. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress.

    Science.gov (United States)

    Shu, Sheng; Yuan, Ling-Yun; Guo, Shi-Rong; Sun, Jin; Yuan, Ying-Hui

    2013-02-01

    The effects of exogenous spermine (Spm) on plant growth, chlorophyll fluorescence, ultrastructure and anti-oxidative metabolism of chloroplasts were investigated in Cucumis sativus L. under NaCl stress. Salt stress significantly reduced plant growth, chlorophylls content and F(v)/F(m). These changes could be alleviated by foliar spraying with Spm. Salt stress caused an increase in malondialdehyde (MDA) content and superoxide anion [Formula: see text] generation rate in chloroplasts. Application of Spm significantly increased activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11) which decreased the levels of [Formula: see text] and MDA in the salt-stressed chloroplasts. Salt stress decreased the activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in the chloroplasts and reduced the contents of dehydroascorbate (DAsA) and glutathione (GSH), but increased monodehydroascorbate reductase (MDAR, EC 1.6.5.4) activity. On the other hand, Spm significantly increased the activities of antioxidant enzymes and levels of antioxidants in the salt-stressed chloroplasts. Further analysis of the ultrastructure of chloroplasts indicated that salinity induced destruction of the chloroplast envelope and increased the number of plastoglobuli with aberrations in thylakoid membranes. However, Spm application to salt-stressed plant leaves counteracted the adverse effects of salinity on the structure of the photosynthetic apparatus. These results suggest that Spm alleviates salt-induced oxidative stress through regulating antioxidant systems in chloroplasts of cucumber seedlings, which is associated with an improvement of the photochemical efficiency of PSII.

  3. PDMS Rod-SBSE System Coupled with Gas Chromatography for Determination of PAHs in Aqueous Samples

    Institute of Scientific and Technical Information of China (English)

    CHENG Chuan-xian; PEI Hai-rong; LAN Xiao-zheng

    2011-01-01

    A method for the analysis of trace polycyclic aromatic hydrocarbons(PAHs) in aqueous samples has been established by polydimethylsiloxane(PDMS) rod aided stir bar sorptive extraction(SBSE).The homemade PDMS rod has a size of 30 mm×3 mm o.d.with a volume of ca.200 μL,stable in thermal desorption process.The enriched PAHs by the PDMS rod were released in a homemade thermal desorption system coupled with gas chromatography.Experimental parameters for extraction of six PAHs were optimized including extraction time,pH,ionic strength and temperature of solution.The procedure has good recoveries of 80.0%-100.3% and very low limits of detection of 4.0-33 ng/L.PAHs in rain and river water were analyzed by this method.

  4. Characterization of adsorption of aqueous arsenite and arsenate onto charred dolomite in microcolumn systems.

    Science.gov (United States)

    Salameh, Yousef; Al-Muhtaseb, Ala'a H; Mousa, Hasan; Walker, Gavin M; Ahmad, Mohammad N M

    2014-01-01

    In this work, the removal of arsenite, As(III), and arsenate, As(V), from aqueous solutions onto thermally processed dolomite (charred dolomite) via microcolumn was evaluated. The effects of mass of adsorbent (0.5-2 g), initial arsenic concentration (50-2000 ppb) and particle size (dolomite in a microcolumn were investigated. It was found that the adsorption of As(V) and As(III) onto charred dolomite exhibited a characteristic 'S' shape. The adsorption capacity increased as the initial arsenic concentration increased. A slow decrease in the column adsorption capacity was noted as the particle size increased from>0.335 to 0.710-2.00 mm. For the binary system, the experimental data show that the adsorption of As(V) and As(III) was independent of both ions in solution. The experimental data obtained from the adsorption process were successfully correlated with the Thomas Model and Bed Depth Service Time Model.

  5. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds.

    Science.gov (United States)

    López-López, I; Bastida, S; Ruiz-Capillas, C; Bravo, L; Larrea, M T; Sánchez-Muniz, F; Cofrades, S; Jiménez-Colmenero, F

    2009-11-01

    The study was designed to determine the influence of the addition of edible seaweeds, Sea Spaghetti (Himanthalia elongata), Wakame (Undaria pinnatifida), and Nori (Porphyra umbilicalis), on fatty acid composition, amino acid profile, protein score, mineral content and antioxidant capacity in low-salt meat emulsion model systems. The addition of seaweeds caused an increase (P<0.05) in n-3 polyunsaturated fatty acids (PUFA) and a decrease (P<0.05) in the n-6/n-3 PUFA ratio. The thrombogenic index significantly decreased (P<0.05) in Nori and Wakame meat samples. Meat systems made with added seaweeds had lower (P<0.05) sodium contents than control samples. In general, addition of seaweeds to products increased (P<0.05) the concentrations of K, Ca, Mg and Mn. The presence of Nori caused an increase (P<0.05) in levels of serine, glycine, alanine, valine, tyrosine, phenylalanine and arginine, whereas Wakame and Sea Spaghetti produced no significant changes in amino acid profiles in the model systems. The inclusion of Sea Spaghetti increased the sulphur amino acid score by 20%. The added seaweeds supplied the meat samples with soluble polyphenolic compounds, which increased the antioxidant capacity of the systems. The polyphenol supply and antioxidant increase were greatest (P<0.05) in the samples containing Sea Spaghetti.

  6. "Switchable water": aqueous solutions of switchable ionic strength.

    Science.gov (United States)

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described.

  7. Hydration of beryllium(II) in aqueous solutions of common inorganic salts. A combined vibrational spectroscopic and ab initio molecular orbital study.

    Science.gov (United States)

    Rudolph, Wolfram W; Fischer, Dieter; Irmer, Gert; Pye, Cory C

    2009-09-01

    Raman spectra of aqueous beryllium perchlorate, chloride, nitrate, and sulfate solutions have been measured over a broad concentration (0.098-4.950 mol L(-1)) range. The Raman spectroscopic data suggest that the tetra-aqua beryllium(II) ion is thermodynamically stable in perchlorate, chloride, and nitrate solutions over the concentration range measured. No inner-sphere complexes in these solutions could be detected spectroscopically except in very concentrated beryllium nitrate solutions. Beryllium sulfate solutions however, show a different picture, namely the existence of a thermodynamically stable beryllium sulfato complex most likely monodentate even at very low concentrations. At very high beryllium sulfate concentrations, a small quantity of a bidentate sulfato complex was found. With a temperature increase, the sulfato complex formation increases and this demonstrates the entropically driven sulfato complex formation. Furthermore, with increased temperature the hydrolysis increases, measured by the formation of hydrogen sulfate. Ab initio geometry optimizations and frequency calculations are reported for beryllium-water clusters with only inner sphere waters, clusters with an inner sphere and an incomplete second hydration, and clusters with a higher number of waters in the second hydration sphere. The cluster, [Be(OH2)(12)(2+)] (Be[4 + 8]) with 4 water molecules in the first sphere and 8 water molecules in the second sphere gave sufficiently realistic frequencies for BeO4 skeleton in comparison to the experimental ones. However, the cluster, [Be(OH2)(18)(2+)] (Be[6 + 12]) with 6 water molecules in the inner sphere and 12 water molecules in the outer sphere on an energy minimum gave unrealistically low BeO4 frequencies. This fact demonstrates that a six-fold coordination of Be2+ can be ruled out.

  8. Renal Urotensin II System Plays Roles in the Regulation of Blood Pressure in Dahl Salt-Resistant Rat

    Science.gov (United States)

    Wu, Fei; Chen, Guanjong; Fan, Minhua; Tang, Chaoshu

    2016-01-01

    Introduction. Dahl salt-resistant (SR) animal models are similar to peritoneal dialysis patients with fluid volumes overload with normal blood pressure in hemodynamic profiles. We will verify the roles of UII in the regulation of blood pressure in these animal models. Methodology. The Dahl salt-sensitive (SS) and SR rats and UII receptor gene knocked out (KO) mice were placed on a high-salt diet. Renal tissues were performed for the expression of UII in Dahl groups. Results. After high-salt diet for 6 weeks, the systolic blood pressure (SBP) in SR group was significantly lower, accompanied with higher urinary UII levels, higher 24-hour urinary sodium excretion, and higher urinary creatinine clearance in the SR rats in comparison to SS group. The expressions of UII and UT were both upregulated in the kidney tissues of SR group in comparison to SS group (P < 0.05). After high-salt diet for 8 weeks, the SBP of the KO group is significantly higher than that of the wild type group. Conclusion. We first demonstrate that renal UII system can play important roles in the regulation of blood pressure in Dahl SR rats which can be highly correlated to its effect on renal tubular sodium absorption. PMID:28097020

  9. New 1:1 and 2:1 salts in the `DL-norvaline-maleic acid' system as an example of assembling various crystal structures from similar supramolecular building blocks.

    Science.gov (United States)

    Arkhipov, Sergey G; Losev, Evgeniy A; Boldyreva, Elena V

    2017-01-01

    Molecular salts and cocrystals of amino acids have potential applications as molecular materials with nonlinear optical, ferroelectric, piezoelectric, and other various target physical properties. The wide choice of amino acids and coformers makes it possible to design various crystal structures. The amino acid-maleic acid system provides a perfect example of a rich variety of crystal structures with different stoichiometries, symmetries and packing motifs built from the molecular building blocks, which are either exactly the same, or differ merely by protonation or as optical isomers. The present paper reports the crystal structures of two new salts of the DL-norvaline-maleic acid system with 1:1 and 2:1 stoichiometries, namely DL-norvalinium hydrogen maleate, C5H12NO2(+)·C4H3O4(-), (I), and DL-norvalinium hydrogen maleate-DL-norvaline, C5H12NO2(+)·C4H3O4(-)·C5H11NO2, (II). These are the first examples of molecular salts of DL-norvaline with an organic anion. The crystal structure of (I) has the same C2(2)(12) structure-forming motif which is common for hydrogen maleates of amino acids. The structure of (II) has dimeric cations. Of special interest is that the single crystals of (I) which are originally formed on crystallization from aqueous solution transform into single crystals of (II) if stored in the mother liquor for several hours.

  10. Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt

    Science.gov (United States)

    Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.

    2017-01-01

    A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.

  11. pH-switchable structural evolution in aqueous surfactant-aromatic dibasic acid system.

    Science.gov (United States)

    Rose J, Linet; Tata, B V R; Aswal, V K; Hassan, P A; Talmon, Yeshayahu; Sreejith, Lisa

    2015-01-01

    Structural transitions triggered by pH in an aqueous micellar system comprising of a cationic surfactant (cetylpyridinium chloride) and an aromatic dibasic acid (phthalic acid) was investigated. Reversible switching between liquid-like and gel-like states was exhibited by the system on adjusting the solution pH. Self-assembled structures, responsible for the changes in flow properties were identified using rheology, light scattering techniques and cryogenic Transmission Electron Microscopy (cryo-TEM). High-viscosity, shear-thinning behavior and Maxwell-type dynamic rheology shown by the system at certain pH values suggested the growth of spheroidal/short cylindrical micelles into long and entangled structures. Light scattering profiles also supported the notion of pH-induced microstructural transitions in the solution. Cryo-TEM images confirmed the presence of spheroidal/short cylindrical micelles in the low-viscosity sample whereas very long and entangled thread-like micelles in the peak viscosity sample. pH-dependent changes in the micellar binding ability of phthalic acid is proposed as the key factor regulating the morphological transformations and related flow properties of the system.

  12. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600ÀC. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  13. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  14. Influence of aqueous phase on electrochemical biocorrosion tests in diesel/water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bento, F.M. [Dept. of Soils, Faculty of Agronomy, UFRGS, 7712 Bento Goncalves Avenue, CEP: 91540-001, POA, RS (Brazil); Englert, G.E.; Muller, I.L. [Dept. of Metallurgy, Biocorrosion and Biofilms Lab, UFRGS, 99 Osvaldo Aranha Avenue s.615D, CEP: 90035-190, POA, RS (Brazil); Gaylarde, C.C. [Dept. of Biophisics, UFRGS POA, RS (Brazil)

    2004-08-01

    Storage tanks containing microbially contaminated diesel oil are susceptible to corrosion. This process may be evaluated electrochemically in the laboratory using simulated storage systems containing diesel oil and an aqueous phase. The simulated aqueous phase must supply mineral nutrients for microbial growth, together with adequate electrical conductivity, without, however, being too corrosive, so as to allow the aggressive nature of the microbial metabolites to be detected. In this investigation, microbial growth was measured in six electrically conductive media overlaid with metropolitan diesel oil containing an additive package. The microorganisms were the filamentous fungi, Hormoconis resinae, Paecilomyces variotii and Aspergillus fumigatus, the bacterium Bacillus subtilis and the yeast Candida silvicola, all previously isolated from contaminated diesel oil. After 60 days incubation with pure or mixed inocula of these microorganisms, pH, conductivity and viable microorganisms were measured. The electrochemical behaviour of carbon steel ASTM 283-93-C was determined in each of the six media (uninoculated) and in selected inoculated medium via measurements of open circuit potential and potentiostatic polarization curves. The uptake of phosphate (corrosion inhibitor), microbial growth, pH, conductivity and anodic and cathodic polarization curves were assessed in the water phase after 30 and 60 days of incubation with each single species Aspergillus fumigatus and Hormoconis resinae and with the consortium. The medium which proved most appropriate was Bushnell-Haas medium modified by the omission of chlorides, which allowed satisfactory microbial growth and had low aggressivity towards the steel. The performance of electrochemical tests in aerated, rather than deaerated, electrolyte solutions is suggested to be important to allow the detection of microbial influence on passive film formation and stability. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  15. Comparison of Nanoemulsion and Aqueous Micelle Systems of Paliperidone for Intranasal Delivery.

    Science.gov (United States)

    Pidaparthi, Kartika; Suares, Divya

    2016-10-06

    The objective of the study was to develop and compare the efficiency of nanoemulsion and aqueous micelle system of Paliperidone on intranasal administration. Both the formulations were evaluated for physical parameters such as globule size, pH, viscosity, conductivity and in vitro drug release studies. The reduction in spontaneous motor activity of L-dopa and Carbidopa-treated Swiss Albino mice on intranasal administration of nanoemulsion and micellar system of Paliperidone was compared with plain drug suspension. Histopathological evaluation of formulation treated nasal mucosal membrane was performed. Nasal spray device was evaluated for spray pattern and volume per actuation. Globule size of micellar system and nanoemulsion was found to be 16.14 & 38.25 nm, respectively. In vitro release of drug from micellar system was found to be 1.8-fold higher than nanoemulsion. The loading of drug in nanoemulsion was found to be superior (2.5 mg/mL) when compared to micellar system (0.41 mg/mL). The spray pattern of micellar system and nanoemulsion from the device was elliptical and circular, respectively. The locomotor activity of L-dopa and Carbidopa-treated Swiss albino mice was found to be 1096.5±78.49, 551.5±13.43 and 535.5±24.75 counts/min in case of plain drug suspension, micellar system and nanoemulsion, respectively. The intranasal administration of developed formulations showed significant difference (p<0.01) in the locomotor activity when compared to intranasal administration of plain drug. Thus it can be concluded that both the developed formulations have shown improved in vivo activity on intranasal administration and pose great potential for delivery of Paliperidone through intranasal route.

  16. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system

    KAUST Repository

    Pan, Yichang

    2011-01-01

    We report here the first example of ZIF materials synthesized in aqueous solution. The synthesis was performed at room temperature and typically took several minutes compared to hours and days in non-aqueous conditions. The obtained product were ZIF-8 nanocrystals having size of ∼85 nm and showed excellent thermal, hydrothermal and solvothermal stabilities. © 2011 The Royal Society of Chemistry.

  17. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  18. Dechlorination of Aromatic Chlorides in Aqueous System Catalyzed by Functionalized MontK10 Supported Palladium-tin

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel bisupporter bimetal catalyst PVP-PdCl2-SnCl4/MontK10-PEG400, using for dehalogenation of insoluable aromatic halides in aqueous system, has shown high dechlorination activity and selectivity, without any organic solvent or phase transfer catalyst. The conversion of aromatic chlorides can reach 100%. The catalyst is easy to prepare and has good reusability.

  19. Ionic interaction of oral streptococcal bacteria studied by partition in an aqueous polymer two-phase system.

    Science.gov (United States)

    Westergren, G

    1981-01-01

    The net surface charge of various oral streptococci were assessed by aqueous two-phase partitioning in a dextran-polyethylene glycol system. Great variability was found among individual strains within all species tested. Type 1 strains of Streptococcus sanguis serotypes which have been found to be more adherent, exposed a lower negative net surface charge than Type 2 strains.

  20. Stable mineral recrystallization in low temperature aqueous systems: A critical review

    Science.gov (United States)

    Gorski, Christopher A.; Fantle, Matthew S.

    2017-02-01

    Minerals may undergo recrystallization reactions in low temperature (chemistries on Earth. The reactions are also significant for modern environments, including engineered systems, as they imply that mineral lattices may be substantially more open to exchanging toxic elements and radionuclides with coexisting solutions than previously thought. To date, observations of stable mineral recrystallization are distributed among several disciplines, and no work has attempted to review their findings comprehensively. Accordingly, this review article presents laboratory evidence for stable mineral recrystallization, describes data collection and interpretation strategies, summarizes similar recrystallization systematics observed in multiple studies, explores the potential occurrence of stable mineral recrystallization in natural systems, and discusses possible mechanisms by which stable mineral recrystallization occurs. The review focuses primarily on carbonates, sulfates, and iron oxides because these minerals have been studied most extensively to date. The review concludes by presenting key questions that should be addressed in this field to further understand and account for stable mineral recrystallization in natural and engineered aqueous systems at low temperatures.

  1. Effect of the bioemulsifier emulsan on naphthalene mineralization from coal tar in aqueous systems

    Energy Technology Data Exchange (ETDEWEB)

    Skubal, K.L.; Luthy, R.G.

    1994-09-01

    Coal tar in aerobic aqueous systems was treated with purified emulsan, the anionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1; with inocula of various concentrations of stationary phase RAG-1 cells; or with cell-free broth from stationary phase RAG-1 cultures. Naphthalene mineralization by a mixed PAH-degrading population was measured by recovering {sup 14}CO{sub 2} evolved during biotransformation of the [{sup 14}C]naphthalene-labeled coal tar. There was no evidence of naphthalene mineralization by RAG- 1 cells alone. The addition of emulsan, RAG-1 inocula, or cell-free broth to systems containing the PAH-degrading population did not significantly affect naphthalene mineralization in any of the systems tested. Coal tar in these experiments was present either as a free dense nonaqueous phase liquid (DNAPL), or as DNAPL imbibed into microporous silica particles. Emulsification of the tar was not observed in either case. The presence or absence of microporous silica did not affect the extent or rate of naphthalene mineralization, nor did the concentration of RAG-1 inocula or the amount of broth added. The addition of cell-free broth, emulsan, or RAG-1 cells late in the experiments did not yield significantly different results compared to initial addition of these substances. Thus, emulsan and related fractions from RAG-1 cultures were ineffective in altering naphthalene mineralization in this study.

  2. Extraction protease expressed by Penicillium fellutanum from the Brazilian savanna using poly(ethylene glycol)/sodium polyacrylate/NaCl aqueous two-phase system.

    Science.gov (United States)

    Barros, Kleber V G; Souza, Paula M; Cardoso, Samuel L; Borges, Leonardo L; Filho, Edivaldo X F; Junior, Adalberto P; Magalhães, Pérola O

    2015-01-01

    The partitioning of protease expressed by Penicillium fellutanum from the Brazilian savanna in a novel inexpensive and stable aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied in this work using factorial design. The ATPS is formed by mixing both polymers with a salt (NaCl) and fermented broth of P. fellutanum. The effects of molar mass (2,000, 4,000, and 6,000 g ⋅ mol(-1)) and concentration (6, 8, and 10 wt%) of PEG and that of NaPA concentration (6, 8, and 10 wt%) on protease partitioning (K) at 25 °C were studied. A two-level factorial design (2(3)) was implemented. The effect of Na2 SO4 concentration (5, 10, and 15 wt%) on the reextraction of the enzyme was also analyzed. The partition coefficient K ranged from 77.51 to 1.21, indicating the versatility of the method. The reextraction was achieved with the addition of 5% Na2 SO4 , allowing the partitioning of the protease to the upper phase, whereas total proteins were directed to the bottom phase. The results of partitioning using the PEG/NaPA/NaCl system and that of the subsequent reextraction with Na2 SO4 suggest that this method can be used to purify proteases from fermented broth of P. fellutanum.

  3. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  4. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  5. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    CERN Document Server

    Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

  6. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    Science.gov (United States)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  7. Partition of Chiral pharmaceutical intermediate R(-)-Mandelic Acid in Aqueous Two-Phase System of Poly(ethylene glycol)-Ammonium Sulfate

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoping; Li Zhongqin; Chen Jiebo; Huang Xinghua

    2004-01-01

    An aqueous two-phase system of poly (ethylene glycol)-ammonium sulfate was employed to separate R (-)-mandelic acid.The result showed that R (-)-mandelic acid has priority to partition in PEG-rich top phase. This indicated that aqueous two-phase is a very suitable system for separation of R(-)-mandelic acid.

  8. Coordination chemistry in fused-salt solutions

    Science.gov (United States)

    Gruen, D. M.

    1969-01-01

    Spectrophotometric work on structural determinations with fused-salt solutions is reviewed. Constraints placed on the method, as well as interpretation of the spectra, are discussed with parallels drawn to aqueous spectrophotometric curves of the same materials.

  9. CONTROLLED/"LIVING" RADICAL POLYMERIZATION OF STYRENE IN AN AQUEOUS DISPERSION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zhao-bin Zhang; Xiao-long Wan; Chun-pu Hu; Sheng-kang Ying

    2002-01-01

    Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen)and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10),SLS/hexadecanol and SLS/OP-10/hexadecanol. Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization. It was found that Phen was a more suitable ligand than N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(Ⅰ) and the deactivator Cu(Ⅱ) between the organic phase and the water phase. The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (Mn) of polystyrene (PS)increased with the conversion and the molar mass distribution (Mw/Mn) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (~57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(Ⅱ )X2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low Mw/Mn of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.

  10. Degradation of some benzodiazepines by a laccase-mediated system in aqueous solution.

    Science.gov (United States)

    Ostadhadi-Dehkordi, Sattar; Tabatabaei-Sameni, Minoosadat; Forootanfar, Hamid; Kolahdouz, Shakiba; Ghazi-Khansari, Mahmoud; Faramarzi, Mohammad Ali

    2012-12-01

    Purified laccase from the soil ascomycete, Paraconiothyrium variabile was employed in the degradation of 7 benzodiazepine substances in the absence and presence of the enzyme mediators, 1-hydroxybenzotriazole (HBT), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), 2,6-dimethoxyphenol (DMP), and vanillic acid (VA). In the absence of a laccase mediator, the original concentrations of 10 μg mL(-1) of nitrazepam, alprazolam, diazepam, and oxazepam decreased by 27.3%, 45.6%, 18.6% and 18.7%, respectively, after 48 h treatment using the purified enzyme, whereas the removal percentages for clobazam, chlordiazepoxide, and lorazepam were only 5.6%, 3.6%, and 4.1%, respectively. Among the laccase mediators, HBT was the most efficient compound, increasing the degradation percentages of nitrazepam, alprazolam, diazepam, and oxazepam to 73%, 88.1%, 61.4%, and 71.2%, respectively. The removal percentages of clobazam, chlordiazepoxide, and lorazepam was increased to 8.2%, 4.7%, and 6.5%, respectively, when the laccase-HBT system was used. The data presented suggest that the laccase-mediated system has potential for the elimination of some benzodiazepines in aqueous solution.

  11. Partition of volatile compounds in pea globulin-maltodextrin aqueous two-phase system.

    Science.gov (United States)

    Nguyen, Thanh Dat; Lafarge, Céline; Murat, Chloé; Mession, Jean-Luc; Cayot, Nathalie; Saurel, Rémi

    2014-12-01

    This study is based on the assumption that the off-flavour of pea proteins might be decreased using the retention of volatile compounds by a mixture with another biopolymer. The partition of volatile compounds in an aqueous system containing pea protein and maltodextrins was followed under thermodynamic incompatibility conditions. Firstly, the phase diagram of the system was established. Then, the partition of aroma compounds between the phase rich in protein and the phase rich in maltodextrin was measured by SPME-GC-MS. There was a transfer of volatile compounds during phase separation. Variations of pH were also used to vary the retention of volatile compounds by proteins. The concentration of volatile compounds in protein solution at pH 2.4 was higher than at pH 7.2. It was possible to increase the transfer of volatile compounds from the phase rich in protein to the phase rich in maltodextrin using the effect of pH on protein denaturation.

  12. LPS-protein aggregation influences protein partitioning in aqueous two-phase micellar systems.

    Science.gov (United States)

    Lopes, André Moreni; Santos-Ebinuma, Valéria de Carvalho; Novaes, Leticia Celia de Lencastre; Molino, João Vitor Dutra; Barbosa, Leandro Ramos Souza; Pessoa, Adalberto; Rangel-Yagui, Carlota de Oliveira

    2013-07-01

    Lipopolysaccharide endotoxins (LPS) are the most common pyrogenic substances in recombinant peptides and proteins purified from Gram-negative bacteria, such as Escherichia coli. In this respect, aqueous two-phase micellar systems (ATPMS) have already proven to be a good strategy to purify recombinant proteins of pharmaceutical interest and remove high LPS concentrations. In this paper, we review our recent experimental work in protein partitioning in Triton X-114 ATPMS altogether with some new results and show that LPS-protein aggregation can influence both protein and LPS partitioning. Green fluorescent protein (GFPuv) was employed as a model protein. The ATPMS technology proved to be effective for high loads of LPS removal into the micelle-rich phase (%REM(LPS) > 98 %) while GFPuv partitioned preferentially to the micelle-poor phase (K GFP(uv) system. Nonetheless, ATPMS can still be considered as an efficient strategy for high loads of LPS removal, but being aware that the excluded-volume partitioning theory available might overestimate partition coefficient values due to the presence of protein-LPS aggregation.

  13. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems

    KAUST Repository

    Kim, Younggy

    2013-01-01

    A new bioelectrochemical system is proposed for simultaneous removal of salinity and organic matter. In this process, exoelectrogenic microorganisms oxidize organic matter and transfer electrons to the anode, hydrogen is evolved at the cathode by supplying additional voltage, and salt is removed from the wastewater due to the electric potential generated and the use of two ion-exchange membranes. Salinity removal (initial conductivity ~40mS/cm) increased from 21 to 84% by increasing the substrate (sodium acetate) from 2 to 8g/L. A total of 72-94% of the chemical oxygen demand was degraded in the anode and cathode chambers, with 1-4% left in the anode chamber and the balance lost through the anion-exchange membrane into the concentrate waste chamber. The maximum hydrogen production rate was 3.6m3-H2/m3-electrolyte per day at an applied potential of 1.2V. The Coulombic efficiency was ~100%, while the cathode recovery varied from 57 to 100%, depending on the extent of methanogenesis. Exoelectrogenic microbes generated high current densities (7.8mA/cm2) at ≤36g/L of total dissolved solids, but >41g/L eliminated current. These results provide a new method for achieving simultaneous removal of salinity and organic matter from a saline wastewater with H2 production. © 2012 Elsevier B.V.

  14. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael

    2014-01-01

    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different...... experimental techniques including isochoric pressure search method and a DSC method are used to measure the hydrate dissociation conditions. A comparison is finally made with the literature data. It is expected that this study provides better understanding of hydrate phase equilibria associated with CO2...... capture. © 2014 Elsevier Ltd....

  15. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  16. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications.

    Science.gov (United States)

    Mendoza-Muñoz, Néstor; Quintanar-Guerrero, David; Allémann, Eric

    2012-12-01

    The recent advances in nanotechnology and its application in medicine have merged into a new concept called nanomedicine. Colloidal drug delivery systems and specifically polymeric nanoparticles are one of the most promising novel drug carriers due to their capacity for passive or active targeting for therapeutic and diagnostic applications. The introduction of novel therapeutic nanoscaled agents requires simple, efficient and feasible industrial-scale production methods. Biodegradable polymeric nanoparticles are usually prepared from preformed polymers by five techniques: emulsification- solvent evaporation, solvent displacement, salting-out, emulsification-solvent diffusion and double emulsion solvent evaporation. This review discusses the use of the salting-out technique for the preparation of nanoparticles in the development of systems for drug delivery and other pharmaceutical applications. The relevant applications, formulations and release characteristics of novel colloidal drug delivery preparations from research literature and patents are summarized. This review is intended as a tool for the rational development of polymeric colloidal systems for pharmaceutical use.

  17. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    Directory of Open Access Journals (Sweden)

    Singsuksawat Ekapot

    2010-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS. Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR. Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.

  18. [Isolation and purification of alpha-glycerophosphate oxidase in a polyethylene glycol/(NH4 )2SO4 aqueous two-phase system].

    Science.gov (United States)

    Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun

    2014-02-01

    Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.

  19. Lycopene overproduction and in situ extraction in organic-aqueous culture systems using a metabolically engineered Escherichia coli.

    Science.gov (United States)

    Gallego-Jara, Julia; de Diego, Teresa; Del Real, Álvaro; Écija-Conesa, Ana; Manjón, Arturo; Cánovas, Manuel

    2015-12-01

    Lycopene is an import ant compound with an increasing industrial value. However, there is still no biotechnological process to obtain it. In this study, a semi-continuous system for lycopene extraction from recombinant Escherichia coli BL21 cells is proposed. A two-phase culture mode using organic solvents was found to maximize lycopene production through in situ extraction from cells. Within the reactor, three phases were formed during the process: an aqueous phase containing the recombinant E. coli, an interphase, and an organic phase. Lycopene was extracted from the cells to both the interphase and the organic phase and, consequently, thus enhancing its production. Maximum lycopene production (74.71 ± 3.74 mg L(-1)) was obtained for an octane-aqueous culture system using the E. coli BL21LF strain, a process that doubled the level obtained in the control aqueous culture. Study of the interphase by transmission electron microscopy (TEM) showed the proteo-lipidic nature and the high storage capacity of lycopene. Moreover, a cell viability test by flow cytometry (CF) after 24 h of culture indicated that 24 % of the population could be re-used. Therefore, a batch series reactor was designed for semi-continuous lycopene extraction. After five cycles of operation (120 h), lycopene production was similar to that obtained in the control aqueous medium. A final specific lycopene yield of up to 49.70 ± 2.48 mg g(-1) was reached at 24 h, which represents to the highest titer to date. In conclusion, the aqueous-organic semi-continuous culture system proposed is the first designed for lycopene extraction, representing an important breakthrough in the development of a competitive biotechnological process for lycopene production and extraction.

  20. Volatiles on solar system objects: Carbon dioxide on Iapetus and aqueous alteration in CM chondrites

    Science.gov (United States)

    Palmer, Eric Edward

    2009-12-01

    Volatiles are critical in understanding the history of the solar system. We conducted two case studies intended to further this understanding. First, we analyzed the presence of CO2 on Iapetus. Second, we evaluated aqueous alteration in CM chondrites. We studied the distribution, stability and production of CO2 on Saturn's moon Iapetus. We determined that CO2 is concentrated exclusively on Iapetus' dark material with an effective thickness of 31 nm. The total CO2 on Iapetus' surface is 2.3x108 kg. However, CO2 should not be present because it has a limited residence time on the surface of Iapetus. Our thermal calculations and modeling show that CO2 in the form of frost will not remain on Iapetus' surface beyond a few hundred years. Thus, it must be complexed with dark material. However, photodissociation will destroy the observed inventory in ˜1/2 an Earth year. The lack of thermal and radiolytic stability requires an active source. We conducted experiments showing UV radiation generates CO2 under Iapetus-like conditions. We created a simulated regolith by mixing crushed water ice with isotopically labeled carbon. We then irradiated it with UV light at low temperature and pressure, producing 1.1x1015 parts m-2 s-1. Extrapolating to Iapetus, photolysis could generate 8.4x107 kg y-1, which makes photolytic production a good candidate for the source of the CO2 detected on Iapetus. We also studied the aqueous alteration of metal-bearing assemblages in CM chondrites. We examined Murchison, Cold Bokkeveld, Nogoya, and Murray using microscopy, electron microprobe analysis and scanning electron microscopy. Alteration on CM meteorites occurred within at least three microchemical environments: S-rich water, Si-rich water and water without substantial reactive components. Kamacite alters into tochilinite, cronstedtite, or magnetite. Sulfur associated alteration can form accessory minerals: P-rich sulfides, eskolaite and schreibersite. Additionally, we determined that there

  1. Purification and in situ immobilization of papain with aqueous two-phase system.

    Science.gov (United States)

    Li, Mingliang; Su, Erzheng; You, Pengyong; Gong, Xiangyu; Sun, Ming; Xu, Diansheng; Wei, Dongzhi

    2010-12-13

    Papain was purified from spray-dried Carica papaya latex using aqueous two-phase system (ATPS). Then it was recovered from PEG phase by in situ immobilization or preparing cross-linked enzyme aggregates (CLEAs). The Plackett-Burman design and the central composite design (CCD) together with the response surface methodology (RSM) were used to optimize the APTS processes. The highly purified papain (96-100%) was achieved under the optimized conditions: 40% (w/w) 15 mg/ml enzyme solution, 14.33-17.65% (w/w) PEG 6000, 14.27-14.42% (w/w) NaH2PO4/K2HPO4 and pH 5.77-6.30 at 20°C. An in situ enzyme immobilization approach, carried out by directly dispersing aminated supports and chitosan beads into the PEG phase, was investigated to recover papain, in which a high immobilization yield (>90%) and activity recovery (>40%) was obtained. Moreover, CLEAs were successfully used in recovering papain from PEG phase with a hydrolytic activity hundreds times higher than the carrier-bound immobilized papain.

  2. Aqueous Two-phase Systems with Ultrasonic Extraction Used for Extracting Phenolic Compounds from Inonotus obliquus

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yan-xia; LIU; Yu-bing; LIU; Feng; ZHENG; Wei-fa

    2013-01-01

    Objective To optimize the extracting technology of assessing the maximum yield of phenolic compounds (PC) from Inonotus obliquus by single factor experiments and orthogonal array design methods through aqueous two-phase systems combined with ultrasonic extraction. Methods The range of the independent variables, namely levels of acetone and ammonium sulfate, and ultrasonic time were identified by a first set of single factor experiments. The actual values of the independent variables coded at four levels and three factors were selected based on the results of the single factor experiments. Subsequently, the levels of acetone and ammonium sulfate, and ultrasonic time were optimized using the orthogonal array method. Results The optimum conditions for the extraction of PC were found to use 7.0 mL acetone, 5.5 mg ammonium sulfate, with ultrasonic time for 5 min. Under these optimized conditions, the experimental maximum yield of PC was 37.8 mg/g, much higher than that of the traditional ultrasonic extraction (UE, 29.0 mg/g). And the PC obtained by this method had stronger anti-oxidative activities than those by traditional UE method. Conclusion These results indicate the suitability of the models developed and the success in optimizing the extraction conditions. This is an economical and efficient method for extracting polyphenols from I. obliquus.

  3. Ultrasound-Assisted Aqueous Two-Phase System for Extraction and Enrichment of Zanthoxylum armatum Lignans

    Directory of Open Access Journals (Sweden)

    Tao Guo

    2015-08-01

    Full Text Available In the study, an aqueous two phase system (ATPS coupled with ultrasound was employed to extract lignans from Zanthoxylum armatum. Three standard lignans, namely (−-fargesin, sesamin and L-asarinin, were used as marker compounds, and extraction was optimized and projected by response surface methodology (RSM and artificial neural network (ANN. The optimal condition for ATPS with 20% n-propanol and 24% (NH42SO4 coupled with ultrasonic-assisted extraction including a solvent to solid ratio of 15:1, a temperature of 40 °C, and a treatment time of 55 min was obtained. Under the condition, the yield of (−-fargesin increased 15.12%, and the purities of (−-fargesin, sesamin and L-asarinin reached 2.222%, 1.066%, and 1.583%, with an increase of 44.38%, 25.70%, and 26.34% compared to those extracted with 95% ethanol, respectively. Coefficient of the determined (0.9855 and mean squared error (0.0018 of ANN model suggested good fitness and generalization of the ANN. Taken together, the results showed that ultrasonic-assisted ATPS can be a suitable method for extraction and enrichment of lignans from Z. armatum.

  4. Aqueous Two-phase Systems with Ultrasonic Extraction Used for Extracting Phenolic Compounds from Inonotus obliquus

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-xia; LIU Yu-bing; LIU Feng; ZHENG Wei-fa

    2013-01-01

    Objective To optimize the extracting technology of assessing the maximum yield of phenolic compounds (PC)from Inonotus obliquus by single factor experiments and orthogonal array design methods through aqueous two-phase systems combined with ultrasonic extraction.Methods The range of the independent variables,namely levels of acetone and ammonium sulfate,and ultrasonic time were identified by a first set of single factor experiments.The actual values of the independent variables coded at four levels and three factors were selected based on the results of the single factor experiments.Subsequently,the levels of acetone and ammonium sulfate,and ultrasonic time were optimized using the orthogonal array method.Results The optimum conditions for the extraction of PC were found to use 7.0 mL acetone,5.5 mg ammonium sulfate,with ultrasonic time for 5 min.Under these optimized conditions,the experimental maximum yield of PC was 37.8 mg/g,much higher than that of the traditional ultrasonic extraction (UE,29.0 mg/g).And the PC obtained by this method had stronger anti-oxidative activities than those by traditional UE method.Conclusion These results indicate the suitability of the models developed and the success in optimizing the extraction conditions.This is an economical and efficient method for extracting polyphenols from Ⅰ.obliquus.

  5. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.

    Science.gov (United States)

    Gattullo, C Eliana; Cunha, Bruno Barboza; Rosa, André H; Loffredo, Elisabetta

    2013-01-01

    Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17alpha-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters.

  6. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.

    Science.gov (United States)

    Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H

    2015-06-07

    We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

  7. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats.

    Science.gov (United States)

    Soares, Ruben R G; Azevedo, Ana M; Van Alstine, James M; Aires-Barros, M Raquel

    2015-08-01

    For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes.

  8. Self-assembly of aqueous bilirubin ditaurate, a natural conjugated bile pigment, to contraposing enantiomeric dimers and M(-) and P(+) tetramers and their selective hydrophilic disaggregation by monomers and micelles of bile salts.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-02-24

    The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 μM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7β-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile.

  9. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system.

    Directory of Open Access Journals (Sweden)

    Katie Smith

    Full Text Available The global trend of restricting the use of antibiotic growth promoters (AGP in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth.

  10. Discovery of Bile Salt Hydrolase Inhibitors Using an Efficient High-Throughput Screening System

    Science.gov (United States)

    Smith, Katie; Zeng, Ximin; Lin, Jun

    2014-01-01

    The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth. PMID:24454844

  11. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM).

    Science.gov (United States)

    Yamazawa, Toshiko; Nakamura, Naotoshi; Sato, Mari; Sato, Chikara

    2016-12-01

    Exocrine glands, e.g., salivary and pancreatic glands, play an important role in digestive enzyme secretion, while endocrine glands, e.g., pancreatic islets, secrete hormones that regulate blood glucose levels. The dysfunction of these secretory organs immediately leads to various diseases, such as diabetes or Sjögren's syndrome, by poorly understood mechanisms. Gland-related diseases have been studied by optical microscopy (OM), and at higher resolution by transmission electron microscopy (TEM) of Epon embedded samples, which necessitates hydrophobic sample pretreatment. Here, we report the direct observation of tissue in aqueous solution by atmospheric scanning electron microscopy (ASEM). Salivary glands, lacrimal glands, and pancreas were fixed, sectioned into slabs, stained with phosphotungstic acid (PTA), and inspected in radical scavenger d-glucose solution from below by an inverted scanning electron microscopy (SEM), guided by optical microscopy from above to target the tissue substructures. A 2- to 3-µm specimen thickness was visualized by the SEM. In secretory cells, cytoplasmic vesicles and other organelles were clearly imaged at high resolution, and the former could be classified according to the degree of PTA staining. In islets of Langerhans, the microvascular system used as an outlet by the secretory cells was also clearly observed. Microvascular system is also critically involved in the onset of diabetic complications and was clearly visible in subcutaneous tissue imaged by ASEM. The results suggest the use of in-solution ASEM for histology and to study vesicle secretion systems. Further, the high-throughput of ASEM makes it a potential tool for the diagnosis of exocrine and endocrine-related diseases.

  12. KINETICS OF HYDROLYSIS IN AQUEOUS-SOLUTION OF 1-BENZOYL-1,2,4-TRIAZOLE - THE ROLE OF PAIRWISE AND TRIPLET GIBBS ENERGY INTERACTION PARAMETERS IN DESCRIBING THE EFFECTS OF ADDED SALTS AND ADDED ALCOHOLS

    NARCIS (Netherlands)

    NOORDMAN, WH; BLOKZIJL, W; ENGBERTS, JBF; BLANDAMER, MJ

    1995-01-01

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient-pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic-data are also reported for the same reaction in aqueous mixtures of sodium c

  13. Kinetics of hydrolysis in aqueous solution of 1-benzoyl-1,2,4-triazole; the role of pairwise and triplet Gibbs energy interaction parameters in describing the effects of added salts and added alcohols

    NARCIS (Netherlands)

    Noordman, Wouter H.; Blokzijl, Wilfried; Engberts, Jan B.F.N.; Blandamer, Michael J.

    1995-01-01

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic data are also reported for the same reaction in aqueous mixtures of sodium c

  14. Study on PEG-(NH4)2SO4 Aqueous Two-Phase System and Distribution Behavior of Drugs

    Institute of Scientific and Technical Information of China (English)

    LI, Lei(李蕾); HE, Chi-Yang(何池洋); LI, She-Hong(李社红); LIU, Feng(刘锋); SU, Shun(苏顺); KONG, Xiang-Xu(孔祥旭); LI, Na(李娜); LI, Ke-An(李克安)

    2004-01-01

    The distribution behavior of chlorpromazine hydrochloride (CPZ), procaine hydrochloride (PCN) and procaine amide hydrochloride (PCNA) in polyethylene glycol (PEG800 or PEG1500)-(NH4)2SO4 aqueous two-phase systems has been investigated. The result shows that the PEG-(NH4)2SO4 aqueous two-phase system has potential extraction capability in small molecular drug separation. In PEG800-(NH4)2SO4 system, the extraction efficiencies (E)of CPZ, PCN and PCNA amount to 92.8%, 74.5% and 74.4%, respectively, with the distribution coefficients (KD)being 25.7, 5.9 and 5.8, correspondingly. In PEG1500-(NH4)2SO4 system, the extraction efficiencies (E) of CPZ,PCN and PCNA are 93.7%, 71.3% and 63.2%, respectively, with distribution coefficients (KD) of 39.6, 6.6 and 5.0,correspondingly. Based on the study on ultraviolet and fluorescence spectra and also distribution behavior of the drugs in PEG-(NH4)2SO4 aqueous two-phase system, extraction mechanism was further proposed that both hydrogen bond and hydrophobic interaction are involved in extraction.

  15. Direct transformation of xylan-type hemicelluloses to furfural via SnCl₄ catalysts in aqueous and biphasic systems.

    Science.gov (United States)

    Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang

    2015-05-01

    Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization.

  16. Study of an aqueous lithium chloride desiccant system Part II: Desiccant regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as alternative to handle the latent load in vapor compression air conditioning for energy saving. The air dehumidification occurs because of the difference in vapor pressure which let the moisture diffuse from the air to the liquid desiccant. The diffused moisture cause a dilution of the desiccant which must be regenerated to return it to the original conditions. This paper presents the results from a study of the performance of a packed tower regenerator for an aqueous lithium chloride desiccant dehumidification system. The rate of water evaporation, as well as the effectiveness of the regeneration process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas desecantes para hacerse cargo de la carga latente en acondicionamiento de aire por compresion de vapor para el ahorro de energia. La deshumidificacion del aire ocurre en razon de la diferencia de presion de vapor que deja la humedad difusa del aire en el desecante liquido. La humedad difusa del aire origina una dilucion del desecante el cual debe de ser regenerado para regresarlo a sus condiciones originales. Este documento presenta los resultados de un estudio sobre el comportamiento de un regenerador de torre empacada para un sistema de deshumidificacion de solucion desecante de cloruro de litio. El regimen de evaporacion de agua, asi como tambien la efectividad del proceso de regeneracion que se evaluo bajo los efectos de variables tales como los regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y temperatura y concentracion del desecante. Una variacion del modelo matematico de Oberg y Goswami se uso para predecir los resultados experimentales que dieron resultados satisfactorios.

  17. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.; Plummer, L.N.; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  18. Study of an aqueous lithium chloride desiccant system Part I: Air dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as energy saving alternative to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. For liquid-gas contact, packed towers with low pressure drop have offered good heat and mass transfer characteristics for compact designs. This paper presents the results from a study of the performance of a packed tower absorber for an aqueous lithium chloride desiccant dehumidification system. The rate of dehumidification, as well as the effectiveness of the dehumidification process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas de desecacion como una alternativa de ahorro de energia para el acondicionamiento de aire mediante la compresion de vapor para manejar la carga latente. El uso de desecantes liquidos ofrece varias ventajas de diseno y de rendimiento sobre los desecantes solidos, especialmente cuando la energia solar se usa para la regeneracion. Para el contacto liquido-gas han dado buenas caracteristicas de transferencia de masa para disenos compactos las torres empacadas con baja caida de presion. Este documento presenta los resultados de un estudio del comportamiento de un absorbedor de torre empacada para una solucion acuosa de desecante de cloruro de litio como sistema de deshumidificacion. El regimen de deshumidificacion asi como tambien la eficiencia del proceso de deshumidificacion se evaluo bajo los efectos de variables tales como regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y concentracion y temperatura del desecante. Se uso una variante de modelo matematico de

  19. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  20. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system.

    Science.gov (United States)

    Sun, Li-Hui; Jiang, Bo; Xiu, Zhi-Long

    2009-03-01

    A novel aqueous two-phase system consisted of 2-propanol/ammonium sulfate was used for the extraction of 2,3-butanediol from fermentation broths. The maximum partition coefficient and recovery of 2,3-butanediol reached 9.9 and 93.7%, respectively, and more than 99% of the cells and about 85% of the soluble proteins were removed when 34% (w/w) 2-propanol and 20% (w/w) ammonium sulfate were used. The separated cells could be re-used as inocula for subsequent fermentations. The aqueous two-phase system described in this study may have potential application in the extraction of 2,3-butanediol produced by industrial fermentation processes.

  1. Stable thermosensitive in situ gel-forming systems based on the lyophilizate of chitosan/α,β-glycerophosphate salts.

    Science.gov (United States)

    Wu, Guanghao; Yuan, Yuan; He, Jintian; Li, Ying; Dai, Xiaojing; Zhao, Baohua

    2016-09-10

    In the present study, lyophilization was attempted to improve the long-term storage of CS/GP thermogelling systems for biopharmaceutical applications. After lyophilization, CS/α,β-GP lyophilizate could not be dissolved in water, but some metal salts, such as NaCl, CaCl2, and MgCl2 surprisingly facilitated its dissolution. X-ray powder diffraction analysis suggested that calcium ions might preferentially form salts with α,β-GP, inhibit the transfer of protons from CS to α,β-GP, and then inhibit the aggregation of CS molecules during lyophilization. Comparison of the freshly prepared CS/α,β-GP/salt solutions and the reconstituted solutions from lyophilizates showed that lyophilization clearly influenced the properties of reconstituted CS/α,β-GP/salt solutions such as gelation time, viscosity, and pH. Furthermore, the reconstituted CS/α,β-GP/CaCl2 solutions maintained thermogelling properties and formed hydrogels at 37°C within approximately 5min, but did not form hydrogels at 20°C and 4°C over 2 weeks. The model protein bovine serum albumin (BSA) was further incorporated into the CS/α,β-GP/CaCl2 system. In vitro release experiments showed the sustained release of BSA from CS/α,β-GP/CaCl2 hydrogels in a pH-sensitive manner, demonstrating that CS/α,β-GP/CaCl2 may be useful as an in situ gel-forming system.

  2. Lycopene overproduction and in situ extraction in organic-aqueous culture systems using a metabolically engineered Escherichia coli

    OpenAIRE

    Gallego-Jara, Julia; de Diego, Teresa; del Real, Álvaro; Écija-Conesa, Ana; Manjón, Arturo; Cánovas, Manuel

    2015-01-01

    Lycopene is an import ant compound with an increasing industrial value. However, there is still no biotechnological process to obtain it. In this study, a semi-continuous system for lycopene extraction from recombinant Escherichia coli BL21 cells is proposed. A two-phase culture mode using organic solvents was found to maximize lycopene production through in situ extraction from cells. Within the reactor, three phases were formed during the process: an aqueous phase containing the recombinant...

  3. Application of surface response analysis to the optimization of penicillin acylase purification in aqueous two-phase systems

    OpenAIRE

    2002-01-01

    Penicillin acylase purification from an Escherichia coli crude extract using PEG 3350 – sodium citrate aqueous two phase systems was optimized. An experimental design was used to evaluate the influence of PEG, sodium citrate and sodium chloride on the purification parameters. A central composite design was defined centred on the previously found conditions for highest purification from an osmotic shock extract. Mathematical models for the partition coefficient of protein and enzyme, balance o...

  4. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mego, W.A.

    1999-09-07

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  5. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  6. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    Science.gov (United States)

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample.

  7. LSER-based modeling vapor pressures of (solvent+salt) systems by application of Xiang-Tan equation

    Institute of Scientific and Technical Information of China (English)

    Aynur Senol

    2015-01-01

    The study deals with modeling the vapor pressures of (solvent+salt) systems depending on the linear solvation energy relation (LSER) principles. The LSER-based vapor pressure model clarifies the simultaneous impact of the vapor pressure of a pure solvent estimated by the Xiang-Tan equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been performed independently two structural forms of the generalized solvation model, i.e. the unified solvation model with the integrated properties (USMIP) containing nine physical descriptors and the reduced property-basis solvation model. The vapor pressure data of fourteen (solvent+salt) systems have been processed to analyze statistical y the reliabil-ity of existing models in terms of a log-ratio objective function. The proposed vapor pressure approaches reproduce the observed performance relatively accurately, yielding the overall design factors of 1.0643 and 1.0702 for the integrated property-basis and reduced property-basis solvation models.

  8. Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system.

    Science.gov (United States)

    Yusuf, S N F; Azzahari, A D; Selvanathan, V; Yahya, R; Careem, M A; Arof, A K

    2017-02-10

    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I2) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, JSC of 17.29mAcm(-2), open circuit voltage, VOC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD.

  9. Salt Potentiates Methylamine Counteraction System to Offset the Deleterious Effects of Urea on Protein Stability and Function

    Science.gov (United States)

    Singh, Laishram R.; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction. PMID:25793733

  10. Salt potentiates methylamine counteraction system to offset the deleterious effects of urea on protein stability and function.

    Directory of Open Access Journals (Sweden)

    Safikur Rahman

    Full Text Available Cellular methylamines are osmolytes (low molecular weight organic compounds believed to offset the urea's harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea's effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.

  11. LABORATORY EVALUATION OF OIL SPILL BIOREMEDIATION PRODUCTS IN SALT AND FRESHWATER SYSTEMS

    Science.gov (United States)

    Ten oil spill bioremediation products were tested in the laboratory for their ability to enhance biodegradation of weathered Alaskan North Slope crude oil in both fresh and salt-water media. The products included: nutrients to stimulate inoculated microorganisms, nutrients plus a...

  12. Application of Proton Conductors to Hydrogen Monitoring for Liquid Metal and Molten Salt Systems

    Science.gov (United States)

    Kondo, Masatoshi; Muroga, Takeo; Katahira, Koji; Oshima, Tomoko

    The chemical control of impurity such as hydrogen and oxygen in coolants is one of the critical issues for the development of liquid metal cooled fast reactors and self-cooled liquid breeder blankets for fusion reactors. Especially, hydrogen (isotopes) level is the key parameter for corrosion and mechanical properties of the in-reactor components. For fission reactors, the monitor of hydrogen level in the melt is important for safety operation. The control of tritium is essential for the tritium breeding performance of the fusion reactors. Therefore, on-line hydrogen sensing is a key technology for these systems. In the present study, conceptual design for the on-line hydrogen sensor to be used in liquid sodium (Na), lead (Pb), lead-bismuth (Pb-Bi), lithium (Li), lead-lithium (Pb-17Li) and molten salt LiF-BeF2 (Flibe) was performed. The cell of hydrogen sensor is made of a solid electrolyte. The solid electrolyte proposed in this study is the CaZrO3-based ceramics, which is well-known as proton conducting ceramics. In this concept, the cell is immersed into the melt which is containing the hydrogen at the activity of PH1 of ambient atmosphere. Then, the cell is filled with Ar-H2 mixture gas at regulated hydrogen activity of PH2. The electromotive force (EMF) is obtained by the proton conduction in the electro chemical system expressed as Pt, Melt(PH1) | Proton conductor | PH2, Pt. The Nernst equation is used for the evaluation of the hydrogen activity from the obtained EMF. The evaluations of expected performance of the sensor in liquid Na, Pb, Pb-Bi, Pb-17Li, Li and Flibe were carried out by means of the measurement test in gas atmosphere at hydrogen activities equivalent to those for the melts in the reactor conditions. In the test, the hydrogen activity in the gas varied from 2.2x10-14 to 1. The sensor exhibited good response, stability and reproducibility.

  13. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations.

    Science.gov (United States)

    Spir, Lívia Genovez; Ataide, Janaína Artem; De Lencastre Novaes, Letícia Celia; Moriel, Patrícia; Mazzola, Priscila Gava; De Borba Gurpilhares, Daniela; Silveira, Edgar; Pessoa, Adalberto; Tambourgi, Elias Basile

    2015-01-01

    Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential.

  14. Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet

    Science.gov (United States)

    Cao, Gabriel; Della Penna, Silvana Lorena; Kouyoumdzian, Nicolás Martín; Choi, Marcelo Roberto; Gorzalczany, Susana; Fernández, Belisario Enrique; Toblli, Jorge Eduardo; Rosón, María Inés

    2017-01-01

    AIM To determine the effect of tempol in normal rats fed high salt on arterial pressure and the balance between antagonist components of the renal renin-angiotensin system. METHODS Sprague-Dawley rats were fed with 8% NaCl high-salt (HS) or 0.4% NaCl (normal-salt, NS) diet for 3 wk, with or without tempol (T) (1 mmol/L, administered in drinking water). Mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa) were measured. We evaluated angiotensin II (Ang II), angiotensin 1-7 (Ang 1-7), angiotensin converting enzyme 2 (ACE2), mas receptor (MasR), angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R) in renal tissues by immunohistochemistry. RESULTS The intake of high sodium produced a slight but significant increase in MAP and differentially regulated components of the renal renin-angiotensin system (RAS). This included an increase in Ang II and AT1R, and decrease in ACE-2 staining intensity using immunohistochemistry. Antioxidant supplementation with tempol increased natriuresis and GFR, prevented changes in blood pressure and reversed the imbalance of renal RAS components. This includes a decrease in Ang II and AT1R, as increase in AT2, ACE2, Ang (1-7) and MasR staining intensity using immunohistochemistry. In addition, the natriuretic effects of tempol were observed in NS-T group, which showed an increased staining intensity of AT2, ACE2, Ang (1-7) and MasR. CONCLUSION These findings suggest that a high salt diet leads to changes in the homeostasis and balance between opposing components of the renal RAS in hypertension to favour an increase in Ang II. Chronic antioxidant supplementation can modulate the balance between the natriuretic and antinatriuretic components of the renal RAS. PMID:28101449

  15. Chemical dosimetry system for γ-ray irradiation based on the formation of phenol from aqueous benzene solutions.

    Science.gov (United States)

    Takeda, Kazuhiko

    2011-01-01

    A chemical dosimetry system based on the radiochemical formation of phenol from aqueous benzene solutions was applied to measure the intensity of γ-ray irradiation. Using a simple and sensitive isocratic fluorometric HPLC system, radiochemically generated phenol was determined. The radiochemical formation of phenol was linear up to 100 Gy and the lower limit of detection calculated from the detection limits of phenol was estimated to be 7 mGy. The phenol formation rates were not affected by the oxygen saturation. The chemical dosimetry system investigated in this study was sensitive and was easier to use than traditional chemical dosimeters.

  16. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  17. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  18. Geomechanics of bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Serata, S.; Milnor, S.W.

    1979-06-08

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained.

  19. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    precipitation processes); cold salt: potentiality and preliminary results; TOPIC: redox control of MSR fuel (MSR: nominal operating conditions for the reprocessing process and redox control); technical aspects of R and D of some advanced non-aqueous reprocessing technologies for MSR systems (promising innovative separation and partitioning processes for the MSR fuel cycle); nominal operating conditions for MSR reprocessing process - data base needed and experiments for reprocessing validation; corrosion and materials for MSR and for pyro-chemistry processes; MSR reactor physics - dynamic behaviour; what safety principles for MSR? (MSR and integrated cycle (IFR) safety approach); experimental programmes in the frame of the SPHINX project of MS transmuter (programme of irradiated probes BLANKA, experimental facilities (MSR)); ISTC 1606 status - experimental study of molten salt technology for safe, low-waste and proliferation resistant treatment of radioactive waste and plutonium in accelerator-driven and critical systems. (J.S.)

  20. Salt effect of KBr on the liquid-liquid equilibrium of the water/ethanol/1-pentanol system

    Directory of Open Access Journals (Sweden)

    G.R. Santos

    2000-12-01

    Full Text Available Liquid-liquid equilibrium data for the water/ethanol/1-pentanol/potassium bromide systems were experimentally determined at 25° C and 40ºC. The experimental data were correlated through the NRTL and UNIFAC-Dortmund models for the activity coefficient, with the estimation of new binary interaction parameters for both models, corresponding to the salt-solvent and solvent-solvent interactions for the NRTL model and the ion-ion and solvent-ion interactions for the UNIFAC-Dortmund model. The results obtained have shown that the NRTL model was more able to represent equilibrium data for the studied systems.

  1. (R)-PAC biosynthesis in [BMIM][PF₆]/aqueous biphasic system using Saccharomyces cerevisiae BY4741 cells.

    Science.gov (United States)

    Kandar, Smita; Suresh, A K; Noronha, Santosh B

    2015-02-01

    (R)-phenylacetylcarbinol or (R)-PAC is a pharmaceutical precursor of (1R, 2S) ephedrine and (1S, 2S) pseudoephedrine. Biotransformation of benzaldehyde and glucose by pyruvate decarboxylase produces (R)-PAC. This biotransformation suffers from toxicity of the substrate, product [(R)-PAC] and by-product (benzyl alcohol). In the present study, ionic liquid/aqueous biphasic system was employed to enhance (R)-PAC production. Fermented broth was the reaction medium in which Saccharomyces cerevisiae BY4741 was the source of pyruvate decarboxylase. Hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was the non-aqueous phase in which toxic compounds reside. Biocompatibility of [BMIM][PF6] and adequate distribution coefficients of benzaldehyde, (R)-PAC and benzyl alcohol were determined. A Box-Behnken design and response surface methodology were used for the optimization of biotransformation variables in order to maximize (R)-PAC yield and productivity. The results showed higher (R)-PAC yield and productivity of ∼1.5-fold each in the biphasic biotransformation of phase volume ratio 0.05 as compared to the monophasic (conventional) biotransformation. Moreover, the level of major by-product benzyl alcohol was also 3.5-fold lower in biphasic biotransformation. [BMIM][PF6]/aqueous biphasic system is a new approach which could intensify the (R)-PAC production.

  2. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  3. Study on aqueous two-phase systems of the mixture SDS/CTAB surfactants

    Institute of Scientific and Technical Information of China (English)

    LI Ying; CHEN Yah-ming; ZHAO Kong-shuang; Takumi HIKIDA

    2004-01-01

    The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate (SDS) and cetyltrimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molarratios of the two surfactants, the addition of sodium chloride and temperature. Vesicles formation was found in theboth phases by TEM image.

  4. Successful field and laboratory tests of advanced phytoremediation systems for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Gurska, J.; Yu, X.M.; MacNeill, G.; Lu, X.; Nykamp, J.; Glick, B.; Wang, W.; Wang, H.; Wu, S.; Knezevich, N.; Gerwing, P. [Waterloo Univ., ON (Canada)]|[Earthmaster Environmental Strategies Inc., Calgary, AB (Canada)]|[Waterloo Environmental Biotechnology Inc., Waterloo, ON (Canada)

    2008-07-01

    This presentation discussed the advantages of phytoremediation and provided an overview of a phytoremediation tests results for petroleum and salt remediation. Several examples of remediation methods were discussed, including the dig and dump method; soil incineration; chemical extraction; electrokinetic separation and land farming/natural attenuation. The advantages of phytoremediation include improved natural structure and texture of soil; suitability to most regions and climates because it is driven by solar energy; cost effectiveness and technically feasible; reasonable time frame for restoration; promotion of high rhizosphere activity by plants; and effective use at remote sites. The development and proof of plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation systems (PEPS) was then addressed. A description of the PEPS was provided. This presentation also reviewed the interaction of a PGPR containing ACC deaminase with a plant seed or root; research and development of the PEPS for PHC remediation; the use of petroleum remediation on an Imperial Oil Sarnia land farm; proof of concept of the application of the PEPS for PHC remediation in Hinton, Alberta; and development of the PEPS for salt impacted sites. Field work and the characteristics of soils were also examined. It was concluded that the PEPS has great potential for efficient remediation of organic, salt and metal contaminated sites and that PGPR alleviates stress and promotes growth resulting in low ethylene and high auxin content. tabs., figs.

  5. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  6. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    Science.gov (United States)

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles.

  7. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be

  8. Impact of salt stress on the features and activities of root system for three desert halophyte species in their seedling stage

    Institute of Scientific and Technical Information of China (English)

    YI LiangPeng; MA Jian; LI Yan

    2007-01-01

    Linkage between belowground and aboveground sections of ecological system is mainly depending on root system. But root system is the parts of plant that people less understand. The absorption function of root system is closely related to their morphology and activity. Moreover root system can interact with the environmental stress under the adverse situation, and adjust its system to take adaptation responses in morphology and physiology to strengthen its survival chance. This research is focused on three desert halophyte species of H. ammodendron (C.A.Mey.) Bge., S. physophora Pall., and S.nitraria Pall. under solution culture, to study the differences of their root system morphology and activity in the seedling stage under varying salt concentration conditions. The study results show that: A certain salt concentration can promote development of these three halophytes; but rather high salt concentration will restrain their growth, in particular inhibit the root system development. Under the same salt concentration condition, S. nitraria Pall. grows fast and accumulates the largest amount of biomass. Under relatively low salt concentration, the length of axial root and the total length of root system of these three halophyte species are all increased; and compared to the checking samples, S.physophora Pall. occupies the top place of root system growth, but the high salt concentration will restrain the increase of total root length; among them, the impact intensity on S. physophora Pall. is lighter than to H. ammodendron (C.A.Mey.) Bge. and S. nitraria Pall. is lighter; the salinity does not bring distinct influence on the average diameter of root system of these three plant species, but trends to reducing the size; under the solution culture conditions, the middle and lower parts of the axial root of H. ammodendron (C.A.Mey.) Bge. and S. physophora Pall. are rather equally distributed, but the central zone of S. nitraria Pall. root system is more significantly

  9. Design considerations for concentrating solar power tower systems employing molten salt.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  10. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-02-28

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

  11. Pectinases partitioning in aqueous two-phase systems: an integration of the systems poly(ethylene glycol/crude dextran and poly(ethylene glycol/ammonium sulphate

    Directory of Open Access Journals (Sweden)

    STANA N. PEJIN

    2004-04-01

    Full Text Available The partitioning of pectinases in the poly(ethylene glucol4000/ammonium sulpohate system was studied and also its application for enzymes extraction from the top phase of the poly(ethylene glucol4000/crude dextran system. Almost complete one-sided partition of endo-pectinase and exo-pectinase to the bottom phase of the polymer/salt system was achieved at a tie-line length of 37.16 %. The concentration factors were 1.73 and 3.25, respectively. The highest total endo- and exo-pectinase yields (72.41 % and 69.46 %, respectively were obtained by integration of the polymer/polymer system at a tie-line of 8.61 % and a high phase volume ratio and the polymer/salt system at a tie-line of 30.23 % and a low phase volume ratio. Integration of the partitioning at a high tie-line length in the polymer/polimer and a low tie-line length in the polymer/salt system resulted in a total concentration factor of 1.5 and a purification of 1.66 fold for exo-pectinase. The addition of phosphate to this integrated system improved the total concentration factor and purification fold of the activity to 1.73 and 2.14, respectively.

  12. Loofa sponge immobilized fungal biosorbent: a robust system for cadmium and other dissolved metal removal from aqueous solution.

    Science.gov (United States)

    Iqbal, M; Edyvean, R G J

    2005-10-01

    The potential of loofa sponge discs to immobilize fungal biomass of Phanerochaete chrysosporium (a known biosorbent) was investigated as a low cost biosorbent for the removal of Cd(II) ions from aqueous solution. A comparison of the biosorption of Cd(II) by immobilized and free fungal biomass from 10 to 500 mg l(-1) aqueous solutions showed an increase in uptake of over 19% when the biomass is immobilized (maximum biosorption capacity of 89 and 74 mg Cd(II) g(-1) biomass for immobilized and free biomass respectively at a solution pH of 6). Equilibrium was established within 1h and biosorption was well defined by the Langmuir isotherm model. The immobilized biomass could be regenerated using 50 mM HCl, with up to 99% metal recovery and reused in ten biosorption-desorption cycles without significant loss of capacity. This study suggests that such an immobilized biosorbent system has the potential to be used in the industrial removal/recovery of cadmium and other pollutant metal ions from aqueous solution.

  13. Responses of polar organic compounds to different ionic environments in aqueous media are interrelated.

    Science.gov (United States)

    Ferreira, L A; Chervenak, A; Placko, S; Kestranek, A; Madeira, P P; Zaslavsky, B Y

    2014-11-14

    Solubilities of 17 polar organic compounds in aqueous solutions of Na2SO4, NaCl, NaClO4, and NaSCN at the salt concentrations of up to 1.0-2.0 M were determined and the Setschenow constant, ksalt, values were estimated. It was found that NaClO4 may display both salting-in and salting-out effects depending on the particular compound structure. The Setschenow constant values for all the polar compounds examined in different salt solutions are found to be interrelated. Similar relationships were observed for partition coefficients of nonionic organic compounds in aqueous polyethylene glycol-sodium sulfate two-phase systems in the presence of different salt additives reported previously [Ferreira et al., J. Chromatogr. A, 2011, 1218, 5031], and for the effects of different salts on optical rotation of amino acids reported by Rossi et al. [J. Phys. Chem. B, 2007, 111, 10510]. In order to explain the observed relationships it is suggested that all the effects observed originate as responses of the compounds to the presence of a given ionic environment and its interaction with the compounds by forming direct or solvent-separated ionic pairs. The response is compound-specific and its strength is determined by the compound structure and the type (and concentration) of ions inducing the response.

  14. Pencil lead scratches on steel surfaces as a substrate for LIBS analysis of dissolved salts in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jijon, D; Costa, C, E-mail: judijival@hotmail.com [Departamento de Fisica, Escuela Politecnica Nacional, Ladron de Guevara E11-256, Apartado 17-12-866, Quito (Ecuador)

    2011-01-01

    A new substrate for the quantitative analysis of salts dissolved in liquids with Laser-induced Breakdown Spectroscopy (LIBS) is introduced for the first time. A steel surface scratched with HB pencil lead is introduced as a very efficient and sensitive substrate for quantitative analysis of dissolved salts in liquids. In this work we demonstrate the analytical quality of this system with the analysis of the crystalline deposits formed by the dried aqueous solutions of salts. We focused on analytical parameters such as sensitivity and linearity for the salt cations in each case. Four salts were studied (Sr(NO{sub 3}){sub 2}, LiSO{sub 4}, RbCl and BaCl), at nine different concentrations each. To improve linearity and lower the overall error in the calibration curves, we introduce a novel outlier removal method that takes into account the homogeneity of the dry deposits on the analytical surface.

  15. Salts and Co-crystals of Theobromine and their phase transformations in water

    Indian Academy of Sciences (India)

    Palash Sanphui; Ashwini Nangia

    2014-09-01

    Theobromine, a xanthine derivative analogous to caffeine and theophylline, is an effective central nervous system stimulant. It has lower aqueous solubility than caffeine and theophylline. Salts of theobromine with hydrochloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and -toluenesulfonic acid were prepared using liquid-assisted grinding (LAG). Proton transfer from the strong acid to the weak base imidazole N resulted in N+-H…O− hydrogen-bonded supramolecular assemblies of theobromine salts. The mesylate salt is polymorphic with amide N-H…O dimer and catemer synthons for the theobromine cations. A variable stoichiometry for phosphate salts (1:3 and 1:2.5) were observed with the latter being more stable. All new salts were characterized by FT-IR, PXRD, DSC and finally single crystal X-ray diffraction. In terms of stability, these salts transformed to theobromine within 1 h of dissolution in water. Remarkably, the besylate and tosylate salts are 88 and 58 times more soluble than theobromine, but they dissociated within 1 h. In contrast, theobromine co-crystals with gallic acid, anthranilic acid and 5-chlorosalicylic acid were found to be stable for more than 24 h in the aqueous slurry conditions, except malonic co-crystal which transformed to theobrominewithin 1 h.Water mediated phase transformation of theobromine salts and co-crystalmay be due to the incongruency (high solubility difference) between the components. These results suggest that even though traditional salts are highly soluble compared to co-crystals, co-crystals can be superior in terms of stability.

  16. Proton Solvation and Transport in Aqueous and Biomolecular Systems: Insights from Computer Simulations

    OpenAIRE

    Swanson, Jessica M. J.; Maupin, C. Mark; Chen, Hanning; Petersen, Matt K.; Xu, Jiancong; Wu, Yujie; Voth, Gregory A.

    2007-01-01

    The excess proton in aqueous media plays a pivotal role in many fundamental chemical (e.g., acid-base chemistry) and biological (e.g., bioenergetics and enzyme catalysis) processes. Understanding the hydrated proton is, therefore, crucial for chemistry, biology, and materials sciences. Although well studied for over 200 years, excess proton solvation and transport remains to this day mysterious, surprising, and perhaps even misunderstood. In this feature article various efforts to address thi...

  17. Electrolytic orthoborate salts for lithium batteries

    Science.gov (United States)

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  18. Plasma and tissue levels of proangiotensin-12 and components of the renin-angiotensin system (RAS) following low- or high-salt feeding in rats.

    Science.gov (United States)

    Nagata, Sayaka; Kato, Johji; Kuwasako, Kenji; Kitamura, Kazuo

    2010-05-01

    The renin-angiotensin system (RAS) is an essential regulator of the blood pressure and body fluid balance, but the processing cascade or role of the tissue RAS remains obscure. Proangiotensin-12 (proang-12), a novel angiotensin peptide recently discovered in rat tissues, is assumed to function as a factor of the tissue RAS. To investigate the tissue production of proang-12, we measured the circulating and tissue components of the RAS including proang-12 following low-, normal-, or high-salt feeding in rats. Twelve-week-old male Wistar rats were fed a low-salt 0.3% NaCl or high-salt 8% NaCl diet for 7 days and compared with those fed a normal-salt diet of 0.7% NaCl. Low-salt feeding elevated the plasma renin activity and aldosterone concentration, resulting in significant increases in Ang I and Ang II levels in the plasma or kidney tissue, as compared with the normal- or high-salt group. Despite the increases in plasma renin activity, Ang I, and Ang II, the proang-12 levels in plasma and various tissues including the kidneys, small intestine, cardiac ventricles, and brain remained unchanged following low-salt feeding. These results suggest that peptide levels of proang-12 in rat plasma and tissues are regulated in a manner independent of the circulating RAS.

  19. CO2 Capture from Flue gas using Amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    to storage. Typical solvents for the process are based on aqueous solutions of alkanolamines, such as mono-ethanolamine (MEA), but their use implies economic disadvantages and environmental complications. Amino acid salt solutions have emerged as an alternative to the alkanolamines, partlybecause....../or amino acid salt concentrations. The formation of solids poses challenges, but it also holds the promise for improving the efficiency of the capture process. This project focuses on phase equilibrium experiments of five systems CO2 + amino acid salt + H2O, at conditions relevant for the CO2 capture...... process. Also, attention is given to the chemical compositions of the precipitations, which forms as a result of CO2 absorption into the five amino acid salt solutions. Phase equilibrium data are needed to develop safe and economically viable capture processes. Two different experimental apparatuses were...

  20. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts

    Science.gov (United States)

    Krutka, Holly; Sjostrom, Sharon; Morris, William J.

    2016-03-08

    The objective of this invention is to develop a method to reclaim functional sites on a CO.sub.2 sorbent that have reacted with an acid gas (other than CO.sub.2) to form heat stable salts (HSS). HSS are a significant concern for dry sorbent based CO.sub.2 capture because over time the buildup of HSS will reduce the overall functionality of the CO.sub.2 sorbent. A chemical treatment can remove the non-CO.sub.2 acid gas and reclaim functional sites that can then be used for further CO.sub.2 adsorption.

  1. Study on the Formation of Urea or Salt Induced Vesicles in Built-system Surfactant

    Institute of Scientific and Technical Information of China (English)

    Chang Gang HU; Hui XIE; Gan Zuo LI; Ya AN; Zhong Ni WANG; Xiao Yi ZHANG; Jing Ping TIAN

    2005-01-01

    The spontaneous formation of vesicles in the aqueous of cationic surfactant phosphate(PTA) and anionic surfactant sodium dodecyl sulfate (SDS) at certain mixing ratios have obtained1.The addition of urea or NaI will expand the range of spontaneous vesicle formation. The fact is demonstrated by negative-staining transmission electron microscope(TEM) and dynamic light scattering(DLS) methods. The phenomenon especially in the part of urea is reported by us at first.Mechanism of urea/NaI-induced vesicles formation is discussed from the viewpoint of the molecular geometry packing parameter f, conformation and interaction.

  2. Chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O

    Science.gov (United States)

    Mibe, K.; Kawamoto, T.; Ono, S.

    2012-12-01

    Knowing the chemical compositions of fluid and melt is fundamental in understanding the magma genesis and chemical differentiation in the Earth's interior. We investigated the stability fields of aqueous fluid, silicate melt, and supercritical fluid magma using in-situ x-ray radiography and the second critical endpoint in the system peridotite-H2O was determined to be around 3.8 GPa (Mibe et al., 2007, JGR). Using the quenched recovered samples obtained by Mibe et al. (2007), we determined the chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O by EPMA analyses. A 10- to 30-μm diameter electron beam was used to obtain the composition of quenched materials from aqueous fluid, silicate melt, and supercritical fluid. The compositions of coexisting aqueous fluid and silicate melt were determined at 3.3 GPa and 3.6 GPa and 1180°C. In both samples, olivine coexists with aqueous fluid and silicate melt. In the run at 3.3 GPa, the composition of aqueous fluid was high-Mg dacitic, whereas the composition of silicate melt was hydrous peridotite. In the run at 3.6 GPa, the composition of aqueous fluid was high-Mg andesitic, whereas the composition of silicate melt was hydrous komatiitic. Although aqueous fluids in both runs are high-Mg, both MgO and FeO preferentially enters into silicate melt compared to aqueous fluid.

  3. Studies of efficiency in a perforated rotating disc contactor using a polymer-polymer aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    L. A. Sarubbo

    2005-09-01

    Full Text Available The mass transfer process in a perforated rotating disc contactor (PRDC using a polymer-polymer aqueous two-phase system was investigated. The results show that the efficiency did not show a regular trend with the increase of the dispersed phase velocity and increased with the rotation velocity. The separation efficiency was higher for three rotating discs than for four discs. The increase in tie-line length decreased the efficiency. The separation efficiency reached high values, about 96% under conditions studied in this work.

  4. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    Energy Technology Data Exchange (ETDEWEB)

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  5. Can affinity interactions influence the partitioning of glucose-6-phosphate dehydrogenase in two-phase aqueous micellar systems?

    Directory of Open Access Journals (Sweden)

    André M. Lopes

    2008-01-01

    Full Text Available In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.

  6. Phosphate salts

    Science.gov (United States)

    ... levels that are too high, and for preventing kidney stones. They are also taken for treating osteomalacia (often ... But intravenous phosphate salts should not be used. Kidney stones (nephrolithiasis). Taking potassium phosphate by mouth might help ...

  7. Technology demonstration: geostatistical and hydrologic analysis of salt areas. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P.G.; Oberlander, P.L.; Rice, W.A.; Devary, J.L.; Nelson, R.W.; Tucker, P.E.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) requested Pacific Northwest Laboratory (PNL) to: (1) use geostatistical analyses to evaluate the adequacy of hydrologic data from three salt regions, each of which contains a potential nuclear waste repository site; and (2) demonstrate a methodology that allows quantification of the value of additional data collection. The three regions examined are the Paradox Basin in Utah, the Permian Basin in Texas, and the Mississippi Study Area. Additional and new data became available to ONWI during and following these analyses; therefore, this report must be considered a methodology demonstration here would apply as illustrated had the complete data sets been available. A combination of geostatistical and hydrologic analyses was used for this demonstration. Geostatistical analyses provided an optimal estimate of the potentiometric surface from the available data, a measure of the uncertainty of that estimate, and a means for selecting and evaluating the location of future data. The hydrologic analyses included the calculation of transmissivities, flow paths, travel times, and ground-water flow rates from hypothetical repository sites. Simulation techniques were used to evaluate the effect of optimally located future data on the potentiometric surface, flow lines, travel times, and flow rates. Data availability, quality, quantity, and conformance with model assumptions differed in each of the salt areas. Report highlights for the three locations are given.

  8. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  9. Immobilization of lipase on sepabeads and its application in pentyl octanoate synthesis in a low aqueous system

    Directory of Open Access Journals (Sweden)

    Knežević-Jugović Zorica D.

    2008-01-01

    Full Text Available The object of the study was to investigate the process conditions relevant for the pentyl octanoate production with the lipase from Candida rugosa immobilized on Sepabeads EC-EP carrier. This is an epoxide-containing commercial polymethacrylic carrier with suitable characteristics for enzyme immobilization. The immobilized lipase suitable for pentyl octanoate synthesis has been prepared by a direct lipase binding to polymers via their epoxide groups. The enzymatic activity was determined by both hydrolysis of olive oil in an aqueous system and esterification of n-pentanol with octanoic acid in a low aqueous system. The influence of several important reaction parameters such as temperature, initial water content, initial substrate molar ratio, enzyme loading and time of adding of molecular sieves in the system is carefully analyzed by means of an experimental design. Production of the ester was optimized and an ester production response equation was obtained, making it possible to predict ester yields from known values of the five main factors. Almost complete conversion (>99% of the substrate to ester could be realized, using lipase loading as low as 37 mg/g dry support and in a relatively short time (24 h at 45ºC, when high initial substrate molar ratio of 2.2 is used.

  10. Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems.

    Science.gov (United States)

    Jiang, Zhi-Guo; Zhang, Hai-De; Wang, Wei-Tao

    2015-05-01

    A simple and inexpensive aqueous two-phase affinity partitioning system using metal ligands was introduced to improve the selectivity of commercial papain extraction. Polyethylene glycol 4000 was first activated using epichlorohydrin, then it was covalently linked to iminodiacetic acid. Finally, the specific metal ligand Cu(2+) was attached to the polyethylene glycol-iminodiacetic acid. The chelated Cu(2+) content was measured by atomic absorption spectrometry as 0.88 mol/mol (polyethylene glycol). The effects on the purification at different conditions, including polyethylene glycol molecular weight (2000, 4000, and 6000), concentration of phase-forming components (polyethylene glycol 12-20% w/w and sodium sulfate 12-20%, w/w), metal ligand type, and concentration, system pH and the commercial papain loading on papain extraction, were systematically studied. Under optimum conditions of the system, i.e. 18% w/w sodium sulfate, 18% w/w polyethylene glycol 4000, 1% w/w polyethylene glycol-iminodiacetic acid-Cu(2+) and pH 7, a maximum yield of 90.3% and a degree of purification of 3.6-fold were obtained. Compared to aqueous two phase extraction without ligands, affinity partitioning was found to be an effective technique for the purification of commercial papain with higher extraction efficiency and degree of purification.

  11. Cyanoplatinate (II) salts as luminescent materials for scintillation counting

    DEFF Research Database (Denmark)

    Bergsøe, P.; Hansen, P.Gregers; Jacobsen, C.F.

    1962-01-01

    described, and for two other salts information on the composition was lacking. Many of the salts are colorless and the luminescence is in most cases in the blue region. The measurements include light yield and decay time under excitation with fast electrons. Most of the salts were found to be efficient......Eleven cyanoplatinate (II) salts have been studied under excitation with fast, charged particles. The salts were prepared via the barium compound, and crystals were grown from aqueous solutions. The formulae were determined by standard analytical procedures. Four of the salts were not previously...

  12. The Application of Corporate Identity System (CIS) in Chinese Salt Industry Companies and Salt Brands%论CIS在我国食盐企业和品牌中的应用

    Institute of Scientific and Technical Information of China (English)

    赵月华

    2012-01-01

    Corporate Identity System is a systematic engineering method, which aims at promoting corporation's image building in an all-round and orderly way. The introduction of this system has become a long - term competitive strategy of Chinese salt especially table salt industry companies. The establishment of Corporate Identity System on salt industry companies could be realized in the principle of a clear - specified inner parts, framework as well as function, by such important measures as optimizing brands' image design, respecting public relations and advertisement, improving quality and service, and implementing the overall planning and development.%企业形象识别系统(CorporateIdentitySystem),是企业由内而外有计划地展现形象的系统工程.引进这一系统,已成为我国盐业企业特别是食盐企业的一项长期竞争战略.建立食盐企业形象识别系统,要在明确该系统的内涵、构架和功能的基础上,采取优化品牌整体形象设计、重视公关与广告、提高内在质量与服务水平、实施统筹规划建设等重要措施.

  13. Patterns and determinants of halophilic archaea (class halobacteria) diversity in tunisian endorheic salt lakes and sebkhet systems.

    Science.gov (United States)

    Najjari, Afef; Elshahed, Mostafa S; Cherif, Ameur; Youssef, Noha H

    2015-07-01

    We examined the diversity and community structure of members of the halophilic Archaea (class Halobacteria) in samples from central and southern Tunisian endorheic salt lakes and sebkhet (also known as sebkha) systems using targeted 16S rRNA gene diversity survey and quantitative PCR (qPCR) approaches. Twenty-three different samples from four distinct locations exhibiting a wide range of salinities (2% to 37%) and physical characteristics (water, salt crust, sediment, and biofilm) were examined. A total of 4,759 operational taxonomic units at the 0.03 (species-level) cutoff (OTU0.03s) belonging to 45 currently recognized genera were identified, with 8 to 43 genera (average, 30) identified per sample. In spite of the large number of genera detected per sample, only a limited number (i.e., 2 to 16) usually constituted the majority (≥80%) of encountered sequences. Halobacteria diversity showed a strong negative correlation to salinity (Pearson correlation coefficient = -0.92), and community structure analysis identified salinity, rather than the location or physical characteristics of the sample, as the most important factor shaping the Halobacteria community structure. The relative abundance of genera capable of biosynthesis of the compatible solute(s) trehalose or 2-sulfotrehalose decreased with increasing salinities (Pearson correlation coefficient = -0.80). Indeed, qPCR analysis demonstrated that the Halobacteria otsB (trehalose-6-phosphatase)/16S rRNA gene ratio decreases with increasing salinities (Pearson correlation coefficient = -0.87). The results highlight patterns and determinants of Halobacteria diversity at a previously unexplored ecosystem and indicate that genera lacking trehalose biosynthetic capabilities are more adapted to growth in and colonization of hypersaline (>25% salt) ecosystems than trehalose producers.

  14. Estimation of thermodynamic properties of the ternary molten salt system, LiF-NaF-BeF2, by the modified Peng-Robinson equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dalin; QIU Suizheng; SU Guanghui; JIA Dounan

    2007-01-01

    The molten salt reactor (MSR), which is one of the generation IV reactors, can meet the demand of transmutation and breeding. The thermodynamic properties of the molten salt system like LiF-NaF-BeF2 influence the design and construction of the fuel salt and coolant in the MSR for the new generation. In this paper, the equation of state of the ternary system 15%LiF-58%NaF-27%BeF2, over the temperature range from 873.15 to 1 073.15 K at one atmosphere pressure, is described using a modified Peng-Robinson (PR) equation. The densities of the ternary system and its components are estimated by this equation directly, and compared with the experimental data. Based on the equation of state, the other thermodynamic properties such as the enthalpy, entropyand heat capacity at constant pressure are estimated by the residual function method and the fugacity coefficient method respectively. The densities calculated by PR equation are highly in agr eement with the experimental data, and the enthalpy, entropy and heat capacity evaluated by the two different methods are consistent with each other. It can be concluded that the modified PR equation can be applied to evaluate the density of the molten salt system, and it is recommended that it be used as the basis to estimate the enthalpy, entropy and heat capacity of the molten salt system.

  15. Kinetics of Methane Hydrate Formation in Pure Water and Inhibitor Containing Systems

    Institute of Scientific and Technical Information of China (English)

    QIUJunhong; GUOTianmin

    2002-01-01

    Kinetic data of methane hydrate formation in the presence of pure water,brines with single salt and mixed salts,and aqueous solutions of ethylene glycol(EG) and salt+EG were measured.A new kinetic model of hydrate formation for the methane+water systems was developed based on a four-step formation mechanism and reaction kinetic approach.The proposed kinetic model predicts the kinetic behavior of methane hydrate formation in pure water with good accuracy.The feasibility of extending the kenetic model of salt(s) and EG containing systems was explored.

  16. Central nervous system activity of an aqueous acetonic extract of Ficus carica L. in mice

    Directory of Open Access Journals (Sweden)

    Mittal M Bhanushali

    2014-01-01

    Full Text Available Background: Ficus carica Linn. is reported to possess variety of activities, but its potential in CNS disorders is still to be explored. Objective: The present study was carried out to evaluate the CNS depressant activity of aqueous acetonic extract of Ficus carica Linn on different models in mice. Materials and Methods: The aerial parts of the plant Ficus carica L. were extracted with aqueous acetone and the solvent was removed by rotary vacuum evaporator under reduced pressure. A crude extract was given orally and its effects were tested on ketamine-induced sleeping time, muscle-coordination, anxiety (elevated-plus maze and Staircase test, convulsions [maximal electroshock (MES and pentylenetetrazole (PTZ-induced seizures], and nociception. In addition, we determined the levels of neurotransmitters, norepinephrine (NE and 5-hydroxytryptamine (5-HT. Results: Results from the experimental models tested showed: (1 a delay on onset and prolongation of sleep of ketamine-induced sleeping time; (2 significant muscle relaxant activity; (3 a significant attenuation in the anxiety-response (4 a delay in the onset of seizures and reduction in duration of seizures and mortality induced by MES and PTZ; (5 a reduction in the licking time in nociception test and (6 increased levels of NE and 5-HT. Conclusion: This suggests that Ficus carica L. exerts its CNS depressive effect by modulating the neurotransmitters NE and 5-HT in the brain.

  17. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.

    Science.gov (United States)

    Ekka, Deepak; Roy, Mahendra Nath

    2013-10-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of β-cyclodextrin (β-CD) have been probed by thermophysical properties. Density (ρ), viscosity (η), and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume ([Formula: see text]), viscosity B-coefficient and limiting apparent molar adiabatic compressibility ([Formula: see text]). The changes on the enthalpy ([Formula: see text]) and entropy ([Formula: see text]) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes, [Formula: see text], have been interpreted in terms of solute-cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of β-CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  18. [Phase equilibria in water-defatted milk proteins-carboxymethylcellulose sodium salt systems].

    Science.gov (United States)

    Glotova, Iu K; Pavlovskaia, G E; Lashko, N P; Antonov, Iu A; Tolstoguzov, V B

    1993-01-01

    Phase equilibria in water mixtures of skimmed milk with sodium salt of carboxymethylcellulose (CMC) was studied using two degrees of CMC polymerization (500 and 200) and substitution (0.8 and 0.5). The increase of the polymerization degree from 200 to 500 resulted in a higher protein yield in the protein phase, while the decrease of the substitution degree from 0.8 to 0.5 caused a noticeable decrease of asymmetry of phase diagrams. The phase separation was accompanied by ion exchange: potassium and calcium ions were mainly found in the protein phase. The highest yield of milk protein into the protein phase was 85% at a CMC concentration of 0.7%. The main protein component of the polysaccharide phase was alpha-lactalbumin.

  19. PHOTOPOLYMERIZATION INITIATED BY DIMETHYLAMINOCHALCONE/DIPHENYL-IODONIUM SALT COMBINATION SYSTEM SENSITIVE TO VISIBLE LIGHT

    Institute of Scientific and Technical Information of China (English)

    LI Jun; LI Miaozhen; SONG Huaihai; YANG Yongyuan; WANG Erjian

    1993-01-01

    Several dimethylamino-substituted chalcone (I.e.dimethylaminobenzal acetophenone) (DBA) derivatives with intramolecular charge transfer transition character were used as visible light sensitizers for radical photopolymerization initiated by iodonium salt (DPIO). Initiating radical species is produced from DBA sensitized photolysis of DPIO through the single electron transfer,accompanying the bleaching of DBA.The activity of DBA decreases as a function of substituent attached to phenyl ring in the order:DBA-2(OCH3)>DBA-1(H)>DBA-3(Cl).The kinetic study on photopolymerization of MMA was carried out in CH3CN solution at 30℃ by dilatometry.The polymerization rate was determined to be proportional to the concentration with exponents of 0.42,0.25 and 0.86 for DPIO,DBA-1and MMA,respectively.

  20. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyejeong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lim, Sangyong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Chung, Jinwoo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Soohyun [Glycomics Team, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Dongho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-06-15

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  1. Isolation and fractionation of CHO chromosomes in aqueous two phase systems using charged polymers and base specific macroligands.

    Science.gov (United States)

    Klaar, J; Kula, M R

    1986-02-01

    Chromosomes were isolated in a preparative scale by synchronisation of CHO cells with a double Thymidine block followed by an arrest in the metaphase by addition of Colcemid. Under proper cultivation conditions a mitotic index of 77% total cells could be routinely achieved. Bulk chromosome preparations free of nuclei and other subcellular particles have been obtained by low speed centrifugation followed by a 60 transfer countercurrent distribution using aqueous two phase systems composed of polyethylenglycol and dextran. The partition of CHO chromosomes previously purified in aqueous two phase systems were studied further to develop a protocol for the separation and isolation of individual chromosomes. Partition experiments with chromosomes changing the electrostatic phase potential by addition of charged PEG-derivatives suggest the existence of relatively highly charged chromosome groups. Most promising results with regard to separation were obtained using two PEG-derivatives, which interact specifically with the bases in DNA. For this affinity partitioning a GC- and AT-specific macroligand were employed. Comparing CCD's using each of these ligands information on the GC and AT content of exposed DNA in the chromosomes groups could be derived, demonstrating that specific sequences of DNA are accessible at the surface of metaphase chromosomes.

  2. FY'99 final report for the expedited technology demonstration project: demonstration test results for the MSO/off-gas and salt recycle system

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G; Hsu, P C

    1999-05-01

    Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May 1998. In FY98, we have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils and solvents, booties, plastic pellets, ion exchange resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. The results of the demonstration conducted in FY98 has been reported [1]. In FY99 (October 1998 to April 1999) we conducted further testing in the MSO/off-gas system with ion exchange resins, two real waste specimens, activated carbon, and TNT-loaded activated carbon, both at regular feed rates and higher feed rates up to a superficial gas velocity of 1.75 ft/s. We also drained the salt three times (SR7, SR8, SR9) in FY99 and sent the spent salts to the salt recycle system for further processing. This report presents the results obtained from the demonstration of the MSO/off-gas system and the salt recycle system from October 1998 to April 1999. We then shut down the operation and cleaned the

  3. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Scott [Univ of KY, dept of chemical and materials engineering; lynch, Andrew [Univ of KY, dept of chemical and materials engineering; Bachas, Leonidas [Univ of KY, Dept of Chemistry; hampson, Steve [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Ormsbee, Lindelle [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Bhattacharyya, Dibakar [Univ of KY, dept of chemical and materials engineering

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  4. Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On May 25, 2014, a rain-on-snow induced rock avalanche occurred in the West Salt Creek Valley on the northern flank of Grand Mesa in western Colorado. The avalanche traveled 4.6 km down the confined valley, killing 3 people. The avalanche was rare for the contiguous U.S. because of its large size (54.5 Mm3) and long travel distance. To understand the avalanche failure sequence, mechanisms, and mobility, we mapped landslide structures, geology, and ponds at 1:1000-scale. We used high-resolution, Unmanned Aircraft System (UAS) imagery from July 2014 as a base for our field mapping. Here we present the map data and UAS imagery. The data accompany an interpretive paper published in the journal Geosphere. The full citation for this interpretive journal paper is: Coe, J.A., Baum, R.L., Allstadt, K.E., Kochevar, B.F., Schmitt, R.G., Morgan, M.L., White, J.L., Stratton, B.T., Hayashi, T.A., and Kean, J.W., 2016, Rock avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek Valley, western Colorado: Geosphere, v. 12, no. 2, p. 607-631,  doi:10.1130/GES01265.1. 

  5. Cytogenotoxicity of Cymbopogon citratus (DC Stapf (lemon grass aqueous extracts in vegetal test systems

    Directory of Open Access Journals (Sweden)

    Saulo M. Sousa

    2010-06-01

    Full Text Available The lemon grass, Cymbopogon citratus (DC Stapf, is an important species of Poaceae family commonly used in the folk medicine in many countries. The aim of this study was to investigate the cytotoxic and genotoxic effects of aqueous extracts from C. citratus leaves on Lactuca sativa (lettuce root tip meristem cells by cytogenetic studies that have never been done before for lemon grass extracts. For this, lettuce seeds were treated for 72h with different concentrations of lemon grass aqueous extracts (5; 10; 20 and 30 mg/mL. The percentage of germination, root development and cellular behavior were analyzed, and the results showed that the highest concentration of aqueous extracts reduced the mitotic index, the seed germination and the root development of lettuce. The extracts have also induced chromosome aberrations and cellular death in the roots cells of L. sativa.O capim-limão, Cymbopogon citratus (DC Stapf, é uma importante espécie da família Poaceae com uma comum utilização na medicina popular em vários países. O objetivo deste estudo foi investigar os efeitos citotóxicos e genotóxicos do extrato aquoso das folhas de C. citratus em células meristemáticas de Lactuca sativa (alface por meio de estudos citogenéticos, uma vez que estudos desta natureza não existem para extratos aquosos de capim-limão. Para isso, sementes de alface foram tratadas por 72h com diferentes concentrações de extratos aquosos feitos das folhas de capim-limão (5, 10, 20 e 30 mg/mL. O percentual de germinação, desenvolvimento radicular e o comportamento celular foram avaliados e os resultados mostraram que as concentrações mais elevadas dos extratos aquosos reduziram o índice mitótico, o percentual de germinação das sementes e desenvolvimento radicular da alface. Os extratos também induziram aberrações cromossômicas e morte celular nas células das raízes de L. sativa.

  6. Polyamines confer salt tolerance in mung bean (Vigna radiata L. by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense and methylglyoxal detoxification systems

    Directory of Open Access Journals (Sweden)

    Kamrun Nahar

    2016-07-01

    Full Text Available The physiological roles of PAs (putrescine, spermidine, and spermine were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2. Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•– generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl and relative water content (RWC. Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase and glutathione peroxidase and glyoxalase enzyme (glyoxalase II, which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected in improved tissue water and chl content, and better seedling growth.

  7. Sorption of water vapor, hydration, and viscosity of carboxymethylhydroxypropyl guar, diutan, and xanthan gums, and their molecular association with and without salts (NaCl, CaCl2, HCOOK, CH3COONa, (NH4)2SO4 and MgSO4) in aqueous solution.

    Science.gov (United States)

    Banerjee, Paltu; Mukherjee, Indrajyoti; Bhattacharya, Subhash; Datta, Sidhhartha; Moulik, Satya P; Sarkar, Diptabhas

    2009-10-06

    Gums are routinely used in food industry, pharmacy and oil recovery process. In these uses, the hydrocolloids very often encounter interactions with salts at moderate to high temperature. Since they are normally employed in the form of solution and gel, their viscous or fluidity properties need detailed investigation. In the present work, properties such as water vapor adsorption of finely powdered carboxymethylhydroxypropyl derivatized guar (CMHPG) as well as xanthan (Xn) and diutan (Dn) gums, their hydration in solution, their viscosity behaviors, and salt effects on fluidity have been studied. The concentration domains for the existence of free and associated molecules in the studied solutions have been assessed from the viscosity results. The gums have been found to bind a fair amount of water from the vapor phase with them. In solution, they can interact and arrest a large amount of water in their folded configuration. Intrinsic viscosities of the gums in aqueous medium declined in the presence of salts. The activation energies for their viscous flow were moderate and comparable, and were dependent on their concentrations. From the power law relation and viscosity master curve behavior mostly two critical association states of the macromolecular dispersions were envisaged.

  8. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system.

    Science.gov (United States)

    Hori, Hisao; Yamamoto, Ari; Kutsuna, Shuzo

    2005-10-01

    Photochemical decomposition of persistent and bioaccumulative long-chain (C9-C11) perfluorocarboxylic acids (PFCAs) with persulfate ion (S2O8(2-)) in an aqueous/liquid CO2 biphasic system was examined to develop a technique to neutralize stationary sources of the long-chain PFCAs. The long-chain PFCAs, namely, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUA), which are used as emulsifying agents and as surface treatment agents in industry, are relatively insoluble in water but are soluble in liquid CO2; therefore, introduction of liquid CO2 to the aqueous photoreaction system reduces the interference of colloidal PFCA particles. When the biphasic system was used to decompose these PFCAs, the extent of reaction was 6.4-51 times as high as that achieved in the absence of CO2. In the biphasic system, PFNA, PFDA, and PFUA (33.5-33.6 micromol) in 25.0 mL of water were 100%, 100%, and 77.1% decomposed, respectively, after 12 h of irradiation with a 200-W xenon-mercury lamp; F- ions were produced as a major product, and short-chain PFCAs, which are less bioaccumulative than the original PFCAs, were minor products. All of the initial S2O8(2-) was transformed to SO42-. The system also efficiently decomposed PFCAs at lower concentrations (e.g., 4.28-16.7 micromol of PFDA in 25.0 mL) and was successfully applied to decompose PFNA in floor wax.

  9. Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCI-MgCI2-H20) and (KCI-MgCI2-H20) at 308.15 K

    Institute of Scientific and Technical Information of China (English)

    Tianlong DENG; Baojun ZHANG; Dongchan LI; Yafei GUO

    2009-01-01

    The solubilities and densities of the aqueous metastable ternary systems (NaCl·MgCl2·H2O) and (KC1·MgCl2·H2O) at 308.15 K were determined by the isothermal evaporation method. On the basis of the experimental results, the phase diagrams for those systems were plotted. It was found that the former system belongs to the hydrate-I type with one invariant point of (NaCl + MgCl2·6H2O), two univariant curves, and two crystallization regions corresponding to halite (NaCl) and bischofite (MgCl2 · 6H2O); and the latter system belongs to the type of incongruent-double salts with two invariant points of (KC1+ KCl·MgCl2·6H2O) and (MgCl2·6H2O + KC1 ·MgCl2·6H2O), three univariant curves, and three crystallization regions corresponding to potassium chloride (KC1), carnallite (KC1·MgCl2 ·6H2O) and bischofite (MgCl2·6H2O). No solid solutions were found in both systems.

  10. Measurement of CO(2) Dissolved in Aqueous Solutions Using a Modified Infrared Gas Analyzer System.

    Science.gov (United States)

    Schumacher, T E; Smucker, A J

    1983-05-01

    Total dissolved inorganic carbon (SigmaCO(2)) and aqueous carbon dioxide (H(2)CO(3) (*)) in nutrient solutions may be measured by the injection of small gas or liquid samples (1 microliter to 8 milliliters) into a gas stripping column connected in-line with an infrared gas analyzer. The measurement of SigmaCO(2) in solution requires sample acidification, while H(2)CO(3) (*) and gaseous CO(2) are measured without the addition of lactic acid. The standard curve for SigmaCO(2) was linear up to 300 nanomoles CO(2). Maximum sensitivity was approximately 300 picomoles. Measurements of H(2)CO(3) (*) were independent of pH. Consequently, SigmaCO(2) and H(2)CO(3) (*) could be used to calculate the pH, HCO(3) (-), and CO(3) (2-) values of nutrient solutions. Injection and complete analyses required from 0.8 to 2 minutes.

  11. Thermodynamic Studies of Aqueous m-s-m Gemini Surfactant Systems.

    Science.gov (United States)

    Wettig, S. D.; Verrall, R. E.

    2001-03-15

    The specific conductance, surface tension, and apparent molar volume properties of aqueous solutions of two series of m-s-m gemini surfactants-one having a constant spacer s(=3) with m=8, 10, 12, and 16 and the other having a constant alkyl chain length m(=12) with variable spacer length 2bolaform cation. Poor agreement was obtained with the first method, while good agreement was obtained with the second. The observed variation in the volume change due to micelle formation, DeltaV(φ,M), is consistent with variations in the head group area and critical micelle concentrations and can be rationalized in terms of the location of the spacer-either at the micelle/water interface, or in the micelle interior. Results obtained for the 12-φ-12 surfactant indicate that rigidity of the spacer has no measurable effect on the micellization process for such a short spacerlength. Copyright 2001 Academic Press.

  12. Effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1978-12-01

    Progress is reported for the second year of this project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. The project objectives for Year 2 were pursued through five tasks: literature reviews on process water constituents, possible environmental impacts and potential control technologies; toxicity bioassays on the effects of coal gasification and oil shale retorting process waters and six process water constituents on aquatic biota; biodegradation studies on process water constituents; bioaccumulation factor estimation for the compounds tested in the toxicity bioassays; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Results in each of the five areas of research are reported.

  13. Photodegradation of 2,4-Dichlorophenol in Aqueous Systems under Simulated and Natural Sunlight

    Directory of Open Access Journals (Sweden)

    Dorota Gryglik

    2016-01-01

    Full Text Available The work presents results of studies on 2,4-dichlorophenol (2,4-DCP degradation in aqueous solutions using photochemically initiated processes by simulated and natural sunlight. A number of possible substrate photodegradation routes were investigated, by both direct photolysis and photosensitized oxidation process. The major role of singlet oxygen in 2,4-DCP photodegradation was proved. Rose Bengal and derivatives of porphine and phthalocyanine were used as sensitizers. The influences of various process parameters on the reaction rate were investigated. On the basis of experimental data reaction rate constants of 2,4-DCP photosensitized oxidation were determined. The possibility of using natural sunlight to degrade 2,4-DCP in water in the middle latitudes was stated. The acute toxicity bioassay was conducted with the marine bacterium Vibrio fischeri as a bioluminescent indicator. The obtained results encourage further research on this process.

  14. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  15. The applicability of activities in kinetic expressions: A more fundamental approach to represent the kinetics of the system CO2–OH-salt in terms of activities

    NARCIS (Netherlands)

    Haubrock, J.; Hogendoorn, J.A.; Versteeg, G.F.

    2007-01-01

    The applicability of utilizing activities instead of concentrations in kinetic expressions has been investigated using the reaction of CO2 in sodium hydroxide solutions also containing different neutral salts (LiCl, KCl and NaCl) as model system. For hydroxide systems it is known that when the react

  16. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids(ILs) as solvents has been investigated.The distribution ratio of Sr2+ can reach as high as 103 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  17. Thermodynamics on the micellization of CPC/TX-100 mixed surfactant system in aqueous solutions of KCI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yung Cheol [Health and Environmental Research Institute, Daegu (Korea, Republic of); Lee, Byung Hwan [Korea University of Technology and Education, Chonan (Korea, Republic of)

    2005-10-15

    The Critical Micelle Concentration (CMC) of the mixed surfactant system of CetylPyridinium Chloride (CPC) with Triton X-100 (TX-100) in aqueous solutions of KCI were determined by using the UV absorbance method from 15 .deg. C to 35 .deg. C. Thermodynamic parameters ({delta} G{sup o}{sub m}, {delta} H{sup o}{sub m}, and {delta} S{sup o}{sub m}), associated with the micelle formation of CPC/TX-100 mixed surfactant system, have been estimated from the temperature dependence of CMC values. The calculated values of {delta} G{sup o}{sub m} are all negative but the values of {delta} S{sup o}{sub m} are positive in the whole measured temperature region. On the other hand, the values of {delta} H{sup o}{sub m} are positive or negative, depending on the measured temperature.

  18. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    XU Chao; SHEN XingHai; CHEN QingDe; GAO HongCheng

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (Ils) as solvents has been investigated.The distribution ratio of Sr~(2+) can reach as high as 10~3 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na~+ and K~+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  19. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO3/CH3(CH2)nN+(CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  20. Dehalogenation of Aryl Halides Catalyzed by MontK10 Immobilized PVP-Pd-Sn Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydrogen transfer dehalogenation of aryl halides. The catalytic reaction was carried out in aqueous system in the presence of phase transfer catalyst and sodium formate as hydrogen source. The catalyst with loading Pd 0.19wt% and molar ratio of Pd/Sn 8:1 gives the highest activity and good stability. This catalyst is more reducible with NaBH4. It is also found that the catalyst is easily separated from the reaction system.

  1. Calculation of the molecular exchanging energy of binary surfactants system on the surface monolayer of aqueous solution

    Institute of Scientific and Technical Information of China (English)

    WANG ZhengWu; YI XiZhang

    2007-01-01

    By using the binary anionic/cationic surfactants system CH3(CH2)nOSO-3/CH3(CH2)nN+(CH3)3 as an example, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solution has been studied. εcan be obtained with two methods. One is from the relationship between εand the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.

  2. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    Science.gov (United States)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  3. Formation and characteristics of aqueous two-phase systems formed by a cationic surfactant and a series of ionic liquids.

    Science.gov (United States)

    Wei, Xi-Lian; Wang, Xiu-Hong; Ping, A-Li; Du, Pan-Pan; Sun, De-Zhi; Zhang, Qing-Fu; Liu, Jie

    2013-11-15

    Aqueous two-phase systems (ATPS) were obtained in the aqueous mixtures of a cationic surfactant and a series of ionic liquids (ILs). The effects of IL structure, temperature and additives on the phase separation were systematically investigated. The microstructures of some ATPS were observed by freeze-fracture replication technique. Lyotropic liquid crystal was found in the bottom phase besides micelles under different conditions. Remarkably, both IL structure and additives profoundly affected the formation and properties of the ATPSs. The phase separation can be attributed to the existence of different aggregates and the cation-π interactions of the cationic surfactant with the ILs, which has a significant role in the formation of ATPS. The extraction capacity of the studied ATPS was also evaluated through their application in the extraction of two biosubstances. The results indicate that the ILs with BF4(-) as anion show much better extraction efficiencies than the corresponding ILs with Br(-) as anion do under the same conditions. l-Tryptophan was mainly distributed into the NPTAB-rich phase, while methylene blue and capsochrome were mainly in the IL-rich phase.

  4. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    Science.gov (United States)

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  5. Phase behavior and molecular dynamics simulation studies of new aqueous two-phase separation systems induced by HEPES buffer.

    Science.gov (United States)

    Taha, Mohamed; Khoiroh, Ianatul; Lee, Ming-Jer

    2013-01-17

    Here, for the first time, we show that with addition of a biological buffer, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), into aqueous solutions of tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone, the organic solvent can be excluded from water to form a new liquid phase. The phase diagrams have been determined at ambient temperature. In order to understand why and how a zwitterion solute (HEPES) induced phase separation of the investigated systems, molecular dynamics (MD) simulation studies are performed for HEPES + water + THF system. The MD simulations were conducted for the aqueous mixtures with 12 different compositions. The reliability of the simulation results of HEPES in pure water and beyond the phase separation mixtures was justified by comparing the densities obtained from MD with the experimental values. The simulation results of HEPES in pure THF and in a composition inside the phase separation region were justified qualitatively. Interestingly, all HEPES molecules entirely aggregated in pure THF. This reveals that HEPES is insoluble in pure THF, which is consistent with the experimental results. Even more interestingly, the MD simulation for the mixture with composition inside the phase separation region showed the formation of two phases. The THF molecules are squeezed out from the water network into a new liquid phase. The hydrogen bonds (HBs), HB lifetime, HB Gibbs energy (ΔG), radial distribution functions (RDFs), coordination numbers (CNs), electrostatic interactions, and the van der Waals interactions between the different species have been analyzed. Further, MD simulations for the other phase separation systems by choosing a composition inside the two liquids region for each system were also simulated. Our findings will therefore pave the way for designing new benign separation auxiliary agents.

  6. Correlation and Prediction of Salt Effect on Vapor Liquid Equilibrium for the System of 2-Propanol/Water

    Institute of Scientific and Technical Information of China (English)

    Fu Jiquan

    2008-01-01

    Binary vapor liquid equilibrium (VLE) data were measured for the systems of 2-propanol/ethanediol and ethanediol/potassium acetate (KAc). VLE data for the system of propanol/ethanediol was tested using thermodynamic consistency test. The average values of Δy1 and ΔP were 0.0776 and 0.1542 kPa, respectively. The above two sets of VLE data were correlated with the NRTL model. Ternary VLE data for the system of 2-propanol/water/KAc was used to obtain the more suitable parameters of NRTL model for binary systems of 2-propanol/KAc and water/KAC (called TDCM). For multicomponent systems, ternary and quaternary, the VLE values predicted by the NRTL model agreed well with the literature data. Influence of KAc, ethanediol, and the mixture of KAc and ethanediol on volatility between 2propanol and water was investigated respectively. The results showed that the above-mentioned materials and mixture had different influence on volatility between 2-propanol and water. The method for correlation and prediction of salt-containing VLE is simple and effective for the said system.

  7. Mineralization of clapper rail eggshell from a contaminated salt marsh system.

    Science.gov (United States)

    Rodriguez-Navarro, A B; Gaines, K F; Romanek, C S; Masson, G R

    2002-11-01

    The effect of contamination on eggshell mineralization has been studied for clapper rails (Rallus longirostris) inhabiting a contaminated salt marsh in coastal Georgia. To assess the impact of contaminants, the thickness, microstructure (crystal orientation), mineral composition, and chemistry of shell material were analyzed from a contaminated site and a nearby reference site using optical microscopy, X-ray diffraction, inductively coupled plasma mass spectrometry, and gas chromatography with electron capture detector. Eggshells from the contaminated site were generally thinner than those from the reference site. Also, eggshells from the contaminated site were abnormally brittle and contained anomalous microstructural attributes. The combination of reduced shell thickness and anomalous microstructure resulted in weaker eggshells, which in turn could pose a significant threat to the reproductive success of the affected population.PCB concentrations in eggshells were at background levels in both sites. Eggshells from the contaminated site had higher concentrations of heavy metals, specifically mercury, than the reference site. The structural changes observed in eggshells may be related to the concentration of specific metals ( e.g., Mg, Cu, Zn, Pb, and Hg) in shell, however, statistical analyses indicated that metals only explained a small portion of the observed variation in properties ( i.e., thickness, crystal orientation). Further analysis is required to better constrain the factors leading to unusually weak eggshells in the contaminated site.

  8. Aqueous two-phase systems: A simple methodology to obtain mixtures enriched in main toxins of Bothrops alternatus venom.

    Science.gov (United States)

    Gomez, Gabriela; Leiva, Laura; Nerli, Bibiana Beatriz

    2016-08-01

    Phospholipase A2 (PLA2) and protease (P) are enzymes responsible of myotoxic, edematogenic and hemostasis disorder effects observed in the envenomation by Bothrops alternatus pitviper. Their partitioning coefficient (Kp) in different polyethyleneglycol/potassium phosphate aqueous two-phase systems (ATPSs) was determined in order to both achieve a better understanding of the partitioning mechanism and define optimal conditions for toxin isolation. Polyethyleneglycols (PEGs) of molecular weights 1000; 3350; 6000 and 8000; different temperatures (5, 20 and 37 °C) and phase volume ratios of 0.5; 1 and 2 were assayed. PLA2 partitioned preferentially to the top phase while P mainly distributed to the bottom phase. Either entropically- or enthalpically-driven mechanisms were involved in each case (PLA2 and P). The aqueous two-phase system formed by PEG of MW 3350 (12.20% wt/wt) and KPi pH 7.0 (11.82% wt/wt) with a volume ratio of one and a load of 1.25 mg of venom/g of system showed to be the most efficient to recover both enzymes. It allowed obtaining the 72% of PLA2 in the top phase with a purification factor of 2 and the 82% of P at the bottom phase simultaneously. A further adsorption batch step with DEAE-cellulose was used to remove satisfactorily the PEG from the top phase and recover the active PLA2. The proposed methodology is simple, inexpensive, and only requires professionals trained in handling basic laboratory equipment. It could be easily adoptable by developing countries in which the snakebite accidents cause considerable morbidity and mortality.

  9. Influence of Natural Organic Matter on Aggregation, Deposition, and Transport of Fullerene Colloids in Aqueous Systems

    Science.gov (United States)

    Zhang, W.; Rattanaudompol, U.; Powell, T.; Bouchard, D.

    2011-12-01

    Engineered fullerenes are increasingly being used in commercial products (e.g., skin and eye creams, tennis racquets, and lubricants) that may become a significant source for environmental release. A thorough understanding of fullerenes' aggregation in aqueous phase and deposition/transport in porous media is needed for evaluating the environmental persistence of fullerenes and subsequent human or ecological exposure. A number of recent studies have shown that fullerenes form stable colloidal aggregates in aqueous media and that their environmental behaviors largely depend on solution chemistry including ionic strength, solution pH, and the presence of natural organic matter (NOM). Nonetheless, the lack of systematic studies on NOM interaction with fullerene colloids and the coupling of this interaction with ionic strength and solution pH make predicting environmental behaviors of fullerenes a difficult task. In this study, electrophoretic mobility (EM), particle size, and aggregation kinetics of C60 colloidal suspensions were measured under a range of ionic strength (1.5-500.5 mM), solution pH (4, 7.8, and 10), and humic (0-9 mg C/L) or fulvic (0-11 mg C/L) acid concentrations. The EM data could be modeled with Ohshima's soft particle theory to probe thickness, softness, and charge density of adsorbed NOM layers on fullerene colloids. Under select conditions that represent low and high mobility, deposition studies using a quartz crystal microbalance and transport experiments in saturated and unsaturated sand columns will be conducted. It is anticipated that NOM may alter the transport of fullerene C60 differently in unsaturated media compared with saturated media. Our preliminary results showed that humic acid is more effective than fulvic acid in stabilizing fullerene suspensions and the extent of this stabilizing effect is a function of ionic strength when buffered at pH 7.8 with 0.5 mM NaHCO3. The findings of this study will help better assess the fate and

  10. A method for dye extraction using an aqueous two-phase system: Effect of co-occurrence of contaminants in textile industry wastewater.

    Science.gov (United States)

    Borges, Gabriella Alexandre; Silva, Luciana Pereira; Penido, Jussara Alves; de Lemos, Leandro Rodrigues; Mageste, Aparecida Barbosa; Rodrigues, Guilherme Dias

    2016-12-01

    This paper reports a green and efficient procedure for extraction of the dyes Malachite Green (MG), Methylene Blue (MB), and Reactive Red 195 (RR) using an aqueous two-phase system (ATPS). An ATPS consists mainly of water, together with polymer and salt, and does not employ any organic solvent. The extraction efficiency was evaluated by means of the partition coefficients (K) and residual percentages (%R) of the dyes, under different experimental conditions, varying the tie-line length (TLL) of the system, the pH, the type of ATPS-forming electrolyte, and the type of ATPS-forming polymer. For MG, the best removal (K = 4.10 × 10(4), %R = 0.0069%) was obtained with the ATPS: PEO 1500 + Na2C4H4O6 (TLL = 50.21% (w/w), pH = 6.00). For MB, the maximum extraction (K = 559.9, %R = 0.258%) was achieved with the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 1.00). Finally for RR, the method that presented the best results (K = 3.75 × 10(4), %R = 0.237%) was the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 6.00). The method was applied to the recovery of these dyes from a textile effluent sample, resulting in values of K of 1.17 × 10(4), 724.1, and 3.98 × 10(4) for MG, MB, and RR, respectively, while the corresponding %R values were 0.0038, 0.154, and 0.023%, respectively. In addition, the ATPS methodology provided a high degree of color removal (96.5-97.95%) from the textile effluent.

  11. Salt treatment Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [NUKEM Technologies GmbH, Alzenau (Germany)

    2013-07-01

    The Task of NUKEM Technologies GmbH is to develop a technical solution for the treatment of salt containing effluents at Fukushima Daiichi. The target of the treatment is a solidified product suitable for the safe storage on site. Therefore, NUKEM investigated several technologies (direct cementation, drying and storage, drying and subsequent cementation) in order to find a fit for purpose solution. The following tasks have been considered: (a) Mechanical strength and homogeneity of the product; (b) Cost efficient solution (cost for the drying system vs. reduced amount of storage containers); (c) Proven technology; (d) On site storage. NUKEM made some practical test in parallel with different recipes. The aim was to embed as much as possible salt quantity into the cement matrix, but still meet the requested mechanical strength and required homogeneity. As a result NUKEM recommended to apply the following technologies (a) a drying system, to produce a dry salt product (b) a cementation facility, to generate a homogeneous salt/cement matrix (c) a filling station with attached CMS (Container measuring station) to fill the resulting cement/salt matrix into containers suitable for the storage at Fukushima Daiichi. (orig.)

  12. Cadmium Removal from Aqueous Systems Using Opuntia albicarpa L. Scheinvar as Biosorbent

    Directory of Open Access Journals (Sweden)

    Rosa Icela Beltrán-Hernández

    2015-01-01

    Full Text Available The aim of this research was to investigate the use of a natural adsorbent like nopal (Opuntia albicarpa L. Scheinvar for removing cadmium from aqueous solutions with low concentrations of this metal. Two treatments were applied to the cladodes: a dehydration to get dehydrated nopal (DHN and heating up to 90°C to obtain a thermally treated nopal (TN. After examining the effect of various pH values (2–7, the capacity of each biosorbent was examined in batch sorption tests at different dosages (0, 500, 1000, 1500, 2000, and 3000 mg L−1. The results indicated that adsorption of cadmium to biomass of DHN and TN was highly dependent on pH and biosorbent dosage. The best removal of cadmium (53.3%, corresponding to qe of 0.155 mg g−1 was obtained at pH 4.0 by using the TN sorbent. Infrared and Raman spectra confirmed that cadmium removal occurred via adsorption to –OH functional groups.

  13. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems.

    Science.gov (United States)

    Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E; Klapp, Jaime; Gómez-Gesteira, Moncho; Sigalotti, Leonardo Di G

    2016-04-01

    A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing.

  14. Boron removal from aqueous solutions using alginate gel beads in fixed-bed systems

    Science.gov (United States)

    Demey-Cedeño, Hary; Ruiz, Montserrat; Barron-Zambrano, Jesús Alberto; Sastre, Ana Maria

    2014-01-01

    Background A column sorption study was carried out using calcium alginate gel beads as adsorbent for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of pH, initial concentration of boron, feed flow rate, adsorbent mass and column diameter. The breakthrough capacity values and adsorption percentage of calcium alginate gel for boron were calculated. Column data obtained at different conditions were described using the Adams–Bohart model and bed-depth service time (BDST), derived from the Adams–Bohart equation to predict breakthrough curves and to determine the characteristic column parameters required for process design. Results The maximum adsorption percentage of boron on calcium alginate gel beads using an initial concentration of boron of 50 mg L−1 at pH 11 and room temperature (20±1°C) was calculated to be 55.14%. Conclusion The results indicated that calcium alginate can be used in a continuous packed-bed column for boron adsorption. The optimal conditions for boron adsorption were obtained at high pH, higher initial boron concentration, increased column depth and lower flow velocity. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25821332

  15. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems

    Science.gov (United States)

    Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E.; Klapp, Jaime; Gómez-Gesteira, Moncho; Di G. Sigalotti, Leonardo

    2016-04-01

    A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing.

  16. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  17. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Science.gov (United States)

    Gui, Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-05-01

    The potential for using hydroxyl radical (OH•) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH• were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  18. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems

    Institute of Scientific and Technical Information of China (English)

    Daniel E. Resasco

    2014-01-01

    This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emul-sions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fash-ion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several exam-ples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru;and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emul-sion generates important advantages, such as increased liquid/liquid interfacial area that conse-quently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.

  19. Cadmium Removal from Aqueous Systems Using Opuntia albicarpa L. Scheinvar as Biosorbent.

    Science.gov (United States)

    Beltrán-Hernández, Rosa Icela; Vázquez-Rodríguez, Gabriela Alejandra; Juárez-Santillán, Luis Felipe; Martínez-Ugalde, Ivan; Coronel-Olivares, Claudia; Lucho-Constantino, Carlos Alexander

    2015-01-01

    The aim of this research was to investigate the use of a natural adsorbent like nopal (Opuntia albicarpa L. Scheinvar) for removing cadmium from aqueous solutions with low concentrations of this metal. Two treatments were applied to the cladodes: a dehydration to get dehydrated nopal (DHN) and heating up to 90°C to obtain a thermally treated nopal (TN). After examining the effect of various pH values (2-7), the capacity of each biosorbent was examined in batch sorption tests at different dosages (0, 500, 1000, 1500, 2000, and 3000 mg L(-1)). The results indicated that adsorption of cadmium to biomass of DHN and TN was highly dependent on pH and biosorbent dosage. The best removal of cadmium (53.3%, corresponding to q e of 0.155 mg g(-1)) was obtained at pH 4.0 by using the TN sorbent. Infrared and Raman spectra confirmed that cadmium removal occurred via adsorption to -OH functional groups.

  20. Development of a fluidized bed system for adsorption of phenol from aqueous solutions with commercial macroporous resins

    Directory of Open Access Journals (Sweden)

    R. A. Corrêa

    2007-03-01

    Full Text Available This work is related to removal of phenol from wastewaters by adsorption onto polymeric resins, a current alternative to activated carbon. A closed circuit, bench-scale liquid fluidized bed system was developed for this purpose. Phenol aqueous solutions with initial concentrations in the range of 0.084 to 0.451 kg/m³ were used to fluidize small permeable capsules of stainless steel screen containing a commercial resin at 308 K. Experiments were carried out using a fluidizing velocity 20% above that of the minimum fluidization of the capsules. Typically, 30 passages of the liquid volume circulating through the bed were required to reach a quasi-equilibrium concentration of phenol in the treated effluent. A simple batch adsorption model using the Freundlich isotherm successfully predicted final phenol concentrations. Suspended solids, often present in residual waters and a common cause of fixed bed clogging, were simulated with wood sawdust.

  1. Enhancement of a novel extracellular uricase production by media optimization and partial purification by aqueous three-phase system.

    Science.gov (United States)

    Ram, Senthoor K; Raval, Keyur; JagadeeshBabu, P E

    2015-01-01

    Uricase (urate: oxygen oxidoreductase, EC 1.7.3.3), an enzyme belonging to the class of oxidoreductases, catalyzes the enzymatic oxidation of uric acid to allantoin and finds a wide variety of application as therapeutic and clinical reagent. In this study, uricase production ability of the bacterial strains isolated from deep litter poultry soil is investigated. The strain with maximum extracellular uricase production capability was identified as Xanthomonas fuscans subsp. aurantifolii based on 16S rRNA sequencing. Effect of various carbon and nitrogen sources on uricase productivity was investigated. The uricase production for this strain was optimized using statistically based experimental designs and resulted in uricase activity of 306 U/L, which is 2 times higher than initial uricase activity. Two-step purification, such as ammonium sulfate precipitation and aqueous two-phase system, was carried out and a twofold increase in yield and specific activity was observed.

  2. Identification of salt-alloy combinations for thermal energy storage applications in advanced solar dynamic power systems

    Science.gov (United States)

    Whittenberger, J. D.; Misra, A. K.

    Thermodynamic calculations based on the available data for flouride salt systems reveal that a number of congruently melting compositions and eutectics exist which have the potential to meet the lightweight, high energy storage requirements imposed for advanced solar dynamic systems operating between about 1000 and 1400 K. Compatibility studies to determine suitable containment alloys to be used with NaF-22CaF2-13MgF2, NaF-32CaF2, and NaF-23MgF2 have been conducted at the eutectic temperature + 25 K for each system. For these three NaF-based eutectics, none of the common, commercially available high temperature alloys appear to offer adequate corrosion resistance for a long lifetime; however mild steel, pure nickel and Nb-1Zr could prove useful. These latter materials suggest the possibility that a strong, corrosion resistant, nonrefractory, elevated temperature alloy based on the Ni-Ni3Nb system could be developed.

  3. Extraction of penicillin G by aqueous two-phase system of [Bmim]BF4/NaH2PO4

    Institute of Scientific and Technical Information of China (English)

    LIU Qingfen; HU Xuesheng; WANG Yuhong; YANG Ping; XIA Hansong; YU Jiang; LIU Huizhou

    2005-01-01

    A novel approach for the extraction of penicillin G by aqueous two-phase system comprised of hydrophilic ionic liquid [Bmim]BF4 (1-butyl-3- methylimidazolium tetrafluoroborate) and NaH2PO4 is reported. The effects of some important parameters involving the concentration of NaH2PO4, the concentration of penicillin G, the amount of [Bmim]BF4 on the formation of aqueous two-phase system and the extraction yield of penicillin were investigated. The primary result shows that the ATPS can take advantage of penicillin concentrated in upper phase at higher pH value for penicillin extraction from its aqueous solution without emulsification.

  4. How do Elevated CO2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System.

    Science.gov (United States)

    Lee, Seung-Hoon; Megonigal, Patrick J; Kang, Hojeong

    2017-03-22

    Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.

  5. "Reactive" optical sensor for Hg(2+) and its application in environmental aqueous media and biological systems.

    Science.gov (United States)

    Chen, Zhi; Chen, Jiayun; Pan, Dong; Li, Hongwei; Yao, Yunhui; Lyu, Zu; Yang, Liting; Ma, Li-Jun

    2017-03-01

    A new rhodamine B-based "reactive" optical sensor (1) for Hg(2+) was synthesized. Sensor 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg(2+) over 14 other metal ions with a hypersensitivity (detection limits are 27.6 nM (5.5 ppb) and 6.9 nM (1.4 ppb), respectively) in neutral buffer solution. To test its applicability in the environment, sensor 1 was applied to quantify and visualize low levels of Hg(2+) in tap water and river water samples. The results indicate sensor 1 is a highly sensitive fluorescent sensor for Hg(2+) with a detection limit of 1.7 ppb in tap water and river water. Moreover, sensor 1 is a convenient visualizing sensor for low levels of Hg(2+) (0.1 ppm) in water environment (from colorless to light pink). In addition, sensor 1 shows good potential as a fluorescent visualizing sensor for Hg(2+) in fetal bovine serum and living 293T cells. The results indicate that sensor 1 shows good potential as a highly sensitive sensor for the detection of Hg(2+) in environmental and biological samples. Graphical Abstract A new rhodamine B-based "reactive" optical sensor (1) for Hg(2+) was synthesized. 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg(2+) over 14 other metal ions with a hypersensitivity in water environment. And it is a convenient visualizing probe for low levels of Hg(2+) in environment aqueous media, fetal bovine serum and living 293T cells.

  6. Effects of the Optimised pH and Molar Ratio on Struvite Precipitation in Aqueous System

    Directory of Open Access Journals (Sweden)

    Edahwati Luluk

    2016-01-01

    Full Text Available Struvite (MgNH4PO4.6H2O is one of phosphate minerals, commonly forms into aqueous solutions. It can be precipitated as mineral deposits for optimization of phosphate recovery based on the pH optimum, molar ratio and temperature levels. This paper presents results of a study on the struvite precipitation under the influence of pH variation, at optimized molar ratio and temperature, which were calculated from an experimental design methodology. Based on the methodology, a laboratory prepared struvite, made by mixing solutions to NH4OH, MgCl2 and H3PO4 for a molar ratio of 1: 2: 1 in a 500 mL volume of batch stirred crystallizer at room temperature. The crystallization was done at 200 rpm and the pH variation was adjusted to 8, 9 and 10 with KOH for a time of 70 minutes. The resulting crystals were filtered and dried at room temperature for 48 h and subsequently stored for further analysis. Material characterisasion of the crystals was conducted using XRPD Rietveld method of mineralogical composition. SEM equipped by EDX was employed for investigation of morphology and elemental composition of the crystals obtained. During the experiment, struvite crystals were firstly nucleated and subsequently developed at major value. The increase in pH is assumed to convert some of the struvite phase into struvite (K and minor sylvite (KCl. It demonstrates that Visual MINTEQ can be employed to estimate the mineral formation out the synthetic solutions.

  7. Biomonitoring and assessment of monomethylmercury exposure in aqueous systems using the DGT technique

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, O., E-mail: olivier.clarisse@umoncton.ca [Trent University, Chemistry Department, 1600 West Bank Drive, Peterborough, ON K9J 7B8 (Canada); Universite de Moncton, Departement de Chimie et de Biochimie, Moncton, New Brunswick E1A 3E9 (Canada); Lotufo, G.R. [Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180-6199 (United States); Hintelmann, H. [Trent University, Chemistry Department, 1600 West Bank Drive, Peterborough, ON K9J 7B8 (Canada); Best, E.P.H. [Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180-6199 (United States); U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Boulevard, Cincinnati, OH 45268 (United States)

    2012-02-01

    A series of laboratory experiments was conducted under realistic environmental conditions to test the ability of the Diffusive Gradient in Thin film (DGT) technique to mimic monomethylmercury (MMHg) bioaccumulation by a clam (Macoma balthica, Baltic clam). Using isotope enriched MMHg as tracers, bioavailability was determined by comparing the rate of MMHg uptake by novel DGT devices and sentinel organism over time. Experiments were conducted under varying conditions of salinity and MMHg speciation. Depending on MMHg level and speciation in the dissolved phase, MMHg uptake rates by the sentinel organism varied greatly from 0.4 to 2.4 L g{sup -1} d{sup -1}. Reproducibilities of MMHg uptakes by DGT and clams were estimated at 7 and 38%, respectively. A significant linear relationship (log basis) between MMHg accumulation by DGT and clams was observed (r{sup 2} = 0.89). The study demonstrates that DGT results reasonably predict MMHg uptake by clams from the aqueous phase and provide the basis for application of the DGT device as a surrogate for sentinel organism for monitoring bioavailable MMHg. - Highlights: Black-Right-Pointing-Pointer We investigate the potential of DGT devices to act as surrogates for sentinel organism. Black-Right-Pointing-Pointer We compare monomethylmercury accumulation in DGT devices and in clams from the dissolved phase. Black-Right-Pointing-Pointer We examine the effects of salinity and MMHg speciation on MMHg accumulation by DGT and clams. Black-Right-Pointing-Pointer For all laboratory experiments, a strong overall correlation between MMHg accumulations in clams and DGTs is observed.

  8. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship with obesity-induced hypertension.

    Science.gov (United States)

    Ando, Katsuyuki; Fujita, Megumi

    2012-01-01

    1. There are multiple and complex mechanisms of salt-induced hypertension; however, central sympathoexcitation plays an important role. In addition, the production of reactive oxygen species (ROS) is increased in salt-sensitive hypertensive humans and animals. Thus, we hypothesized that brain ROS overproduction may increase blood pressure (BP) by central sympathostimulation. 2. Recently, we demonstrated that ROS levels were elevated in the hypothalamus of salt-sensitive hypertensive animals. Moreover, intracerebroventricular anti-oxidants suppressed BP and renal sympathetic nerve activity more in salt-sensitive than non-salt-sensitive hypertensive rats. Thus, brain ROS overproduction increased BP through central sympathoexcitation in salt-sensitive hypertension. 3. Salt sensitivity of BP is enhanced in obesity and metabolic syndrome. Interestingly, it is also suggested that, in obesity-induced hypertension models, increases in BP are caused by brain ROS-induced central sympathoexcitation. 4. Recent studies suggest that increased ROS production in the brain and central sympathoexcitation may share a common pathway that increases BP in both salt- and obesity-induced hypertension.

  9. Assessment of the molecular composition of particulate organic matter exchanged between the Saeftinghe salt marsh (southwestern Netherlands) and the adjacent water system

    NARCIS (Netherlands)

    Klap, V.A.; Boon, J.J.; Hemminga, M.A.; Van Soelen, J.

    1996-01-01

    In this study the chemical composition of seston, transported by tidal water between an estuarine salt marsh and the adjacent water system, was assessed. The analytical techniques used are Pyrolysis in combination with Gas Chromatography and/or Mass Spectrometry. Interpretation of the Py-MS data was

  10. pH and electric conductivity study of H{sub 2}O/MEG/salt systems on monoethyleneglycol (MEG) reclamation units in gas processing; Estudo de pH e condutividade eletrica em sistemas H{sub 2}O/MEG/sal, em unidades de recuperacao de monoetilenoglicol (MEG), no processamento de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Camila; Carrijo, Darley; Nascimento, Jailton; Grava, Wilson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Lemos, Alessandro A.; Andrade, Wander V.; Chiavone-Filho, Osvaldo; Amorim, Josinira Antunes de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    Th