WorldWideScience

Sample records for aqueous salt solutions

  1. SWELLING EQUILIBRIUM OF NONIONIC POLYACRYLAMIDE HYDROGEL IN AQUEOUS SALT SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of nonionic polyacrylamide hydrogels, using acrylamide as monomer and N,N’-methylene diacrylamide as crosslinking agent, were prepared by the free radical polymerization in aqueous solution. Swelling equilibria for the gels were carried out in aqueous solutions of NaCl, KCl, CaCl2, Na2HPO4 and K2HPO4 with concentration ranging from 10-3 to 5mol/kgH2O at 25℃. Experimental results revealed that the chlorides and phosphates cause a different behavior at higher salt concentration. The swelling ratio increases with increasing concentration of chlorides salts, while decreases with the increased phosphates salt concentration. The phenomena seem to be related to the different interactions of chloride and hydrogen phosphate ions with the network groups. Furthermore, the effects of different concentration of crosslinking agent and total monomers on gel swelling performance were also investigated.

  2. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 136-713 (Korea, Republic of); Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Heejae; Kim, Seongheun [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  3. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  4. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Rita Mehra; Aditi Soni

    2002-02-01

    The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts towards corrosion has also been studied, which is found to be different from previous studies. The total immersion test parameters viz. weight loss, corrosion rate as well as potentiostatic parameters, open circuit potential, corr, Tafel slopes, corrosion rate, have been calculated by standard methods. Besides these the relative increase in corrosion rate with time as well as the percentage to which corrosion rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions. For the reliability of results the data has been statistically analysed.

  5. The influence of temperature and inorganic salts on therheological properties of xanthan aqueous solutions

    OpenAIRE

    KATARINA JEREMIC; SINISA MARKOV; BRANISLAV PEKIC; SLOBODAN JOVANOVIC; MIRJANA S. PAVLOVIC

    1999-01-01

    The rheological properties of xanthan gum in aqueous saline solutions and at increased temperatures are of great practical interest especially for its application in enhanced oil recovery during which the xanthan solutions are exposed to increased salt contents and relatively high temperatures. In this work, the influence of high temperature and high salt concentrations (up to 10 mass%) on the rheological properties of xanthan was investigated. The influence of three different salts was exami...

  6. Electrosorption of inorganic salts from aqueous solution using carbon aerogels.

    Science.gov (United States)

    Gabelich, Christopher J; Tran, Tri D; Suffet, I H Mel

    2002-07-01

    Capacitive deionization (CDI) with carbon aerogels has been shown to remove various inorganic species from aqueous solutions, though no studies have shown the electrosorption behavior of multisolute systems in which ions compete for limited surface area. Several experiments were conducted to determine the ion removal capacity and selectivity of carbon aerogel electrodes, using both laboratory and natural waters. Although carbon aerogel electrodes have been treated as electrical double-layer capacitors, this study showed that ion sorption followed a Langmuir isotherm, indicating monolayer adsorption. The sorption capacity of carbon aerogel electrodes was approximately 1.0-2.0 x 10(-4) equiv/g aerogel, with ion selectivity being based on ionic hydrated radius. Monovalent ions (e.g., sodium) with smaller hydrated radii were preferentially removed from solution over multivalent ions (e.g., calcium) on a percent or molar basis. Because of the relatively small average pore size (4-9 nm) of the carbon aerogel material, only 14-42 m2/g aerogel surface area was available for ion sorption. Natural organic matter may foul the aerogel surface and limit CDI effectiveness in treating natural waters. PMID:12144279

  7. Study on Properties and Structural Parameters of Microemulsion CTAB/Butanol/Cyclohexane/Salt Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Chen Yongjie; Qiu Guanming; Tian Yiguang; Fang Li; Xiao Linjiu; Sun Yanbin

    2005-01-01

    The phase diagrams of microemulsion CTAB/butanol/cyclohexane/aqueous solution of nitrate (or aqueous solution of ammonium salt) were determined and the structural parameters and ΔG*o→i were obtained by means of dilution method and theoretical calculation. The effect of different w/s and salt concentration on the stability and structural parameters of microemulsion were investigated. The result shows that with the increase of w/s, the area of microemulsion and Nd decrease, Rw, l and n increase; with the increase of salt concentration, the area of microemulsion, l and Nd decrease, ΔG*o→I, Rw and n increase. Theoretical basis of preparing size-controlled long afterglow luminescence materials and study of the relationship between fluorescence properties and particle size are provided.

  8. Surface Crystallization of Aqueous Salt Solution Under Overheating and Overcooling

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir

    2016-01-01

    Full Text Available The investigation of the surface crystallization with low negative and high positive temperatures were carried in the paper. Crystallization curves for distillate (Ts0 = −9 °C and different mass salt concentrations NaCl (Ts0 = 80 °C were obtained. Experimental data indicate that the crystallization centers influence each other and the number of centers does not change with time. The maximum speeds for the crystallization front reached 0.3–0.5 m/s. There are a significant anisotropy and a curvature of crystallization front. The surface kinetics should be considered to clarify the rate of freezing and melting of ice in modeling global warming.

  9. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N2O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N2O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N2O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N2O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  10. Study on Properties of Microemulsion AEO-9/Butanol/Cyclohexane/Salt Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanming; Chen Yongjie; Tian Yiguang; Fang Li; Xiao Linjiu; Sun Yanbin

    2004-01-01

    The microemulsion AEO-9/butanol/cyclohexane/nitrate aqueous solution (or ammonium salt aqueous solution) was studied, which was used as 'micro-reactor' in preparing long afterglow phosphor materials SrAl2O4: Eu2+ ,Dy3+. The phase behavior of microemulsion was investigated. The radius of inner water droplet Rw and the change of standard free energy ΔG*o→i were obtained by means of dilution method and theoretical calculation. The result shows that with the increase of W/S, the area of microemulsion region decreases, Rw and ΔG*o→i increase and the microemulsion stability decreases. The structure change and formation area of microemulsion AEO-9/butanol/cyclohexane/nitrate aqueous solution ( or ammonium salt aqueous solution) were offered for the adoption of a synthesis method with newly high efficiency and utility. The particular size and its distribution theory gist, fluorescence life-span, and quenching concentration parameter data were expected. A new approach was explored for finding a new preparation method of rare earths afterglow materials and increasing luminescence intensity without crashing.

  11. Investigation of the Ionic Hydration in Aqueous Salt Solutions by Soft X-ray Emission Spectroscopy.

    Science.gov (United States)

    Jeyachandran, Y L; Meyer, F; Benkert, A; Bär, M; Blum, M; Yang, W; Reinert, F; Heske, C; Weinhardt, L; Zharnikov, M

    2016-08-11

    Understanding the molecular structure of the hydration shells and their impact on the hydrogen bond (HB) network of water in aqueous salt solutions is a fundamentally important and technically relevant question. In the present work, such hydration effects were studied for a series of representative salt solutions (NaCl, KCl, CaCl2, MgCl2, and KBr) by soft X-ray emission spectroscopy (XES) and resonant inelastic soft X-ray scattering (RIXS). The oxygen K-edge XES spectra could be described with three components, attributed to initial state HB configurations in pure water, water molecules that have undergone an ultrafast dissociation initiated by the X-ray excitation, and water molecules in contact with salt ions. The behavior of the individual components, as well as the spectral shape of the latter component, has been analyzed in detail. In view of the role of ions in such effects as protein denaturation (i.e., the Hofmeister series), we discuss the ion-specific nature of the hydration shells and find that the results point to a predominant role of anions as compared to cations. Furthermore, we observe a concentration-dependent suppression of ultrafast dissociation in all salt solutions, associated with a significant distortion of intact HB configurations of water molecules facilitating such a dissociation. PMID:27442708

  12. Forecasting of thermodynamic properties of solution for non-polar molecules in aqueous salt solutions and in aqueous organic solutions

    International Nuclear Information System (INIS)

    The scaled particle theory has been used rather successfully to predict the values of thermodynamic properties of solution for non-polar molecules. Two very important parameters has been used in the equations of the scaled particle theory: the hard sphere diameter of the solute and the closeness of the solvent (closeness in which the diameters of the hard sphere particles forming the solvent are taken into account). With non-polar solutes, a correlation exists between calculated and experimental values of: free enthalpy of solution - enthalpy of solution - molar heat capacity change for the solution process. The fit between calculated and experimental values is only more qualitative than quantitative. However the variation of thermodynamic properties with the temperature and the modality is consistent with the variation calculated according to the scaled particle theory. (author)

  13. Interaction of molybdophosphates with palladium(II) salts in aqueous solutions

    International Nuclear Information System (INIS)

    The methods of electron and 31P NMR spectroscopies were used to study the interaction of H3PMo12O40 with H2PdCl4 or PdSO4 in aqueous solution at pH 3.0-4.5 and the ratio [Pd(II)]:[H3PMo12O40]=1:1. Palladium(II) remains in solution in the form of intensely colored hydroxo species and does not change the structure of the newly formed unsaturated heteropolymolybdates PMo11O397- and PMo9O349- as shown by NMR data. Heteropoly compounds precipitated from tetrabutylammonium or cesium salts were characterized using IR spectroscopy, differential dissolution and elemental analysis. It was found that the composition of a compound was affected by not only formation conditions in the solution but also the precipitant cation

  14. Molecular Dynamics Studies of Concentrated Binary Aqueous Solutions of Lanthanide Salts: Structures and Exchange Dynamics

    International Nuclear Information System (INIS)

    Concentrated binary aqueous solutions of lanthanide (Nd3+ and Dy3+) salts (ClO4-, Cl-, and NO3-) have been studied by means of classical molecular dynamics (MD) simulations with explicit polarization and UV-visible spectroscopy. Pair interaction potentials, used for the MD simulations, have been developed in order to reproduce experimental hydration properties. Nd3+ and Dy3+ have been chosen because of their position in the lanthanide series: Nd3+ being a light lanthanide and Dy3+ a heavy one. They are respectively coordinated to nine and eight water molecules, in pure water, involving changes in their salt hydration structures. Both MD simulations and UV-visible experiments highlight the stronger affinity of nitrate anions toward Ln3+ compared to perchlorates and chlorides. Dissociation/association processes of Nd3+-Cl- and Nd3+-NO3- ion pairs in aqueous solution have been analyzed using potential of mean force profile calculations. Furthermore, from MD simulations, it appears that the affinity of anions (perchlorate, chloride, and nitrate. ) is stronger for Nd3+ than Dy3+. (authors)

  15. Formation of globules and aggregates of DNA chains in DNA/polyethylene glycol/monovalent salt aqueous solutions

    OpenAIRE

    Kawakita, H.; Uneyama, T.; Kojima, M; Morishima, K.; Masubuchi, Y.; Watanabe, H.(Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany)

    2009-01-01

    It has been known that giant DNA shows structural transitions in aqueous solutions under the existence of counterions and other polymers. However, the mechanism of these transitions has not been fully understood. In this study, we directly observed structures of probed (dye-labeled), dilute DNA chains in unprobed DNA/polyethylene glycol (PEG)/monovalent salt (NaCl) aqueous solutions with fluorescent microscopy to examine this mechanism. Specifically, we varied the PEG molecular weight and sal...

  16. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  17. Characteristics and quantitative of negative ion in salt aqueous solution by Raman spectroscopy at -170℃

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Nai; ZHANG; Dajiang; ZHANG; Shuichang; ZHANG; Dijia

    2006-01-01

    The results from Raman spectroscopy analysis of salt aqueous solutions at -170℃ demonstrate that for those clearly sharp iron peaks whose Raman wavenumber is close to each other such as and , their original shape could be restorable by the stripping technique, and that ice's sharp characteristic peak (3090-3109 cm-1) is steady, while the spectrum band of the complex compound (nCl--[H+-OH-]n) chlorine ion combined chemically with water molecule is 3401-3413 cm-1. On the other hand, the research shows that the higher the negative iron concentration, the stronger its Raman characteristic peak intensity and the smaller the ice's. Based on the number of data and theoretical work, the strong correlation of the molar concentration of negative ion with the band area ratio is built up. Moreover, the developed Raman method is successfully used in the component analysis of the field fluid inclusions from Silurian sandstone in Tarim basin.

  18. Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid

    Science.gov (United States)

    Frenzel, A.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T.

    The loss rates of PAN in several dilute aqueous salt solutions (NaBr, Na 2SO 3, KI, NaNO 2, FeCl 3, and FeSO 4) and in sulphuric acid were measured at 279 K with a simple bubbler experiment. They are little different from that in pure water. For 5 M sulphuric acid hydrolysis and solubility were determined in the temperature range of 243-293 K. The hydrolysis rate kh=3.2×10 -4 s -1 at 293 K is close to that in water. The observed temperature dependence of the Henry's Law constant H=10- 6.6±0.6exp((4780±420)/T) M atm -1 leads to enthalpy and entropy of solvation Δ Hsolv=-39.7±3.5 kJ mol -1 and Δ Ssolv=-126±11 J mol -1 K -1, respectively.

  19. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  20. Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2015-01-01

    Full Text Available A roller electrospinning system was used to produce nanofibres by using different solution systems. Although the process of electrospinning has been known for over half a century, knowledge about spinning behaviour is still lacking. In this work, we investigated the effects of salt for two solution systems on spinning performance, fibre diameter, and web structure. Polyurethane (PU and polyethylene oxide (PEO were used as polymer, and tetraethylammonium bromide and lithium chloride were used as salt. Both polymer and salt concentrations had a noteworthy influence on the spinning performance, morphology, and diameter of the nanofibres. Results indicated that adding salt increased the spinnability of PU. Salt created complex bonding with dimethylformamide solvent and PU polymer. Salt added to PEO solution decreased the spinning performance of fibres while creating thin nanofibres, as explained by the leaky dielectric model.

  1. Kinetic study of CO2 with various amino acid salts in aqueous solution

    NARCIS (Netherlands)

    Holst, van J.; Versteeg, G.F.; Brilman, D.W.F.; Hogendoorn, J.A.

    2009-01-01

    A study towards the kinetics of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  2. Kinetic study of CO2 with various amino acid salts in aqueous solution

    NARCIS (Netherlands)

    van Hoist, J.; Versteeg, G. F.; Brilman, D. W. F.; Hogendoorn, J. A.; Holst, J. v

    2009-01-01

    A study towards the kinetics Of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  3. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance

    Science.gov (United States)

    Ye, Dong; Yu, Yao; Tang, Jie; Liu, Lin; Wu, Yue

    2016-05-01

    Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as an electrode material for flexible supercapacitors. However, pristine CC has such a low surface area and poor electrochemical activity that the energy storage capability is usually very poor. Herein, we report a green method, two-step electrochemical activation in an aqueous solution of inorganic salts, to significantly enhance the capacitance of CC for supercapacitor application. Micro-cracks, exfoliated carbon fiber shells, and oxygen-containing functional groups (OFGs) were introduced onto the surface of the carbon filament. This resulted in an enhancement of over two orders of magnitude in capacitance compared to that of the bare CC electrode, reaching up to a maximum areal capacitance of 505.5 mF cm-2 at the current density of 6 mA cm-2 in aqueous H2SO4 electrolyte. Electrochemical reduction of CC electrodes led to the removal of most electrochemically unstable surface OFGs, resulting in superior charging/discharging rate capability and excellent cycling stability. Although the activated CC electrode contained a high-level of surface oxygen functional groups (~15 at%), it still exhibited a remarkable charging-discharging rate capability, retaining ~88% of the capacitance when the charging rate increased from 6 to 48 mA cm-2. Moreover, the activated CC electrode exhibited excellent cycling stability with ~97% capacitance remaining after 10 000 cycles at a current density of 24 mA cm-2. A symmetrical supercapacitor based on the activated CC exhibited an ideal capacitive behavior and fast charge-discharge properties. Such a simple, environment-friendly, and cost-effective strategy to activate CC shows great potential in the fabrication of high-performance flexible supercapacitors.Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as

  4. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance.

    Science.gov (United States)

    Ye, Dong; Yu, Yao; Tang, Jie; Liu, Lin; Wu, Yue

    2016-05-21

    Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as an electrode material for flexible supercapacitors. However, pristine CC has such a low surface area and poor electrochemical activity that the energy storage capability is usually very poor. Herein, we report a green method, two-step electrochemical activation in an aqueous solution of inorganic salts, to significantly enhance the capacitance of CC for supercapacitor application. Micro-cracks, exfoliated carbon fiber shells, and oxygen-containing functional groups (OFGs) were introduced onto the surface of the carbon filament. This resulted in an enhancement of over two orders of magnitude in capacitance compared to that of the bare CC electrode, reaching up to a maximum areal capacitance of 505.5 mF cm(-2) at the current density of 6 mA cm(-2) in aqueous H2SO4 electrolyte. Electrochemical reduction of CC electrodes led to the removal of most electrochemically unstable surface OFGs, resulting in superior charging/discharging rate capability and excellent cycling stability. Although the activated CC electrode contained a high-level of surface oxygen functional groups (∼15 at%), it still exhibited a remarkable charging-discharging rate capability, retaining ∼88% of the capacitance when the charging rate increased from 6 to 48 mA cm(-2). Moreover, the activated CC electrode exhibited excellent cycling stability with ∼97% capacitance remaining after 10 000 cycles at a current density of 24 mA cm(-2). A symmetrical supercapacitor based on the activated CC exhibited an ideal capacitive behavior and fast charge-discharge properties. Such a simple, environment-friendly, and cost-effective strategy to activate CC shows great potential in the fabrication of high-performance flexible supercapacitors. PMID:27141910

  5. Salting-out of methane in the aqueous solutions of urea and sarcosine

    Indian Academy of Sciences (India)

    M K Dixit; Anupam Chatterjee; B L Tembe

    2016-04-01

    Hydrophobic association and solvation of methane molecules in aqueous solutions of urea and sarcosine (sa) have been studied using MD simulations. The potentials of mean force (PMFs) between methane molecules in water, water-sa, water-urea and water-urea-sa mixtures show an enhancement of methane association on the addition of these osmolytes. These observations are well supported by calculation of equilibrium constants. Calculation of thermodynamic parameters shows that the association of methane is stabilized by entropy and favored by enthalpy. The hydrophobic solvation of methane is stabilized by enthalpy and destabilized by entropy. The calculated solvation free energies of methane in these mixtures show that methane is less soluble in the mixtures of urea and sarcosine than in water. The solubility is the least in the water-urea-sa mixture. Analysis of distributions of solvent and co-solvent around methane suggests that the local densities of both urea and sarcosine are diminished around the methane in the mixtures of these osmolytes. The selective reduction of both urea and sarcosine from methane surface suggests that both urea and sarcosine push methane molecules towards water and increase the interaction between methane molecules i.e., salting-out of methane.

  6. SANS from Salt-Free Aqueous Solutions of Hydrophilic and Highly Charged Star-Branched Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    François Boué

    2016-06-01

    Full Text Available Scattering functions of sodium sulfonated polystyrene (NaPSS star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars, peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function – through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

  7. Electronic Tongue for Qualitative Analysis of Aqueous Solutions of Salts Using Thick-film Technology and Metal Electrodes

    Directory of Open Access Journals (Sweden)

    Juan Soto

    2006-09-01

    Full Text Available An electronic tongue for the qualitative analysis of aqueous solutions of salts hasbeen developed. The following set of electrodes was used: RuO2, Ag, and Cu in thick-filmtechnology and Au, Pb, Zn and Ni as small bars of the corresponding metal. The response ofthe designed “electronic tongue” was tested on a family of samples containing pure salt andcomplex mixtures. The electrodes were used as potentiometric un-specific sensors and thee.m.f. of each electrode in contact with a certain aqueous solution was used as input signalfor a PCA analysis. The study showed that the set of electrodes were capable to discriminatebetween aqueous solutions of salts basically by their different content in anions and cations(the anions SO42-, Cl-, PO4H2-, CO3H-, NO3- and cations Na+ and K+ were studied. In orderto better analyze the basis for the discrimination power shown by the electronic tongue, aquantitative analysis was also envisaged. A fair estimation of the concentrations of thedifferent ions in the solutions studied appeared to be possible using this electronic tonguedesign.Keywords:

  8. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  9. Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios; Thomsen, Kaj

    2013-01-01

    , been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new...... in the electrical field surrounding ions. Kinetic depolarization may explain 25–75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however...... methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich...

  10. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  11. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  12. Determination of the osmotic second virial coefficient and the dimerization of β-lactoglobulin in aqueous solutions with added salt at the isoelectric point

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2000-01-01

    Aqueous solutions of β-lactoglobulin (at the isoelectric point pH=5.18) have been studied by membrane osmometry. The osmotic second virial coefficient as well as the monomer–dimer equilibrium of β-lactoglobulin have been found to depend significantly on the salt concentration. At low salt concentrat

  13. [Aqueous and salt solutions of quinine of low concentrations: self-organization, physicochemical properties and actions on the electrical characteristics of neurons].

    Science.gov (United States)

    Murtazina, L I; Ryzhkina, I S; Mishina, O A; Andrianov, V V; Bogodvid, T Kh; Gaĭnutdinov, Kh L; Muranova, L N; Konovalov, A I

    2014-01-01

    Self-organization, the physicochemical properties of aqueous and salt solutions of quinine and the effects of salt quinine solutions in a wide range of concentrations (1 x 10(-22) - 1 x 10(-3) M) on the electrical characteristics of the edible snail's identified neurons were studied. Similar non-monotonic concentration dependencies of physicochemical properties of aqueous and salt quinine solutions at low concentrations are obtained. This allows of predicting the occurrence of biological effects at low concentrations of quinine solutions. Intrinsic (within 5% of the interval) changes in membrane potential, the amplitude and duration of the neuron action potential under the influence of quinine salt solutions at concentrations of quinine of 1 x 10(-20), 1 x 10(-18), 1 x 10(-10) M are found. For these concentrations the extreme values of specific conductivity and pH are shown.

  14. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds.

    Science.gov (United States)

    Klotz, S; Komatsu, K; Pietrucci, F; Kagi, H; Ludl, A-A; Machida, S; Hattori, T; Sano-Furukawa, A; Bove, L E

    2016-01-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl∙RH2O and LiBr∙RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random. PMID:27562476

  15. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds

    Science.gov (United States)

    Klotz, S.; Komatsu, K.; Pietrucci, F.; Kagi, H.; Ludl, A.-A.; Machida, S.; Hattori, T.; Sano-Furukawa, A.; Bove, L. E.

    2016-08-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl•RH2O and LiBr•RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random.

  16. Self-consistent field theory investigation of the behavior of hyaluronic acid chains in aqueous salt solutions

    Science.gov (United States)

    Nogovitsin, E. A.; Budkov, Yu. A.

    2012-04-01

    In this work we continue to develop a field-theoretic methodology, which combines the technique of Gaussian equivalent representation for the calculation of functional integrals with the continuous Gaussian thread model of flexible polymers for solving statistical-mechanical problems of polyelectrolyte solutions. We present new analytic expressions for the osmotic pressure, the potential of mean force, and the monomer-monomer pair distribution function, and employ them to investigate the structural and thermodynamic quantities of the polyelectrolyte system. We demonstrate the applicability of the method for systems of polyelectrolyte chains in which the monomers interact via a Yukawa-type pair potential. As a specific example, the present work focuses on aqueous solutions of hyaluronic acid with added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear polysaccharide, which has a multitude of roles in biological tissues. We conclude that the effect of sodium chloride and calcium chloride on the osmotic properties of hyaluronic acid solutions can be accounted for by their contributions to the ionic strength. Nevertheless, the effects of coiling and self-association can be stimulated in solution by added salt.

  17. Photoemission spectra of aqueous solutions of salts from many-body perturbation theory

    Science.gov (United States)

    Gaiduk, Alex P.; Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    The computational design of electrode materials for energy conversion and storage processes requires an accurate description of the energy levels of the electrolyte and of electrolyte/electrode interfaces. Conventional density-functional approximations are in general not well suited for this task as they yield inaccurate orbital energies. Many-body perturbation theory (MBPT) predicts vertical ionization potentials and energy gaps in better agreement with experiments, providing the possibility for an accurate description of the electronic properties of electrolytes. We coupled ab initio molecular dynamics with MBPT calculations to investigate the photoemission spectra of a 1 M aqueous solution of NaCl. For the first time we were able to determine the absolute positions of the spectra peaks, with excellent agreement with experiments for both the solute and solvent peak positions. The best results were obtained using wavefunctions obtained from dielectric-dependent hybrid calculations as a starting point for MBPT. Work supported by DOE BES DE-SC0008938. Computer time provided by the Argonne Leadership Computing Facility through the INCITE program.

  18. Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions.

    Science.gov (United States)

    Kan, Zigui; Yan, Xiufen; Ma, Jing

    2015-03-01

    Conformational changes of α,α-trehalose in a vacuum, water, and 0-20 wt % NaCl solutions were investigated by means of molecular dynamics (MD) simulations at different levels of density function theory (DFT) and with fixed-charge nonpolarizable and variable-charge force fields (FFs), respectively. The relative thermodynamic stability of trehalose is enhanced by the formation of intercycle and/or intracycle hydrogen bonds, but some thermodynamically unfavorable structures can be sampled in the DFT-based ab initio MD simulation. The polarization effects of polar trehalose molecule in aqueous and NaCl solutions were studied by a series of MD simulations with both the conventional nonpolarizable and polarizable force field models. In the polarizable model, the partial charges of trehalose were updated every 2 ps using DFT calculations and fused with the other FF parameters for the energy calculation and MD simulation. Around the trehalose, water molecules located in an asymmetry model and trehalose have a stronger tendency to bind with water molecules than Na(+) and Cl(-) ions. When the trehalose concentration is increased from 3.26 to 6.31 wt % in salt aqueous solution, the two trehalose molecules periodically approach each other in a nearly anhydrate state and leave a way to keep the favorable hydration structure with the mean trehalose-trehalose distance of 8.6 Å. The similarity between the solvated dimer packing styles (shoulder-by-shoulder or head-to-head) and crystal stacking can be used to make an extrapolation to higher sugar concentrations and to rationalize the bioprotection function of trehalose in high salt concentration. PMID:25506668

  19. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  20. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts

    DEFF Research Database (Denmark)

    Mørup, Steen; Knudsen, J. E.; Nielsen, M. K.;

    1976-01-01

    be attributed to changes in the average separation between the iron ions. In the FeCl3–H2O system, it was found that homogeneous glasses are easily formed when the salt concentration is larger than 3.5 moles FeCl3 per 100 moles H2O. In more dilute samples, ice crystallizes during cooling, while the salt...

  1. Salt-induced vesicle formation from single anionic surfactant SDBS and its mixture with LSB in aqueous solution.

    Science.gov (United States)

    Zhai, Limin; Zhao, Mei; Sun, Dejun; Hao, Jingcheng; Zhang, Lungjun

    2005-03-31

    Vesicles can be formed spontaneously in aqueous solution of a single anionic surfactant sodium dodecyl benzenesulfonate (SDBS) just under the inducement of salt, which makes the formation of vesicle much easier and simpler. The existence of vesicles was demonstrated by TEM image using the negative-staining method. The mechanism of the formation may be attributed to the compression of salt on the electric bilayer of the surfactant headgroups, which alters the packing parameter of the surfactant. The addition of the zwitterionic surfactant lauryl sulfonate betaine (LSB) makes the vesicles more stable, expands the range of formation and vesicle size, and reduces the polydispersity of the vesicles. The vesicle region was presented in a pseudoternary diagram of SDBS/LSB/brine. The variations of vesicle size with the salinity and mixing ratios, as well as the surfactant concentration, were determined using the dynamic light scattering method. It is found that the vesicle size is independent of the surfactant concentration but subject to the salinity and the mixing ratio of the two surfactants.

  2. Structural transformations of the synthetic salt 4`, 7-dihydroxyflavylium chloride in acid and basic aqueous solutions. Part 1-Ground state

    Energy Technology Data Exchange (ETDEWEB)

    Pina, F.; Benedito, L.; Melo, M.J.; Parola, A.J. [Centro de Quimica Fina e Biotecnologia. Departamento de Quimica FCT/UNL, Portugal (Portugal); Lima, J.C.; Macanita, A.L. [Instituto de Tecnologia Quimica e Biologica, Portugal (Portugal)

    1997-09-01

    A complete study of the structural pH dependent transformations of the synthetic flavylium salt 4`-7-dihydroxyflavylium chloride (DHF), occurring in aqueous solutions, including the basic region, is described. The kinetics study of the transformations occurring in acidic media (quinoidal base (A) {l_reversible} flavylium cation (AH{sup +}) {l_reversible} hemiacetal (B) {l_reversible} cis-chalcone (C-cis) {l_reversible} trans-chalcone (C-trans)) allowed to conclude that the cis-transisomerization is faster than the tautomerization and the hydration processes, which is unique in the anthocyanins family. Results obtained with the parent compound 4`-7-dimethoxyflavylium chloride (DMF)with relevance to this study are also presented. In equilibrated basic solutions the existence of acid-base equilibria involving the trans-Chalcone (C-trans) and its conjugated bases, (C-trans, and C``2-trans), was detected. Freshly prepared solutions at pH>7 show also the presence of a transient species identified as the ionized quinoidal base (A``-), which is almost completely converted into C``2-trans with a Ph dependent rate constant, (Author) 17 refs.

  3. Specific Na+ and K+ Cation Effects on the Interfacial Water Molecules at the Air/Aqueous Salt Solution Interfaces Probed with Non-resonant Second Harmonic Generation (SHG)

    OpenAIRE

    Bian, Hong-tao; Feng, Ran-Ran; Guo, Yuan; Wang, Hong-fei

    2008-01-01

    Here we report the polarization dependent non-resonant second harmonic generation (SHG) measurement of the interfacial water molecules at the aqueous solution of the following salts: NaF, NaCl, NaBr, KF, KCl, and KBr. Through quantitative polarization analysis of the SHG data,the orientational parameter D value and the relative surface density of the interfacial water molecules at these aqueous solution surfaces were determined. From these results we found that addition of each of the six sal...

  4. Atomistic molecular dynamics simulations of the structure of symmetric Polyelectrolyte block copolymer micelle in salt-free aqueous solution

    Science.gov (United States)

    Chockalingam, Rajalakshmi; Natarajan, Upendra

    2014-03-01

    The structure of a symmetric polystyrene- b - poly(acrylic acid) (PS- b - PAA) micelle in salt-free aqueous solution as a function of degree-of-neutralization (or ionization, f) of the PAA is studied via explicit-atom-ion MD simulations, for the first time for a polyelectrolyte block copolymer in a polar solvent. Micelle size increases with fin agreement with experimental observations in literature, due to extension of PAA at higher ionization. Pair RDF's with respect to water oxygens show that corona-water interaction becomes stronger with f due to an increase in number density of carboxylate (COO-) groups on the chain. Water-PAA coordination (carboxylate O's) increases with ionization. H-bonding between PAA and water increases with f due to greater extent of corona-water affinity. With increase in f, atom and counter-ion ρ profiles confirm extension of corona blocks and micelle existing in the ``osmotic regime,'' and a decrease in scattering peak intensity, in agreement with neutron scattering experiments and mean-field theory in literature. Inter-chain distance in PS core is found to decrease with ionization. Macromolecular Simulation and Modeling Laboratory, Dept. of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036.

  5. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-01-01

    The downstream processing of therapeutic proteins is a challenging task. Key information needed to estimate applicable workup strategies (e.g. crystallization) are the interactions of the proteins with other components in solution. This information can be deduced from the second osmotic virial coefficient B22 , measurable by static light scattering. Thermodynamic models are very valuable for predicting B22 data for different process conditions and thus decrease the experimental effort. Available B22 models consider aqueous salt solutions but fail for the prediction of B22 if an additional polymer is present in solution. This is due to the fact that depending on the polymer concentration protein-protein interactions are not rectified as assumed within these models. In this work, we developed an extension of the xDLVO model to predict B22 data of proteins in aqueous polymer-salt solutions. To show the broad applicability of the model, lysozyme, γ-globulin and D-xylose ketol isomerase in aqueous salt solution containing polyethylene glycol were considered. For all proteins considered, the modified xDLVO model was able to predict the experimentally observed non-monotonical course in B22 data with high accuracy. When used in an early stage in process development, the model will contribute to an efficient and cost effective downstream processing development.

  6. Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid at high pressures

    International Nuclear Information System (INIS)

    Highlights: • CO2 solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid were studied. • The CO2 partial pressures studied was up to 1000 kPa. • The temperatures studied were (313.2, 333.2, 353.2) K. • The measured data were represented satisfactorily by using the applied correlations. • The CO2 absorption capacity of the studied systems was high and comparable with monoethanolamine. - Abstract: In the present work, the solubility of CO2 in aqueous solutions of potassium prolinate (KPr) and potassium α-aminobutyrate (KAABA) was measured at temperatures (313.2, 333.2, and 353.2) K and CO2 partial pressures up to 1000 kPa for amino acid salt concentrations: KPr, w = (7.5, 14.5, and 27.4 wt%) and KAABA, w = (6.9, 13.4, and 25.6 wt%). It was found that the CO2 absorption capacities of the studied amino acid salt systems were considerably high and comparable with that of industrially important alkanolamines including monoethanolamine. The CO2 loadings in aqueous potassium α-aminobutyrate at high pressures were also found to be generally higher than the loadings in aqueous potassium prolinate. A modified Kent–Eisenberg model was applied to correlate the CO2 solubility in the amino acid salt solution as function of CO2 partial pressure, temperature, and concentration. The model gave good representation of the (vapour + liquid) equilibrium data obtained for the amino acid salt systems studied, and provided accurate predictions of the solubility

  7. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models.

  8. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Seung-Taek [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: smyung@iwate-u.ac.jp; Sasaki, Yusuke [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Saito, Takamitsu [Nissan Motors, 1 Natsushima, Yokosuka, Kanagawa 273-8523 (Japan); Sun, Yang-Kook [Department of Chemical Engineering, Hanyang University, Seungdong-Gu, Seoul 133-791 (Korea, Republic of); Yashiro, Hitoshi [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: yashiro@iwate-u.ac.jp

    2009-10-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li{sup +} resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li{sup +} where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li{sup +}, substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF{sub 6}, especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt.

  9. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  10. Excellent dynamic stability under saturated salt solution for aqueous quantum dots capped by multi-branched ligands

    Science.gov (United States)

    Xu, Jingkun; Xu, Shuhong; Lv, Changgui; Wang, Chunlei; Cui, Yiping

    2016-09-01

    Preparing quantum dots (QDs) with strong stability against salts is extremely important in some environments with ultrahigh salts concentration, such as the oil exploitation, wastewater treatment and biological markers. In this paper, we reported a simple new method to prepared highly stable QDs by using multi-branched ligands. Our results suggested that multi-branched ligands-capped QDs have extremely good dynamic stability even in salt-saturated solution. Unlike to traditional dynamic stability theory, which considers the electrostatic repulsion of QDs dominant QD stability, the current work found a new determined factor: the steric hindrance of ligand structure. The high steric hindrance effect of multi-branched ligands can maintain the single dispersity of QDs even at extremely low electrostatic repulsion. As a result, QDs with ultrahigh stability against salts can be realized.

  11. Coordination chemistry in fused-salt solutions

    Science.gov (United States)

    Gruen, D. M.

    1969-01-01

    Spectrophotometric work on structural determinations with fused-salt solutions is reviewed. Constraints placed on the method, as well as interpretation of the spectra, are discussed with parallels drawn to aqueous spectrophotometric curves of the same materials.

  12. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  13. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1H-PEO and 13C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  14. Treatment of Aqueous Solutions

    NARCIS (Netherlands)

    Van Spronsen, J.; Witkamp, G.J.

    2013-01-01

    The invention is directed to a process for the recovery or removal of one or more crystallizable compounds from an aqueous solution containing, apart from the said crystallizable compounds, one or more organic or inorganic scale- forming or scale-inducing materials having a lower solubility in water

  15. Specific Na+ and K+ Cation Effects on the Interfacial Water Molecules at the Air/Aqueous Salt Solution Interfaces Probed with Non-resonant Second Harmonic Generation (SHG)

    CERN Document Server

    Bian, Hong-tao; Guo, Yuan; Wang, Hong-fei

    2008-01-01

    Here we report the polarization dependent non-resonant second harmonic generation (SHG) measurement of the interfacial water molecules at the aqueous solution of the following salts: NaF, NaCl, NaBr, KF, KCl, and KBr. Through quantitative polarization analysis of the SHG data,the orientational parameter D value and the relative surface density of the interfacial water molecules at these aqueous solution surfaces were determined. From these results we found that addition of each of the six salts caused increase of the thickness of the interfacial water layer at the surfaces to a certain extent. Noticeably, both the cations and the anions contributed to the changes, and the abilities to increase the thickness of the interfacial water layer were in the following order: KBr > NaBr > KCl > NaCl ~ NaF > KF. Since these changes can not be factorized into individual anion and cation contributions, there are possible ion pairing or association effects, especially for the NaF case. We also found that the orientational ...

  16. Condensation of Self-Assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene Glycol and Doped with Salt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heung-Shik; Kang, Shin-Woong; Tortora, Luana; Kumar, Satyendra; Lavrentovich, Oleg D. (Chonbuk); (Kent)

    2012-10-10

    We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of interaggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates and (b) decrease of the persistence length of SSY aggregates.

  17. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt

    CERN Document Server

    Simakin, A V

    2010-01-01

    Laser exposure of suspension of either gold or palladium nanoparticles in aqueous solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power from 1011 to 1013 W/cm2 at the wavelength of 1064 and 355 nm were used as well as a visible-range Cu vapor laser at peak power of 1010 W/cm2. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy between 0.06 and 1 MeV range of photon energy. A real-time gamma-spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both 238U and 235U nuclei via different channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by gaseous H2 and D2 on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed.

  18. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.

    Science.gov (United States)

    Rudolph, Wolfram W; Irmer, Gert

    2015-01-01

    Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121-3.050 mol L(-1)) range at room temperature (23 °C). A very weak mode at 343 cm(-1) with a full width at half height at 49 cm(-1) in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La(3+) nona-hydrate was also detected in a 1.2 mol L(-1) La(CF3SO3)3(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5-3.050 mol L(-1). The chloro-complexes in LaCl3(aq) are fairly weak and disappear with dilution. At a concentration complexes disappeared. In LaCl3 solutions, with additional HCl, a series of chloro-complexes of the type [La(OH2)(9-n)Cln](+3-n) (n = 1-3) were formed. The La(NO3)3(aq) spectra were compared with a spectrum of a 0.409 mol L(-1) NaNO3(aq) and it was concluded that in La(NO3)3(aq) over the concentration range from 0.121-1.844 mol L(-1), nitrato-complexes, [La(OH2)(9-n)(NO3)n](+3-n) (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution La(OH2)9](3+) with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La-O stretching mode at 328.2 cm(-1), is only slightly smaller than the experimental one.

  19. Solid-state materials for anion sensing in aqueous solution: highly selective colorimetric and luminescence-based detection of perchlorate using a platinum(II) salt.

    Science.gov (United States)

    Taylor, Stephen D; Howard, Whitney; Kaval, Necati; Hart, Robert; Krause, Jeanette A; Connick, William B

    2010-02-21

    The PF(6)(-) salt of a platinum(II) complex changes from yellow to red and becomes intensely luminescent upon exposure to aqueous ClO(4)(-). The response is remarkably selective. Spectroscopic changes are consistent with anion exchange resulting in shortening of the intramolecular PtPt distances between the square planar cations.

  20. Solid-state materials for anion sensing in aqueous solution: highly selective colorimetric and luminescence-based detection of perchlorate using a platinum(II) salt

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stephen D.; Howard, Whitney; Kaval, Necati; Hart, Robert; Krause, Jeanette A.; Connick, William B. (UCIN); (Shepherd)

    2010-07-23

    The PF{sub 6}{sup -} salt of a platinum(II) complex changes from yellow to red and becomes intensely luminescent upon exposure to aqueous ClO{sub 4}{sup -}. The response is remarkably selective. Spectroscopic changes are consistent with anion exchange resulting in shortening of the intramolecular Pt***Pt distances between the square planar cations.

  1. Cr(VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: Kinetics and thermodynamics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barassi, Giancarlo; Valdes, Andrea; Araneda, Claudio; Basualto, Carlos; Sapag, Jaime; Tapia, Cristian [Laboratorio de Operaciones Unitarias, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Av. Vicuna Mackenna 20, Santiago (Chile); Valenzuela, Fernando, E-mail: fvalenzu@uchile.cl [Laboratorio de Operaciones Unitarias, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Av. Vicuna Mackenna 20, Santiago (Chile)

    2009-12-15

    This work studies the adsorption of Cr(VI) ions from an aqueous acid solution on hydrophobic polymeric microcapsules containing a long-chain quaternary ammonium salt-type extractant immobilized in their pore structure. The microcapsules were synthesized by adding the extractant Aliquat 336 during the in situ radical copolymerization of the monomers styrene (ST) and ethylene glycol dimethacrylate (EGDMA). The microcapsules, which had a spherical shape with a rough surface, behaved as efficient adsorbents for Cr(VI) at the tested temperatures. The results of kinetics experiments carried out at different temperatures showed that the adsorption process fits well to a pseudo-second-order with an activation energy of 82.7 kJ mol{sup -1}, confirming that the sorption process is controlled by a chemisorption mechanism. Langmuir's isotherms were found to represent well the experimentally observed sorption data. Thermodynamics parameters, namely, changes in standard free energy ({Delta}G{sup 0}), enthalpy ({Delta}H{sup 0}), and entropy ({Delta}S{sup 0}), are also calculated. The results indicate that the chemisorption process is spontaneous and exothermic. The entropy change value measured in this study shows that metal adsorbed on microcapsules leads to a less chaotic system than a liquid-liquid extraction system.

  2. Different Aggregation Behaviors of Amphiphilic Porphyrins in the Aqueous and Salt Aqueous solution%系列双亲卟啉在水溶液及盐溶液中的不同聚集行为

    Institute of Scientific and Technical Information of China (English)

    赵晓红; 张韫宏

    2007-01-01

      分析了中性条件下在水溶液及盐溶液中系列双亲卟啉随其浓度连续变化的紫外-可见吸收光谱。结果表明:在中性条件下不同侧链取代基对双亲卟啉的聚集行为有很大影响,盐的加入则导致卟啉的聚集形态发生改变,初步解释了影响卟啉聚集的原因。%  The UV-Vis spectra of amphiphilic porphyrins in aqueous and salt solution were analyzed at neutral condition. The results show that the substituted hydroxylphenyl and hexadecyl chains of ampiphilic porphyrins and the addition of salt effect the aggregation behaviors of porphyrins. The aggregating ability of amphiphilic porphyrins were explained primarily.

  3. Radium removal from aqueous sulphate solutions

    International Nuclear Information System (INIS)

    A process for removing radium from an aqueous sulphate solution also containing magnesium is claimed. The pH of the solution is less than 10. A soluble barium salt is added to the solution to precipitate radium as barium radium sulphate. The pH of the solution is then raised to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate. The precipitates are separated from the solution. If the sulphate solution contains dissolved magnesium and other impurities at a pH not greater than 7, then the first step in the process involves raising the pH of the solution to a value not greater than 10 to precipitate some of the magnesium and a substantial proportion of the other impurities and separating the precipitate from the solution. The radium removal is a step in the treatment of liquids resulting from the sulphuric acid leaching of uranium ores

  4. Salt-specific effects in lysozyme solutions

    OpenAIRE

    T. Janc; M. Kastelic; M. Bončina; Vlachy, V.

    2016-01-01

    The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, $T_{cloud}$, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer) and pH=4.6 (acetate buffer). We show that an addition of buffer in the amount above $I_{buffer} = 0.6$ mol dm$^{-3}$ does not affect the $T_{cloud}$ values. However, by replacing a certain amount of the buffer electrolyte b...

  5. The Poisson-Boltzmann equation for aqueous solutions of stong polyelectrolytes without added salt: The cell model revisited

    International Nuclear Information System (INIS)

    An extensive discussion of the analytical solution for the Poisson-Boltzmann equation in cylindrical symmetry for strong polyelectrolytes in the cell model is presented. The reduced mean electrostatic potential μ at finite dilutions is discussed in terms of its dependence on the polyelectrolyte equivalent concentration Ce, its charge density parameter ξ, and the distance of closest approach a of the counterions to the polyion. It is shown that in the limit a → 0 counterion condensation is expected. For more realistic nonzero values of a, the reduced potential μ at a given relative position r/R in the cell with radius R is practically independent of the linear charge density for ξ > 2, but its value depends on the product a2Ce. The value μ(a) of the reduced potential near the surface of the polyion is ξ-dependent, however, under the same conditions. A large fraction of all the counterions in the cell accumulate, on the average, in the neighborhood of the polyion, this fraction being larger the higher ξ is and the lower the product a2Ce is. The fraction of ions accumulated between the polyion surface at a and a distance from the polyion axis equal to the screening length 1/χ is high, reaching values exceeding 80% and being higher the smaller a2Ce is. This fraction of counterions (the open-quotes associatedclose quotes counterions) occupies a smaller part of the total cell volume than the counterions situated between 1/χ and R, which are characterized by a relatively low electrostatic interaction energy with the polyion, μ < 1 (the open-quotes freeclose quotescounterions). 22 refs., 11 figs

  6. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    Science.gov (United States)

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  7. Removal of radium from aqueous sulphate solutions

    International Nuclear Information System (INIS)

    Radium is often present in ores and an aqueous solution associated with the ore may consequently contain dissolved radium. It is frequently necessary to remove radium from such solutions to reduce the total radium content to a prescribed low level before the solution can be returned to the environment. The present invention is based on the discovery that the total radium content can be reduced to a satisfactory level within a reasonable time by adding a soluble barium salt to a radium-containing sulphate solution which also contains dissolved magnesium at a pH not greater than about 0 to precipitate radium as barium radium sulphate, raising the pH to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate, and separating substantially all of the precipitates from the solution

  8. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  9. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  10. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  11. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    International Nuclear Information System (INIS)

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13x10-4 mol dm-3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields (G) were calculated

  12. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    Science.gov (United States)

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  13. Spectral features of guanidinium-carboxylate salt bridges. The combined ATR-IR and theoretical studies of aqueous solution of guanidinium acetate

    Science.gov (United States)

    Levina, Elena O.; Lokshin, Boris V.; Mai, Bich D.; Vener, Mikhail V.

    2016-08-01

    The spectrum of guanidinium acetate in aqueous solution has been recorded by attenuated total reflectance infrared spectroscopy (ATR-IR). Assignments of the bands have been done using the polarizable continuum model (PCM). Three IR intensive bands at 1670, 1550, and 1410 cm-1 are associated with stretching and bending vibrations of the groups forming a ring of six heavy atoms of the bidentate configuration of guanidinium acetate. The relatively weak broad band near 2200 cm-1 is tentatively assigned to the stretching vibration of the Nsbnd H⋯O fragment of the hydrogen-bonded ion pairs.

  14. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH3, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH4NO3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  15. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N2O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N2O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H2). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  16. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  17. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  18. DEHYDRATION CONDENSATION IN AQUEOUS SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Steinman, Gary; Kenyon, Dean H.; Calvin, Melvin

    1965-04-01

    EARLIER investigations have demonstrated that di-cyandiamide (DCDA), the dimer of cyanamide, can successfully promote the dehydration condensation of: (1) glucose and orthophosphate to give glucose-6-phosphate; (2) adenosine and orthophosphate to give adenosine-5'-monophosphate; (3) orthophosphate to give pyrophosphate; (4) alanine to give alanylalanine and alanylalanylalanine. These reactions were carried out in dilute aqueous solutions in the dark. (It was also demonstrated that the combination of ultra-violet light and dicyandiamide could promote the synthesis of dipeptides. This observation has since been confirmed by other investigators.) These experiments were designed to demonstrate one possible means by which such compounds could have been formed on the prebiotic Earth, thus providing materials needed for the origin of living systems. Dicyandiamide itself could have been, present on the primitive Earth as was demonstrated with the ultra-violet irradiation of cyanide solution.

  19. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  20. Hydration of beryllium(II) in aqueous solutions of common inorganic salts. A combined vibrational spectroscopic and ab initio molecular orbital study.

    Science.gov (United States)

    Rudolph, Wolfram W; Fischer, Dieter; Irmer, Gert; Pye, Cory C

    2009-09-01

    Raman spectra of aqueous beryllium perchlorate, chloride, nitrate, and sulfate solutions have been measured over a broad concentration (0.098-4.950 mol L(-1)) range. The Raman spectroscopic data suggest that the tetra-aqua beryllium(II) ion is thermodynamically stable in perchlorate, chloride, and nitrate solutions over the concentration range measured. No inner-sphere complexes in these solutions could be detected spectroscopically except in very concentrated beryllium nitrate solutions. Beryllium sulfate solutions however, show a different picture, namely the existence of a thermodynamically stable beryllium sulfato complex most likely monodentate even at very low concentrations. At very high beryllium sulfate concentrations, a small quantity of a bidentate sulfato complex was found. With a temperature increase, the sulfato complex formation increases and this demonstrates the entropically driven sulfato complex formation. Furthermore, with increased temperature the hydrolysis increases, measured by the formation of hydrogen sulfate. Ab initio geometry optimizations and frequency calculations are reported for beryllium-water clusters with only inner sphere waters, clusters with an inner sphere and an incomplete second hydration, and clusters with a higher number of waters in the second hydration sphere. The cluster, [Be(OH2)(12)(2+)] (Be[4 + 8]) with 4 water molecules in the first sphere and 8 water molecules in the second sphere gave sufficiently realistic frequencies for BeO4 skeleton in comparison to the experimental ones. However, the cluster, [Be(OH2)(18)(2+)] (Be[6 + 12]) with 6 water molecules in the inner sphere and 12 water molecules in the outer sphere on an energy minimum gave unrealistically low BeO4 frequencies. This fact demonstrates that a six-fold coordination of Be2+ can be ruled out.

  1. KINETICS OF HYDROLYSIS IN AQUEOUS-SOLUTION OF 1-BENZOYL-1,2,4-TRIAZOLE - THE ROLE OF PAIRWISE AND TRIPLET GIBBS ENERGY INTERACTION PARAMETERS IN DESCRIBING THE EFFECTS OF ADDED SALTS AND ADDED ALCOHOLS

    NARCIS (Netherlands)

    NOORDMAN, WH; BLOKZIJL, W; ENGBERTS, JBF; BLANDAMER, MJ

    1995-01-01

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient-pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic-data are also reported for the same reaction in aqueous mixtures of sodium c

  2. Kinetics of hydrolysis in aqueous solution of 1-benzoyl-1,2,4-triazole; the role of pairwise and triplet Gibbs energy interaction parameters in describing the effects of added salts and added alcohols

    NARCIS (Netherlands)

    Noordman, Wouter H.; Blokzijl, Wilfried; Engberts, Jan B.F.N.; Blandamer, Michael J.

    1995-01-01

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic data are also reported for the same reaction in aqueous mixtures of sodium c

  3. Structure of aqueous sodium perchlorate solutions.

    Science.gov (United States)

    General, Ignacio J; Asciutto, Eliana K; Madura, Jeffry D

    2008-12-01

    Salt solutions have been the object of study of many scientists through history, but one of the most important findings came along when the Hofmeister series were discovered. Their importance arises from the fact that they influence the relative solubility of proteins, and solubility is directly related to one of today's holy grails: protein folding. In this work we characterize one of the more-destabilizing salts in the series, sodium perchlorate, by studying it as an aqueous solution at various concentrations ranging from 0.08 to 1.60 mol/L. Molecular dynamics simulations at room temperature permitted a detailed study of the organization of solvent and cosolvent, in terms of its radial distribution functions, along with the study of the structure of hydrogen bonds in the ions' solvation shells. We found that the distribution functions have some variations in their shape as concentration changes, but the position of their peaks is mostly unaffected. Regarding water, the most salient fact is the noticeable (although small) change in the second hydration shell and even beyond, especially for g(O(w)***O(w)), showing that the locality of salt effects should not be restricted to considerations of only the first solvation shell. The perturbation of the second shell also appears in the study of the HB network, where the difference between the number of HBs around a water molecule and around the Na(+) cation gets much smaller as one goes from the first to the second solvation shell, yet the difference is not negligible. Nevertheless, the effect of the ions past their first hydration shell is not enough to make a noticeable change in the global HB network. The Kirkwood-Buff theory of liquids was applied to our system, in order to calculate the activity derivative of the cosolvent. This coefficient, along with a previously calculated preferential binding, allowed us to establish that if a folded AP peptide is immersed in the studied solution, becoming the solute, then

  4. Molecular Thermodynamic Model for Polyelectrolyte Solutions with Added Salts

    Institute of Scientific and Technical Information of China (English)

    ZHANGBo; CAIJun; 等

    2002-01-01

    A molecular thermodynamic model of polyelectrolyte developed previously was extended to polyelectrolyte solutions with added salts.Thermodynamic properties,such as activity coefficients of polyelectrolytes or added salts and osmotic coefficients of solvent, of a number of aqueous mixtures of polyelectrolytes and salts are analyzed with the proposed model.Successful correlation is obtained in the range of moderate or higher polyion concentration.For the same sample,thermodynamic properties of polyelectrolytes with and without simple electrolytes can be predicted mutually using parameters from regression data.

  5. Adsorption of thorium by alkylammonium salts of iso and heteropolyacids of transition metals from aqueous solutions. III. Investigation of the coprecipitation of thorium with alkyltrimethylammonium phosphomolybdates as a function of solution acidity

    International Nuclear Information System (INIS)

    Results are presented of investigations on the isolation of thorium from aqueous solution by coprecipitation with hydrophobic compounds resulting from the direct interaction of 12-phosphomolybdic heteropolyacid (HPA) with alkyltrimethylammonium chloride, as a function of the acidity of the aqueous phase. It was established that the degree of extraction of thorium grew with an increase in pH value and on going to more dilute HPA solution. At a solution concentration of HPA equal to 3.1 x 10-3 mole/liter thorium in hydrochloric acid medium begins to be removed at a higher acidity of the aqueous phase in comparison with sulfuric acid. The interaction of thorium with hydrophobic precipitates occurs as a result of complex-forming processes with HPA or with products of its decomposition. Data are presented of IR spectroscopic investigations of the composition of the hydrophobic precipitates obtained under different conditions. It was shown that the differences in the character of thorium distribution between the precipitate and solution were determined by the change in composition of the solid phase

  6. Interfacial Thermodynamics of Coexisting Aqueous Polymer Solutions

    NARCIS (Netherlands)

    Vis, M.

    2015-01-01

    Phase separation is commonly observed when two different polymers are present in aqueous solution, forming aqueous two-phase systems which typically consist for 90% of water. It is demonstrated that the presence of charge on one of the polymers results in an electric potential difference between the

  7. Kinetics of ptaquiloside hydrolysis in aqueous solution

    DEFF Research Database (Denmark)

    Ayala-Luis, Karina B.; Bildsøe Hansen, Pernille; Rasmussen, Lars Holm;

    2006-01-01

    of the toxin, a full understanding of the PTA degradation in aqueous environments is important. The kinetics of PTA hydrolysis was examined at 22C in aqueous buffered solutions (pH 2.88–8.93). The reaction was found to follow first-order kinetics with respect to PTA at all pH and temperature conditions. At p...

  8. Electrodeposition of metals from non-aqueous solutions

    International Nuclear Information System (INIS)

    Electrodeposition of metals from non-aqueous solutions is reviewed. Attention is paid mainly to surface morphology of deposits and their adhesion. The major reasons for carrying out electrodeposition in non-aqueous electrolytes (such as conventional organic solvents, ionic liquids and molten salts) are the water and air stability and the wide electrochemical window of these media. The following metals have been electrodeposited and investigated for the last 15 years: aluminum, zinc, silver, palladium, tantalum, zirconium, gadolinium, plutonium, nickel, cobalt, and other alloys.

  9. Tannin (Polyphenol) Stability in Aqueous Solutions

    Science.gov (United States)

    Understanding the chemical stability of tannins (polyphenolics) in soils is critical to understanding their biological activities and fate. We examined the stability of chemically defined tannins in aqueous solutions under conditions simulating natural and laboratory conditions. We evaluated tanni...

  10. Calorimetric studies of macromolecular aqueous solutions

    NARCIS (Netherlands)

    Blandamer, M.J; Cullis, P.M.; Engberts, J.B.F.N.

    1996-01-01

    Both titration and differential scanning microcalorimetric techniques are shown to yield important information concerning the properties of macromolecules in aqueous solution. Application of titration calorimetry is examined in me context of deaggregation of canonic micelles (e.g. hexadecyltrimethyl

  11. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  12. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  13. Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline

    DEFF Research Database (Denmark)

    Paul, Subham; Thomsen, Kaj

    2012-01-01

    The absorption of carbon dioxide (CO2) into aqueous solution of potassium prolinate (KPr) are studied at 303, 313, and 323K within the salt concentration range of 0.5–3.0kmolm−3 using a wetted wall column absorber. The experimental results are used to interpret the kinetics of the reaction of CO2...

  14. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    Science.gov (United States)

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials. PMID:27124392

  15. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part II: Sorption of Ni2+ from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2016-01-01

    Full Text Available sorption of Ni2+ on the sepiolite functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt, MSEAS, was studied in batch experiments as a function of the initial metal concentration, the equilibration time, pH value, and temperature. The modification of sepiolite resulted in an enhanced Ni2+ retention with a capacity of 0.261 mmol/g at 298 K. The retention of Ni2+ ions occurred dominantly by specific sorption and exchange of Mg2+ ions from the sepiolite structure. The sorption process followed pseudo-second-order kinetics. The sorption equilibrium results were best described by the non-linear form of the Langmuir Sorption Equation. The values of the thermodynamic parameters (enthalpy, free energy and entropy were calculated from temperature dependent sorption isotherms and these values showed that the sorption of Ni2+ onto modified sepiolite was endothermic. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i FP7 NANOTECH FTM No. 245916

  16. Precipitation of neptunium dioxide from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  17. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  18. Hydrophobic Solvation: Aqueous Methane Solutions

    Science.gov (United States)

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  19. Issues in Freeze Drying of Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王维; 陈墨; 陈国华

    2012-01-01

    Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.

  20. The evaporation behavior of sessile droplets from aqueous saline solutions.

    Science.gov (United States)

    Soulié, Virginie; Karpitschka, Stefan; Lequien, Florence; Prené, Philippe; Zemb, Thomas; Moehwald, Helmuth; Riegler, Hans

    2015-09-14

    Quantitative experiments on the evaporation from sessile droplets of aqueous saline (NaCl) solutions show a strong dependence on salt concentration and droplet shape. The experiments were performed with seven decades of initial NaCl concentrations, with various droplet sizes and with different contact angles. The evaporation rate is significantly lower for high salt concentrations and small contact angles than what is expected from the well-accepted diffusion-controlled evaporation scenario for sessile droplets, even if the change of the vapor pressure due to the salt is taken into account. Particle tracking velocimetry reveals that this modification of the evaporation behavior is caused by marangoni flows that are induced by surface tension gradients originating from the local evaporative peripheral salt enrichment. In addition it is found that already very low salt concentrations lead to a pinning of the three phase contact line. Whereas droplets with concentration ≥10(-6) M NaCl are pinned as soon as evaporation starts, droplets with lower salt concentration do evaporate in a constant contact angle mode. Aside from new, fundamental insights the findings are also relevant for a better understanding of the widespread phenomenon of corrosion initiated by sessile droplets.

  1. Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases

    OpenAIRE

    Sharma, Ramankur; Corcoran, Timothy E.; Garoff, Stephen; Przybycien, Todd M.; Swanson, Ellen R.; Tilton, Robert D.

    2013-01-01

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface active dye, was added to the surfactant solution. T...

  2. Aqueous Solution Chemistry on Mars

    Science.gov (United States)

    Quinn, R.; Hecht, M.; Kounaves, S.; Young, S.; West, S.; Fisher, A.; Grunthaner, P.

    2007-12-01

    Currently en route to Mars, the Phoenix mission carries four wet chemistry cells designed to perform basic solution chemistry on martian soil. The measurement objectives are typical of those that would be performed on an unknown sample on Earth, including detection of common anions and cations, total conductivity, pH, redox potential, cyclic voltammetry (CV), etc. Both the challenge and the novelty arise from the necessity to perform these measurements with severely constrained resources in a harsh and (literally) alien environment. Sensors for all measurements are integrated into a common "beaker," with the ability to perform a two-point calibration of some sensors using a pair of low-concentration solutions. Sulfate measurement is performed with a crude titration. While most measurements use ion selective electrodes, halide interferences are resolved by independent chronopotentiometry (CP) measurements. No preconditioning of the soil-water mixture is possible, nor is any physical characterization of the introduced soil sample beyond coarse visual inspection. Among the idiosyncrasies of the measurement is the low external pressure, which requires that the analysis be performed close to the boiling point of water under an atmosphere consisting almost entirely of water vapor. Despite these liabilities, however, extensive laboratory characterization has validated the basic approach, and protocols for both CV and CP have been developed and tested. Enhancing the value of the measurement is the suite of coordinated observations, such as microscopy and evolved gas analysis, to be performed by other Phoenix instruments.

  3. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    J.M. Vicent-Luna; D. Dubbeldam; P. Gómez-Álvarez; S. Calero

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactio

  4. Water & Aqueous Solutions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-08-09

    The Gordon Research Conference (GRC) on Water & Aqueous Solutions was held at Holderness School, New Hampshire, 8/4/02 thru 8/9/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  5. SEPARATION OF SCANDIUM FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Peppard, D.F.; Nachtman, E.S.

    1958-02-25

    This patent relates to a process for the separation of scandium from yttrium, thorium, and trivalent rare earths and with their separation from each other. It has been found that scandium and yttrium can be separated from trivalent rare earths in acidic solution, for example, a solution 6 M in HCl, by contacting with tributyl phosphate, whereupon the scandum is preferentially extracted into the organic phase, leaving the yttrium and trivalent rare earths in the aqueous phase.

  6. Acidizing carbonate reservoirs with chlorocarboxylic acid salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.F.; Templeton, C.C.

    1978-10-31

    A carbonate reservoir is acidized slowly by injecting an aqueous solution of a chlorocarboxylic acid salt so that the rate of the acidization is limited to the rate at which an acid is formed by the hydrolyzing of the chlorocarboxylate ions. The rate at which a chlorocarboxylic acid salt hydrolyzes to form an acid provides the desired rate of acid-release. A more complete acid-base reaction by chloroacetic acid, as compared to formic, acetic, and proprionic, is due to its being a much stronger acid. The pKa of chloroacetic acid is 2.86, whereas that of formic acid is 3.75, and that of acetic acid is 4.75. The pKa of a solution of a weak acid is the pH exhibited when the concentration of undissociated acid equals the concentration of the acid anion. 14 claims.

  7. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  8. Photoionization of Sodium Salt Solutions in a Liquid Jet

    International Nuclear Information System (INIS)

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces

  9. Photoionization of Sodium Salt Solutions in a Liquid Jet

    Energy Technology Data Exchange (ETDEWEB)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  10. Densities, viscosities, refractive indices, and electrical conductivities of aqueous alkali salts of α-alanine

    International Nuclear Information System (INIS)

    Highlights: • Thermophysical properties of aqueous Na and K salts of α-alanine were studied. • Properties are density, viscosity, refractive indices, and thermal conductivity. • The concentrations of amino acid salt ranges from (0.5 to 3.5) M. • The temperature range studied was (333.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: In this work, physicochemical properties such as density, viscosity, refractive index, and electrical conductivity of aqueous alkali (potassium or sodium) salts of the amino acid α-alanine (ALA), were measured at temperatures from (303.15 to 343.15) K and concentrations ranging from (0.5 to 3.5) M. Density and viscosity measurements were performed using the vibrating tube and the falling ball techniques, respectively. The refractive index at the sodium D line was measured in an automatic refractometer, while the electrical conductivity was measured using a commercial conductivity meter. An empirical equation was applied to correlate the density, refractive index, and electrical conductivity of the amino acid salt solutions with temperature and amino acid salt concentration, which gave average absolute deviation values of 0.03%, 0.01%, and 0.6%, respectively. The variation of the viscosity as a function of temperature and amino acid salt concentration was accurately represented by a modified Vogel–Tamman–Fulcher equation at an average absolute deviation of 0.5%

  11. Dissolution of gaseous methyl iodide into aqueous sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Absorption process of gaseous methyl iodide by water or sodium hydroxide solutions was investigated using a semi-flow type experimental apparatus by measuring the concentration of all measurable chemical species in both the gas and the liquid phase. The experimental temperature ranged from 288 to 311 K and the gaseous methyl iodide and aqueous sodium hydroxide concentrations were approximately 0.6 x 10-3 to 7 x 10-3 and 0 to 0.2 mol/dm3, respectively. It is estimated that the dissolution of methyl iodide into the sodium hydroxide solution proceeds according to the following steps. Step (1) Methyl iodide in air dissolves physically into the aqueous phase. Physical dissolution process obeys Henry's law. Step (2) Methyl iodide dissolved into the aqueous phase is decomposed by a base catalytic hydrolysis and produces methyl alcohol and iodide ion. The equilibrium constants of physical dissolution were obtained from the steady concentration in both the gas and the liquid phases in the semi-flow type experiment because the hydrolysis reaction rate of methyl iodide is very slow in comparison with the physical dissolution in this experimental conditions. The obtained value of the standard heat of solution of methyl iodide into water was 7.2 kcal/mol. Salting-out effect was observed when the concentration of sodium hydroxide in the absorbent was over 0.01 mol/dm3. (auth.)

  12. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO2F2. Studies on the effect of added LiNO3 or Na2WO4·2H2O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF6 content of WF6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF6

  13. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  14. Does Dimeric Melittin Occur in Aqueous Solutions?

    OpenAIRE

    Schubert, D; Pappert, G.; Boss, K.

    1985-01-01

    Melittin, a peptide from bee venom, is known to undergo a monomer / tetramer conversion in aqueous solutions. We have studied the possible participation of dimers in the association equilibrium of melittin by sedimentation equilibrium experiments in the analytical ultracentrifuge and subsequent mathematical analysis of the concentration distributions obtained. It was found that the dimeric state is not significantly populated, the contribution of dimer to the total peptide weight probably bei...

  15. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  16. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  17. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Science.gov (United States)

    2010-04-01

    ... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an aqueous solution including suitable and harmless preservatives and buffer substances, contains 10 milligrams of... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin ophthalmic aqueous solution....

  18. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  19. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...... monoethanolamine (MEA) were performed, using a stirred cell reactor experimental setup. The absorption of gas containing 10 mol % CO2 and 90 mol % N2 was followed by measuring the percentage of CO2 in the outlet gas. Also the temperature and pH in the solutions were measured during the absorption. The results...

  20. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems......, respectively, with a Debye-Hückel term for electrostatic interactions. In a second approach of the model, additional parameters for interactions of ion pairs in the KT-UNIFAC are introduced as a correction to get better agreement with data. Structural parameters of ions used in the framework of UNIFAC...

  1. NIR Spectroscopic Properties of Aqueous Acids Solutions

    Directory of Open Access Journals (Sweden)

    Mohd Zubir MatJafri

    2012-06-01

    Full Text Available Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R2 above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918–925 nm and 990–996 nm, while at 975 nm for water.

  2. Optical manipulation of proteins in aqueous solution

    International Nuclear Information System (INIS)

    Optical trapping of lysozyme, cytochrome c, or myoglobin based on photon pressure generated by focusing 1064 nm laser beam in an aqueous solution was explored. For all the proteins, microparticle formation was observed at the focal point under an optical microscope. Furthermore, the microparticles were identified to the molecular assemblies of the corresponding protein by means of confocal Raman microspectroscopy. For lysozyme, molecular clusters in solution were optically trapped to form the microparticle and it took more than 1 h to produce the microparticle. By contrast, molecular assembling proceeded within 1 min for cytochrome c and myoglobin. Since heme in cytochrome c or myoglobin would have a high polarizability, that would contribute to rapid assembling of the protein. Thus we demonstrated that a focused laser beam was a powerful tool to manipulate protein molecules in solution.

  3. Aqueous Solution Vessel Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  4. Qualitative and quantitative analysis of beta emitters in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, Zaini bin

    1983-01-01

    A beta spectrometer, consisting of a liquid scintillation counter, coupled to a programmable multichannel analyser was used to achieve the objective of detecting and measuring beta activity in low level aqueous environmental solution as well as identifying the radioisotopes present. Aqueous solutions of standard beta emitters, covering a range of energies between 18.6 KeV and 3550 KeV, were used to develop computer methods for analysis. The effects of pH, acids, bases, buffers, and salts on the stability of the mixture and on the detection efficiency of the radioisotopes, were investigated. It was found that temperature changes, beyond the operating temperature range, could result in severe errors. Application of the Cherenkov counting technique for beta emitters, gives extra data to support the main results. For the analysis of environmental solutions, which may contain a variety of radioisotopes, the system was used to obtain spectra of alpha emitters, beta emitters with internal conversion and Cherenkov radiation. Synthetic mixtures of tritium and carbon-14 of activity ratios between 8:1 and 1:8 were used to investigate the problems of multielement spectral analysis.

  5. Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions

    OpenAIRE

    Güner, Pınar Tatar; Miko, Annamaria; Schweinberger, Florian F.; Demirel, A. Levent

    2012-01-01

    Poly(2-ethyl-2-oxazoline) (PEOX) formed self-assembled fibers in aqueous solutions above the cloud point temperature (T-c) through a slow crystallization process. The fiber formation above T-c happened both in pure water and in the presence of salting-in (SCN-) and salting-out (CH3COO-) ions. The crystal structure and the melting temperature of the PEOX fibers were determined.

  6. Pulse Radiolysis of Aqueous Thiocyanate Solution

    International Nuclear Information System (INIS)

    The pulse radiolysis of N2O saturated aqueous solutions of KSCN was studied under neutral pH conditions. The observed optical absorption spectrum of the SCN#lgbullet# radical in solution is more complex than previously reported, but it is in good agreement with that measured in the gas phase. Kinetic traces at 330 nm and 472 nm corresponding to SCN#lgbullet# and (SCN)2#lgbullet#-, respectively, were fit using a Monte Carlo simulation kinetic model. The rate coefficient for the oxidation of SCN- ions by OH radicals, an important reaction used in competition kinetics measurements, was found to be 1.4 ± 0.1 x 1010 M-1 s-1, about 30% higher than the normally accepted value. A detailed discussion of the reaction mechanism is presented

  7. Glasslike Behavior in Aqueous Electrolyte Solutions

    CERN Document Server

    Turton, David A; Hefter, Glenn; Buchner, Richard; Wynne, Klaas; 10.1063/1.2906132

    2009-01-01

    When salts are added to water, the viscosity generally increases suggesting the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules implying no enhance-ment or breakdown of the hydrogen-bond network. Here we report optical Kerr-effect and dielectric relaxa-tion spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  8. Glasslike behavior in aqueous electrolyte solutions.

    Science.gov (United States)

    Turton, David A; Hunger, Johannes; Hefter, Glenn; Buchner, Richard; Wynne, Klaas

    2008-04-28

    When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  9. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    Science.gov (United States)

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  10. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  11. Aqueous dispersions of silver nanoparticles in polyelectrolyte solutions

    Indian Academy of Sciences (India)

    Dan Donescu; Raluca Somoghi; Marius Ghiurea; Raluca Ianchis; Cristian Petcu; Stefania Gavriliu; Magdalena Lungu; Claudia Groza; Carmen R Ionescu; Carmen Panzaru

    2013-03-01

    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spectrophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to study how the reagents and their concentrations influence particle size. SEM images show the nanostructure of the hybrid films and indicate a strong interaction between the polyelectrolyte and the silver NPs. Moreover, the silver NPs could be stored for one year without observation of aggregates or sedimentation. The final solid products obtained after evaporating to dryness can be used to produce stable dispersions upon mixing with water. Few of the final products were found to exhibit a high antibacterial and antifungal activity.

  12. Cations bind only weakly to amides in aqueous solutions.

    Science.gov (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S

    2013-04-01

    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  13. Functionalized polymers for binding to solutes in aqueous solutions

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  14. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  15. Thermodynamic characteristics of acid-base equilibria of DL-α-alanyl-DL-norleucine in aqueous solutions at 298 K

    Science.gov (United States)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Skvortsov, I. A.

    2015-09-01

    Protolytic equilibria in aqueous solutions of DL-α-alanyl-DL-norleucine are studied via potentiometry and calorimetry. Measurements are made at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 (against a background of potassium nitrate). The thermodynamic characteristics (p K, Δ G, Δ H, Δ S) of the stepwise dissociation of the dipeptide both in aqueous-salt solutions and in standard solution are obtained for the first time.

  16. Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

    Indian Academy of Sciences (India)

    M L Parmar; M K Guleria

    2005-07-01

    Relative viscosities for the solutions of oxalic acid and its salts, viz. ammonium oxalate, sodium oxalate and potassium oxalate, at different concentrations have been determined in water and in binary aqueous mixtures of tetrahydrofuran (THF) [5, 10, 15 and 20% by weight of THF] at 298.15 K, and in water and in 5% (w/w) THF + water at five different temperatures. The data have been evaluated using the Jones-Dole equation and the obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. The activation parameters of viscous flow have been obtained which depicts the mechanism of viscous flow. The oxalic acid and its salts behave as structure breakers in water and in binary aqueous mixtures of THF.

  17. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  18. Characterization of aqueous silver nitrate solutions for leakage tests

    Science.gov (United States)

    COSTA, José Ferreira; SIQUEIRA, Walter Luiz; LOGUERCIO, Alessandro Dourado; REIS, Alessandra; de OLIVEIRA, Elizabeth; ALVES, Cláudia Maria Coelho; BAUER, José Roberto de Oliveira; GRANDE, Rosa Helena Miranda

    2011-01-01

    Objectives To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. Material and Methods A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). Results The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). Conclusions Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of

  19. The kinetics of dye formation by pulse radiolysis of pararosaniline cyanide in aqueous or organic solution

    International Nuclear Information System (INIS)

    The radiation-induced conversion of the leucocyanide of pararosaniline dye to the highly colored salt-isomer of the dye in acidic aqueous solution (wavelength of maximum absorption lambda sub(max)=540 nm) or polar organic solution (lambda sub(max)=550 nm), takes place in two separate processes. The first is very fast (within 3 s-1 to 106 s-1, as the acidity or concentration of an oxidizing agent increases. In oxygen-free acidic aqueous or organic solutions (argon saturated) there is an unstable transient species (lambdasub(max)=380 nm). When using O2 or N2O-saturated aqueous or organic solution, there is no intermediate absorption band at 380 nm, but the slow process of dye formation at 540 or 550 nm is still sequential to the initial fast process having somewhat faster kinetics than in Ar-saturated solution. (author)

  20. Optimization of salt concentration in PEG-based crystallization solutions

    OpenAIRE

    Yamanaka, Mari; Inaka, Koji; Furubayashi, Naoki; Matsushima, Masaaki; Takahashi, Sachiko; Tanaka, Hiroaki; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo

    2010-01-01

    Although polyethylene glycol (PEG) is the most widely used precipitant in protein crystallization, the concentration of co-existing salt in the solution has not been well discussed. To determine the optimum salt concentration range, several kinds of protein were crystallized in a 30% PEG 4000 solution at various NaCl concentrations with various pH levels. It was found that, if crystallization occurred, the lowest effective salt concentration depended on the pH of the protein solution and the ...

  1. Aqueous DMSO Mediated Conversion of (2-(Arylsulfonyl)vinyl)iodonium Salts to Aldehydes and Vinyl Chlorides.

    Science.gov (United States)

    Zawia, Eman; Moran, Wesley J

    2016-01-01

    Vinyl(aryl)iodonium salts are useful compounds in organic synthesis but they are under-utilized and their chemistry is under-developed. Herein is described the solvolysis of some vinyl(phenyl)iodonium salts, bearing an arylsulfonyl group, in aqueous DMSO leading to aldehyde formation. This unusual process is selective and operates under ambient conditions. Furthermore, the addition of aqueous HCl and DMSO to these vinyl(aryl)iodonium salts allows their facile conversion to vinyl chlorides. PMID:27537866

  2. A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 2 – chloride solutions and mixed bromide/chloride solutions

    Directory of Open Access Journals (Sweden)

    C. Anastasio

    2006-02-01

    Full Text Available Although reactive halogen species (X*=X●, ●X2−, X2 and HOX, where X=Br, Cl, or I are important environmental oxidants, relatively little is known about their kinetics in condensed phases such as seawater and sea-salt particles. Here we describe a new technique to determine reactive chlorine and bromine species in aqueous solutions by using allyl alcohol (CH2=CHCH2OH as a chemical probe. This probe is combined with competition kinetics in order to determine steady state concentrations of X*(aq. In some cases the technique also can be used to determine the rates of formation and lifetimes of X* in aqueous solution. In a companion paper we reported the results of our method development for aqueous solutions containing only bromide (Br−. In this paper, we discuss method development for solutions containing chloride (Cl− alone, and for solutions containing both bromide and chloride.

  3. Conductivity Prediction of Sodium and Potassium Hydrogen Tartrates in Aqueous Solution at Low Concentration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@1 INTRODUCTION Acid salt is one kind of important compound, and studies on its solution conductivity behavior are very necessary in chemical analysis and medicine, biology and food industry. However, in aqueous solution, theconductivity behavior of the acid salt is quite compli-cated due to the existence of dissociation and asso-ciationequilibria among the species, which makes itdiffcult to predict or correlate the molar conductivityof acid salt solution. Now though conductivity equa-tion such as Pitts[1,2], Onsager-Fuoss-Chen (1978)[3],Fuoss(1978)[4], Lee Wheaton[5], and Quint-Viallard[6]equations are able to predict the conductivity of elec-trolyte solution, the reliability and accuracy of predic-tio are difficult to ensure.

  4. Methods for predicting properties and tailoring salt solutions for industrial processes

    Science.gov (United States)

    Ally, Moonis R.

    1993-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.

  5. Raman spectroscopy application to analyses of components in aqueous solutions

    Science.gov (United States)

    Li, Gang; Zhang, Guoping

    2006-09-01

    The characterization of species in aqueous solutions has presented a challenge to analytical and physical chemist, because the JR absorption of the aqueous solvent is so intense that it becomes difficult to observe the solute in the water by JR absorption. In contrast, Raman spectrum of the solute is unaffected by the water, so the weak scattering of water makes the technique well suited to aqueous samples, and the Raman spectrum exhibits well-defined bands corresponding to fundamental modes of vibration. In addition, Raman spectroscopy has some inherent advantages in aqueous solution analysis, because the spectral features of signals from different species are much more distinct, and it provides characteristic signatures for samples, such as blood, protein and cholesterol. All the advantages make Raman spectroscopy be a potential alternative for the study of aqueous solutions. Now, Raman spectroscopy has been applied to studying samples in aqueous solutions, blood serum, intracellular protein levels. Now, industrial wasted water contains many organic contaminants, and it is necessary to determine and monitor these contaminants. The paper first introduces Raman spectroscopy, and then describes its applications to determining the components in aqueous solutions, analyzes and assignes the Raman spectra of o-dichlorobenzene, o-xylene, m-xyiene and p-xylene in detail. The experimental results demonstrate that Raman spectroscopy is a particularly powerful technique for aqueous solutions analyses.

  6. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  7. ESR study on carboxymethyl chitosan radicals in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Seiichi, E-mail: saiki.seiichi@jaea.go.j [Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagasawa, Naotsugu; Hiroki, Akihiro; Morishita, Norio; Tamada, Masao [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Muroya, Yusa; Kudo, Hisaaki [Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Katsumura, Yosuke [Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2010-03-15

    Carboxymethyl chitosan (CMCTS) at a highly concentrated aqueous solution forms hydrogel by ionizing irradiation. To study on radiation-induced reaction mechanism of CMCTS in an aqueous solution, CMCTS radicals formed by reactions with OH radical were observed by ESR method. As a result of ESR spectral analysis, CMCTS radicals were identified as radicals on carboxymethyl groups.

  8. Removal of radium from aqueous solutions

    International Nuclear Information System (INIS)

    Adsorption of radium from aqueous solution with montmorillonite clay was investigated. Adsorption isotherm data of the radium and montmorillonite clay system were developed and fitted to both the Langmuir and Freundlich isotherm equations. The Langmuir isotherm equation was determined to be q = 6.700 C/1 + 8.447 x 10-5C and the Freundlich isotherm equation is q = 45.431 C/sup 1/1.401/. A rotary precoat filtration technique was used for dewatering the slurries of the montmorillonite clay and diatomaceous earth mixture. The rate of filtration was found to be a function of the weight percent of the clay, applied vacuum, drum speed and precoat thickness. The functional relationship is of the form Q = (0.682 + 0.035 X1 - 0.014 X2 + 0.140 X3 + 0.007 X1X2)/1 + (3.744 - 0.767 X3 + 0.079 X1X2)C125. 15 figures, 11 tables

  9. Collapse of sodium polyacrylate chains in calcium salt solutions

    Science.gov (United States)

    Schweins, R.; Huber, K.

    The sodium salt of polyacrylic acid (NaPA) precipitates in the presence of Ca^{2+}-ions. This phase behaviour can be represented by a phase diagram where the critical NaPA concentration is plotted versus the critical Ca^{2+} concentration resulting in a straight line as a phase boundary. The location of this phase boundary is influenced by the presence of an inert monovalent salt like NaCl. The present contribution focuses on the coil dimensions of NaPA chains in dilute aqueous solution corresponding to the one phase region of such a phase diagram. A variety of parameters with which the size and shape of the polyelectrolyte chains can be modulated are revealed. Approaching the phase boundary by decreasing the NaPA concentration at a constant Ca^{2+} content leads to a collapse of the NaPA chains. Combined static and dynamic light scattering suggests a compact spherical shape as the final state of this transition, both in 0.1 M NaCl and in 0.01 M NaCl. In the lower NaCl concentration, indication is presented for the existence of a cigar or pearl necklace like intermediate. Most strikingly, the collapsed chains can be reexpanded by increasing the concentration of inert NaCl at constant content of NaPA and Ca^{2+}. Clearly, excessive Na+-ions displace the Ca^{2+}-ions from the NaPA chains.

  10. Electrical conductivity of aqueous polyelectrolyte solutions in the presence of counterion condensation: The scaling approach revisited

    Science.gov (United States)

    Bordi, F.; Cametti, C.; Gili, T.

    2002-08-01

    The conductometric properties of aqueous polyelectrolyte solutions in the absence of added salt are reviewed in the light of the dynamic scaling description of the polymer conformation in different concentration regimes, recently proposed by Dobrynin and Rubinstein [Macromolecules 28, 1859 (1995); 32, 915 (1999)]. The scaling approach to the transport properties of polyelectrolyte solutions allows us to separate contributions due to polymer conformation from those due to the ionic character of the chain, and offers the possibility to extend the validity of the Manning conductivity model to the dilute and semidilute regimes. Moreover, the quality of the solvent, influencing the polyion-counterion interactions, can be properly taken into account. The electrical conductivity predicted by this scaling approach compares reasonably well with the observed values for a model polyelectrolyte (polyacrylate sodium salt in aqueous solutions, good solvent condition) over an extended concentration range from the dilute to the semidilute regime.

  11. Simulations of mean ionic activity coefficients and solubilities in aqueous electrolyte solutions

    Science.gov (United States)

    Panagiotopoulos, Athanassios

    Aqueous electrolyte solutions play an important role in industrial, geochemical and biological applications. The mean ionic activity coefficients quantify the deviation of salt chemical potential from ideal solution behavior; experimental measurements are available for many salts over broad ranges of concentration and temperature, but there have been practically no prior simulation results, because if sampling difficulties for explicit-solvent electrolyte solutions. We have developed a new approach for determination of activity coefficients of aqueous electrolytes. Common fixed-point-charge models for water and ions are unable to reproduce simultaneously activity coefficients and solubilities. Polarizable models perform better, but still predict an incorrect temperature dependence of these properties. Work supported by the U.S. Department of Energy, Office of Basic Energy Science.

  12. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: In Solutions.

    Science.gov (United States)

    Yucel, Umut; Peterson, Devin G

    2015-09-01

    The influence of protein-sodium interactions on the availability of sodium in the aqueous phase of liquid samples and consequently on the perception of saltiness was investigated. The aqueous effluents of casein and casein emulsion-salt solutions were monitored for sodium availability from a tongue column system. In the aqueous protein-salt solutions, increasing the protein/salt ratio from 1:1 to 5:1 or 10:1 significantly decreased the initial salt concentration in the effluent and resulted in a higher salt concentration in the effluent over time. Sensory analysis was in agreement. Samples with increased protein were rated as having significantly lower initial saltiness and a higher salty aftertaste. However, when casein was formulated as an emulsion, the initial release of sodium in the effluent was enhanced (compared to nonemulsified protein). Increasing the emulsion interfacial area (more hydrophilic segments of the protein were structured into the aqueous phase) resulted in a higher salt concentration in the aqueous phase and greater perceived saltiness intensity. In summary, protein interactions, specifically ionic, were reported as food interactions that influence salt perception and provide a basis to develop higher flavor quality low-sodium food products.

  13. Amino acid salt solutions as solvents in CO2 capture from flue gas

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Thomsen, Kaj; Stenby, Erling Halfdan

    solutions is their ability to form solid precipitates upon the absorption of CO2. The occurrence of crystallization offers the possibility of increasing the CO2 loading capacity of the solvent. However, precipitation can also have negative effect on the CO2 capture process. The chemical nature of the solid...... loading capacity of aqueous solutions of the potassium salts of selected amino-acids (glycine, taurine, lysine proline, and glutamic acid) were examined, and the relation between the initial amino acid salt concentration and precipitation ability of each solution were determined. Experiments were...... of glycine, taurine, and lysine, while in the case of proline, and glutamic acid, the precipitate was found to be bicarbonate. These results give an important contribution to further understanding the potential of amino acid salt solutions in CO2 capture from flue gas....

  14. Influence aqueous solutions on the mechanical behavior of argillaceous rocks

    International Nuclear Information System (INIS)

    The hydration of the shale with an aqueous solution induces a swelling deformation which plays an important role in the behaviour of the structures excavated in this type of grounds. This deformation is marked by a three-dimensional and anisotropic character and involves several mechanisms like adsorption, osmosis or capillarity. Several researches were dedicated to swelling and were often much debated due to the complexity of the implied phenomena. The goal of this thesis is therefore to contribute to a better understanding of shale swelling when the rock is confined and hydrated with an aqueous solution. The main part of the work accomplished was related to the Lorraine shale and to the Tournemire shale. To characterize swelling and to identify the main governing parameters, it was necessary to start the issue with an experimental approach. Many apparatus were then developed to carry out tests under various conditions of swelling. In order to facilitate the interpretation of the tests and thereafter the modelling of the behaviour, the experimental procedure adopted consisted of studying first the mechanical aspect and then the chemical aspect of swelling. In the mechanical part, swelling was studied by imposing on the sample a mechanical loading while maintaining during the tests the same aqueous solution. The principal parameters which were studied are the effect of the lateral conditions on axial swelling (impeded strain or constant stress) as well as the influence of the axial stress on radial swelling. The anisotropy of swelling was studied by carrying out, for different orientations of the sample, tests of free swelling, impeded swelling and uniaxial swelling. These various mechanical tests allowed to study the three-dimensional anisotropic swelling in all the conditions and to select the most appropriate test to be used in the second phase of the research. The precise analysis performed to explain the mechanisms behind the swelling of an argillaceous rock

  15. Ozone photolysis of paracetamol in aqueous solution.

    Science.gov (United States)

    Neamţu, Mariana; Bobu, Maria; Kettrup, Antonius; Siminiceanu, Ilie

    2013-01-01

    The degradation of a paracetamol (N-acetil-para-aminofenol) aqueous solution (C (0) P = 5 mmol L(-1)) is studied in a bench-scale setup by means of simple ozonation (O3) and ozonation catalyzed with UV light (O3/UV) in order to quantify the influence of UV light on the degradation process. The results have shown that under the adopted experimental conditions (25°C, applied ozone dose = 9.8 mg L(-1) and gas flow rate of 20 L h(-1)) both oxidative systems are capable of removing the substrate with mineralization degrees up to 51% for ozonation and 53% for O3/UV. HPICE chromatography allowed the detection of nitrate ions and maleic and oxalic acids as ultimate carboxylic acids. The experimental data have been interpreted through 5 indicators: the conversion of paracetamol (XP ), the conversion degree of TOC (XTOC ), the apparent rate constant (kap ), the Hatta number (Ha) and the enhancement factor (E). The main advantage of photo-ozonation compared to simple ozonation was a more advanced conversion (79% vs. 92% after 90 min). The paracetamol decay follows a pseudo-first-order reaction with a superior rate constant (higher by 54%) for the UV catalyzed system in comparison with direct ozonation. Mineralization is slightly accelerated (+4%) in the O3/UV system, due to the additional production of hydroxyl radicals induced by the UV light and a higher Hatta number (+24%). Nevertheless, the process was still in the slow reaction kinetic regime (Ha < 0.3), and the enhancement factor was not significantly increased. The results are useful for the design and scale-up of the gas-liquid processes. PMID:23647117

  16. Ozone photolysis of paracetamol in aqueous solution.

    Science.gov (United States)

    Neamţu, Mariana; Bobu, Maria; Kettrup, Antonius; Siminiceanu, Ilie

    2013-01-01

    The degradation of a paracetamol (N-acetil-para-aminofenol) aqueous solution (C (0) P = 5 mmol L(-1)) is studied in a bench-scale setup by means of simple ozonation (O3) and ozonation catalyzed with UV light (O3/UV) in order to quantify the influence of UV light on the degradation process. The results have shown that under the adopted experimental conditions (25°C, applied ozone dose = 9.8 mg L(-1) and gas flow rate of 20 L h(-1)) both oxidative systems are capable of removing the substrate with mineralization degrees up to 51% for ozonation and 53% for O3/UV. HPICE chromatography allowed the detection of nitrate ions and maleic and oxalic acids as ultimate carboxylic acids. The experimental data have been interpreted through 5 indicators: the conversion of paracetamol (XP ), the conversion degree of TOC (XTOC ), the apparent rate constant (kap ), the Hatta number (Ha) and the enhancement factor (E). The main advantage of photo-ozonation compared to simple ozonation was a more advanced conversion (79% vs. 92% after 90 min). The paracetamol decay follows a pseudo-first-order reaction with a superior rate constant (higher by 54%) for the UV catalyzed system in comparison with direct ozonation. Mineralization is slightly accelerated (+4%) in the O3/UV system, due to the additional production of hydroxyl radicals induced by the UV light and a higher Hatta number (+24%). Nevertheless, the process was still in the slow reaction kinetic regime (Ha < 0.3), and the enhancement factor was not significantly increased. The results are useful for the design and scale-up of the gas-liquid processes.

  17. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies...... of aqueous periodate solutions and with kinetic studies using stopped-flow technique. In strongly alkaline solution the photodecomposition of periodate proceeds via formation of O– and IVI. At pH

  18. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  19. Bedded salt in Ontario : geology, solution mining and cavern storage

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T. [Ontario Ministry of Natural Resources, London, ON (Canada). Petroleum Resources Centre

    2009-07-01

    This presentation discussed bedded salt geology in Ontario in relation to cavern storage and solution mining. Ontario's salt basin forms part of the Michigan basin. The salt formed as reefs surrounding the shallow basin restricted the flow of water. Salt then formed as the water evaporated. The bedded salt occurs in several layers underlying up to 16,000 km{sup 2} in the province. Subsurface resources used in the area include salt cavern hydrocarbon storage; oil and gas reservoirs; and natural gas reservoir storage. The Salina Group stratigraphy is comprised of several separate salt beds with a maximum combined thickness of 90 m. The Salina salt beds exhibit evidence of dissolution after deposition. There are currently 20 active solution mining wells in operation in the Windsor and Goderich regions. There are currently 112 wells and 70 caverns used for cavern storage in Ontario that are used to store approximately 27 million bbl of liquefied petroleum gas (LPG) and oil. Non-salt layers in the salt beds can interfere with both solution mining and cavern storage operations. tabs., figs.

  20. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  1. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    OpenAIRE

    Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; TIDOR, BRUCE

    2005-01-01

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation typ...

  2. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Merbold, Hannes

    2010-01-01

    We present spectroscopic measurements of the full dielectric function of aqueous solutions of sodium chloride and lithium chloride at concentrations approaching their solubility limits at room temperature. We find that the dielectric properties of the two salts are rather different at THz...... frequencies. Whereas both the real and imaginary part of the permittivity of NaCl increases with concentration,we see that the imaginary part of the permittivity of LiCl (related to the absorption)decreases with increasing salt concentration. We relate these changes to the behavior...

  3. Nanoscale lubricating film formation by linear polymer in aqueous solution

    Science.gov (United States)

    Liu, Shuhai; Guo, Dan; Xie, Guoxin

    2012-11-01

    Film-forming properties of polymer in aqueous solution flowing through a nanogap have been investigated by using a thin film interferometry. The film properties of linear polymer in aqueous solution flowing through a confined nanogap depend on the ratio of water film thickness to averaged radius of polymer chains H0/RPolymer. It was found that the lubrication film thickness of linear polymer in aqueous solution decreases as the polymer molecular weight increasing when H0/RPolymer < 2 ˜ 3. A new lubrication map was proposed, which includes the lubrication regime of weak confinement influence, the lubrication regime of strong confinement influence (LRSCI), and the transition regime of confinement influence. It is very difficult to increase the lubrication film thickness using the higher molecule weight in the LRSCI regime. The lubrication mechanism inferred from our experimental results may help to better understand the dynamic film properties of linear polymer in aqueous solution flowing through a nanogap.

  4. Molecular dynamics study of n-alcohols adsorbed on an aqueous electrolyte solution

    Science.gov (United States)

    Daiguji, Hirofumi

    2001-07-01

    The distribution of normal alcohol (n-alcohol) on water and the effect of salt on the structural and dynamical properties of n-alcohol on aqueous electrolyte solutions were investigated using molecular dynamics simulation. The stability of the alcohol distribution was studied for three types of n-alcohol (n-propanol, C3H7OH; n-heptanol, C7H15OH; and n-undecanol, C11H23OH), four or five concentrations of alcohol, and three concentrations of salt. The simulation results reveal the following. The distribution of n-propanol on water is homogeneous at all n-alcohol concentrations studied here and the distribution of n-heptanol and n-undecanol on water is heterogeneous. The n-alcohol concentration at which fluctuations in the alcohol distribution begin to increase depends on the length of the hydrocarbon chain of the n-alcohol. Salt concentration affects the surface excess concentration of n-alcohol and the stability of the adsorbed layer of n-alcohol. The degree of each effect depends on the length of the hydrocarbon chain of the n-alcohol. For n-undecanol, the surface structure of n-alcohol is independent of salt concentration because interaction between the hydrocarbon chains is sufficiently strong. In absorption refrigeration technology, to enhance the absorption rate of water vapor into a highly concentrated aqueous electrolyte solution, a small amount of alcohols is added to the aqueous electrolyte solution, which induces cellular convection referred to as Marangoni instability. Among the three types of n-alcohol studied here, only n-heptanol induces strong cellular convection. The simulations reveal two required conditions for Marangoni instability: generation of fluctuations in the alcohol distribution on water, and strong correlation between the structural and dynamical properties and salt concentration. Among the three types of n-alcohol studied here, based on the simulations, only n-heptanol satisfies both conditions.

  5. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt.

    Science.gov (United States)

    Ali, Samim; Bandyopadhyay, Ranjini

    2016-01-01

    Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand

  6. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt.

    Science.gov (United States)

    Ali, Samim; Bandyopadhyay, Ranjini

    2016-01-01

    Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand

  7. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Science.gov (United States)

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  8. Separation and Concentration of Succinic Adic from Multicomponent Aqueous Solutions by Nanofiltration Technique

    Directory of Open Access Journals (Sweden)

    Antczak Jerzy

    2014-06-01

    Full Text Available This paper applies the determined suitability of nanofiltration (NF membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.

  9. Synthesis and Aqueous Solution Viscosity of Hydrophobically Modified Xanthan Gum

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-lin; WU Wen-hui; YU Pei-zhi; WANG Jian-quan

    2007-01-01

    Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investigated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.

  10. Electrical conductivity of aqueous solutions of perrhenic acid

    International Nuclear Information System (INIS)

    The physiocochemical properties of perrhenic acid, HReO4, are studied; its salts form the basis of solutions for electrochemical production of rhenium. Information is presented from which the electrical conductivity of solutions in the temperature range 15-90 degrees can be determined from known concentrations of the acid in water and vice versa

  11. A new strategy to stabilize oxytocin in aqueous solutions : I. The effects of divalent metal ions and citrate buffer

    NARCIS (Netherlands)

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J. M.; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2011-01-01

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na+and K+) and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The effec

  12. Measurement and Correlation of Partition Coefficients of Baicalin in EOPO/Salt Aqueous Two-Phase Systems

    Institute of Scientific and Technical Information of China (English)

    李伟; 朱自强

    2002-01-01

    The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide(EOPO)/salt aqueous two-phase systems at 298.15K,It was found that most of baicalin partitioned into EOPO-rich phase.The partition coefficients of baicalin varied from 10 to 120.The effect of various factors,including tie-line lngth,salt composition,molecular weight of EOPO,and solution pH,on the partition behavior was investigated on EOPO/salt systems.Furthermore the partition coefficients of baicalin were correlated using the modified Diamond-Hsu model.Good agreement with experimental data is obtained.The average relative deviations are less than 5.0%.

  13. Poisson-Fermi model of single ion activities in aqueous solutions

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-09-01

    A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.

  14. Conductivity of Oxalic Acid in Aqueous Solution at Low Concentration

    Institute of Scientific and Technical Information of China (English)

    倪良; 韩世钧

    2005-01-01

    Oxalic acid is a weak and unsymmetrical bi-basic acid. There exist dissociation and association equilibria among the species in aqueous solution. The molar conductivity of the solution is the sum of the ionic contributions.Based on this idea, a new prediction equation of ionic conductivity was proposed at low concentration. The molar conductivities of the solution and its relevant ions were calculated respectively. The results obtained were in good agreement with those from experiments and the Quint-Viallard equation.

  15. Modeling reactive geochemical transport of concentrated aqueous solutions

    Science.gov (United States)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2005-02-01

    Aqueous solutions with ionic strength larger than 1 M are usually considered concentrated aqueous solutions. These solutions can be found in some natural systems and are also industrially produced and released into accessible natural environments, and as such, they pose a big environmental problem. Concentrated aqueous solutions have unique thermodynamic and physical properties. They are usually strongly acidic or strongly alkaline, with the ionic strength possibly reaching 30 M or higher. Chemical components in such solutions are incompletely dissociated. The thermodynamic activities of both ionic and molecular species in these solutions are determined by the ionic interactions. In geological media the problem is further complicated by the interactions between the solutions and sediments and rocks. The chemical composition of concentrated aqueous solutions when migrating through the geological media may be drastically altered by these strong fluid-rock interactions. To effectively model reactive transport of concentrated aqueous solutions, we must take into account the ionic interactions. For this purpose we substantially extended an existing reactive transport code, BIO-CORE2D©, by incorporating a Pitzer ion interaction model to calculate the ionic activity. In the present paper, the model and two test cases of the model are briefly introduced. We also simulate a laboratory column experiment in which the leakage of highly alkaline waste fluid stored at Hanford (a U.S. Department of Energy site, located in Washington State) was studied. Our simulation captures the measured pH evolution and indicates that all the reactions controlling the pH evolution, including cation exchanges and mineral dissolution/precipitation, are coupled.

  16. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics.

    Science.gov (United States)

    Park, Sungjun; Lee, SeYeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-01-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 10(7), and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo. PMID:26271456

  17. Molecular Weight and Aggregation of Erwinia Gum in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erwinia(E) gum is composed of glucose, fucose, galactose and glucuronic acid. The weight-average molecular weights Mw, number-average molecular weights Mn and intrinsic viscosities[η] of the four fractions and the unfractionated E gum in aqueous solutions at desired temperatures were studied by light scattering, membrane osmometry, size exclusion chromatography(SEC) and viscometry. The experimental results prove that E gum formed aggregates in the aqueous solution at 25 ℃ and the aggregates were broken gradually with increasing temperature. The dissociation of the aggregates of E gum in the aqueous solution started at 36 ℃, and was completed at around 90 ℃. The [η] values of E gum and its fractions are much higher than those of the conventional polymers with the similar molecular weights, and decrease with increasing NaCl concentration.

  18. Reorientation and Allied Dynamics in Water and Aqueous Solutions

    Science.gov (United States)

    Laage, Damien; Stirnemann, Guillaume; Sterpone, Fabio; Rey, Rossend; Hynes, James T.

    2011-05-01

    The reorientation of a water molecule is important for a host of phenomena, ranging over—in an only partial listing—the key dynamic hydrogen-bond network restructuring of water itself, aqueous solution chemical reaction mechanisms and rates, ion transport in aqueous solution and membranes, protein folding, and enzymatic activity. This review focuses on water reorientation and related dynamics in pure water, and for aqueous solutes with hydrophobic, hydrophilic, and amphiphilic character, ranging from tetra-methylurea to halide ions and amino acids. Attention is given to the application of theory, simulation, and experiment in the probing of these dynamics, in usefully describing them, and in assessing the description. Special emphasis is placed on a novel sudden, large-amplitude jump mechanism for water reorientation, which contrasts with the commonly assumed Debye rotational diffusion mechanism, characterized by small-amplitude angular motion. Some open questions and directions for further research are also discussed.

  19. Screening of hydrodynamic interactions for polyelectrolytes in salt solution

    OpenAIRE

    Smiatek, Jens; Schmid, Friederike

    2008-01-01

    We provide numerical evidence that hydrodynamic interactions are screened for charged polymers in salt solution on time scales below the Zimm time. At very short times, a crossover to hydrodynamic behavior is observed. Our conclusions are drawn from extensive coarse-grained computer simulations of polyelectrolytes in explicit solvent and explicit salt, and discussed in terms of analytical arguments based on the Debye-Hueckel approximation.

  20. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    Science.gov (United States)

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated.

  1. Ionisation constants of inorganic acids and bases in aqueous solution

    CERN Document Server

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  2. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  3. Degradation kinetics of benzyl nicotinate in aqueous solution

    Directory of Open Access Journals (Sweden)

    Mbah C

    2010-01-01

    Full Text Available The degradation of benzyl nicotinate in aqueous solution over a pH range of 2.0-10.0 at 50±0.2 o was studied. The degradation was determined by high performance liquid chromatography. The degradation was observed to follow apparent first-order rate kinetics and the rate constant for the decomposition at 25 o was estimated by extrapolation. The reaction was shown to be hydroxide ion catalyzed and the Arrhenius plots showed the temperature dependence of benzyl nicotinate degradation. A significant increase in the stability of benzyl nicotinate was observed when glycerol or polyethylene glycol 400 was incorporated into the aqueous solution.

  4. Removal of Phosphate from Aqueous Solution with Modified Bentonite

    Institute of Scientific and Technical Information of China (English)

    唐艳葵; 童张法; 魏光涛; 李仲民; 梁达文

    2006-01-01

    Bentonite combined with sawdust and other metallic compounds was used to remove phosphate from aqueous solutions in this study. The adsorption characteristics of phosphate on the modified bentonite were investigated, including the effects of temperature, adsorbent dosage, initial concentration of phosphate and pH on removal of phosphate by conducting a series of batch adsorption experiments. The results showed that 98% of phosphate removal rate was obtained since sawdust and bentonite used in this investigation were abundantly and locally available. It is concluded that modified bentonite is a relatively efficient, low cost and easily available adsorbent for the removal of phosphate from aqueous solutions.

  5. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    Science.gov (United States)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  6. Thermodynamic Properties of 1:1 Salt Aqueous Solutions with the Electrolattice Equation of State Propriétés thermophysiques des solutions aqueuses de sels 1:1 avec l’équation d’état de réseau pour électrolytes

    Directory of Open Access Journals (Sweden)

    Zuber A.

    2013-05-01

    Full Text Available The electrolattice Equation of State (EOS is a model that extends the MattediTavares-Castier EOS (MTC EOS to systems with electrolytes. This model considers the effect of three terms. The first one is based on a lattice-hole model that considers local composition effects derived in the context of the generalized Van der Waals theory: the MTC EOS was chosen for this term. The second and the third terms are the Born and the MSA contributions, which take into account ion charging and discharging and long-range ionic interactions, respectively. Depending only on two energy interaction parameters, the model represents satisfactorily the vapor pressure and the mean ionic activity coefficient data of single aqueous solutions containing LiCI, LiBr, LiI, NaCl, NaBr, NaI, KCl, KBr, KI, CsCl, CsBr, CsI, or RbCI. Two methods are presented and contrasted: the salt-specific and the ion-specific approaches. Therefore, the aim of this work is to calculate thermodynamic properties that are extensively used to design, operate and optimize many industrial processes, including water desalination. L’équation d’état, dite électrolattice, est un modèle qui étend l’équation d’état de Mattedi-Tavares-Castier à des systèmes avec électrolytes. Ce modèle prend en compte l’effet de trois termes. Le premier terme est basé sur les trous dans le réseau en considérant les effets de la composition locale, étude effectuée dans le cadre de la théorie généralisée de Van der Waals : l’équation d’état de Mattedi-Tavares-Castier a été choisie pour ce premier terme. Les deuxième et troisième termes sont les contributions de Born et du MSA. Ils tiennent compte du chargement et du déchargement des ions, et des interactions ioniques à longue distance, respectivement. Le modèle n’ayant besoin que de deux paramètres d’interaction énergétique, il modélise de manière satisfaisante la pression de vapeur et le coefficient d’activité ionique

  7. LIGHT SCATTERING OF POLYSACCHARIDE FROM LACQUER IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; DU Yumin; KUMANOTANI JU

    1989-01-01

    The polysaccharide having weight-average molecular weight Mw= 1. 09 × 105 , isolated from the sap of lac trees ( Vietnam ), was separated into 12 fractions by aqueous-phase preparative gel permeation chromatography. The molecular weights and molecular weight distributions of the fractions were measured in aqueous 0.08M KCl/0.01 M NaAc and 0.4M KCl/0.05M NaAc at pH = 7.6 by light scattering, viscometry and gel permeation chromatography. The Mark-Houwink equation in aqueous 0.08M KCl/0.01M NaAc at30 ℃ was found to be [ η] = 2.28 ×10-2 M0.52w ( cm3/g ), which indicated the polysaccharide chain in the aqueous solution to be a spherical random coil.

  8. Photocatalytic degradation of molinate in aqueous solutions.

    Science.gov (United States)

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes. PMID:24928378

  9. Photocatalytic degradation of molinate in aqueous solutions.

    Science.gov (United States)

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.

  10. Demonstration of reverse symmetry waveguide sensing in aqueous solutions

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Larsen, N.B.

    2002-01-01

    A reverse symmetry waveguide is presented for evanescent wave sensing in aqueous solutions. The waveguide consists of a thin polystyrene film, supported by a thicker substrate layer of nanoporous silica on glass. The nanoporous substrate layer has a refractive index of n(S)=1.193, hence, with an ......A reverse symmetry waveguide is presented for evanescent wave sensing in aqueous solutions. The waveguide consists of a thin polystyrene film, supported by a thicker substrate layer of nanoporous silica on glass. The nanoporous substrate layer has a refractive index of n(S)=1.193, hence......, with an aqueous cover refractive index of n(C)=1.331, a reverse symmetry (n(S)

  11. γ-radiation induced tetracycline removal in an aqueous solution

    International Nuclear Information System (INIS)

    Degradation effect of tetracycline (TC) by γ-radiation was investigated in an aqueous solution. The effects of initial concentrations of TC, pH values, combining with H2O2 or CH3OH on degradation of TC were studied. Results showed that TC can be effectively degradated by γ-irradiation in an aqueous solution. Degradation of TC could be remarkably improved both in acid solution and alkaline solution, especially when pH value was 9.0. In addition, H2O2 could gently promote degradation of TC induced by γ-radiation. While, CH3OH markedly restrained degradation of TC induced by γ-radiation. The degradation mechanism of TC was supposed by results of quantum chemical calculations and LC-MS. Results proved that degradation of TC induced by γ-radiation was mainly ascribed to · OH oxidation. (authors)

  12. Drag enhancement of aqueous electrolyte solutions in turbulent pipe flow.

    Science.gov (United States)

    Doherty, Andrew P; Spedding, Peter L; Chen, John J J

    2010-04-22

    Detailed experimental results are presented for both laminar and turbulent flow of aqueous solutions in pipes of different diameters. Nonelectrolytes, such as sugar solutions followed the normal Moody pressure loss curves. Drag enhancement was demonstrated for turbulent flow of aqueous electrolyte solutions but not for laminar flow. The increased pressure drop for turbulent electrolyte flow was attributed to an electroviscous effect and a theory was developed to explain the drag enhancement. The increased pressure drop for the turbulent region of flow was shown to depend on the Debye length in the laminar sublayer on the pipe wall. Reasonable predictions of the increasing drag were obtained for both 1:1 and 2:1 electrolyte solutions. PMID:20337452

  13. Permeability in a state of partial solidification of aqueous solution

    Science.gov (United States)

    Okada, Masashi; Kang, Chaedong; Okiyama, Haruhiko

    A mushy region was formed by solidifying NaCl aqueous solution in a circular tube or a rectangular tube. The measurements of permeability were performed by changing volume fraction of liquid region in the mushy region. The dendritic ice in the solidification process was observed with a CCD microscope. The following results were obtained. The permeability increases with the volume fraction of liquid phase, and decreases with increasing the super-cooling degree of the solution or increasing the initial concentration of the solution, and is constant after the mushy region was formed. The arm space of dendrite becomes narrower as the super-cooling degree of the solution increases.

  14. Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Benaissa, H., E-mail: ho_benaissa@yahoo.fr [Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry, Faculty of Sciences, University of Tlemcen, P.O. Box 119, 13000 Tlemcen (Algeria); Elouchdi, M.A. [Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry, Faculty of Sciences, University of Tlemcen, P.O. Box 119, 13000 Tlemcen (Algeria)

    2011-10-30

    Highlights: {yields} Dried activated sludge has been investigated for the removal of copper ions from aqueous synthetic solutions, in batch conditions. {yields} Copper uptake was time contact, initial copper concentration, initial pH solution and copper salt type dependent. {yields} Maximum copper uptake obtained was q{sub m} = 62.50 mg/g (0.556 mmol/g) under the investigated experimental conditions. - Abstract: In the present work, the usefulness of dried activated sludge has been investigated for the removal of copper ions from synthetic aqueous solutions. Kinetic data and equilibrium sorption isotherm were measured in batch conditions. The influence of some parameters such as: contact time, initial copper concentration, initial pH of solution and copper salt nature on copper biosorption kinetics has been studied. Copper uptake was time contact, initial copper concentration, initial pH solution and copper salt type dependent. Maximum copper sorption was found to occur at initial pH 5. Two simplified kinetic models including a first-order rate equation and a pseudo second-order rate equation were selected to describe the biosorption kinetics. The process followed a pseudo second-order rate kinetics. The process mechanism was found to be complex, consisting of external mass transfer and intraparticle mass transfer diffusion. Copper biosorption process was particle-diffusion-controlled, with some predominance of some external mass transfer at the initial stages for the different experimental parameters studied. Langmuir and Freundlich models were used to describe sorption equilibrium data at natural pH of solution. Results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. Maximum copper uptake obtained was q{sub m} = 62.50 mg/g (0.556 mmol/g) under the investigated experimental conditions. Scanning electron microscopy coupled with X-ray energy dispersed analysis for copper-equilibrated dried activated sludge

  15. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    Science.gov (United States)

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  16. Neodymium(3) complexing with bischloromethylphosphinic acid in aqueous solution

    International Nuclear Information System (INIS)

    High resolution spectrography is used to study Nd3+ complexing with (ClCH2)2POOH(HL) in aqueous solution. NdL2+ complex (lg Kstab = 0.44±0.04) with the corresponding absorption band with a maximum at λ=4283 A is formed in a system

  17. Gamma radiolysis of aqueous solutions of glycerin α-monochlorohydrin

    International Nuclear Information System (INIS)

    Data on γ-radiolysis of 0.1 mol/l aqueous solutions of glycerin α-monochlorohydrin (GMC) are presented. The radiolysis mechanism is considered. The rate constant of GMC reaction with esub(aq) k=(6.8+-0.8)x108 l/molxs is determined on the basis of experimental data

  18. DETERMINATION OF CHLORHEXIDINE IN SALIVA AND IN AQUEOUS-SOLUTIONS

    NARCIS (Netherlands)

    de Vries, J.; Ruben, J; Arends, J.

    1991-01-01

    A new method is presented for the determination of chlorhexidine in centrifuged saliva and in aqueous solutions by means of fluorescence spectroscopy. The method relies on complex formation between chlorhexidine and eosin. The fluorescence value of the chlorhexidine-eosin system decreases with incre

  19. Solubility of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    In the present work, new experimental data are presented on the solubility of carbon dioxide in aqueous piperazine solutions, for concentrations of 0.2 and 0.6 molar piperazine and temperatures of 25, 40, and 70°C respectively. The present data, and other data available in the literature, were corr

  20. Adsorption of lead ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto; Krstev, Aleksandar

    2014-01-01

    The adsorption of lead ions from synthetic aqueous solutions was performed by using natural zeolite (clinoptilolite). In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial concentration of lead ions, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90...

  1. Adsorption of copper ions from aqueous solutions on natural zeolite

    OpenAIRE

    Zendelska, Afrodita; Golomeova, Mirjana; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2015-01-01

    The adsorption of copper ions from synthetic aqueous solutions on natural zeolite (clinoptilolite) was examined. In order to determine the rate of adsorption and the copper uptake at equilibrium, a series of experiments were performed under batch conditions from single ion solutions. Equilibrium data were evaluated based on adsorption (Langmuir and Freundlich) isotherms. The adsorption kinetics is reasonably fast. In the first 20 min of the experiment, approximately 80% of Cu2+ io...

  2. Removal of azo dye from aqueous solutions using chitosan

    OpenAIRE

    Zuhair Jabbar; G. Hadi Ferdoos Sami; A , Angham

    2014-01-01

    Adsorption of Congo Red (CR) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Results indicated that chitosan could be used as a biosorbent to remove the azo dyes from contaminated water. Synthesize of chitosan involved three main stages as preconditioning, demineralization, deproteinization and deacetylation. Chitosan was characterized using Fourier Transform Infrared Spectroscopy (FTI...

  3. Biosorption of mercury from aqueous solutions using highly characterised peats

    OpenAIRE

    A.M. Rizzuti; F.L. Ellis; L.W. Cosme; A.D. Cohen

    2015-01-01

    This research investigated the biosorption of mercury from aqueous solutions by six highly characterised peats. Samples of the peats were tested both in unaltered condition and after being treated with hydrochloric acid (HCl) to free up any occupied exchange sites. Other variables tested were sample dose, contact time, mixing temperature, and the concentration and pH of the mercury solution. Desorption studies were also performed, and tests were done to determine whether the peats could be re...

  4. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  5. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  6. Dissolution rate of griseofulvin in bile salt solutions.

    Science.gov (United States)

    de Smidt, J H; Offringa, J C; Crommelin, D J

    1991-04-01

    Bile salts increase the apparent solubility of lipophilic poorly water-soluble drugs like griseofulvin. In this study, the dissolution kinetics of griseofulvin in solutions of bile salts (sodium taurocholate and sodium cholate) were investigated. A rotating disk apparatus was chosen to monitor dissolution kinetics; it well-defined hydrodynamic conditions allowed for analysis of the behavior of bile salt micelles under different conditions. Griseofulvin solubility and dissolution rate increased with increasing bile salt concentration in the dissolution medium. The enhancement of the dissolution rate was not linearly related to the solubility increase, as diffusional transport of the solubilized drug proved to be less efficient than transport of the unsolubilized ("free") drug. The dissolution process proved to be controlled by convective diffusion. An analysis of the data with the phase separation model provided results for the micellar diffusion coefficient comparable with literature data obtained with different techniques. PMID:1865343

  7. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    Directory of Open Access Journals (Sweden)

    Palash Sanphui

    2014-03-01

    Full Text Available Acemetacin (ACM is a non-steroidal anti-inflammatory drug (NSAID, which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM, isonicotinamide (INA, and picolinamide (PAM], caprolactam (CPR, p-aminobenzoic acid (PABA, and piperazine (PPZ. The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable

  8. Diffusion Coefficients ofl-Lysine Hydrochloride and l-Arginine Hydrochloride in Their Aqueous Solutions at 25℃

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The diffusion coefficients** ofl-lysine hydrochloride andl-arginine hydrochloride in their aqueous solu- tions at 25℃ were determined by the metallic diaphragm cell method which is characterized by accuracy, promptness and convenience. Meanwhile, the densities and viscosities of the solutions were also determined. Based on all these data a semi-empirical model for correlating the diffusion coefficients of solid organic salts in their aqueous solutions at 25℃ was proposed. The fitting result of this model is comparatively satisfactory. Compared to a former model, Gordon Model, this model can avoid a number of difficulties and arduous work.

  9. Critical droplet theory explains the glass formability of aqueous solutions.

    Science.gov (United States)

    Warkentin, Matthew; Sethna, James P; Thorne, Robert E

    2013-01-01

    When pure water is cooled at ~10(6) K / s, it forms an amorphous solid (glass) instead of the more familiar crystalline phase. The presence of solutes can reduce this required (or "critical") cooling rate by orders of magnitude. Here, we present critical cooling rates for a variety of solutes as a function of concentration and a theoretical framework for understanding these rates. For all solutes tested, the critical cooling rate is an exponential function of concentration. The exponential's characteristic concentration for each solute correlates with the solute's Stokes radius. A modification of critical droplet theory relates the characteristic concentration to the solute radius and the critical nucleation radius of ice in pure water. This simple theory of ice nucleation and glass formability in aqueous solutions has consequences for general glass-forming systems, and in cryobiology, cloud physics, and climate modeling. PMID:23383808

  10. Raman spectra of amino acids and their aqueous solutions

    Science.gov (United States)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  11. Solid-like mechanical behaviors of ovalbumin aqueous solutions.

    Science.gov (United States)

    Ikeda, S; Nishinari, K

    2001-04-12

    Flow and dynamic mechanical properties of ovalbumin (OVA) aqueous solutions were investigated. OVA solutions exhibited relatively large zero-shear viscosity values under steady shear flow and solid-like mechanical responses against oscillating small shear strains, that is, the storage modulus was always larger than the loss modulus in the examined frequency range (0.1--100 rad s(-1)). These results suggest that dispersed OVA molecules arranged into a colloidal crystal like array stabilized by large interparticle repulsive forces. However, marked solid-like mechanical behaviors were detected even when electrostatic repulsive forces among protein molecules were virtually absent, which could not be explained solely on the basis of conventional Derjaguin--Landau--Verwey--Overbeek (DLVO) theory. Large non-DLVO repulsive forces seem to stabilize native OVA aqueous solutions.

  12. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes d

  13. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions

    Science.gov (United States)

    Kalyuzhnyi, Yuriy V.; Vlachy, Vojko

    2016-06-01

    Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein-protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim's associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained.

  14. CO2 Capture from Flue gas using Amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    they are naturally occurring substances, and partly because they have desirable properties, such as lower vapor pressures and higher stability against oxidative degradation. One important feature of these new solvents is the formation of solids upon CO2 absorption, which happens especially at higher CO2 loadings and...... of the components in the apparatus. Ideally, measurements in the full temperature range for desorption, which usually needs approximately 393 K (120 ºC), would be desirable. Using the 2 apparatuses, CO2 solubility in aqueous solutions of MEA and the potassium salts of taurine, glycine, L-alanine, L-proline and L...

  15. Ionic Liquid-salt Aqueous Two-phase System, a Novel System for the Extraction of Abused Drugs

    Institute of Scientific and Technical Information of China (English)

    She Hong LI; Chi Yang HE; Hu Wei LIU; Ke An LI; Feng LIU

    2005-01-01

    A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93%was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.

  16. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Science.gov (United States)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  17. Rheological properties of novel thermo-responsive polycarbonates aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    王月霞; 谭业邦; 黄晓玲

    2008-01-01

    Thermo-responsive multiblock polycarbonates were facilely synthesized by covalently binding poly(ethylene glycol)(PEG) and poly(propylene glycol)(PPG) blocks,using triphosgene as coupling agent and pyridine as catalyst.The aqueous solutions of thermo-responsive polycarbonates were investigated by rheological measurements.Steady-state shear measurements reveal that the polycarbonate solutions exhibit shear-thinning behavior and the hydrophilic content has a pronounced effect on the flow behavior of the polycarbonates aqueous solutions.The shear viscosity decreases with increasing poly(ethylene oxide)(PEO) composition.The increase of viscosity with increasing concentration is probably attributed to the formation of stronger network owing to interchain entanglement of PEO block at higher concentration.When the flow curves are fitted to the power law model,flow index is obtained to be less than 1,as exhibiting typical pesudoplastic fluid.The viscoelastic properties of the system also show close dependence on the composition of polycarbonates.Temperature sweep confirms that the multiblock polycarbonates exhibit thermo-responsive properties.For 7% aqueous solution of polycarbonate with composition ratio of EO to PO of 1/1,the sol-gel transition occurs at 37 ℃,which makes the system suitable as an injectable drug delivery system.

  18. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    Science.gov (United States)

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. PMID:27196963

  19. Modification of FGD gypsum in hydrothermal mixed salt solution

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao

    2006-01-01

    A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of α-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into α-hemihydrate calcium sulfate crystals. Thus, the modification of FGD gypsum was fulfilled.

  20. Removal of perfluoroalkyl sulfonates (PFAS) from aqueous solution using permanently confined micelle arrays (PCMAs)

    KAUST Repository

    Wang, Fei

    2014-12-01

    One new sorbent with permanently confined micelle arrays (PCMAs) has been synthesized to remove PFAS compounds from aquatic solutions. The TEM and SEM studies showed that large particle sizes with lots of macro-pores and highly order hexagonal structure of cylindrical micelle had been formed in the sorbent. The FTIR spectrums demonstrated the formation of Si-O-Si covalent bond in the new material. The kinetic study showed that the sorption of PFOS, PFHxS, and PFBuS by PCMAs reached equilibrium within 5 min. The pH and salts in solution are found to have limited effects on sorption of PFOS on the new sorbent, and regeneration experiments revealed that PFAS removal efficiencies by the PCMAs did not decrease after 5 cycle regenerations. The high capabilities of PCMAs make it a potentially attractive sorbent for the removal of PFCs from aqueous solution.

  1. Adsorption of cadmium from aqueous solutions by perlite.

    Science.gov (United States)

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  2. Removal of methyl violet from aqueous solution by perlite.

    Science.gov (United States)

    Doğan, Mehmet; Alkan, Mahir

    2003-11-01

    The use of perlite for the removal of methyl violet from aqueous solutions at different concentration, pH, and temperature has been investigated. Adsorption equilibrium is reached within 1 h. The capacity of perlite samples for the adsorption of methyl violet was found to increase with increasing pH and temperature and decrease with expansion and increasing acid-activation. The adsorption isotherms are described by means of the Langmuir and Freundlich isotherms. The adsorption isotherm was measured experimentally at different conditions and the experimental data were correlated reasonably well by the adsorption isotherm of Langmuir. The order of heat of adsorption corresponds to a physical reaction. It is concluded that the methyl violet is physically adsorbed onto the perlite. The removal efficiency (P) and dimensionless separation factor (R) have shown that perlite can be used for removal of methyl violet from aqueous solutions, but unexpanded perlite is more effective.

  3. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution, II

    Science.gov (United States)

    Saita, Takao; Matumura, On

    1983-08-01

    It has been found that Na-PAA molecules in dilute aqueous solution are degraded by shearing stress, oxidation and photolysis during usual viscosity measurements with a capillary viscometer. The results of previous viscosity measurements, mainly about the mechanochemical degradation in air and in air-free conditions, showed that the degradation rate increases with increasing shear stress, and with decreasing polymer concentration. In this work, the effects of the molecular weight and temperature on the degradation rate are measured using a capillary viscometer in air, and the photodegradation of Na-PAA and PAA in aqueous solution irradiated with UV light are studied by viscosity measurements in air, and by UV absorption and ESR methods. The results show that the degradation of molecules is enhanced by an increase in the molecular weight and strongly accelerated by a rise in temperature and by UV irradiation, and is accompanied by free-radical chain reactions.

  4. A lithium ion battery using an aqueous electrolyte solution.

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  5. Photodegradation of Norfloxacin in aqueous solution containing algae

    Institute of Scientific and Technical Information of China (English)

    Junwei Zhang; Dafang Fu; Jilong Wu

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W,λmax =365 nm) was investigated.Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algaewater systems.The photodegradation rate of Norfloxacin increased with increasing algae concentration,and was greatly influenced by the temperature and pH of solution.Meanwhile,the cooperation action of algae and Fe(Ⅲ),and the ultrasound were beneficial to photodegradation of Norfloxaciu.The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae.In addition,we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae.This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae,for providing a new method to deal with antibiotics pollution.

  6. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  7. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  8. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.

    Science.gov (United States)

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Bernal, M D; Ortega, S

    2014-01-01

    Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF. PMID:24701913

  9. Diketopiperazine-mediated peptide formation in aqueous solution

    Science.gov (United States)

    Nagayama, M.; Takaoka, O.; Inomata, K.; Yamagata, Y.

    1990-05-01

    Though diketopiperazines (DKP) are formed in most experiments concerning the prebiotic peptide formation, the molecules have not been paid attention in the studies of chemical evolution. We have found that triglycine, tetraglycine or pentaglycine are formed in aqueous solution of glycine anhydride (DKP) and glycine, diglycine or triglycine, respectively. A reaction of alanine with DKP resulted in the formation of glycylglycylalanine under the same conditions. These results indicate that the formation of the peptide bonds proceeds through the nucleophilic attack of an amino group of the amino acids or the oligoglycines on the DKP accompanied by the ring-opening. The formation of glycine anhydride, di-, tri- and tetraglycine was also observed in a mixed aqueous solution of urea and glycine in an open system to allow the evaporation of ammonia. A probable pathway is proposed for prebiotic peptide formation through diketopiperazine on the primitive Earth.

  10. Radiolytic degradation of malathion and lindane in aqueous solutions

    International Nuclear Information System (INIS)

    Degradation of malathion and lindane pesticides present in an aqueous solution was investigated on a laboratory scale upon gamma-irradiation from a 60Co source. The effects of pesticide group, presence of various additives and absorbed dose on efficiency of pesticide degradation were investigated. Gamma-irradiation was carried out in distilled water solutions (malathion and lindane) and in combination with humic solution (HS), nitrous oxide (N2O) and HS/N2O (lindane) over the range 0.1-2 kGy (malathion) and 5-30 kGy (lindane). Malathion was easily degraded at low absorbed doses compared to lindane in distilled water solutions. Absorbed doses required to remove 50% and 90% of initial malathion and lindane concentrations in distilled water solutions were 0.53 and 1.77 kGy (malathion) and 17.97 and 28.79 kGy (lindane), respectively. The presence of HS, N2O and HS/N2O additives in aqueous solutions, significantly improved the effectiveness of radiolytic degradation of lindane. Chemical analysis of the pesticides and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated with mass spectrometry (GC-MS). Additionally, the final degradation products of irradiation as detected by ion chromatography (IC) were acetic acid and traces of some anions (phosphate and chloride).

  11. Angular correlation of annihilation photons in frozen aqueous solutions

    DEFF Research Database (Denmark)

    Milosevic-Kvajic, M.; Mogensen, O. E.; Kvajic, G.;

    1972-01-01

    Linear‐slit angular correlation curves were obtained at about −140°C for frozen aqueous solutions of HF, HCl, HBr, HI, NH3, FeCl2, FeCl3, NaI, H2SO4, NHO3, MnSO4, KMnO4, K2Cr2O7, NaOH, and LiOH. We found no appreciable influence of a 4% concentration of the last seven impurities. Only halide...

  12. Determination of concentration of saturated ferrocene in aqueous solution

    OpenAIRE

    Aoki, Koichi

    2013-01-01

    Chun Ouyang, Koichi Jeremiah Aoki, Jingyuan Chen, Toyohiko Nishiumi, Bo Wang Department of Applied Physics, University of Fukui, Bunkyo, Fukui, Japan Abstract: The solubility of ferrocene in aqueous solution is known to be approximately 0.04 mmol/dm3. The solubility values determined by voltammetry have been overestimated because of adsorption on electrodes. This work deals with discerning diffusion from adsorption by altering not only the voltammetric time scale but also the solvents used. ...

  13. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  14. Ozone chemistry in aqueous solution : ozone decomposition and stabilisation

    OpenAIRE

    Eriksson, Margareta

    2005-01-01

    Ozone is used in many applications in the industry as an oxidising agent for example for bleaching and sterilisation. The decomposition of ozone in aqueous solutions is complex, and is affected by many properties such as, pH, temperature and substances present in the water. Additives can either accelerate the decomposition rate of ozone or have a stabilising effect of the ozone decay. By controlling the decomposition of ozone it is possible to increase the oxidative capacity of ozone. In this...

  15. Pulse radiolysis of aqueous lignin solutions with acryl monomers

    International Nuclear Information System (INIS)

    Radiation-induced polymerization in aqueous solutions of methylmethacrylate and methylacrylate with and without lignin added was studied by pulse radiolysis method. Optical spectra of intermediates taking part in the chain evolution were obtained. The rate constant of the chain polymerization termination diminished when lignin added from 1.2 x 109 up to 2 x 108 mol-1 s-1. A reaction scheme of radiation-induced polymerization was proposed which included the lignin entering in chain propagation reactions. (author)

  16. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  17. Fluorescence of lanthanide(III) complexes in aqueous solutions

    International Nuclear Information System (INIS)

    The fluorescence of lanthanide ions and of their complexes with EDTA, NTA and AA in aqueous solutions was investigated. It has been shown that the fluorescence band intensities of Sm(III), Eu(III), Gd(III), Tb(III) and Dy(III) complexes depend on the pH and the complexing agent concentration. Fluorescence measurements were used to characterise the lanthanide complexes formed and an attempt was made to interpret the results theoretically. (Author)

  18. Determination of particle size distribution of salt crystals in aqueous slurries. [From reprocessing of fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 ..mu..m size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 ..mu..m in size. 19 figures.

  19. Dermal absorption of a dilute aqueous solution of malathion

    Directory of Open Access Journals (Sweden)

    Scharf John

    2008-01-01

    Full Text Available Malathion is an organophosphate pesticide commonly used on field crops, fruit trees, livestock, agriculture, and for mosquito and medfly control. Aerial applications can result in solubilized malathion in swimming pools and other recreational waters that may come into contact with human skin. To evaluate the human skin absorption of malathion for the assessment of risk associated with human exposures to aqueous solutions, human volunteers were selected and exposed to aqueous solutions of malathion. Participants submerged their arms and hands in twenty liters of dilute malathion solution in either a stagnant or stirred state. The "disappearance method" was applied by measuring malathion concentrations in the water before and after human exposure for various periods of time. No measurable skin absorption was detected in 42% of the participants; the remaining 58% of participants measured minimal absorbed doses of malathion. Analyzing these results through the Hazard Index model for recreational swimmer and bather exposure levels typically measured in contaminated swimming pools and surface waters after bait application indicated that these exposures are an order of magnitude less than a minimal dose known to result in a measurable change in acetylcholinesterase activity. It is concluded that exposure to aqueous malathion in recreational waters following aerial bait applications is not appreciably absorbed, does not result in an effective dose, and therefore is not a public health hazard.

  20. Catalytic oxidation of calcium sulfite in solution/aqueous slurry

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao; WANG Da-hui

    2004-01-01

    Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10-4 mol/L, and oxygen is of 0.2-0.4 atm.

  1. Optical absorption of dilute solutions of metals in molten salts

    International Nuclear Information System (INIS)

    The F-centre model for the bound state and the first optical transition of an electron in a metal-molten salt solution is examined in the high dilution limit appropriate for comparison with optical absorption data. It is first argued that the model is consistent with recent neutron diffraction and computer simulation data on the structure of pure molten salts, and not incompatible with an Anderson localization model for the electronic conductivity of the solution at higher concentration of metal. A detailed evaluation of the model is presented for the case of a molten salt of equi-sized ions simulating molten KCl. The treatment of the electronic states is patterned after semicontinuum approximations previously applied to the F-centre in ionic crystals, but the equilibrium radius of the electronic cavity and its fluctuations are determined self-consistently from the free energy of the solution. The detailed analysis of this case and the agreement of the results with experiment allow the construction of a simple parametrization scheme, which is then applied to explore the trends of the optical absorption spectrum and of the volume of mixing through the whole family of M-MX solutions, where M is an alkali and X a halogen. Similarities and differences of the electronic bound state in the crystal and in the liquid are underlined. (author)

  2. Observations on the Solubility of Skeletal Carbonates in Aqueous Solutions.

    Science.gov (United States)

    Chave, K E; Deffeyes, K S; Weyl, P K; Garrels, R M; Thompson, M E

    1962-07-01

    Carbonate skeletal materials of marine organisms exhibit a wide range of solubilities in aqueous solutions. In most cases, the dissolution of the carbonate mineral is irreversible and therefore the material can have no true equilibrium solubility. Relative solubilities have been measured in distilled water and in sea water. The least soluble mineral appears to be calcite with low magnesium content; the most soluble is calcite containing 20 to 30 percent MgCO(3) in solid solution. Aragonite has an intermediate solubility. PMID:17774123

  3. Radiolysis of berberine or palmatine in aqueous solution

    Science.gov (United States)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  4. Direct photolysis of nitroaromatic compounds in aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; YANG Chun; GOH Ngoh Khang

    2005-01-01

    The direct photolysis of nitrobenzene and nitrophenols in aqueous solutions irradiated by polychromatic light were investigated.Several aromatic intermediates were identified as three nitrophenol isomers, nitrohydroquinone, nitrosobenzene, nitrocatechol, catechol and phenol. Nitrite and nitrate ions were also detected in the irradiated solution indicating direct photolysis of nitrobenzene or nitrophenols.The degradation of nitrobenzene and nitrophenols and the formation of three nitrophenol isomers were observed to follow zero-order kinetics. The quantum yields for nitrobenzene and nitrophenols removal are about 10-3 and 10-3-10-4 respectively. The mechanism for nitrobenzene degradation was suggested to follow mainly nitro-nitrite intramolecular arrangement.

  5. Characterization of aqueous silver nitrate solutions for leakage tests

    OpenAIRE

    José Ferreira Costa; Walter Luiz Siqueira; Alessandro Dourado Loguercio; Alessandra Reis; Elizabeth de Oliveira; Cláudia Maria Coelho Alves; José Roberto de Oliveira Bauer; Rosa Helena Miranda Grande

    2011-01-01

    OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silv...

  6. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  7. Biosorption of mercury from aqueous solutions using highly characterised peats

    Directory of Open Access Journals (Sweden)

    A.M. Rizzuti

    2015-02-01

    Full Text Available This research investigated the biosorption of mercury from aqueous solutions by six highly characterised peats. Samples of the peats were tested both in unaltered condition and after being treated with hydrochloric acid (HCl to free up any occupied exchange sites. Other variables tested were sample dose, contact time, mixing temperature, and the concentration and pH of the mercury solution. Desorption studies were also performed, and tests were done to determine whether the peats could be re-used for mercury biosorption. The results indicate that all six peat types biosorb mercury from aqueous solutions extremely well (92−100 % removal and that their mercury removal capacities are not significantly affected by manipulation of the various factors tested. The factor that had the greatest impact on the mercury removal capacities of the peats was the pH of the mercury solution. The optimal mercury solution pH for mercury removal was in the range 5−7 for four of the peats and in the range 2−3 for the other two. The desorption results indicate that it may be possible to recover up to 41 % of the removed mercury. All of the peat types tested can be repeatedly re-used for additional mercury biosorption cycles. Hence, their disposal should not become a hazardous waste problem.

  8. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  9. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  10. Depolarization of negative muons in water and aqueous solutions

    International Nuclear Information System (INIS)

    The dependence of negative muon depolarization on temperature and hydrogen peroxide concentration is measured in various aqueous solutions located in longitudinal or transverse magnetic fields. It is shown that the experimental data are mot inconsistent with the familiar concepts regarding the behaviour of free radicals in aqueous solutions. The residual polarization in pure water solution of hydrogen peroxide is found to 1.8 times higher than that in pure water. This is interpreted as being the result of chemical interaction between meso nitrogen and hydrogen peroxide molecules leading to the formation of diamagnetic compounds. It is shown that the degree of depolarization does not depend on the magnetic field strength. According to the depolarization model in which meso nitrogen chemical reactions are taken into account this signifies that the meso atom enters the chemical reactions during a time t≅10-11 sec. at T=300 K; the paramagnetic products of these primary reactions which contain meso nitrogen then participate in secondary reactions during a time t1≤10-7 sec. The rate constants of the reactions leading to the formation of diamagnetic products can be obtained by treating the concentration and temperature dependences of depolarization in an aqueous solution of hydrogen peroxide in accordance with the model assuming chemical reactions between the meso atom and H2O molecules. The order of magnitude of the constant k≅10-11 sec-1⋅sm3is the same as that of the constant for reactions between free H and OH radicals in water. The temperature dependences of depolarization in water and a water solution of hydrogen peroxide are same consistent with the concept that the meso nitrogen reactions are chemical reactions by diffusion. (author)

  11. The Gibbs-free-energy landscape for the solute association in nanoconfined aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    赵亮; 王春雷; 方海平; 涂育松

    2015-01-01

    The theoretical model and the numerical analyses on the Gibbs-free-energy of the association states of am-phiphilic molecules in nanoconfined aqueous solutions are presented in detail. We exhibit the continuous change of the Gibbs-free-energy trend, which plays a critical role in the association states of the system transforming from the dispersion state, through the “reversible state”, and finally to the aggregation state in amphiphilic molecule solutions. Furthermore, for the“reversible state”, we present the difference in the free-energy bar-rier heights of the dispersion state and aggregation state, resulting from the competition between the entropy, which makes the solute molecules evenly disperse in the solution and the energy contribution driving the am-phiphilic molecules to aggregate into a larger cluster. These findings provide a comprehensive understanding of confinement effects on the solute association processes in aqueous solutions and may further improve the techniques of material fabrication.

  12. Atomistic description of binary lanthanoid salt solutions: A coarse-graining approach

    International Nuclear Information System (INIS)

    The experimental difficulties inherent to the solution chemistry of actinoids and lanthanoids have led to the use of a wide variety of models, from the microscopic to the macroscopic scale, in an attempt to represent their solution properties. Molecular dynamics (MD) simulations, with explicit solvents, have been successfully used to describe the structural characteristics, but the limits on the accessible length and time scales do not allow for an equivalent description of the macroscopic properties. In this study, we propose a multi-scale approach, based on MD simulation results, to study the thermodynamic and structural properties of a series of lanthanoid-chloride aqueous solutions. An inversion procedure, based on the approximate hypernetted chain (HNC) closure and the Stillinger-Lovett sum rules for ionic liquids, is used to obtain the effective ion-ion potentials from MD-generated radial distribution functions (RDF). Implicit solvent Monte Carlo (MC) simulations are then performed to compute the osmotic coefficients of the salt solutions. This coarse-grained strategy provides accurate effective pair potentials for the lanthanoid salts, derived from an atomic model. The method presented here is an attempt to bridge the gap between MD and the thermodynamic properties of solutions that are experimentally measured. (authors)

  13. Exploring Ion-Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Pluhařová, Eva; Mason, Philip E; Jungwirth, Pavel

    2015-05-01

    Recent advances in computational and experimental techniques have allowed for accurate description of ion pairing in aqueous solutions. Free energy methods based on ab initio molecular dynamics, as well as on force fields accounting effectively for electronic polarization, can provide quantitative information about the structures and occurrences of individual types of ion pairs. When properly benchmarked against electronic structure calculations for model systems and against structural experiments, in particular neutron scattering, such force field simulations represent a powerful tool for elucidating interactions of salt ions in complex biological aqueous environments. PMID:26263314

  14. Aqueous Solutions on Silica Surfaces: Structure and Dynamics from Simulations

    Science.gov (United States)

    Striolo, Alberto; Argyris, Dimitrios; Tummala, Naga Rajesh

    2009-03-01

    Our group is interested in understanding the properties of aqueous electrolyte solutions at interfaces. The fundamental questions we seek to answer include: (A) how does a solid structure perturb interfacial water? (B) How far from the solid does this perturbation persist? (C) What is the rate of water reorientation and exchange in the perturbed layer? (D) What happens in the presence of simple electrolytes? To address such topics we implemented atomistic molecular dynamics simulations. Recent results for water and simple electrolytes near silicon dioxide surfaces of various degrees of hydroxylation will be presented. The data suggest the formation of a layered aqueous structure near the interface. The density profile of interfacial water seems to dictate the density profiles of aqueous solutions containing NaCl, CaCl2, CsCl, and SrCl2 near the solid surfaces. These results suggest that ion-ion and ion-water correlations are extremely important factors that should be considered when it is desired to predict the distribution of electrolytes near a charged surface. Our results will benefit a number of practical applications including water desalination, exploitation of the oil shale in the Green River Basin, nuclear waste sites remediation, and design of nanofluidic devices.

  15. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  16. RHEOLOGICAL BEHAVIOR OF ERWINIA GUM IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Li-na Zhang; Mei Zhang; Jing-hua Chen; Hideki Iijima; Hiromichi Tsuchiya

    1999-01-01

    Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose and glucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and a rotational viscometer. Its weight-average molecular weight Mw and intrinsic viscosity [η] in 0.2 mol/L NaCl aqueous solution were measured by light scattering method at 35℃ and viscometry at 25℃ and found to be 1.06 × 106 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gel permeation chromatography (GPC). These results indicated that E gum in water has exceedingly high viscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreased with increasing temperature, and the turning point appeared at 38℃ for dilute solution and 80℃ for concentrated solution suggesting that the aggregates of E gum in water started to disaggregate under these temperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimental results indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.

  17. An electrochemical treatment for aqueous radioactive solutions using pottery

    International Nuclear Information System (INIS)

    A bench scale electrolytic cell made from plexiglas was used for electrochemical separation of 137Cs and 60Co from simullated aqueous radioactive solutions. In this cell, a stainless steel plate represented the anode. The electrochemical treatment technique used depends on forcing the radioactive cations of the solution (137Cs+ and 60Co++) towards the opposite electrode under the influence of applied electric current, where they highly sorbed in the pottery body. The highest removal for137Cs+ and 60Co was in the alkalina medium, especially at pH>9. The investigated factors affected the electrochemicla processes are, applied voltage, treatment duration, hydrogen ion concentration of the radioactive solution, and the consumed electrical energy . It was found that at pH 11, applied voltage 30V and current 100 mA, the highest removal of 137Cs is 99.8% after 2.5 hours, and 99.3% and 99.3% for 60Co after 1.25 hour.The total consumed energy for 137Cs and 60Co were 33.75 and 16.88 W.h.dm-3, respectively. Comparing with other treatment methods, the electrochemical method revealed three advantages: shorter treatment time, low-cost materials, and low consumed energy. The results obtained showed that the dual application of electric current and sorption on the surface of pottery are feasible for the treatment of aqueous radioactive solutions

  18. Aqueous solution of basic fuchsin as food irradiation dosimeter

    International Nuclear Information System (INIS)

    Dosimetric characterization of aqueous solution of basic fuchsin has been studied spectrophotometrically for the possible application in the low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined and decrease in the absorption with the radiation dose was noted down. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorption λmax (540nm) as well as 510, 460 and 400 nm wavelengths. At all these wavelengths, the decrease in the absorbance of the dosimeter was linear with respect to the absorbed dose from 0.05 to 0.6 kGy. The stability of dosimetric solution during the post-irradiation storage in the dark at room temperature showed that after initial bleaching during first eight days, the response was almost stable for about 34 days. The effect of different light and temperature conditions also showed that the response gradually decreased during the storage period of 34 days, which shows that the basic fuchsin dye is photosensitive as well as thermally sensitive. The possibility of using aqueous solution of basic fuchsin as food irradiation dosimeter will be discussed. (authors)

  19. Nano particles@Calix arenas via aqueous solution

    Directory of Open Access Journals (Sweden)

    Sahar Dehghani

    2016-05-01

    Full Text Available The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8 COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8 COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8 COOH nano particles can be controlled by the aqueous. The electrical properties such as NMR Shielding, electron densities, energy densities, potential energy densities, ELF, LOL, ellipticity of electron density, eta index and ECP for nano particles@ Calix (8COOH have been calculated.

  20. Clathrate hydrate equilibria in mixed monoethylene glycol and electrolyte aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: ► New water activity of mixed salt(s) and MEG aqueous solutions were measured. ► New 3-phase H–Lw–V data for methane and a natural gas in equilibrium with MEG and NaCl solutions are reported. ► The CPA-EoS combined with a modified Debye Hückel electrostatic term is employed to model the phase equilibria. ► Water activity data were used to adjust parameters of the modified Debye Hückel electrostatic term. ► The modified model was independently validated using hydrate data. - Abstract: Monoethylene glycol (MEG) is commonly added in the formulation of hydraulic and drilling fluids and injected into pipelines to prevent the formation of gas hydrates. It is therefore necessary to establish the effect of a combination of salts and thermodynamic inhibitors on gas hydrate equilibria. In this communication, water activity of five ternary solutions (MEG–H2O–NaCl, MEG–H2O–CaCl2, MEG–H2O–MgCl2, MEG–H2O–KCl and MEG–H2O–NaBr) and four multicomponent solutions have been measured by a reliable resistive electrolytic humidity sensor. We also report new experimental measurements of the locus of incipient hydrate-liquid water–vapour curve for systems containing methane or natural gas with aqueous solution of ethylene glycol and NaCl over a wide range of concentrations, pressures and temperatures. A thermodynamic approach in which the Cubic-Plus-Association equation of state is combined with a modified Debye Hückel electrostatic term is employed to model the phase equilibria. These new data have been used to optimise binary interaction parameters between salts and MEG implemented in the modified Debye Hückel electrostatic term. The model developed has been evaluated using the new generated hydrate data and literature data. Good agreement between predictions of the modified model and experimental data is observed, supporting the reliability of the developed model.

  1. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    Science.gov (United States)

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  2. Transient species produced in irradiated alkaline aqueous solutions containing oxygen

    International Nuclear Information System (INIS)

    The spectra and decay kinetics of the optical absorption in the UV region and at 430nm (maximum of the ozonide ion absorption), were investigated in oxygenated neutral, slightly and strongly alkaline aqueous solutions. It is assumed that the initial absorption after the pulse in oxygenated alkaline solutions is due to the ozonide ion O3-, superoxide radical ion O2- and ozone O3. The long-living absorption in these solutions cannot be excluded as to be probably caused by the ozone O3 or some product formed from O2- or an alkaline stabilized form of this radical-ion. The advantage of applying additional non-optical measurements of the system is shown on the example of H2O2 role played in the mechanism. (author)

  3. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.

    Science.gov (United States)

    Yang, SeungCheol; Choi, Jiyeon; Yeo, Jeong-Gu; Jeon, Sung-Il; Park, Hong-Ran; Kim, Dong Kook

    2016-06-01

    Flow-electrode capacitive deionization (FCDI) is novel capacitive deionization (CDI) technology that exhibits continuous deionization and a high desalting efficiency. A flow-electrode with high capacitance and low resistance is required for achieving an efficient FCDI system with low energy consumption. For developing high-performance flow-electrode, studies should be conducted considering porous materials, conductive additives, and electrolytes constituting the flow-electrode. Here, we evaluated the desalting performances of flow-electrodes with spherical activated carbon and aqueous electrolytes containing various concentrations of NaCl in the FCDI unit cell for confirming the effect of salt concentration on the electrolyte of a flow-electrode on desalting efficiency. We verified the necessity of a moderate amount of salt in the flow-electrode for compensating for the reduction in the performance of the flow-electrode, attributed to the resistance of water used as the electrolyte. Simultaneously, we confirmed the potential use of salt water with a high salt concentration, such as seawater, as an aqueous electrolyte for the flow-electrode. PMID:27162028

  4. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  5. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  6. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles.

    Directory of Open Access Journals (Sweden)

    Xianze Wang

    Full Text Available The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO4(2-, NO3(- and Cl(-; however, CO3(2- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions.

  7. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles

    Science.gov (United States)

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO42-, NO3- and Cl-); however, CO32- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions. PMID:26630014

  8. A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer.

    Science.gov (United States)

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J M; Hinrichs, Wouter L J; Frijlink, Henderik W

    2011-06-01

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na(+) and K(+)) and divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl(2), MgCl(2), or ZnCl(2) and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca(2+), Mg(2+), or Zn(2+), while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions.

  9. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2 ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0 ± 1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼104 s-1 at pH 7.4 and 37 °C, the activation energy, 50.2 kJ/mol and its pH dependence at 1.1 °C was fitted to: k (s-1) = 520 + 6.5 × 107[H+] + 3.0 × 109[OH-].

  10. Removal of heavy metals from aqueous solutions using opalized tuff

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Golomeov, Blagoj; Krstev, Boris; Jakupi, Shaban

    2015-01-01

    This paper presents the results of the examination of the possibility of applying opalized tuff as a natural raw material for disposal of heavy metals (copper, zinc, manganese and lead) from aqueous solutions. Of actual experiments obtained results show that working conditions attaching to the removal of Cu and Pb ions is more than 91% of zinc ions is above 81%, while manganese ions are removed about 77% .On this can be concluded that the removal of examined heavy metals using opalized tuff i...

  11. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution

    Science.gov (United States)

    Saita, Takao

    1980-12-01

    It is shown using a capillary viscometer that the viscosity of a dilute aqueous solution of sodium-polyacrylate at 20°C decreases gradually for each flow time measurement and also decreases with the time of rest. Assuming that the polymer degradation is caused by shearing stress and oxidation, their effects are discussed with the data obtained using a closed-type capillary viscometer derived for this investigation. It is proved from the results that rupture of the Na-PAA molecule is caused by mechanochemical degradation, and also photo-degradation under the usual illumination and sunlight in a laboratory.

  12. Fluorescence of aqueous solutions of commercial humic products

    Science.gov (United States)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  13. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  14. ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ON ATTAPULGITE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.

  15. Nano particles@Calix arenas via aqueous solution

    OpenAIRE

    Sahar Dehghani

    2016-01-01

    The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8) COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8) COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8) C...

  16. Strong adhesion and cohesion of chitosan in aqueous solutions

    OpenAIRE

    Lee, DW; Lim, C. (Cheryl); Israelachvili, JN; Hwang, DS

    2013-01-01

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0-8.5), achieving a maximum value at pH 3.0 after a contact time of 1 h (Wad ∼ ...

  17. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  18. The characterization methods for colloids in aqueous solutions

    International Nuclear Information System (INIS)

    This literature review deals with characterization methods for colloids in aqueous solutions and in groundwater. The basis for the review has been the needs of nuclear waste disposal studies and methods applicable in such studies. The methods considered include non-destructive laserspectroscopic methods (e.g. TRLFS, LPAS, PALS), several separation methods (e.g. ultrafiltration, dialysis, electrophoresis, field-flow-fractionation) and also some surface analytical methods, as well as some other methods giving additional information on formation and migration properties of colloids. (au.) (71 refs., 13 figs., 3 tabs.)

  19. Removal of phenols from aqueous solutions by emulsion liquid membranes.

    Science.gov (United States)

    Reis, M Teresa A; Freitas, Ondina M F; Agarwal, Shiva; Ferreira, Licínio M; Ismael, M Rosinda C; Machado, Remígio; Carvalho, Jorge M R

    2011-09-15

    The present study deals with the extraction of phenols from aqueous solutions by using the emulsion liquid membranes technique. Besides phenol, two derivatives of phenol, i.e., tyrosol (2-(4-hydroxyphenyl)ethanol) and p-coumaric acid (4-hydroxycinnamic acid), which are typical components of the effluents produced in olive oil plants, were selected as the target solutes. The effect of the composition of the organic phase on the removal of solutes was examined. The influence of pH of feed phase on the extraction of tyrosol and p-coumaric was tested for the membrane with Cyanex 923 as an extractant. The use of 2% Cyanex 923 allowed obtaining a very high extraction of phenols (97-99%) in 5-6 min of contact time for either single solute solutions or for their mixtures. The removal efficiency of phenol and p-coumaric acid attained equivalent values by using the system with 2% isodecanol, but the removal rate of tyrosol was found greatly reduced. The extraction of tyrosol and p-coumaric acid from their binary mixture was also analysed for different operating conditions like the volume ratio of feed phase to stripping phase (sodium hydroxide), the temperature and the initial concentration of solute in the feed phase.

  20. Nature of large aggregates in supercooled aqueous solutions of sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I. (Purdue Univ., West Lafayette, IN); Davis, H.T.; Miller, W.G.; Scriven, L.E.

    1980-09-18

    Preparations of 2.0 and 5.5 wt % sodium dodecyl sulfate (SDS) in 3.5 wt % (0.6 M) aqueous NaCl are equilibrium micellar solutions above 28/sup 0/C, the Krafft point of the surfactant at this salinity. These systems can be supercooled and remain transparent for hours and days. At 25/sup 0/C at equilibrium they are biphasic, a hydrated crystal phase and an aqueous salt solution phase containing only 0.01/sub 2/ wt % SDS. Conductimetry and /sup 13/C NMR show that these transparent supercooled systems are indeed supersaturated solutions and not microdispersions of the hydrated crystal. The time lag for the onset of nucleation of the crystals depends strongly on stirring details and probably on presence of gas-liquid interface. The big nonequilibrium aggregates present in the supersaturated systems resemble micelles in conductivity and molecular motion, and are likely to be metastable micelles as is presumed by Mazer, Benedek, and Carey. 21 references, 6 figures, 1 table.

  1. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Three problems of quantitative evaluation of analytic D and 18O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  2. Rheological properties of aqueous solutions of biopolymeric hyaluronan

    Science.gov (United States)

    Szwajczak, Elzbieta

    2004-09-01

    Aqueous solutions of hyaluronic acid (hyaluronan, HA) were studied. The HA compound is a natural polysaccharide, bipolymer. It plays an important role in numerous biological processes as a component of the extracellular matrix, connective tissues and, especially, human and animal synovial joints. Natural and artificial solutions of the HA have demonstrated the viscoelastic nature. These properties are shown to be related to the microstructure parameters (bulk concentration, molecular weight) and external parameters (temperature, stress, shear rate). We emphasize the role of the flow properties of polymeric systems. It is found a liquid crystalline "order" can be "induced" during the material flow. The dynamic properties, such as the elastic shear modulus and viscous shear modulus, are given. These results are discussed in relation to the postulated function of hyaluronic acid in synovial joint and with respect to possibilities o their application in medicine and pharmacology.

  3. INTERACTION OF POLYVINYLPYRROLIDONE WITH METAL CHLORIDE AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Mohammad Saleem Khan; Khaista Gul; Najeeb Ur Rehman

    2004-01-01

    Interactions of polyvinylpyrrolidone (PVP) with metal chlorides (MgCl2, CaCl2, KC1 and BaC12) have been investigated by viscometric and spectrophotometric techniques in aqueous solutions. Intrinsic viscosity [η] of (PVP) has shown a discontinuity with varying concentration of metal chlorides. The decreasing order of effectiveness of cation is K1+>Ca2+> Mg2+> Ba2+ for poly(vinylpyrrolidone) solution. Changes in the absorption spectra of the cosolutes were observed in the presence of PVP in the lower limit of the UV-visible region i.e. 200-210 nm. These changes were attributed to interaction of PVP molecules with the cosolute molecules. As the concentration of the cosolute increased, a red shift in the peaks was observed, indicating an increase in interaction between PVP and cosolutes.

  4. Adsorption of thorium from aqueous solutions by perlite.

    Science.gov (United States)

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  5. Radiolysis of berberine or palmatine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Marszalek, Milena [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland); Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.p [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland)

    2011-01-15

    The reactions of hydrated electron (e{sub aq}{sup -}), hydrogen atom (H{sup {center_dot}}) (reducing species) and Cl{sub 2}{sup {center_dot}}{sup -},Br{sub 2}{sup {center_dot}}{sup -},{sup {center_dot}}N{sub 3},{sup {center_dot}}OH radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of e{sub aq}{sup -} and {sup {center_dot}}OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with e{sub aq}{sup -} and radicals generated during radiolysis are unstable and undergo further reactions.

  6. The crystal growth of barium flouride in aqueous solution

    Science.gov (United States)

    Barone, J. P.; Svrjcek, D.; Nancollas, G. H.

    1983-06-01

    The kinetics of growth of barium flouride seed crystals were investigated in aqueous solution at 25°C using a constant composition method, in which the supersaturation and ionic strength were maintained constant by the addition of titrants consisting of barium nitrate and potassium flouride solutions. The rates of reaction, studied over a range of supersaturation (σ ≈ 0.4 to 1.0), were interpreted in terms of crystal growth models. A spiral growth mechanism best describes the data, and scanning electron microscopy indicates a three-dimensional growth. In the presence of inorganic additives such as phosphate, however, induction periods precede a morphological two-dimensional crystallization. Coulter Counter results show little crystal agglomeration.

  7. Radiolysis of pentachlorophenol (PCP) in aqueous solution by gamma radiation

    Institute of Scientific and Technical Information of China (English)

    XUE Jun; WANG Jianlong

    2008-01-01

    Steady-state radiolysis experiments were performed to investigate the y-irradiation treatment of pentachlorophenol (PCP) in aqueoussolution. The effect of initial concentration on the PCP degradation was also investigated. The experimental results showed that γ-irradiation was able to degrade PCP in aqueous solution successfully, and the radiolytical degradation process of PCP could be describedby the first-order kinetic model. When the initial concentration of PCP was 25 and 50 mg/L and the radiation dose was 4 and 6 kGy,respectively, the degradation efficiency was 100%. A luminescence bacterial test was used for evaluating the toxicity of the radiolyticintermediate products. Total detoxification of a 75 mg/L PCP solution could be achieved by carrying out the irradiation procedure at the dose of 15 kGy.

  8. Photoelectron spectra of aqueous solutions from first principles.

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, A.lex P.; Govoni, Marco; Seidel, Robert; Skone, Jonathan H.; Winter, Bernd; Galli, Giulia

    2016-06-08

    We present a combined computational and experimental study of the photoelectron spectrum of a simple aqueous solution of NaCl. Measurements were conducted on microjets, and first-principles calculations were performed using hybrid functionals and many-body perturbation theory at the G0W0 level, starting with wave functions computed in ab initio molecular dynamics simulations. We show excellent agreement between theory and experiments for the positions of both the solute and solvent excitation energies on an absolute energy scale and for peak intensities. The best comparison was obtained using wave functions obtained with dielectric-dependent self-consistent and range-separated hybrid functionals. Our computational protocol opens the way to accurate, predictive calculations of the electronic properties of electrolytes, of interest to a variety of energy problems.

  9. Sorption of 137Cs from Aqueous Waste Solutions using Pottery

    International Nuclear Information System (INIS)

    A simple and inexpensive method for sorption of 137Cs from aqueous solutions using a highly available vase shape pottery material has been investigated. Porosity of the used pottery allowed for the penetration of the radioactive solution through its permeable body. Two routes had been investigated for cesium removal from the radioactive solutions. In the first one, pottery bodies were immersed into the radioactive solutions. In the second method; the radioactive solutions were filled the inner volumes of the pottery bodies. Vase shape pottery showed higher sorption capability for 137Cs much more than its powder forms, especially in the alkaline medium. Pottery bodies showed high potential for 137Cs removal. Adsorption isotherms revealed good lit to the Freundlich and Langumir isotherms. During sorption processes outside and inside the pottery body, 137Cs was well captured inside the amorphous microstructure of the pottery body. In this respect, micro filtration of cesium radionuclides through the used pottery could be postulated. Desorption experiments indicated higher immobilization affinity for radiocesium into pottery bodies, which indicates a high containment for 137Cs with an irreversible fixation mechanism

  10. Study on Mixing Field of Salt Tolerant Polymer Solution

    Science.gov (United States)

    Zhang, L. H.; Zhang, M. G.; Li, X. G.; Zhang, D.; Jiang, B.

    The salt tolerant polymer (PAM) solution is a kind of viscoelastic fluid. The polymer. whose molecular weight is more than 2.5x107g/mol, is apt to form ultra-molecular structures in solution with pretty high viscoelasticity. These characteristics considerably affect the flow patterns and the mixing process. It is far more difficult to mix viscoelastic fluid homogeneously than Newtonian fluid. Because the molecular diffusion rate of viscoelastic fluid in mixing process is very low, improving the circulating performance of the agitator is the main path to increase the mixing velocity of the viscoelastic fluid. In this study, structure and operation parameters of new type agitator—double helical ribbon screw agitator designed for the salt tolerant polymer are optimized via laboratory experiment. The experiment results show that, compared with the screw propeller, the new type agitator improves circulation of fluid field effectively and increases the homogenized rate. It reduces the mixing time from 4h to 2h. And the viscosity of the polymer solution increases by 10%. However, the energy consumption does not increase.

  11. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10-4M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10-4M and 1 x 10-2M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA2-) : k(OH + CO32-) : k(OH + HCO3-) = 1 : 0.105 : 0.0036

  12. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomiştilor St., PO Box MG-36, 077125, Bucharest-Măgurele (Romania)

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  13. New terahertz dielectric spectroscopy for the study of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    George, Deepu K.; Charkhesht, Ali; Vinh, N. Q., E-mail: Vinh@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-12-15

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17–37.36 cm{sup −1} or 0.268–60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10{sup 12} and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  14. New terahertz dielectric spectroscopy for the study aqueous solutions

    CERN Document Server

    George, Deepu K; Vinh, N Q

    2015-01-01

    We present a development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As a first application we report on the measurement of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17 to 37.36 cm-1 or 0.268 to 60 mm). The system provides a coherent radiation source with a power up to 20 mW in the gigahertz-to-terahertz region. The power signal-to-noise ratio of our instrument reaches 1015 and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with an error bars of 0.02 oC from above 0 oC to 90 oC. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  15. Removal of heavy metals from aqueous solution by sawdust adsorption

    Institute of Scientific and Technical Information of China (English)

    BULUT Yasemin; TEZ Zeki

    2007-01-01

    The adsorption of lead, cadmium and nicel from aqueous solution by sawdust of walnut was investigated. The effect of contact time,initial metal ion concentration and temperature on metal ions removal has been studied. The equilibrium time was found to be of the order of 60 min. Kinetics fit pseudo first-order, second-order and intraparticle diffusion models, hence adsorption rate constants were calculated. The adsorption data of metal ions at temperatures of 25, 45 and 60C have been described by the Freundlich and Langmuir isotherm models. The thermodynamic parameters such as energy, entropy and enthalpy changes for the adsorption of heavy metal ions have also been computed and discussed. Ion exchange is probably one of the major adsorption mechanisms for binding divalent metal ions to the walnut sawdust. The selectivity order of the adsorbent is Pb(Ⅱ)≈Cd(Ⅱ)>Ni(Ⅱ). From these results, it can be concluded that the sawdust of walnut could be a good adsorbent for the metal ions from aqueous solutions.

  16. Efficient removal of mercury from aqueous solutions and industrial effluent.

    Science.gov (United States)

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent. PMID:26301849

  17. Gamma radiolytic degradation of naphthalene in aqueous solution

    Science.gov (United States)

    Chu, Libing; Yu, Shaoqing; Wang, Jianlong

    2016-06-01

    The decomposition of naphthalene in aqueous solution was studied using gamma irradiation combined with both H2O2 and TiO2 nanoparticles. Gamma irradiation led to a complete degradation of naphthalene and a partial mineralization. With initial concentration of 5-32 mg/L, more than 98% of naphthalene was removed and TOC reduction reached 28-31% at an absorbed dose of 3.0 kGy. The degradation of naphthalene was faster at neutral pH and the initial degradation rate increased with increasing the initial concentration of naphthalene. Addition of H2O2 and TiO2 nanoparticles all enhanced the degradation and mineralization of naphthalene. TOC removal efficiency increased from 28% (irradiation alone) to 35% with addition of H2O2 (40 mg/L), and to 48% with addition of TiO2 (0.8 g/L). The degradation of naphthalene in aqueous solution by gamma irradiation was mainly through the oxidation by ·OH radicals. The intermediate naphthol and carboxylic acids such as formic acid and oxalic acid were identified by LC-MS and IC.

  18. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  19. Examination of rheological properties of aqueous solutions of sodium caseinate

    Directory of Open Access Journals (Sweden)

    Jolanta Gawałek

    2012-12-01

    Full Text Available Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The material for investigations was typical commercial sodium caseinate in the form of dry powder manufactured in Poland from acid casein using the method of extrusion. The objective of the undertaken empirical studies was the assessment of the impact of the concentration on rheological properties of sodium caseinate concentrates. Investigations were carried out for five concentrates manufactured in a mixer equipped in a mechanical agitator at concentrations ranging X (% Î (2.5¸12.5 and changing mass proportions of sodium caseinate in the aqueous solution as follows: GS/G (kgS·kg-1 = 0.025. On the basis of the obtained research results, classical flow curves were plotted for individual concentrates. The determined values of viscosity and density of the examined solutions were correlated in the form of h = f(GS/G and r = f(GS/G dependencies which were used during the determination of classical characteristics of mixing forces essential for the assessment of energetic expenditures required to manufacture concentrates in a mixer equipped in a mechanical agitator. The density of the examined concentrates increased in a way directly proportional, while the dynamic viscosity coefficient increased exponentially together with the increase of sodium caseinate concentration. Sodium caseinate concentrates exhibited Newtonian character in the examined range of concentrations.

  20. Method of precipitating uranium from an aqueous solution and/or sediment

    Science.gov (United States)

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  1. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions.

    Science.gov (United States)

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-05-10

    Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. PMID:27030080

  2. Determination of deuterium in brines and in hypersaline aqueous solutions by mass spectrometry using zinc as reducing agent

    International Nuclear Information System (INIS)

    A procedure was developed for the determination of deuterium concentration in brines and in hypersaline aqueous solutions, without the removal of alkaline earth metal cations. Aqueous salt solutions of nine salts, LiCl, NaCl, NaI, Na2CO3, KCl, K2SO4, CsCl, CaCl2 and Mg(ClO4)2, with molalities ranging from 0.5 to 11.8 mol kg-1 were prepared by dissolving the dry anhydrous salts in de-ionized water of known isotopic composition. Only 8 μl of sample were required to be reduced with zinc metal at 460oC in a special glass container equipped with a Teflon stopper, to prepare hydrogen for isotopic analysis. The salts NaCl, NaI, Na2CO3, KCl, K2SO4 and CsCl required 0.25 g, LiCl and CaCl2 0.75 g and Mg(ClO4)2 1.00 g of zinc for complete reduction. Deuterium concentrations in brines containing large amounts of Ca2+, Mg2+, Cl- and SO42- ions were measured with an accuracy of ±1%o (1σ). In addition, the deuterium content in Dead Sea water was determined with the same method and gave δD = + 5.4 ±0.3%o using 1.50 g of zinc. (author)

  3. Biochar from malt spent rootlets for the removal of mercury from aqueous solutions

    Science.gov (United States)

    Boutsika, Lamprini; Manariotis, Ioannis; Karapanagioti, Hrissi K.

    2013-04-01

    , and 95%, respectively. Finally, the influence of solution salinity in mercury sorption onto biochar was tested by adjusting the solution ionic strength with two different salts, NaCl and NaNO3. The salts were added at concentrations 1, 0.5, 0.1, 0.01, 0.001, and 0.0001 mol/L. Mercury removal was not affected by the presence of NaNO3 and high metal removal percentages were obtained even at high NaNO3 concentrations (about 53% at concentration 1 mol/L NaNO3). However, a significant decrease of mercury adsorption was observed with the increase of NaCl concentration, i.e. from 55% removal at concentration 0.0001 mol/LNaCl, it reached 20% removal at a concentration of 1 mol/L NaCl. These differences can be related to the different counter ion present in the salts. NO3- does not interfere in mercury sorption but Cl- forms mercury species with negative charge, which do not favor the sorption process. Generally, biochar from malt spent rootlets seemed as a promising novel sorbent that could be used for aqueous system remediation under most environmental conditions.

  4. Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations.

    Science.gov (United States)

    Liao, Chenyi; Esai Selvan, Myvizhi; Zhao, Jun; Slimovitch, Jonathan L; Schneebeli, Severin T; Shelley, Mee; Shelley, John C; Li, Jianing

    2015-08-20

    Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed—for the first time in atomistic detail—that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety. PMID:26208115

  5. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  6. Peculiarity of aqueous solutions of 2,2,2-trifluoroethanol.

    Science.gov (United States)

    Burakowski, Andrzej; Gliński, Jacek; Czarnik-Matusewicz, Bogusława; Kwoka, Paulina; Baranowski, Andrzej; Jerie, Kazimierz; Pfeiffer, Helge; Chatziathanasiou, Nikos

    2012-01-12

    Aqueous solutions of 2,2,2-trifluoroethanol appear to show a structural transition at alcohol mole fraction equal to x(TFE) = 0.05, which can be concluded from a discontinuity of the speed of sound. At the same concentration, a discontinuity was observed in the parameters of the long-living component of the positron annihilation spectrum. Moreover, the partial molar volumes of components show transition-like behavior in the range of low solute contents, which is significantly different from nonsubstituted ethanol. The peculiarities of the low concentration system correlate with minor infrared spectra changes assigned to a mode composed of the CH(2) bending and CF(3) stretching internal vibrations being sensitive to polarity of the hydration shell surrounding the solute. The majority of the spectral changes arise from a gradual shift of the equilibrium between trans ↔ gauche isomers when the composition of the solution is changing. A possible explanation for the peculiar behavior of the system is a thermodynamic equilibrium between hydrated monomers and dimers at that respective mole number. PMID:22142252

  7. Impact of Deepwater Horizon Oil Contamination on the Aqueous Geochemistry of Salt Marsh Sediment/Seawater Microcosms

    Science.gov (United States)

    Rentschler, E. K.; Donahoe, R. J.

    2011-12-01

    On April 20th, 2010, the Deepwater Horizon oil drilling rig, located in the Gulf of Mexico about 41 miles off the Louisiana coast, exploded, burned for two days, and sank. Approximately 4.9 million gallons of crude oil were released and traveled with ocean currents to reach the coasts of Louisiana, Mississippi, Alabama, and Florida. Previous studies have primarily considered the direct impact of oil and dispersant contamination on coastal ecosystems, but have not examined the potential impact of the accident on the inorganic geochemistry of coastal waters and sediments. In this study, microcosm experiments were conducted to determine how oil contamination will affect the concentration and distribution of trace elements in a salt marsh environment. Uncontaminated sediment and seawater, collected from a salt marsh at Bayou la Batre, Alabama, were measured into jars and spiked with 500 ppm MC-252 oil. Twenty jars, including duplicates and both sterile and non-sterile controls, were placed on a shaker table at 100 rpm. The jars were sacrificed at predetermined time intervals (0 h, 6 h, 12 h, 24 h, 48 h, 7 d, and 14 d), and the aqueous samples prepared for analysis by ICP-OES and IC. The pH for the water in the time series experiment ranged from 7.16 to 8.06. Seawater alkalinity was measured at 83.07 mg CaCO3/L. ICP-OES data show variations in aqueous element concentrations over the 14 day microcosm experiment. Significant positive correlations (>0.75) were found for the following pairs of elements: calcium and magnesium, calcium and sodium, magnesium and sodium, silica and boron, beryllium and boron, iron and silica, manganese and silica, boron and manganese, arsenic and nickel, beryllium and selenium, beryllium and zinc, copper and chloride, bromide and sulfate. Aqueous iron concentrations were highly correlated with solution pH. The presence of iron oxide and clays in the sediment indicates a potential for adsorption of trace elements sourced from the environment and

  8. Micro-dynamics studies in aqueous solutions by inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    In this work an analysis of the frequency spectra of pure and hydration water in ZnCl2 aqueous solutions of 2 M, 6 M and 12.6 M concentrations is presented. The study of microscopic structure and of the dynamics in ionic liquids, particularly in aqueous solutions of ZnCl2, is carried out by means of neutron diffraction and cold neutron inelastic incoherent and quasi-elastic scattering. For the first time direct information concerning the local ionic structure and its correlation range are obtained. So, as the frequency spectra show, at concentrations close to saturation the local order is increasingly dependent on salt structure. The width of the first translation mode, at hω 7 - 8 meV, corresponding to the O-O-O liaison angle of the oxygen atoms, decreases with increasing concentration. This indicates an at least partial break of the hydrogen liaison. Other information concerning the correlation effects are obtained from the velocity self-correlation function , as obtained by Fourier transformation of the frequency spectrum p(hω). Concentration dependence of this function can by explained by the interaction potential of the chlorine in the first coordination sphere. The structure of p(hω) becomes increasingly complicated as the concentration increases what indicates existence of polynuclear species with chlorine incorporated

  9. Sorption of uranium(VI) from aqueous solution onto magnesium silicate hollow spheres

    International Nuclear Information System (INIS)

    The sorption of uranium(VI) from aqueous solutions was investigated using synthesized magnesium silicate hollow spheres as a novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, contact time and initial U(VI) concentrations on uranium sorption efficiency. The desorbing of U(VI) and the effect of coexisting ions were also investigated. Kinetic studies showed that the sorption followed a pseudo-second-order kinetic model. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 25-400 mg/L. The maximum uranium sorption capacity onto magnesium silicate hollow spheres was estimated to be about 107 mg/g under the experimental conditions. Desorption of uranium was achieved using inorganic acid as the desorbing agent. The practical utility of magnesium silicate hollow spheres for U(VI) uptake was investigated with high salt concentration of intercrystalline brine. This work suggests that magnesium silicate hollow spheres can be used as a highly efficient adsorbent for removal of uranium from aqueous solutions. (author)

  10. The effect of magnesium ions on dielectric relaxation in semidilute DNA aqueous solutions

    CERN Document Server

    Grgičin, Danijel; Ivek, Tomislav; Tomić, Silvia; Podgornik, Rudi

    2013-01-01

    The effect of magnesium ion Mg2+ on the dielectric relaxation of semidilute DNA aqueous solutions has been studied by means of dielectric spectroscopy. Two dielectric relaxations in the 100 Hz - 100 MHz frequency range, originating in the motion of DNA counterions, were probed as a function of DNA and Mg2+ ion concentration in added MgCl2 salt. The high-frequency mode in the MHz range, stemming from the structural organization of the DNA network, reveals de Gennes-Pfeuty-Dobrynin correlation length as the pertinent fundamental length scale for sufficiently low concentration of added salt. No relaxation fingerprint of DNA denaturation bubbles, leading to exposed hydrophobic core scaling, was detected at low DNA concentrations, thus indicating an increased stability of the double-stranded conformation as compared to the case of DNA solutions with univalent counterions. The presence of Mg2+ does not change qualitatively the low frequency mode in the kHz range correlated with single DNA conformational properties....

  11. Aqueous solution synthesis of zinc oxide for application in optoelectronics

    Science.gov (United States)

    Joo, John Hwajong

    Recently, ZnO has garnered widespread attention in the semiconductor community for its large set of useful properties, which include a wide bandgap and its resulting optical transparency, a large exciton binding energy, a significant piezoelectric response, and good electrical conductivity. In many ways, it shares many properties with a widely used and technologically important semiconductor GaN, which is widely used for blue LEDs and lasers. However, ZnO cannot substitute for GaN in most optoelectronic applications, because it cannot be doped p-type. On the other hand, unlike many traditional, covalently bonded semiconductors like GaN, ZnO can be easily formed aqueous solutions at close to room temperature and pressure in the form of large crystals or a variety of nanostructures, making possible applications that are normally very difficult with traditional semiconductors. In this light, we aimed to take advantage of aqueous solution-based, ZnO growth techniques and incorporated ZnO structures novel optoelectronic and photonic structures. By controlling the morphology of ZnO, we studied the effects of nanowire-based ZnO/Cu2O solar cells. Carrier collection was increased using a nanowire-based device architecture. The main result, however, was the time evolution of the performance of these devices due to the movement of ionized defects in the material. The effects of geometry on the ageing characteristics were studied, which showed that the carrier collection could be increased further with aging in a nanowire Cu2O solar cell. The aging behavior was substantially different between nanowire and planar solar cells, which implies that future design of nanostructured solar cells must long term aging effects. In addition to solar cells, we explored the possibilities of using aqueous solution growth of ZnO to fabricated whispering gallery mode optical cavities and waveguides for enhancing extraction from a single photon source. In both applications, we used templated

  12. Salt dependent stability of stearic acid Langmuir-Blodgett films exposed to aqueous electrolytes

    NARCIS (Netherlands)

    Kumar, Naveen; Wang, Lei; Siretanu, Igor; Duits, Michel; Mugele, Frieder

    2013-01-01

    We use contact angle goniometry, imaging ellipsometry, and atomic force microscopy to study the stability and wettability of Langmuir–Blodgett (LB) monolayers of stearic acid on silica substrates, upon drying and exposure to aqueous solutions of varying salinity. The influences of Ca2+ and Na+ ions

  13. DNA dynamics in aqueous solution: opening the double helix

    Science.gov (United States)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  14. Arsenic Removal from Aqueous Solutions by Salvadora persica Stem Ash

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2013-01-01

    Full Text Available Arsenic is a naturally occurring metalloid, which is widely distributed in nature and is regarded as the largest mass poisoning in history. In the present study, the adsorption potential of Salvadora persica (S. persica stem ash in a batch system for the removal of As(V from aqueous solutions was investigated. Isotherm studies were carried out to evaluate the effect of contact time (20–240 min, pH (2–11, initial arsenic concentration (50–500 μg/L, and adsorbent dose on sorption efficiency. Maximum removal efficiency of 98.33% and 99.32% was obtained at pH 6, adsorbent dosage 3.5 g/L, initial As(V concentration 500 μg/L, and contact time 80 and 60 min for S. persica stem ash at 300 °C and 500 °C, respectively. Also, the adsorption equilibriums were analyzed by the Langmuir and Freundlich isotherm models. Such equilibriums showed that the adsorption data was well fitted with the Freundlich isotherm model for S. persica stem ash at both 300 °C and 500 °C (R2=0.8983 and 0.9274, resp.. According to achieved results, it was defined that S. persica stem ash can be used effectively for As(V removal from the aqueous environment.

  15. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Seyoon Yoon

    2016-05-01

    Full Text Available Monosulfoaluminate (Ca4Al2(SO4(OH12∙6H2O plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO42− and OH− with chloride ions. In this study, scanning transmission X-ray microscope (STXM, X-ray absorption near edge structure (XANES spectroscopy, and X-ray diffraction (XRD were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.

  16. Comparison of Photochemical Reactions of m-Cresol in Aqueous Solution and in Ice

    Institute of Scientific and Technical Information of China (English)

    PENG Fei; XUE Hong-hai; TANG Xiao-jian; KANG Chun-li; LI Lin-lin; LI Zhe

    2012-01-01

    We compared the photochemical reaction of m-cresol containing OH precursors such as H2O2,NO2- and NO3- in aqueous solution with those in ice.The results show that the conversion rate of m-cresol in aqueous solution was higher than that in ice,H2O2,NO2- and NO3- all accelerated the photoconversion of m-cresol in both aqueous solution and ice.The photochemical reactions of m-cresol obeys the first order kinetics equation.According to the photoproducts identified by GC-MS,we proposed that hydroxylation and nitration reactions occurred in both aqueous solution and ice.Coupling reaction was common in ice,however,in aqueous solution it was found only in UV system.Our results suggest that the photochemical reactions of m-cresol were different in aqueous solution and in ice.

  17. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  18. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  19. γ-Irradiation of malic acid in aqueous solutions

    Science.gov (United States)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  20. Degradation of chlorophenols in aqueous solution by {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun [INET, Tsinghua University, Beijing 100084 (China)]. E-mail: hujun@mail.tsinghua.edu.cn; Wang Jianlong [INET, Tsinghua University, Beijing 100084 (China)

    2007-08-15

    Degradation of chlorophenols (CPs) in aqueous solutions by {gamma}-radiation was studied. The effect of absorbed dose on degradation, dechlorination and mineralization of CPs were investigated. The results indicated that the degradation of CPs, Cl{sup -} release and mineralization increased with increase in absorbed dose. When the initial concentration was 100 mg L{sup -1} and the dosage was 6 kGy, the removal efficiencies of CPs were 44.54% for 2-CP, 91.46% for 3-CP, 82.72% for 4-CP and 93.25% for 2,4-DCP, respectively. The combination of irradiation and H{sub 2}O{sub 2} leads to a synergistic effect, which remarkably increased the degradation efficiency of CPs and TOC removal. The kinetics of CPs during irradiation are also mentioned.

  1. Degradation of chlorophenols in aqueous solution by γ-radiation

    Science.gov (United States)

    Hu, Jun; Wang, Jianlong

    2007-08-01

    Degradation of chlorophenols (CPs) in aqueous solutions by γ-radiation was studied. The effect of absorbed dose on degradation, dechlorination and mineralization of CPs were investigated. The results indicated that the degradation of CPs, Cl - release and mineralization increased with increase in absorbed dose. When the initial concentration was 100 mg L -1 and the dosage was 6 kGy, the removal efficiencies of CPs were 44.54% for 2-CP, 91.46% for 3-CP, 82.72% for 4-CP and 93.25% for 2,4-DCP, respectively. The combination of irradiation and H 2O 2 leads to a synergistic effect, which remarkably increased the degradation efficiency of CPs and TOC removal. The kinetics of CPs during irradiation are also mentioned.

  2. Adsorption of CTAB onto perlite samples from aqueous solutions.

    Science.gov (United States)

    Alkan, Mahir; Karadaş, Mecit; Doğan, Mehmet; Demirbaş, Ozkan

    2005-11-15

    In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.

  3. Gamma-irradiation of malic acid in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Graff, R.L.; Ponnamperuma, C.

    1980-12-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  4. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2010-03-24

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  5. Dual fluorescence of naphthylamines in alkaline aqueous solution

    Science.gov (United States)

    Ma, Li-Hua; Wen, Zhen-Chang; Lin, Li-Rong; Jiang, Yun-Bao

    2001-10-01

    Dual fluorescence was observed with N-(1-naphthyl)aminoacetate (1-NAA) in aqueous solution of pH 13.0 in the presence of cationic surfactants, cetyltrimethylammonium bromide (CTAB) and chloride (CTAC), below and after the critical micelle concentration (CMC). Similar dual fluorescence was also found with 1- and 2-naphthylamine (1-NA, 2-NA), N-(2-naphthyl)aminoacetate (2-NAA) and (1-naphthyl)ethylenediamine (1-NEDA), in the presence and absence of the cationic surfactants, but not with N, N-disubstituted 1- and 2-NAs. We concluded that the dual fluorescence was due to the excited-state deprotonation of the amino group in these NAs. The p Ka*s of the dual fluorescent NAs were estimated to be around 14 from the dual fluorescence pH titrations. No clear correlation was found for p Ka* with the amino substitution and the presence of cationic micelle.

  6. Degradation of aqueous solutions of camphor by heterogeneous photocatalysis.

    Science.gov (United States)

    Sirtori, Carla; Altvater, Priscila K; de Freitas, Adriane M; Peralta-Zamora, Patricio G

    2006-02-28

    In this study the photocatalytic degradation of aqueous solutions of camphor was investigated by using TiO2 and ZnO photocatalysts. In the presence of artificial UV-light the highly photosensitive camphor was almost totally degraded after reaction times of 60 min. However, under these conditions the mineralization degree was lower than 25%. In the presence of semiconductors the degradation was complete after a treatment time of about 30 min. Moreover, the mineralization was considerably greater, mainly with the use of TiO2 (> 80% at reaction time of 60 min). Heterogeneous photocatalytic processes applied in the presence of solar radiation show a promising degradation capability. TiO2-based processes afforded mineralization degrees of about 90% after a reaction time of 120 min, when the system was assisted by aeration.

  7. Protein thermal stabilization in aqueous solutions of osmolytes.

    Science.gov (United States)

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes. PMID:26495438

  8. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  9. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    International Nuclear Information System (INIS)

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented

  10. Ionizing radiation induced degradation of monuron in dilute aqueous solution

    Science.gov (United States)

    Kovács, Krisztina; He, Shijun; Míle, Viktória; Földes, Tamás; Pápai, Imre; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    The decomposition of monuron was investigated in dilute aqueous solutions using pulse radiolysis and γ-radiolysis in order to identify the intermediates and final products. The main reaction takes place between monuron and the hydroxyl radicals yielding hydroxycyclohexadienyl type radicals with a second order rate constant of (7.4±0.2)×109 mol-1 dm3 s-1. In •OH reactions, the aminyl and phenoxyl radicals may also form. Dechlorination was observed in both hydroxyl radical and hydrated electron reactions. The •OH induced dechlorination reactions are suggested to occur through OH substitution or phenoxyl radical formation. The rate of oxidation is very high in the presence of dissolved oxygen. Some of the results are also supported by quantum chemical calculations.

  11. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers

    Institute of Scientific and Technical Information of China (English)

    SUN Yue; LI Xiao-tao; XU Chao; CHEN Jin-long; LI Ai-min; ZHANG Quan-xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1,AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition,thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  12. VISCOSITY BEHAVIOR OF LACQUER POLYSACCHARIDE IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    QIU Xingping; ZHANG Lina; DU Yumin; QIAN Baogong

    1991-01-01

    The dependence of measured viscosity on NaCl concentration (0.1 to 3.0M), pH (range of 2-13) and cadoxen composition Wcad (from 2% to 100% ) for the lacquer polysaccharide in NaCl/cadoxen/H2O mixture containing HCl or without were obtained. All the viscosity exponents γ in the Mark-Houwink equations under three different solvent condition are close to 0.5. The wcad dependence of reduced viscosity ηsp/c confirms the single strand chain of the polysaccharide. As the γ values close to 0.5 and values of unperturbed dimension θ/M and [η] much smaller than those for usual linear polymers, these facts suggest that the polysaccharide chains in the aqueous solutions should be dense random coil owing to the highly branched structure.

  13. Adsorption of Anthraquinone Dyes from Aqueous Solutions by Penicillium Terrestre

    Institute of Scientific and Technical Information of China (English)

    XIN Bao-ping; LIU Xiao-mei

    2006-01-01

    Penicillium terrestre was used for removing four anthraquinone dyes from aqueous solution. The experiments were performed in Erlenmeyer flasks and spore suspension was used for inoculation. The results show that the mechanism of dye removal by penicillium terrestre is biosorption and the growing pellets exhibit higher adsorptive capacity than the resting or dead ones. The maximum removals of disperse blue 2BLN, reactive brilliant blue KN-R, acid anthraquinone blue and bromamine acid at the concentration of 120 mg/L by biosorption of growing pellets are 100 %, 100 %, 96 % and 91%, respectively. The 100.0 % and 91.4 % KN-R removals are achieved respectively at the much higher concentration of 250 and 400 mg/L. 2.5 g/L glucose is sufficient for 100% KN-R removal by growing pellets. Salinity (NaC1) increase from 0 to 2% (W/V) moderately accelerates both mycelium growth and KN-R removal.

  14. Extraction of certain radionuclides from aqueous schungite solutions

    International Nuclear Information System (INIS)

    The sorption of 90Sr, 106Ru, 137Cs, and 238Pu from aqueous solutions over a wide pH range was studied. Swelled schungite chips (Nigozero, Kondopozhsk region) (1) and schungite (Onezhsk lake) (2) were tested as sorbents. The minerals were used both untreated and after oxidation (HNO3, 1:1, contact time 1 day). The oxidation, judging from the literature, facilitates the formation of carboxylic and phenolic functional groups on the surface of the carbon-containing sorbents. The presence of such groups is responsible for the high selectivity of the sorbents for multicharged cations. Futhermore, the hydrophobicity of the schungites enormously decreases after the oxidation. The studied sorbents had an average particle size of 0.08-0.1 mm. The schungite was contacted with the solution under static conditions with periodic stirring in order to establish equilibrium. The concentration of the radionuclides was 2-4 MBq/liter. The solution volumes were 10 ml. The sorbent content was 0.01 g. The required pH was set by adding HCl or NaOH

  15. Aqueous solution of basic fuchsin as food irradiation dosimeter

    Institute of Scientific and Technical Information of China (English)

    Hasan M. KHAN; Shagufta NAZ

    2007-01-01

    Dosimetric characterization of aqueous solution of basic fuchsin was studied spectrophotometrically for possible application in the low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined and the decrease in absorbance with the dose was noted down. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorption λmax (540nm) as well as 510nm and 460 nm. At all these wavelengths, the decrease in absorbance of the dosimeter was linear with respect to the absorbed dose from 50 Gy to 600 Gy. The stability of dosimetric solution during post-irradiation storage in the dark at room temperature showed that after initial bleaching during first ten to twenty days, the response was almost stable for about 34 days. The study on the effect of different light and temperature conditions also showed that the response gradually decreased during the storage period of 34 days, which shows that basic fuchsin dye is photosensitive as well as thermally sensitive.

  16. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    Directory of Open Access Journals (Sweden)

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  17. The Unusual Conformational Behavior of Polyzwitterionic Brushes in Aqueous Solutions

    Science.gov (United States)

    Mao, Jun; Chen, Wei; Yuan, Guangcui; Yu, Jing; Tirrell, Matthew

    Polyzwitterions constitute a peculiar class of polyelectrolytes, which are electrically neutral polymers containing both a positive and a negative charge on each repeating unit. Surfaces coated with polyzwitterionic brushes are resistant to the nonspecific accumulation of proteins and microorganisms, making them excellent candidates for a wide range of antifouling applications, from biocompatible medical devices to marine coatings. The surrounding environment can dramatically influence the conformational behavior of polyzwitterionic brushes. High-density polyzwitterionic brushes poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) were synthesized using surface initiated atom-transfer radical polymerization, and neutron reflectivity (NR) measurements were performed to investigate the ionic strength dependence of the conformational behaviors of PMPC brushes in monovalent salt solutions. Despite the numerous observations of normal pure polyelectrolyte brushes, NR results showed that both the densely concentrated layer near the substrate surface and the relatively swollen layer into the solution have been observed in different q range in a single neutron reflectivity profile. These results will definitely help us to better understand the relationship between the solution behaviors of zwitterionic polymer brushes and their antifouling properties.

  18. Catalytic destruction of hazardous organics in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Sealock, L.J. Jr.

    1988-04-01

    Pacific Northwest Laboratory (PNL) is developing a process for destroying hazardous organics and chlorinated organics in aqueous solutions. The process is targeted at liquid waste streams that are difficult and costly to treat with conventional or developing technologies. Examples of these waste streams include contaminated groundwater and surface water and industrial wastewater. Aqueous solutions are treated with a transition metal catalyst at 300/degree/C to 460/degree/C and 2000 to 5000 psig pressure to convert the wastes to innocuous gases. During proof-of-principle tests conducted in a 1-L batch reactor, destruction of over 99/percent/ (in most cases approaching 99.9/percent/) of the organic material was achieved. Hexone (methyl is isobutyl ketone, MIBK), p-cresol, hexane, benzene, and naphthalene were used as model waste materials. The only major product with all of the organic compounds was a gas containing 50/percent/ to 75/percent/ methane, 25/percent/ to 45/percent/ carbon dioxide, and 0/percent) to 5/percent/ hydrogen. Reduced nickel was the only effective catalyst and that the optimal operating conditions for destroying nonchlorinated organics were 350/degree/C to 400/degree/C, 2000 to 4000 psig, and 30/endash/ to 60/endash/min residence time. These tests also indicated that catalyst deactivation or fouling would not be a problem at these conditions. Chlorobenzene and trichloroethylene (TEC), were also tested. Destruction of both compounds was 99/percent/ or greater, but the products were different from those obtained from hydrocarbons. With TCE, the major product was carbon dioxide; with chlorobenzene the major product identified was benzene. In the tests with the chlorinated hydrocarbons, the chlorine was converted to HC1 and the reduced nickel was converted to nickel hydroxide, which may be detrimental to long-term catalyst activity. (15 refs., 8 figs., 6 tabs).

  19. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water. PMID:22661261

  20. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  1. The Removal of Dye from Aqueous Solution by Adsorption on Low Cost Adsorbents

    OpenAIRE

    J. J. Chamargore; Bharad, J. V.; Madje, B. R.; Ubale, M. B.

    2010-01-01

    Removal of color from aqueous solution by using low cost easily available adsorbent was conducted by batch experiment. The potential of the low cost adsorbent (Marble powder-treated and untreated) to remove methylene red from aqueous solution were assessed at room temperature. Laboratory investigation of the potential of marble powder and sulphuric acid treated marble powder to remove dye color from aqueous solution has been studied. Parameters studied included pH, adsorbent dose, initial dye...

  2. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    Science.gov (United States)

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface.

  3. Measurement and correlation of physical properties of aqueous solutions of tetrabutylammonium hydroxide, piperazine and their aqueous blends

    Institute of Scientific and Technical Information of China (English)

    Rizwan Safdar; Abdul Aziz Omar; Lukman B Ismail; Arhama Bari; Bhajan Lal

    2015-01-01

    The density, viscosity and refractive index of aqueous solutions of tetrabutylammonium hydroxide (TBAOH), pi-perazine (PZ) and their aqueous blends are determined at several temperatures (303.15 to 333.15 K). All these measured physicochemical properties decreases with an increase in temperature. The density data is used to cal-culate the coefficient of thermal expansion and excess molar volume of al aqueous binary and ternary solutions. The coefficient of thermal expansion increases with increase in temperatures and concentrations. The negativity of excess molar volume for al the aqueous solution decreased with increase in temperature. Each physical prop-erty is correlated with temperature by least square method and the corresponding coefficients for each property are presented. The prediction values from correlations for the physical properties are in good agreement with the experimental values.

  4. Structure of MgSO4 in Concentrated Aqueous Solutions by X-Ray Diffraction

    Institute of Scientific and Technical Information of China (English)

    CAO Ling-di; FANG Yan; FANG Chun-hui

    2011-01-01

    Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X'pert Pro θ-θ diffractometer at 298 K, yielding structural function and radial distribution function(RDF). The developed KURVLR program was employed for the theoretical investigation in consideration of the ionic hydration and ion association. Multi-peaks Gaussian fitting method was applied to deconvolving the overlapping bands of Differential radial distribution function(DRDF). The calculation of the geometric model shows that octahedrally six-coordinated Mg(H2O)62+, with an Mg2+…Ow bond length of 0.201 nm dominates in the solutions. There exists contact ion-pair(CIP) in the more concentrated solution(1:18, H2O/salt molar ratio) with a coordination number of 0.8 and a characteristic Mg…S distance of 0.340 nm. The result indicates the hydrated SO42ion happens in the solution. The S…Ow bond distance was determined to be 0.382 nm with a coordination number of 13. The fraction of CIP increases significantly with the increasing concentration. The symmetry of the hydration structure of sulfate ion is lowered by forming complex with magnesium ion.

  5. A new approach for freezing of aqueous solutions under active control of the nucleation temperature.

    Science.gov (United States)

    Petersen, Ansgar; Schneider, Hendrik; Rau, Guenter; Glasmacher, Birgit

    2006-10-01

    An experimental setup for controlled freezing of aqueous solutions is introduced. The special feature is a mechanism to actively control the nucleation temperature via electrofreezing: an ice nucleus generated at a platinum electrode by the application of an electric high voltage pulse initiates the crystallization of the sample. Using electrofreezing, the nucleation temperature in pure water can be precisely adjusted to a desired value over the whole temperature range between a maximum temperature Tn(max) close to the melting point and the temperature of spontaneous nucleation. However, the presence of additives can inhibit the nucleus formation. The influence of hydroxyethylstarch (HES), glucose, glycerol, additives commonly used in cryobiology, and NaCl on Tn(max) were investigated. While the decrease showed to be moderate for the non-ionic additives, the hindrance of nucleation by ionic NaCl makes the direct application of electrofreezing in solutions with physiological salt concentrations impossible. Therefore, in the multi-sample freezing device presented in this paper, the ice nucleus is produced in a separate volume of pure water inside an electrode cap. This way, the nucleus formation becomes independent of the sample composition. Using electrofreezing rather than conventional seeding methods allows automated freezing of many samples under equal conditions. Experiments performed with model solutions show the reliability and repeatability of this method to start crystallization in the test samples at different specified temperatures. The setup was designed to freeze samples of small volume for basic investigations in the field of cryopreservation and freeze-drying, but the mode of operation might be interesting for many other applications where a controlled nucleation of aqueous solutions is of importance. PMID:16887112

  6. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  7. Micellization properties of cationic gemini surfactants in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Łudzik, K., E-mail: kasialudzik@tlen.pl [Department of Physical Chemistry, University of Łódź, Pomorska 165, 90-236 Łódź (Poland); Piekarski, H.; Kubalczyk, K.; Wasiak, M. [Department of Physical Chemistry, University of Łódź, Pomorska 165, 90-236 Łódź (Poland)

    2013-04-20

    Highlights: ► We measured the d and c{sub p} of for the aqueous solutions of 8-6-8 and 8-12-8 surfactants. ► We analyzed the α{sub T} = f (m), V{sub ϕ} = f (m), c{sub p} = f (m) and C{sub p,ϕ} = f (m). ► The inflection point in the curves of the C{sub p,ϕ} = f (m) corresponds to the c.m.c. ► We analyzed thermodynamics parameters of the micellization for the surfactants. - Abstract: The main goal of this work was to investigate the self-assembly process for water solutions of two gemini surfactants, which differ in spacer chain length, at wide range of temperatures. For this reason the aqueous solutions of hexylene-1,6-bis(dimethyl-octylammonium bromide) and dodecylene-1,12-bis(dimethyloctylammonium bromide) have been examined by the calorimetric (DSC) and densimetric methods within the 293–323 K and 288–323 K temperature range, respectively. The analysis of c{sub p} values obtained for the examined systems allowed to propose an alternative way to estimate the region where micellization process can occur. The observed temperature dependence of the c.m.c. for surfactants investigated shows a typical shape for ionic gemini surfactants. This behavior was explained as a resultant of two competing effect: decrease in the hydrophilic properties of the surfactant molecule and decrease in the hydrophobic hydration of the alkyl chain along with the temperature increase. The enthalpy of micellization ΔH{sub mic} and other thermodynamics parameters associated with the micellization process: ΔG{sub mic}, ΔS{sub mic} and ΔC{sub p} {sub mic} were calculated on the base of the pseudo-phase separation model. As expected, more exothermic enthalpies of micellization are observed with increasing temperature for both the surfactants investigated in this work.

  8. Structure and phase behavior of aqueous methylcellulose solutions

    Science.gov (United States)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  9. Photocatalytic decomposition of cortisone acetate in aqueous solution.

    Science.gov (United States)

    Romão, Joana Sobral; Hamdy, Mohamed S; Mul, Guido; Baltrusaitis, Jonas

    2015-01-23

    The photocatalytic decomposition of cortisone 21-acetate (CA), a model compound for the commonly used steroid, cortisone, was studied. CA was photocatalytically decomposed in a slurry reactor with the initial rates between 0.11 and 0.46 mg L(-1)min(-1) at 10 mg L(-1) concentration, using the following heterogeneous photocatalysts in decreasing order of their catalytic activity: ZnO>Evonik TiO2 P25>Hombikat TiO2>WO3. Due to the lack of ZnO stability in aqueous solutions, TiO2 P25 was chosen for further experiments. The decomposition reaction was found to be pseudo-first order and the rate constant decreased as a function of increasing initial CA concentration. Changing the initial pH of the CA solution did not affect the reaction rate significantly. The decomposition reaction in the presence of the oxidizing sacrificial agent sodium persulfate showed an observed decomposition rate constant of 0.004 min(-1), lower than that obtained for TiO2 P25 (0.040 min(-1)). The highest photocatalytic degradation rate constant was obtained combining both TiO2 P25 and S2O8(2-) (0.071 min(-1)) showing a synergistic effect. No reactive intermediates were detected using LC-MS showing fast photocatalytic decomposition kinetics of CA. PMID:24953705

  10. Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Eduardo D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lins, Roberto D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freitas, Luiz C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Straatsma, t. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-11-08

    Molecular dynamics simulations have been used to characterize the structure of chitin and chitosan fibers in aqueous solutions. Chitin fibers, whether isolated or in the form of a β-chitin nanoparticle, adopt the so-called 2-fold helix with Φ and φ values similar to its crystalline state. In solution, the intramolecular hydrogen bond HO3(n)•••O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonds with water molecules in a well-defined orientation. On the other hand, chitosan can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atom of insoluble chitosan (basic pH) are nearly identical to these quantities in chitin. Our findings suggest that the solubility and conformation of these polysaccharides are related to the stability of the intrachain HO3(n)•••O5(n+1) hydrogen bond, which is affect by the water exchange around the O3-HO3 hydroxyl group.

  11. Speciation of aluminum in aqueous solutions using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, P.M.; Anderson, M.A.

    1989-03-15

    An ion chromatographic method in which aluminum (AI) is quantitatively determined via postcolumn derivatization with Tiron (4,5-dihydroxy-m-benzenedisulfonic acid) was evaluated for its utility as a method for speciating AI in aqueous solutions. Fluro-, oxalato-, and citratoaluminum complexes were identified by distinct peaks within chromatograms of AI solutions when the appropriate ligand was added. Excellent quantitative agreement between predicted species concentrations (via the thermodynamic speciation model GEOCHEM) and those determined by ion chromatography was obtained for samples prepared in the eluent matrix. The predominantly outer sphere sulfatoaluminum complexes were not observed to elute as singly charged species, but rather exhibited a retention time indistinguishable from the AI(H/sub 2/O)6(3+) species. It is concluded that inner sphere AI complexes (generally possessing relatively high association constants) possess adequate kinetic stability to withstand degradation during the ion exchange process, whereas outer sphere complexes apparently readily dissociate in the presence of the sulfonate exchange sites. Deviations in sample ionic strength (mu) and pH from that of the eluent resulted in some redistribution among species, the degree of which was ligand specific.

  12. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H2O2 formation. • The toxicity in tap water is smaller than in pure water

  13. Removal of Nitrate From Aqueous Solution Using Rice Chaff

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-09-01

    Full Text Available Background Nitrate is largely dissolved in the surface and ground water, due to its high solubility. Continual uptake of nitrite through drinking water can lead to problems and diseases (such as blue baby for humans, especially children. Objectives The aim of this study was to develop a new and inexpensive method for the removal of nitrate from water. In this regard, the possibility of using chaff for removal of nitrate from aqueous solutions was studied and the optimum operating conditions of nitrate removal was determined. Materials and Methods This is a cross-sectional study conducted in laboratory scale. The UV spectrophotometer at a wavelength of maximum absorbance (220 nm was used to determine the nitrate concentration. The effect of pH, amount of chaff, temperature, and contact time were investigated. Results The result of this study revealed that chaff as an absorbent could remove nitrate from solutions, and the efficiency of adsorption increased as contact time increased from 5 to 30 minutes, amount of chaff increased from 1 to 3 g, temperature increased in a range of 300 - 400°C and the amount of pH decreased from 10 to 3. The maximum adsorption rate was around pH 3 (53.14%. Conclusions It was shown that the removal efficiency of nitrate was directly proportional to the amount of chaff, temperature, and contact time but inversely to the pH. This study showed that nitrate removal by chaff is a promising technique.

  14. Adsorption of itaconic acid from aqueous solutions onto alumina

    Directory of Open Access Journals (Sweden)

    JELENA J. GULICOVSKI

    2008-08-01

    Full Text Available Itaconic acid, IA (C5H6O4, was investigated as a potential flocculant for the aqueous processing of alumina powders. The adsorption of IA, as a function of its concentration and pH value of the solution, onto the alumina surface was studied by the solution depletion method. The stability of the suspensions in the presence of itaconic acid was evaluated in light of the surface charge of the alumina powder used, the degree of dissociation of IA, as well as the sedimentation behavior and rheology of the suspensions. It was found that the adsorption process is extremely pH dependent; the maximum adsorption of IA onto alumina surface occurring at a pH close to the value of the first IA dissociation constant, pKa1. Also, IA does not influence the value of the point of zero charge of alumina. It was shown that IA represents an efficient flocculant for concentrated acidic alumina suspensions.

  15. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size. PMID:26398675

  16. Columnar molecular aggregation in the aqueous solutions of disodium cromoglycate

    Science.gov (United States)

    Agra-Kooijman, Dena M.; Singh, Gautam; Lorenz, Alexander; Collings, Peter J.; Kitzerow, Heinz-S.; Kumar, Satyendra

    2014-06-01

    Stack, chimneylike, and threadlike assemblies have previously been proposed for the structure of disodium cromoglycate (DSCG) aggregates in aqueous solutions. The results of the synchrotron x-ray scattering investigations reported here reveal the formation of simple columnar assemblies with π-π stacking at a separation of 3.4 Å between the DSCG molecules. Lateral separation between the assemblies is concentration and temperature dependent, varying from ˜35 to 42 Å in the orientationally ordered nematic (N) phase and from 27 to 32 Å in the columnar or middle (M) phase having long range lateral positional order. The assemblies' length depends on concentration and consists of ˜23 molecules in the N phase, becoming three to ten times larger in the M phase. The scission energy is concentration dependent in the N phase with values ˜7.19 ± 0.14 kBT (15 wt %), 2.73 ± 0.4 kBT (20 wt %), and 3.05 ± 0.2 kBT (25 wt %). Solutions of all concentrations undergo a spinodal decomposition at temperatures above ˜40 °C, resulting in DSCG-rich regions with the M phase and water-rich regions in the N and isotropic phases.

  17. Degradation of 2-mercaptobenzothiazole in aqueous solution by gamma irradiation

    Science.gov (United States)

    Bao, Qiburi; Chen, Lujun; Tian, Jinping; Wang, Jianlong

    2014-10-01

    Industrial wastewaters containing 2-mercaptobenzothiazole (MBT), a widely used chemical additive, usually cannot be treated properly by conventional biological methods, thus cause an environmental risk. Ionizing radiation was proposed as a method for abatement of several refractory pollutants from water. The paper investigated MBT degradation using irradiation technology. The decomposition kinetics was described, and the transformation and the change of biodegradability were discussed. The results of gamma radiation experiments on MBT-containing aqueous solutions indicated that reactive radicals resulting from water radiolysis effectively degrade MBT and improve the biodegradability of the solutions. At a 20 mg/L MBT concentration, the removal of 82% was achieved at the absorbed dose of 1.2 kGy. The results of specific oxygen uptake rate (SOUR) test showed that MBT was decomposed into biodegradable products, after irradiation at 20 kGy. Radicals attacked the sulfur atoms of the studied molecule leading to the release of sulfate ions, but the mineralization of organic carbons was rather weak. Initial concentration significantly affected the degradation efficacy of MBT by gamma radiation.

  18. Viscosity Behavior of α-Amino Acids in Acetate Salt Solutions at Temperatures (303.15 to 323.15) K

    Science.gov (United States)

    Siddique, Jamal Akhter; Naqvi, Saeeda

    2012-01-01

    Viscosities of l-lysine monohydrochloride, l-histidine, and l-arginine in 1 m (mol · kg-1) aqueous solutions of sodium acetate, potassium acetate, and calcium acetate salts has been determined at (303.15, 308.15, 313.15, 318.15, and 323.15) K. The Falkenhagen coefficient, A, and Jones-Dole coefficient, B, relative viscosity, and specific viscosity of the solutions have also been determined using the measured viscosities. The results are interpreted in terms of solute-solute and solute-solvent interactions occurring in the system under investigation and also discussed in terms of the structure-making/breaking ability of the solute in these salt solutions. The structure making/breaking abilities of the solutes in the studied systems are strongly influenced by temperature.

  19. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoda, Numan, E-mail: nhoda@akdeniz.edu.tr [Department of Chemistry, Faculty of Sciences, Akdeniz University, 07058 Antalya (Turkey); Budama, Leyla; Çakır, Burçin Acar; Topel, Önder [Department of Chemistry, Faculty of Sciences, Akdeniz University, 07058 Antalya (Turkey); Ozisik, Rahmi [Department of Materials Science and Engineering and Renssleaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2013-09-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH{sub 4} within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles.

  20. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  1. Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Marta Miola

    2016-05-01

    Full Text Available In this work, two bioactive glass powders (SBA2 and SBA3 were doped with Cu by means of the ion-exchange technique in aqueous solution. SBA2 glass was subjected to the ion-exchange process by using different Cu salts (copper(II nitrate, chloride, acetate, and sulphate and concentrations. Structural (X-ray diffraction-XRD, morphological (Scanning Electron Microscopy-SEM, and compositional (Energy Dispersion Spectrometry-EDS analyses evidenced the formation of crystalline phases for glasses ion-exchanged in copper(II nitrate and chloride solutions; while the ion-exchange in copper(II acetate solutions lead to the incorporation of higher Cu amount than the ion-exchange in copper(II sulphate solutions. For this reason, the antibacterial test (inhibition halo towards S. aureus was performed on SBA2 powders ion-exchanged in copper(II acetate solutions and evidenced a limited antibacterial effect. A second glass composition (SBA3 was developed to allow a greater incorporation of Cu in the glass surface; SBA3 powders were ion-exchanged in copper(II acetate solutions (0.01 M and 0.05 M. Cu-doped SBA3 powders showed an amorphous structure; morphological analysis evidenced a rougher surface for Cu-doped powders in comparison to the undoped glass. EDS and X-ray photoelectron spectroscopy (XPS confirmed the Cu introduction as Cu(II ions. Bioactivity test in simulated body fluid (SBF showed that Cu introduction did not alter the bioactive behaviour of the glass. Finally, inhibition halo test towards S. aureus evidenced a good antimicrobial effect for glass powders ion-exchanged in copper(II acetate solutions 0.05 M.

  2. Interaction of gypsum with lead in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Astilleros, J.M., E-mail: jmastill@geo.ucm.es [Dpto. Cristalografia y Mineralogia, Universidad Complutense de Madrid, Jose Antonio Novais, 2, E-28040 Madrid (Spain); Godelitsas, A. [Department of Mineralogy and Petrology, Faculty of Geology and Geoenvironment, University of Athens, Panepistimioupoli Zographou, 15784 Athens (Greece); Rodriguez-Blanco, J.D. [School of Earth and Environments, Faculty of Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Fernandez-Diaz, L. [Dpto. Cristalografia y Mineralogia, Universidad Complutense de Madrid, Jose Antonio Novais, 2, E-28040 Madrid (Spain); Prieto, M. [Dpto. de Geologia, Universidad de Oviedo, E-30005 Oviedo (Spain); Lagoyannis, A.; Harissopulos, S. [Tandem Accelerator Laboratory, Institute of Nuclear Physics, NCSR ' Demokritos' , GR-15310 Attiki (Greece)

    2010-07-15

    Sorption processes on mineral surfaces are a critical factor in controlling the distribution and accumulation of potentially harmful metals in the environment. This work investigates the effectiveness of gypsum (CaSO{sub 4}.2H{sub 2}O) to sequester Pb. The interaction of gypsum fragments with Pb-bearing solutions (10, 100 and 1000 mg/L) was monitored by performing macroscopic batch-type experiments conducted at room temperature. The aqueous phase composition was periodically determined by Atomic Absorption Spectrometry (AAS), Ion Chromatography (IC) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Regardless of the [Pb{sub aq}]{sub initial}, a [Pb{sub aq}]{sub final} < 4 mg/L was always reached. The uptake process was fast (t < 1 h) for [Pb{sub aq}]{sub initial} {>=} 100 mg/L and significantly slower (t > 1 week) for [Pb{sub aq}]{sub initial} = 10 mg/L. Speciation calculations revealed that after a long time of interaction (1 month), all the solutions reached equilibrium with respect to both gypsum and anglesite. For [Pb{sub aq}]{sub initial} {>=} 100 mg/L, sorption takes place mainly via the rapid dissolution of gypsum and the simultaneous formation of anglesite both on the gypsum surface and in the bulk solution. In the case of [Pb{sub aq}]{sub initial} = 10 mg/L, no anglesite precipitation was observed, but surface spectroscopy (proton Rutherford Backscattering Spectroscopy, p-RBS) confirmed the formation of Pb-bearing surface layers on the (0 1 0) gypsum surface in this case also. This study shows that the surface of gypsum can play an important role in the attenuation of Pb in contaminated waters.

  3. The reducibility of sulphuric acid and sulphate in aqueous solution

    International Nuclear Information System (INIS)

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100oC. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300oC. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130oC, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  4. POLYMER COLLOIDS FORMED BY POLYELECTROLYTE COMPLEXATION OF VINYL POLYMERS AND POLYSACCHARIDES IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Hui-dan Liu; Takahiro Sato

    2013-01-01

    The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry,static and electrophoretic light scattering,and elementary analysis.Sodium salts of polyacrylate (PA) and heparin (Hep) were chosen as the polyanion,and hydrochloric salts of poly(vinyl amine) (PVA) and chitosan (Chts) as the polycation.Although these vinyl polymers and polysaccharides have remarkably different backbone chemical structures and linear charge densities,all the four combinations PA-PVA,PA-Chts,Hep-PVA,and Hep-Chts provide almost stoichiometric polyelectrolyte complexes which are slightly charged owing to the adsorption of the excess polyelectrolyte component onto the neutral complex.The charges stabilize the complex colloids in aqueous solution of a non-stoichiometric mixture,and the aggregation number of the complex colloids increases with approaching to the stoichiometric mixing ratio.The mixing ratio dependence of the aggregation number for the four complexes is explained by the model proposed in the previous study.

  5. Extraction of anionic dye from aqueous solutions by emulsion liquid membrane.

    Science.gov (United States)

    Dâas, Attef; Hamdaoui, Oualid

    2010-06-15

    In this work, the extraction of Congo red (CR), an anionic disazo direct dye, from aqueous solutions by emulsion liquid membrane (ELM) was investigated. The important operational parameters governing emulsion stability and extraction behavior of dye were studied. The extraction of CR was influenced by a number of variables such as surfactant concentration, stirring speed, acid concentration in the feed solution and volume ratios of internal phase to organic phase and of emulsion to feed solution. Under most favorable conditions, practically all the CR molecules present in the feed phase were extracted even in the presence of salt (NaCl). At the optimum experimental conditions, total removal of antharaquinonic dye Acid Blue 25 was attained after only 10 min. Influence of sodium carbonate concentration as internal receiving phase on the stripping efficiency of CR was examined. The best sodium carbonate concentration in the internal phase that conducted to excellent stripping efficiency (>99%) and emulsion stability was 0.1N. The membrane recovery was total and the permeation of CR was not decreased up to seven runs. ELM process is a promising alternative to conventional methods and should increase awareness of the potential for recovery of anionic dyes. PMID:20211520

  6. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  7. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Hosseini, Rahim [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2009-02-15

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C{sub 3}), hexyl (C{sub 6}), heptyl (C{sub 7}), and octyl (C{sub 8})) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg{sup -1} were taken. The values of the compressibilities, expansivity and apparent molar properties for [C{sub n}mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.

  8. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  9. Measurement and Correlation on Liquid Diffusion Coefficients of Aqueous L-Threonine Solutions from 298.15K to 328.15 K

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2004-01-01

    The diffusion coefficients of aqueous L-threonine solutions were determined from 298.15K to 328.15K by the metallic diaphragm cell method with accuracy, promptness and convenience. Meanwhile, the densities and viscosities of the solutions were also determined and correlated. Based on a seml-empirical model for correlating the diffusion coefficients of some amino acids in their aqueous solutions, a new semi-empirical model for correlating the diffusion coefficients involving temperature was provided, which is more comprehensive and less experiment dependent compared to the previous model. The fitting results are satisfactory. Compared to a former model for correlating the diffusion coefficients of solid organic salts in their aqueous solutions, this model provides significant improvement in correlation of diffusion coefficients with different temperatures avoiding arduous work.

  10. Solutions to Soil Problems: I. High Salinity (Soluble Salts)

    OpenAIRE

    Parent, Vernon; Koenig, Rich

    2010-01-01

    Salinity is a measure of the total amount of soluble salts in soil. As soluble salt levels increase, it becomes more difficult for plants to extract water from soil. Some plants are more resistant than other’s, but as the salt levels exceed their ability to extract water, they become water stressed.

  11. The photochemical decomposition of Indol in an aqueous solution; Descomposicion fotoquimica de Indol en solucion acuosa

    Energy Technology Data Exchange (ETDEWEB)

    Ibarz, A.; Tejero, J.M.; Panades, R.

    1998-06-01

    The photo decomposition of Indol at different pH has been studied. The Indol photo decomposition rate in aqueous solution a maximum at pH 10. By means of a simple mechanism in three steps, it is possible to explain the kinetics behavior of the Indol photo decomposition in aqueous solution. (Author) 6 refs.

  12. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    Science.gov (United States)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  13. Xanthan Rheological: a review about the influence of electrolytes on the viscosity of aqueous solutions of xanthan gums

    Directory of Open Access Journals (Sweden)

    João Luiz Silva Vendruscolo

    2004-01-01

    Full Text Available Several strains of Xanthomonas campestris are able to produce a bacterial biopolymer called xanthan which is widely used in the food industry. In order to have an effective use of the xanthan in the industry, not only the studies concerning the chemical properties of the xanthan should be considered, but also the studies related to its addition of electrolytes, and its effects in the rheological behaviour. When a new bacterial biopolymer is sinthetized, new rheological behaviours appear. This study aims at review the influence of the chemical structural and addition of salts to the rheological behaviour of the xanthan aqueous solution.

  14. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-11

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.

  15. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  16. Ethylbenzene Removal by Carbon Nanotubes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Bijan Bina

    2012-01-01

    Full Text Available The removal of ethylbenzene (E from aqueous solution by multiwalled, single-walled, and hybrid carbon nanotubes (MWCNTs, SWCNTs, and HCNTs was evaluated for a nanomaterial dose of 1 g/L, concentration of 10–100 mg/L, and pH 7. The equilibrium amount removed by SWCNTs (E: 9.98 mg/g was higher than by MWCNTs and HCNTs. Ethylbenzene has a higher adsorption tendency on CNTs, so that more than 98% of it adsorbed in first 14 min, which is related to the low water solubility and the high molecular weight. The SWCNTs performed better for ethylbenzene sorption than the HCNTs and MWCNTs. Isotherms study indicates that the BET isotherm expression provides the best fit for ethylbenzene sorption by SWCNTs. Carbon nanotubes, specially SWCNTs, are efficient and rapid adsorbents for ethylbenzene which possess good potential applications to maintain high-quality water. Therefore, it could be used for cleaning up environmental pollution to prevent ethylbenzene borne diseases.

  17. Uranium biosorption from aqueous solution onto Eichhornia crassipes.

    Science.gov (United States)

    Yi, Zheng-ji; Yao, Jun; Chen, Hui-lun; Wang, Fei; Yuan, Zhi-min; Liu, Xing

    2016-04-01

    Batch experiments were conducted to investigate the biosorption of U(VI) from aqueous solutions onto the nonliving biomass of an aquatic macrophyte Eichhornia crassipes. The results showed that the adsorption of U(VI) onto E. crassipes was highly pH-dependent and the best pH for U(VI) removal was 5.5. U(VI) adsorption proceeded rapidly with an equilibrium time of 30 min and conformed to pseudo-second-order kinetics. The Langmuir isotherm model was determined to best describe U(VI) biosorption with a maximum monolayer adsorption capacity of 142.85 mg/g. Thermodynamic calculation results indicated that the U(VI) biosorption process was spontaneous and endothermic. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis implied that the functional groups (amino, hydroxyl, and carboxyl) may be responsible for the U(VI) adsorption process, in which the coordination and ion exchange mechanisms could be involved. We conclude that E. crassipes biomass is a promising biosorbent for the removal of uranium pollutants. PMID:26854553

  18. Biosorption of carbaryl from aqueous solution onto Pistia stratiotes biomass

    Science.gov (United States)

    Chattoraj, Soumya; Mondal, Naba Kumar; Das, Biswajit; Roy, Palas; Sadhukhan, Bikash

    2014-03-01

    In this work, adsorption of carbaryl from aqueous solution on Pistia stratiotes biomass was investigated. The effects of operating parameters such as initial concentration, pH, adsorbent dose and contact time on the adsorption of carbaryl were analyzed using response surface methodology. The proposed quadratic model for central composite design fitted very well to the experimental data that it could be used to navigate the design space according to analysis of variance results. Response surface plots were used to determine the interaction effects of main factors and optimum conditions of the process. The optimum adsorption conditions were found to be initial carbaryl concentration = 15.57 mg L-1, pH 2.01, adsorbent dose = 0.72 g and contact time = 30 min. The Langmuir, Freundlich and Temkin isotherm models were applied to the equilibrium data. The maximum biosorption capacity of P. stratiotes biomass for carbaryl was found to be 3.1 mg g-1. The pseudo-second-order kinetic model described the carbaryl biosorption process with a good fitting.

  19. Lifetimes of -halo and -azidobenzyl carbocations in aqueous solution

    Indian Academy of Sciences (India)

    R Sanjeev; V Jagannadham

    2002-02-01

    The title cations were produced in aqueous solution by chemical initiation (solvolysis) of benzyl-gem-dihalides and benzyl-gem-diazides. The solvolysis reactions of benzyl-gem-dihalides and benzyl-gem-diazides in water proceed by a stepwise mechanism through -halobenzyl carbocation and -azidobenzyl carbocation intermediates, which are captured by water to give the corresponding carbonyl compounds as the sole detectable products. Rate constant ratio / (M-1) for partitioning of the carbocation between reaction with halide/azide ion and reaction with water is determined by analysis of halide/azide common ion inhibition of the solvolysis reaction. The rate constants (s-1) for the reaction of the cation with solvent water were determined from the experimental values of / and solv, for the solvolysis of the benzyl-gem-dihalides and benzyl-gem-diazides respectively, using = 5 × 109 M-1 s-1 for diffusion-limited reaction of halide/azide ion with -substituted benzyl carbocations. The values of 1/ are thus the lifetimes of the -halobenzyl carbocations and -azidobenzyl carbocations respectively.

  20. Direct Photolysis of Chlorophenols In Aqueous Solution By Ultraviolet Excilamps

    Science.gov (United States)

    Matafonova, Galina; Philippova, Natalya; Batoev, Valeriy

    2011-08-01

    The direct photolysis of 2-chlorophenol (2-CP), 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) in model aqueous solution was studied using UV XeBr (282 nm) and KrCl (222 nm) excilamps. The highest pseudo-first order rate constants and quantum yields were found for molecular form of 4-CP (at pH 2 and 5.7) and anionic forms of 2-CP and 2,4-DCP (at pH 11) when irradiated by XeBr excilamp. The maximum removal efficiency of molecular form of 2-CP and 2,4-DCP with the lowest UV dose of absorbed energy was observed using KrCl excilamp. On the contrary, the XeBr excilamp required the lowest dose (˜2 Jṡcm-2) for complete degradation of molecular 4-CP and anionic 2-CP. The highest removal efficiency of anionic form of 4-CP (65%) was achieved when using KrCl excilamp.

  1. Electrochemical degradation of amaranth aqueous solution on ACF.

    Science.gov (United States)

    Fan, Li; Zhou, Yanwei; Yang, Weishen; Chen, Guohua; Yang, Fenglin

    2006-09-21

    The degradation of Amaranth, a kind of azo dye, has been studied under galvanostatic model with activated carbon fiber (ACF) electrode in aqueous solution with electrochemical method. The ACF was used as anode and cathode, respectively for the decolorization process. The onset oxidation potential and reduction potential for Amaranth on ACF were respectively ascertained at 0.6 and -0.4 V. During the range of -1.1 to 0.50 mA cm(-2), the decolorization was clarified into three processes as electroreduction, adsorption and electrooxidation. There were little contributions to the color and COD removals for the process of adsorption. The color removal can be up to 99% when the current density was 0.50 mA cm(-2). The maximum COD removal was 52% for the process of electrooxidation. Hundred percent color removal was obtained when the current density of -1.0 mA cm(-2) was applied. The maximum COD removal was 62% for the electroreduction. The COD removal results from the adsorption of products for the decolorization process of electrooxidation or electroreduction.

  2. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH).

    Science.gov (United States)

    Kumar, Eva; Bhatnagar, Amit; Ji, Minkyu; Jung, Woosik; Lee, Sang-Hun; Kim, Sun-Joon; Lee, Giehyeon; Song, Hocheol; Choi, Jae-Young; Yang, Jung-Seok; Jeon, Byong-Hun

    2009-02-01

    This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24h), initial fluoride concentration (1-100 mgL(-1)), temperature (10 and 25 degrees C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mgg(-1). The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.

  3. Pulse radiolysis study of 5-amino tetrazole in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dey, G.R.; Naik, D.B.; Kishore, K.; Moorthy, P.N. [Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.

    1996-04-01

    Reactions of e{sub aq}{sup -}, H-atoms and {sup .}OH radicals have been studied with 5-amino tetrazole (ATZ) in aqueous solution. e{sub aq}{sup -}reaction in the pH range 4.5-9 did not give any light absorbing transient species but NH{sub 3} was obtained as a product indicating that the site for e{sub aq}{sup -} reactions is the -NH{sub 2} group. In the case of {sup .}OH radical reaction, a transient spectrum with {lambda}{sub max} at 340 nm was obtained at pH 7.5. An identical spectrum was produced by the reaction of SO{sub 4}{sup -.} radicals with ATZ at neutral pH indicating that both {sup .}OH radical and SO{sub 4}{sup -.} radical react by one electron oxidation. The rate constants for the reactions of e{sub aq}{sup -} and {sup .}OH with ATZ at pH 7.5 were found to be 6 x 10{sup 7} and 5.2 x 10{sup 9} dm{sup 3} mol{sup -1} s{sup -1} respectively, whereas the rate constant for H-atom reaction may be < 10{sup 7} dm{sup 3} mol{sup -1} s{sup -1}. (author).

  4. Sonochemical degradation of organophosphorus pesticide in dilute aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    Robina Farooq; FENG Kai-lin; S. F. Shaukat; HUANG Jian-jun

    2003-01-01

    Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2-12. Process parameters studied include pH, steady-state temperature, concentration, and the type of gases. Greater than 96% hydrolysis was observed in 30 minutes through this process and the rate of destruction increased with the help of more soluble and low thermal inert gas. So with Krypton, omethoate was found to undergo rapid destruction as compared with Argon. In the presence of ultrasound, the observed first-order rate of hydrolysis of omethoate is found to be independent of pH. The formation of transient supercritical water(SCW) appears to be an important factor in the acceleration of chemical reactions in the presence of ultrasound. A detailed chemical reaction mechanism for omethoate destruction in water was formulated. Experimental results and theoretical kinetic mechanism demonstrated that the most of the omethoate undergo destruction inside the cavitating holes. A very less effect of temperature on the degradation of omethoate within a temperature range of 20-70℃ proves that a small quantity of omethoate undergoes secondary destruction in the bulk liquid.

  5. Fenton Oxidation of Methyl Violet in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available In this study, oxidative discoloration of methyl violet (MV dye in aqueous solution has been studied using Fenton (Fe2+/H2O2 process. The parameters such as concentration of Fe2+, H2O2, MV, temperature, and Cl− and ions that affected of discoloration in Fenton process were investigated. The rate of degradation is dependent on initial concentration of Fe2+ ion, initial concentration of H2O2, and pH of media. Discoloration of MV was increased by increasing the temperature of reaction. Optimized condition was determined and it was found that the obtained efficiency was about 95.5% after 15 minutes of reaction at pH 3. TOC of dye sample, before and after the oxidation process, was determined. TOC removal indicates partial and significant mineralization of MV dye. The results of experiments showed that degradation of MV dye in Fenton oxidation can be described with a pseudo-irst-order kinetic model. The thermodynamic constants of the Fenton oxidation process were evaluated. The results implied that the oxidation process was feasible, spontaneous, and endothermic.

  6. Photo- and thermal degradation of piroxicam in aqueous solution

    Directory of Open Access Journals (Sweden)

    M Aminuddin

    2011-01-01

    Full Text Available Light and temperature have considerable effect on the degradation of piroxicam in aqueous solutions. The pH and acetate buffer ions also affect the degradation process. The apparent first-order rate constants for the photochemical and thermal degradation of piroxicam have been determined as 2.04-10.01 and 0.86-3.06×10−3 min−1 , respectively. The first-order plots for the degradation of piroxicam showed good linearity within a range of 20-50% loss of piroxicam at pH 2.0-12.0. The rate-pH profile for the photodegradation of piroxicam is a U-shaped curve and for the thermal degradation a bell-shaped curve in the pH range of 2.0-12.0. The thermal degradation of piroxicam was maximum around pH 6.0. It is increased in the presence of acetate ions but was not affected by citrate and phosphate ions.

  7. A vibrational spectroscopy study on anserine and its aqueous solutions.

    Science.gov (United States)

    Akkaya, Y; Balci, K; Goren, Y; Akyuz, S; Stricker, M C; Stover, D D; Ritzhaupt, G; Collier, W B

    2015-01-01

    In this study based on vibrational spectroscopic measurements and Density Functional Theory (DFT), we aimed for a reliable interpretation of the IR and Raman spectra recorded for anserine in the solid phase and water (H2O) and heavy water (D2O) solutions. Initial DFT calculations at the B3LYP/6-31G(d) searched possible conformers of the anserine zwitterion using a systematic conformational search. The corresponding equilibrium geometrical parameters and vibrational spectral data were determined for each of the stable conformers (in water) by the geometry optimization and hessian calculations performed at the same level of theory using the polarized continuum model (PCM). The same calculations were repeated to determine the most energetically preferred dimer structure for the molecule and the associated geometry, force field and vibrational spectral data. The harmonic force constants obtained from these calculations were scaled by the Scaled Quantum Mechanical Force Field (SQM) method and then used in the calculation of the refined wavenumbers, potential energy distributions, IR and Raman intensities. These refined theoretical data, which confirm the zwitterion structure for anserine in the solid phase or aqueous solvents, revealed the remarkable effects of intermolecular hydrogen bonding on the structural properties and observed IR and Raman spectra of this molecule. PMID:25997178

  8. Formation and reactivity of phenylperoxyl radicals in aqueous solutions

    International Nuclear Information System (INIS)

    The reaction of phenyl radicals with oxygen, to produce phenylperoxyl radicals, and the reactions of several phenylperoxyl radicals with a number of organic compounds in aqueous solutions have been studied by pulse radiolysis. Phenyl radicals were produced by reduction of aryl halides with hydrated electrons. The rate constant for the reaction of 4-carboxyphenyl with O2 was determined from the rate of buildup of the peroxyl radical absorption at 520 nm as a function of [O2] and found to be 1.6 x 109 L mol-1 s-1. Phenyl radicals react with 2-PrOH by H abstraction; a rate constants of 4 x 106 L mol-1 s-1 was determined for 4-carboxyphenyl by competition with the reaction of this radical with O2. Phenylperoxyl radicals react with 4-methoxyphenolate ions, trolox C(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), ascorbate ions, chlorpromazine, and ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate ion)] by one-electron oxidation. The rate constants for such reactions, determined from the rate of formation of the one-electron oxidation product as a function of substrate concentration, were found to be near 108-109 L mol-1 s-1. 24 refs., 4 figs., 1 tab

  9. Adsorption removal of thiocyanate from aqueous solution by calcined hydrotalcite

    Institute of Scientific and Technical Information of China (English)

    LI Yu-jiang; YANG Min; ZHANG Xiao-jin; WU Tao; CAO Nan; WEI Na; BI Yan-jun; WANG Jing

    2006-01-01

    A hydrotalcite with Mg/Al molar ratio 2 was prepared by co-precipitation method and was characterized by XRD,TG/DTA, Zeta potential and BET surface area. The hydrotalcite was calcined at 500℃, with the dehydration from interlayer, the dehydroxilation from the brucite-like layer and the decomposition of carbonate successively, transformed into the mixed oxide type.The removal of thiocyanate from aqueous solution by using the original hydrotalcite and calcined hydrotalcite (HTC-500) was investigated. The results showed that the thiocyanate adsorption capacity of calcined hydrotalcite was much higher than that of the original form. Calcined hydrotalcite was particularly effective at removing thiocyanate, and that the effective range of pH for the thiocyanate removal are between 5.5-10.0. The experimental data of thiocyanate removal fit nicely with Langmuir isotherm, and the saturated adsorption uptake was 96.2 mg SCN-/g HTC-500. The adsorption ofthiocyanate by calcined hydrotalcite follows first-order kinetics. And the intercalation to the structure recovery for calcined hydrotalcite. But the presence of additional anions could affect the adsorption behavior of thiocyanate.

  10. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.

  11. Flash photolysis of chlorine dioxide in aqueous solution

    International Nuclear Information System (INIS)

    The primary process when aqueous solutions of chlorine dioxide are flash photo-lysed by light with a wave length greater than 270 nm is: OClO →hν ClO (2Π) + O (3P). The photochemical decomposition is characterized by the formation of small quantities of O (3P) atoms and of equal amounts of chlorine atoms and molecular oxygen, the latter originating in the reaction: ClOO → Cl + O2. The isomer ClOO is formed by the germinate recombination of ClO and O, a process which is twice as important as diffusion of the fragments into the mass of the solution and one which represents 30 per cent of the decomposition of the chlorine dioxide. Under our experimental conditions, the lifetime of the ClOO is less than one microsecond. Chlorine atoms are precursors of Cl2O2, whose UV absorption spectrum has been determined, and which is formed by the reactions: Cl + OClO → Cl2O2; Cl + Cl- → Cl2-; Cl2- + OClO → Cl2O2 + Cl- k = (1,0 ±0,1) 109 M-1s-1. Cl2O2 disappears by a first-order process which leads to the formation of the ions Cl- and ClO3-. Competition between the reactions: O (3P) + O2 → O3; O (3P) + OClO → ClO3. (kOClO + O)/(kO2 + O) = 1.85±0.25 has been studied and the molar extinction coefficient of ClO3 determined at its absorption maximum (255 nm): ε255nm = (920 ± 90) M-1 cm-1. (author)

  12. Ethylbenzene Removal from Aqueous Solutions by Nano Magnetic Particles

    Directory of Open Access Journals (Sweden)

    Mostafa Hadei

    2016-02-01

    Full Text Available Background and Objectives : Ethylbenzene (EB is a dangerously organic compound which the presence of this pollutant in water solutions can be considered as an environmental and public health hazard. In this study, nano magnetic particles (Fe 3 O 4 were used as an adsorbent to remove ethylbenzene from aqueous solutions. Methods : The specification of the adsorbent was investigated by transmission electronic microscope (TEM and X-ray diffraction (XRD pattern. A 4×4 factorial design including initial concentration of ethylbenzene, nano magnetic particles dose, contact time and pH were studied. Results : The results showed that the maximum ethylbenzene removal by nano magnetic particles was achieved in the following conditions; 100 mg.L -1 , 2000 mg.L -1 , 20 minutes and 8, in initial concentration, nano magnetic concentration, contact time and pH respectively. The most amounts of ethylbenzene adsorption and distribution ratio in optimum condition was 49.9 mg.g -1 and 261.9 l.g -1 respectively. The results demonstrated that the removal rate of ethylbenzene was higher in batch (99.8 % rather than continuous (97.4% condition. Conclusion: the removal rate of ethylbenzene was higher in batch rather than continuous condition.The study of isotherm showed that adsorption data follow up linear isotherm. Comparing adsorption rate of NM particles and other adsorbents proved that Fe 3 o 4 , as a material with high capacity of adsorption can apply for removing ethylbenzene as an efficient and also cheap adsorbent.  

  13. Heavy metal removal from aqueous solutions by activated phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Elouear, Z. [Laboratoire Eau Energie et Environnement, Departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038, Sfax (Tunisia)], E-mail: zouheir.elouaer@tunet.tn; Bouzid, J.; Boujelben, N. [Laboratoire Eau Energie et Environnement, Departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038, Sfax (Tunisia); Feki, M. [Unite de chimie industriel I, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia); Jamoussi, F. [Laboratoire de Georessources CERTE BP 95, 2050 Hamam-Lif (Tunisia); Montiel, A. [Societe Anonyme de Gestion des Eaux de Paris, 9 rue Schoelcher, 75675 Paris cedex 14 (France)

    2008-08-15

    The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N{sub 2}); and, (b) qualified and quantified the interaction of Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+} with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1 h for (PR) and 2 h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb{sup 2+} and 4 and 6 for Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+}. The effect of temperature has been carried out at 10, 20 and 40 deg. C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption ({delta}H{sup o}), free energy ({delta}G{sup o}) and change in entropy ({delta}S{sup o}) were calculated. They show that sorption of Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+}on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH.

  14. 黄芩甙在EOPO/盐双水相系统中的分配系数测定及关联%Measurement and Correlation of Partition Coefficients of Baicalin in EOPO/Salt Aqueous Two-Phase Systems

    Institute of Scientific and Technical Information of China (English)

    李伟; 朱自强

    2002-01-01

    The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide (EOPO)/salt aqueous two-phase systemsat 298.15K. It was found that most of baicalin partitioned into EOPO-rich phase. The partition coefficients of baicalin varied from 10 to 120.The effect of various factors, including tie-line length, salt composition, molecular weight of EOPO, and solution pH, on the partition behaviorwas investigated in EOPO/salt systems. Furthermore the partition coefficients of baicalin were correlated using the modified Diamond-Hsumodel. Good agreement with experimental data is obtained. The average relative deviations are less than 5.0%.

  15. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.;

    2004-01-01

    is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...... at higher salt concentrations in NaCl and Na2SO4, and in (NH4)(2)SO4 the solubility is almost constant. The densities of the solutions have been determined experimentally, and the volume expansions by dissolving salt and dipeptide in water have been calculated. (C) 2003 Elsevier B.V. All rights reserved....

  16. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol)/Sodium Polyacrylate/Salts

    OpenAIRE

    Adalberto Pessoa Junior; Hans-Olof Johansson; Eloi Feitosa

    2011-01-01

    Aqueous two-phase systems consisting of polyethylene glycol (PEG), sodium polyacrylate (NaPAA), and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate) and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory...

  17. Reomoval of Heavy Metals from Aqueous Solutions using Bascteria

    Institute of Scientific and Technical Information of China (English)

    HUANGMin-sheng; PANjing; 等

    2001-01-01

    The accumulation of heavy metals by microbial biomass with high surface area-to-volume ratio holds great potential for heavy metal removal in both soluble and particular forms,especially when the heavy metal concentrations are low(<50mg/L),E.coli and B.Subtilis are effective agents for metal removal.We further investigated the effect of pH,temperature,equilibration time,and pre-treatment reagents on the removal of pH(Ⅱ),Cd(Ⅱ) and Cr(VI) from aqueous solutions by E.Coli and B.subtilis.E.coli and B.subtilis were cultivated for 60 hours,the experimentally determined optimal cultivation time before they were used in metal removal experiments,Under the optimal conditions of pH 6.0,equilibration temperature 30℃ and equilibration time 1 hour,63.39% and 69.90%Cd(Ⅱ) can be removed by E.coli and B.subtilis.Under the optimal conditions of pH5.5,equilibration temperature 30℃ and equliobration time 1 hour,68.51% and 67.36% pB(Ⅱ) can be removed by E.coli and B.subtilis.And under the optimal conditons of pH5.5,equilibration temperature 30℃,and equilibration time 1 hour,60.26% and 54.56% Cr(VI) can be removed by E.coli and B.subtilis.Chemical treatment of cultivated bacteria(0.1mol/L NaOH,0.1mol/L HCl,30% ethanol,and distilled water)affects the efficiency of metal removal by E.coli and B.subtilis,pretreatment of biomass by NaOH enhanced Cd(Ⅱ),Pb(Ⅱ)and Cr(VI) removal,while preteatment by HCl,ethanol and distilled water reduced Ca(Ⅱ) ,Pb(Ⅱ) and Cr(VI) removal,For metal removal from industrial waste discharges,pretreated biomass of E.coli can remove 68.5% of Cd and 58.1% of Cr from solutions,while pretreated biomass of B.subtilis can remove 62.6% of Cd and 57% of Cr from Solutions.

  18. EPR study of the production of OH radicals in aqueous solutions of uranium irradiated by ultraviolet light

    Directory of Open Access Journals (Sweden)

    MARKO DAKOVIĆ

    2009-06-01

    Full Text Available The aim of the study was to establish whether hydroxyl radicals (•OH were produced in UV-irradiated aqueous solutions of uranyl salts. The production of •OH was studied in uranyl acetate and nitrate solutions by an EPR spin trap method over a wide pH range, with variation of the uranium concentrations. The production of •OH in uranyl solutions irradiated with UV was unequivocally demonstrated for the first time using the EPR spin-trapping method. The production of •OH can be connected to speciation of uranium species in aqueous solutions, showing a complex dependence on the solution pH. When compared with the results of radiative de-excitation of excited uranyl (*UO22+ by the quenching of its fluorescence, the present results indicate that the generation of hydroxyl radicals plays a major role in the fluorescence decay of *UO22+. The role of the presence of carbonates and counter ions pertinent to environmental conditions in biological systems on the production of hydroxyl radicals was also assessed in an attempt to reveal the mechanism of *UO22+ de-excitation. Various mechanisms, including •OH production, are inferred but the main point is that the generation of •OH in uranium containing solutions must be considered when assessing uranium toxicity.

  19. Removal of Cd(Ⅱ) from Aqueous Solutions by Natural Freshwater Surface Coatings

    Institute of Scientific and Technical Information of China (English)

    LI Yu; DONG De-ming; CHEN Li-yuan; HUA Xiu-yi

    2005-01-01

    Natural freshwater surface coatings(biofilms and associated minerals), which were developed in the Nanhu Lake, Changchun, P. R. China, were used as an efficient biosorbent for the removal of Cd(Ⅱ) from aqueous solutions. The batch experiments were carried out to determine the adsorption properties of Cd(Ⅱ) onto the natural surface coatings. The classical Langmuir adsorption isotherm was applied to estimating the equilibrium coefficients of Cd(Ⅱ) adsorbed on the surface coatings. The results show that the maximum adsorption capacity of the surface coatings is 434.78 μmol Cd/m2(being equal to 0.17 mmol Cd/g of surface coatings or 10.38 mmol Cd/g Fe) and the Cd(Ⅱ) removal from solution media by the natural surface coatings was shown to be strongly affected by solution pH and ion strength. The resulted information also indicates that the maximum Cd removal efficiency(CRE) was determined to be approximately 90% at initial Cd mass concentration of 0.1 mg/L(the concentration limit of Cd (Ⅱ) in wastewaters for discharge in aquatic media in Chinese legislation), and the kinetic adsorption of Cd(Ⅱ) onto the surface coatings is fast with around 70% of the total adsorption-taking place in 150 min in solution under the controlled laboratory conditions (mineral salts solution with defined speciation, ionic strength 0.05 mol/L, and 25 ℃). With the advantage of high Cd adsorption capacity, the natural surface coatings appear to be a potentially effective biosorbent for the removal and recovery of Cd (Ⅱ) from polluted water.

  20. Effect of salt solutions on chain structure of partially hydrolyzed polyacrylamide

    Institute of Scientific and Technical Information of China (English)

    张青; 周吉生; 翟永爱; 刘凤岐; 高歌

    2008-01-01

    The effect of salt solutions(NaCl,Na2SO4 and CaCl2) on the conformational properties of partially hydrolyzed polyacrylamide(HPAM) was investigated by using static laser light scattering(SLLS).The special interaction between CaCl2 solution and HPAM was also researched.Experimental results show that the chain structure of HPAM is interrelated with the charge density,the kind and the concentration of salt solutions.The mean-square radius of gyration(Rz) and the second virial coefficient(A2) of HPAM decrease with increasing concentration of salt solutions,and the salt effect tends towards the maximum when the concentration of salt solution is increased to some amount.

  1. Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite.

    Science.gov (United States)

    Huang, Ruihua; Zhang, Lujie; Hu, Pan; Wang, Jing

    2016-05-01

    Batch experiments were executed to investigate the removal of Congo red (CR) from aqueous solutions using the crosslinked chitosan (CCS) and crosslinked chitosan immobilized bentonite (CCS/BT composite). The CCS and CCS/BT composite were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The removal of CR was examined as a function of pH value of CR solution, contact time, and inorganic sodium salt and ionic strength. The equilibrium data of CCS and CCS/BT composite agreed well with the Langmuir model. The adsorption capacities of CCS and CCS/BT composite at 298K and natural pH value were 405 and 500mg/g, respectively. The kinetic data correlated well with the pseudo-second-order model. The adsorption of CR onto the CCS was mainly controlled by chemisorption while the adsorption of CR onto the CCS/BT composite was controlled by chemisorption and the electrostatic attraction. PMID:26820350

  2. Radiation-induced reduction of metal ions in aqueous solution systems and its application

    International Nuclear Information System (INIS)

    Introduction: Promotion of chemical reactions by adding oxide particles to aqueous solution under the irradiation of ionizing radiations has been paid attention especially from the practical viewpoint, so that hydrogen production and decomposition of toxic organic compounds studied. On the other hand, redox of metal ions has not been studied very much since successive reactions after the redox become complicated due to equilibrium between reactant and product, and to transformation of dissolved species by varying pH and coexisting ions... In the present study, reduction behavior of metal ions in aqueous solution systems irradiated by r-ray and electron beam was measured, the reduced amount was compared with that by water radiolysis, and then the promotion of reduction by adding oxide particles was found out quantitatively. Experimental: Samples were prepared by dissolving metal salts (Ce(IV), Cr(VI), Pt(IV),...) in 0.4 mol/L sulfuric acid or 0.1 mol/l sodium perchlorate solution and then by adding 1-10 wt% oxide particles such as TiO2, Al2O3 or SiO2 to the solution. The irradiation of sample was made without stirring the particles in the solution mainly by using 60Co γ-ray source (dose rate: 1-30 kGy/h) at Takasaki Research Institute, JAEA; the absorbed dose of sample was estimated by using dosimeters of dichromate solution and/or CTA film. Just after irradiated, the sample was passed through a membrane filter to be separated into solution and solid components; absorption spectrum of metal ions in the solution was observed, and the reduced amount determined from difference in the absorbance before and after the irradiation. Results and discussion: Figure 1 shows absorption spectra of Ce(IV) ion in 0.4 mol/L H2SO4 solution under the γ-ray irradiation as typical results. Fig.1(a) illustrates that the reduction was observed in the solution without the oxide particles as stoichiometry in the one-electron reduction by water radiolysis has been used as a dosimeter, and

  3. Precipitation of Co(2+) carbonates from aqueous solution: insights on the amorphous to crystalline transformation.

    Science.gov (United States)

    González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia

    2016-04-01

    Cobalt is toxic metal that is present only as a trace in the Earth crust. However, Co might concentrate on specific areas due to both natural and anthropogenic factors and thus, soils and groundwater can be contaminated. It is from this perspective that we are interested in the precipitation of cobalt carbonates, since co-precipitation with minerals phases is a well-known method for metal immobilization in the environment. In particular, the carbonates are widely used due to its reactivity and natural abundance. In order to evaluate the cobalt carbonate precipitation at room temperature, a simple experimental work was carried out in this work. The precipitation occurred via reaction of two common salts: 0.05M of CoCl2 and 0.05M of Na2CO3 in aqueous solution. After reaction, the precipitated solid was kept in the remaining water at 25 oC and under constant stirring for different aging times of 5 min, 1 and 5 hours, 1, 2, 4, 7, 30 and 60 days. In addition to the aging and precipitation experiments, we carried out experiments to determine the solubility of the solids. In these experiments each precipitate was dissolved in Milli-Q water until equilibrium was reached and then the aqueous solution was analyzed regarding Co2+ and total alkalinity. Furthermore, acid solution calorimetry of the products were attained. Finally, we modeled the results using the PHREEQC code. Solid and aqueous phase identification and characterization have been extensively reported in a previous work (González-López et al., 2015). The main results of our investigation were the initial precipitation of an amorphous cobalt carbonate that evolve towards a poorly crystalline cobalt hydroxide carbonate with aging treatment. Solubility of both phases have been calculated under two different approaches: precipitation and dissolution. Values of solubility from each approach were obtained with a general error due to differences in experiment conditions, for instance, ionic strength, temperature and

  4. Kinetics of the decomposition and the estimation of the stability of 10% aqueous and non-aqueous hydrogen peroxide solutions

    Directory of Open Access Journals (Sweden)

    Zun Maria

    2014-12-01

    Full Text Available In this study, the stability of 10% hydrogen peroxide aqueous and non-aqueous solutions with the addition of 6% (w/w of urea was evaluated. The solutions were stored at 20°C, 30°C and 40°C, and the decomposition of hydrogen peroxide proceeded according to first-order kinetics. With the addition of the urea in the solutions, the decomposition rate constant increased and the activation energy decreased. The temperature of storage also affected the decomposition of substance, however, 10% hydrogen peroxide solutions prepared in PEG-300, and stabilized with the addition of 6% (w/w of urea had the best constancy.

  5. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    The Extended UNIQUAC model has previously been used to describe the excess Gibbs energy for aqueous electrolyte mixtures. It is an electrolyte model formed by combining the original UNIQUAC model, the Debye-Huckel law and the Soave-Redlich-Kwong equation of state. In this work the model is extend...... behaviour of methanol-water-three salts systems is illustrated. (C) 2000 Elsevier Science Ltd. All rights reserved........ The calculations are based on an extensive database consisting of salt solubility data in pure and mixed solvents, VLE data for solvent mixtures and mixed solvent-electrolyte systems and thermal properties for mixed solvent solutions. Application of the model to the methanol-water system in the presence of several...

  6. ISOPAR L RELEASE RATES FROM SALTSTONE USING SIMULATED SALT SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J; Michael Bronikowski, M; Alex Cozzi, A; Russell Eibling, R; Charles Nash, C

    2008-07-31

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Decontaminated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour, the Isopar{reg_sign} L in the vault headspace is well mixed, and each pour displaces an equivalent volume of headspace, the maximum concentration of Isopar{reg_sign} L in the DSS to assure 25% of the lower flammable limit is not exceeded has been determined to be about 4 ppm. The amount allowed would be higher if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the amount of Isopar{reg_sign} L released versus time can be treated as a percentage of initial amount present; there was no statistically significant dependence of the release rate on the initial concentration. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release rate is larger than at lower temperatures. Initial curing temperature was found to be very important as slight variations during the first few hours or days had a significant effect on the amount of Isopar{reg_sign} L released. Short scoping

  7. ISOPAR L Release Rates from Saltstone Using Simulated Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bronikowski, M

    2006-02-06

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Deactivated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour; the Isopar{reg_sign} L in the vault headspace is well mixed; and each pour displaces an equivalent volume of headspace, the allowable concentration of Isopar{reg_sign} L in the DSS sent to SPF has been calculated at approximately 4 ppm. The amount allowed would be higher, if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 mg/L to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the Isopar{reg_sign} L release data can be treated as a percentage of initial concentration in the concentration range studied. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release is larger than at lower temperatures. In one test at 95 C essentially all of the Isopar{reg_sign} L was released in three months. Initial curing temperature was found to be very important as slight variations during the first few days affected the final Isopar{reg_sign} L amount released. Short scoping tests at 95 C with solvent containing all components (Isopar

  8. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  9. Determination of Salt Impurities in MDEA Solution Used in Desulfurization of Highly Sulphurous Natural Gas

    Institute of Scientific and Technical Information of China (English)

    Liu Yucheng; Zhang Bo; Chen Mingyan; Wu Danni; Zhou Zheng

    2015-01-01

    The foaming phenomenon of N-methyldiethanolamine (MDEA) solution used in desulfurization process occurs frequently in the natural-gas puriifcation plant. The foaming phenomenon has a strong impact on operation of the process unit. The salt impurities are the main reason for causing the foaming of MDEA solution, so the full analysis of salt impuri-ties is necessary. A method for comprehensive analysis of salt impurities in MDEA solution used in desulfurization process was established. Anions and non-metallic cations of MDEA solution were determined by different conditions of ion chro-matograph, respectively. Metallic cations of the solution were detected by atomic absorption spectrophotometer with the N2O-C2H2 lfame absorption. The analytical results of salt impurities in the desulfurization solution can provide a theoretical basis for an accurate analysis of the factors affecting the foaming of MDEA to unveil further control measures.

  10. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    Institute of Scientific and Technical Information of China (English)

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai

    2005-01-01

    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  11. Sensitizing effect of cerium (4) sulfate on photooxidation of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Influence of Ce(SO4)2 addition on the photooxidation rate of organic substances in aqueous solutions has been discussed. It is shown that to a certain value, the rate constant of oxalic acid oxidation increases linearly with increasing oxidant amount. Using a combination of chemical and photochemical oxidation of oxalic acid in aqueous solution with Ce(SO4)2 as a sensitizer, one can increase the oxidation rate by a factor of 45 and to reduce the time required for carbon determination in aqueous solutions from 4-5 hours down to 8-9 min

  12. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael;

    2014-01-01

    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different...... experimental techniques including isochoric pressure search method and a DSC method are used to measure the hydrate dissociation conditions. A comparison is finally made with the literature data. It is expected that this study provides better understanding of hydrate phase equilibria associated with CO2...

  13. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating

    International Nuclear Information System (INIS)

    Highlights: • Ultrasonic promotes formation of crystal nucleus and QDs were synthesized in 0.5 h. • The new heating method provides a PLQY of up to 97.13%. • The synthesis mechanism of the core shell structure of the CdTe/CdS QDs was inferred. • The preparation method was efficient, simple and clean. - Abstract: A novel simple method for fast and efficient synthesis of aqueous CdTe/CdS quantum dots (QDs) with core–shell structure was developed by using salt water bath heating with the ultrasonic-assisted technique in this paper. The formation of crystal nucleus was promoted by ultrasonic and CdTe/CdS QDs with blue fluorescence were synthesized only in 0.5 h. The heat source was bath heating in salt water solution at 60% NaCl and the heating temperature could reach 105 °C. The heating method solved the biggest drawback of low photoluminescence quantum yield (PLQY) of ordinal bath heating in water. The preparation was cheap, simple and had less pollution to the environment. The properties of the CdTe/CdS QDs were thoroughly investigated by ultraviolet–visible (UV–vis), photoluminescence (PL), transmission electron microscope (TEM), laser size analysis, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Different CdTe/CdS QDs with core shell structure were efficiently synthesized and the maximum PLQY could reach 97.13% when refluxing at 105 °C for 2 h. These QDs exhibited uniform dispersity, high fluorescence intensity, good optical property and long life of fluorescent. The synthesis mechanism of the core shell structure of the QDs was inferred that the Cd2+ might coordinate with sulfur (S) as well as thiol propionate (–SCH2CH2COO−1) to constitute two relatively thick compound layers on the QDs surface as passive shells

  14. Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptive QM/MM

    NARCIS (Netherlands)

    Jiang, Tao; Boereboom, J.M.; Michel, C.; Fleurat-Lessard, P.; Bulo, R.E.

    2015-01-01

    In this chapter, we review the current state-of-the-art in quantum mechanical/molecular mechanical (QM/MM) simulations of reactions in aqueous solutions, and we discuss how proton transfer poses new challenges for its successful application. In the QM/MM description of an aqueous reaction, solvent m

  15. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    Science.gov (United States)

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss. PMID:27060639

  16. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    Science.gov (United States)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  17. Solubility and speciation of actinides in salt solutions and migration experiments of intermediate level waste in salt formations

    International Nuclear Information System (INIS)

    A comprehensive study into the solubility of the actinides americium and plutonium in concentrated salt solutions, the release of radionuclides from various forms of conditioned ILW and the migration behaviour of these nuclides through geological material specific to the Gorleben site in Lower Saxony is described. A detailed investigation into the characterization of four highly concentrated salt solutions in terms of their pH, Eh, inorganic carbon contents and their densities is given and a series of experiments investigating the solubility of standard americium(III) and plutonium(IV) hydroxides in these solutions is described. Transuranic mobility studies for solutions derived from the standard hydroxides through salt and sand have shown the presence of at least two types of species present of widely differing mobility; one migrating with approximately the same velocity as the solvent front and the other strongly retarded. Actinide mobility data are presented and discussed for leachates derived from the simulated ILW in cement and data are also presented for the migration of the fission products in leachates derived from real waste solidified in cement and bitumen. Relatively high plutonium mobilities were observed in the case of the former and in the case of the real waste leachates, cesium was found to be the least retarded. The sorption of ruthenium was found to be largely associated with the insoluble residues of the natural rock salt rather than the halite itself. (orig./RB)

  18. EFFECTS OF NH4CI ON THE INTERACTION BETWEEN POLY(ETHYLENE OXIDE)AND IONIC SURFACTANTS IN AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The interaction of poly(ethylene oxide)(PEO)with the ionic surfactants,sodium dodecylsulfate(SDS)and cetyltrimethylammonium chloride(CTAC)respectively,in aqueous solutions containing a certain concentration of NH4Cl,is studied by the viscosity measurement.It has been found that the ion-dipole interaction between PEO and ionic surfactants is changed considerably by the organic salt.For anionic surfactant of SDS,the addition of NH4Cl into solution strengthens the interaction between PEO and the headgroup of SDS.On the other hand,for cationic surfactant of CTAC,the interaction between PEO and the headgroup of CTAC is screened significantly by NH4Cl dissolved in solution.These findings may potentially be attributed to the negative property of the oxygen group of the PEO chain.In the presence of NH4Cl,the cationic ions of the organic salt bind to the oxygen group of the PEO chain so that PEO can be referred to as a pseudopolyelectrolyte in solution.

  19. Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction

    NARCIS (Netherlands)

    Demmink, J.F; vanGils, I.C.F.; Beenackers, A.A C M

    1997-01-01

    The absorption of nitric oxide (NO) into aqueous solutions of ferrous chelates of nitrilotriacetic acid (NTA), ethylene diaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), and diethylenetriaminepentaacetic acid (DTPA) was studied in a stirred cell reactor. Experimental cond

  20. Formation of anhydrotetracycline in gamma irradiated aqueous tetracycline solutions (Preprint No. RC-12)

    International Nuclear Information System (INIS)

    Gamma radiolysis of antibiotic tetracycline in aqueous solutions has been studied under various conditions. Anhydrotetracycline, a potential toxic substance, was identified as a major radiation degradation product formed under deoxygenated conditions mainly because of H atom attack on tetracycline. (author)

  1. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  2. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    Science.gov (United States)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  3. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    Science.gov (United States)

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  4. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies.

    Science.gov (United States)

    Fontana, Klaiani B; Chaves, Eduardo S; Sanchez, Jefferson D S; Watanabe, Erica R L R; Pietrobelli, Juliana M T A; Lenzi, Giane G

    2016-02-01

    The biosorption of orange solimax TGL 182% (OS-TGL) textile dye onto new and low cost biossorbent (malt bagasse) in aqueous solutions was investigated. The malt bagasse was characterized by Fourier transform infrared spectroscopy and specific surface area (BET method).Batch biosorption experiments were conducted in order to determine the following parameters: particles size, pH, agitation speed, temperature, contact time, biomass dosage, influence of the ionic strength and, finally, the influence of other textile dye on the OS-TGL biosorption. The optimum conditions for OS-TGL removal were obtained at pH 1.5, agitation speed of 150rpm, contact time of 180min and biomass dosage 2, 8gL(-1). The results show that the kinetics of biosorption followed a pseudo-second-order model and by increasing the temperature from 293 up to 313K, the biosorption capacity was improved. The Langmuir model showed better fit and the estimated biosorption capacity was 23.2mgg(-1). The negative values of Gibbs free energy, ΔG°, and positive value of enthalpy, ΔH°, confirm the spontaneous nature and endothermic character of the biosorption process. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance in high salt concentrations. The removal capacity (>95%) was not affected with the presence of other textile dyes. PMID:26590694

  5. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies.

    Science.gov (United States)

    Fontana, Klaiani B; Chaves, Eduardo S; Sanchez, Jefferson D S; Watanabe, Erica R L R; Pietrobelli, Juliana M T A; Lenzi, Giane G

    2016-02-01

    The biosorption of orange solimax TGL 182% (OS-TGL) textile dye onto new and low cost biossorbent (malt bagasse) in aqueous solutions was investigated. The malt bagasse was characterized by Fourier transform infrared spectroscopy and specific surface area (BET method).Batch biosorption experiments were conducted in order to determine the following parameters: particles size, pH, agitation speed, temperature, contact time, biomass dosage, influence of the ionic strength and, finally, the influence of other textile dye on the OS-TGL biosorption. The optimum conditions for OS-TGL removal were obtained at pH 1.5, agitation speed of 150rpm, contact time of 180min and biomass dosage 2, 8gL(-1). The results show that the kinetics of biosorption followed a pseudo-second-order model and by increasing the temperature from 293 up to 313K, the biosorption capacity was improved. The Langmuir model showed better fit and the estimated biosorption capacity was 23.2mgg(-1). The negative values of Gibbs free energy, ΔG°, and positive value of enthalpy, ΔH°, confirm the spontaneous nature and endothermic character of the biosorption process. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance in high salt concentrations. The removal capacity (>95%) was not affected with the presence of other textile dyes.

  6. Fluoride removal from aqueous solution by direct contact membrane distillation: theoretical and experimental studies.

    Science.gov (United States)

    Boubakri, Ali; Bouchrit, Raja; Hafiane, Amor; Bouguecha, Salah Al-Tahar

    2014-09-01

    Direct contact membrane distillation (DCMD) process using polyvinylidene fluoride (PVDF) membrane was used for fluoride removal from aqueous solution. This study has been carried out on heat and mass transfer analyses in DCMD. The dusty-gas model was used to analyze the mass transfer mechanism and to calculate the permeate flux. The heat transfer is analyzed based on energy balance, and the different layers are considered as a series of thermal resistances. Mass transfer analysis showed that the transition Knudsen-molecular diffusion is the dominant mechanism to describe the transport of water vapor through the pores of the PVDF membrane. The most significant operating parameter is the feed temperature. The permeate increases sensitively with feed temperature and velocity, and it shows insignificant change with feed salts concentration. Heat transfer analysis showed the conduction through the matrix of the membrane presents the major part of available energy. The increasing feed temperature leads to increase thermal efficiency (TE) and decrease temperature polarization coefficient (TPC). The experimental results are in good agreement with theoretical values. Therefore, it is suggested to work at high feed temperature, which will benefit both the thermal efficiency and permeate flux. The experimental results proved that DCMD process is able to produce almost fluoride-free water suitable for many beneficial uses. PMID:24756674

  7. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    Science.gov (United States)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  8. Reactant-solute encounters in aqueous solutions studied by kinetic methods : hydration cosphere overlap and camouflage effects

    NARCIS (Netherlands)

    Engberts, Jan B.F.N.; Blandamer, Michael J.

    1998-01-01

    Rates of chemical reactions in aqueous solutions are often sensitive to low concentrations of added solutes such as ureas, alcohols, α-amino acids and carbohydrates. In this work, several simple chemical reactions were used to probe this sensitivity, which arises from interactions between added solu

  9. Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution

    NARCIS (Netherlands)

    Haas, C; Drenth, J; Wilson, WW

    1999-01-01

    Tn recent publications it was pointed out that there is a correlation between the observed values of the solubility of proteins in aqueous solutions and the second virial coefficient of the solution. In this paper we give a theoretical explanation of this relation. The derived theoretical expression

  10. Biosorption of Lead Ions from Aqueous Solution Using Ficus benghalensis L.

    OpenAIRE

    Venkateswara Rao Surisetty; Janusz Kozinski; L. Rao Nageswara

    2013-01-01

    Ficus benghalensis L., a plant-based material leaf powder, is used as an adsorbent for the removal of lead ions from aqueous solution using the biosorption technique. The effects of process parameters such as contact time, adsorbent size and dosage, initial lead ion concentration, and pH of the aqueous solution on bio-sorption of lead by Ficus benghalensis L. were studied using batch process. The Langmuir isotherm was more suitable for biosorption followed by Freundlich and Temkin isotherms w...

  11. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti02 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry

  12. Separation of Co2+ present in aqueous solution on calcium carbonate

    International Nuclear Information System (INIS)

    The CaCO3 was synthesized by precipitation method and characterized using SEM, EDS, TGA and IR. It was studied the adsorption behavior of Co2+ present in aqueous solution on the synthesized material by experiments batch type at room temperature. Was found that removal of cobalt ions was greater than 40% indicating that this material can be used to remove Co2+ present in aqueous solution. (Author)

  13. Synthesis and aggregation properties of amphiphilic mono and bisadducts of fullerene in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Pu Zhang; Zhi Xin Guo; Shuang Lv

    2008-01-01

    New amphiphilic[60]fullerene monoadduet TPF and bisadducts BTPF were synthesized and well-characterized. Their aggregation properties in aqueous solution was investigated by UV-vis and TEM methods. In aqueous solution, monoadduct TPF forms irregularly shaped and some rod-like aggregates, whereas bisadducts BTPF gives spherical aggregates with diameters of 50-150 nm. It indicated that the aggregation properties of amphiphilic fullerene derivatives depend on the number of hydrophilic appendage on the C60 cage.

  14. Radiation-induced destruction peculiarities of hydroxyl containing amino acids in diluted aqueous solution

    International Nuclear Information System (INIS)

    Amino acids aqueous solution of alpha-alanine and beta-alanine, serine, threonine (concentration 5*10-4 M) were irradiated with dose rate 0.35 Gy/s in range 100-1100 Gy and analysed. Effectiveness of radiation-induced decomposition process depends on row of factors: concentration of amino acid aqueous solution, pH, oxygen presence and other acceptors

  15. Pervaporation of Aqueous Solution of Acetaldehyde Through ZSM-5 Filled PDMS Composite Membrane

    Institute of Scientific and Technical Information of China (English)

    伍艳辉; 谭惠芬; 李佟茗; 金源

    2012-01-01

    Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,

  16. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  17. Seismic time-lapse effects of solution salt mining - a feasibility study

    NARCIS (Netherlands)

    Arts, R.J.

    2012-01-01

    This article addresses the question whether time-lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time-lapse technique

  18. Kinetics of ozone-phenol reaction in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.G.; Shambaugh, R.L.

    1982-01-01

    The kinetics of the reaction of ozone and phenol in aqueous medium was studied. The reaction was first order with respect to both ozone and phenol. The rate constant was found to increase with increase in the pH of the reaction mixture. Four different catalysts were examined for their effect on the rate of reaction. 30 refs.

  19. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  20. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Janich, M.; Hildebrand, A. [Martin-Luther-University, Halle (Saale) (Germany); Strunz, P. [Berlin Neutron Scattering Center, HZB, Berlin (Germany); Neubert, R.H.H. [Martin-Luther-University, Halle (Saale) (Germany); Lombardo, D., E-mail: lombardo@me.cnr.it [CNR–IPCF, Istituto per i Processi Chimico Fisici – (Sez. Messina), I-98158, Messina (Italy)

    2013-10-16

    Highlights: • Self-assembly in model DPPC lipids and NaDC bile salt by SANS and DLS experiments. • Bile salt creates structural interference against cohesive tendency of DPPC bilayers. • NaDC steric interactions cause transition toward different supramolecular structures. - Abstract: Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid–bile salt mixtures as well as stimulate new routes for liposome reconstitution–solubilisation processes suitable for technological applications.

  1. Correlation of aqueous solubility of salts of benzylamine with experimentally and theoretically derived parameters. A multivariate data analysis approach

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla Andrea; Liljefors, Tommy;

    2002-01-01

    Twenty two salts of benzylamine and p-substituted benzoic acids were prepared and characterized. The p-substituent was varied with regard to electronic, hydrophobic, and steric effects as well as hydrogen bonding potential. A multivariate data analysis was used to describe the relationship between...... the aqueous solubility of the salts and experimentally determined physicochemical parameters and theoretically derived molecular descriptors. The model, based on all descriptors, gave R(2)=0.86 and Q(2)=0.72. The most significant descriptors exhibiting VIP (variance of importance) values above 1.0 were...

  2. Interaction between bacteriophage and pyrophyllite clay in aqueous solution

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Jae-Hyun; Kang, Jin-Kyu; Son, Jeong-Woo; Yi, In-Geol; Kim, Song-Bae

    2014-05-01

    Viral contamination results in a degradation in drinking water quality and a threat to public health. Toprovide safe drinking water, water treatment alternatives using various adsorbents and filter media such as activated carbon, bituminous coal, quartz sand and clay have been considered. Pyrophyllite is a 2:1 clay mineral having dioctahedral layer structure with octahedrally coordinated Al ion sheets between two sheets of SiO4 tetrahedra. It is a hydrous aluminosilicate clay with the chemical composition AlSi2O5(OH). Pyrophyllite has recently been investigated as a potential low-cost and environmental friendly adsorbent for removing various contaminants. The aim of this study was to investigate the removal of the bacteriophage MS2 from aqueous solution using pyrophyllite. Batch experiments were conducted to examine the MS2 sorption to pyrophyllite. The influence of fluoride, a groundwater contaminant, on the removal of MS2 was also observed. Batch results demonstrated that pyrophyllite was effective in MS2 removal. The percent removal increased from 5.26% to 99.99% (= 4.0 log removal) as the pyrophyllite concentrations increased from 0.2 to 20 g/L. More than 99% of MS2 could be removed with a pyrophyllite concentration of ≥ 4 g/L. The sorption of MS2 to pyrophyllite was rapid. Within 15 min, approximately 99.98% (= 3.7 log removal) of MS2 was attained. More than 4.0 log removal was achieved after 180 min. The experimental data were analyzed with the pseudo first-order and pseudo second-order kinetic models. The correlation coefficient showed that pseudo second-order model was better than pseudo first-order model at describing the kinetic data. The amount of MS2 removed at equilibrium was determined to be 1.43 × 108 pfu/g from the pseudo second-order model. The experimental data were also analyzed with the Freundlich and Langmuir isotherm models. The correlation coefficients showed that the Langmuir model was more suitable than the Freundlich model for MS2

  3. Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds.

    Science.gov (United States)

    Liu, Dan; Hong, Zhilai; Gao, Mingzhe; Wang, Zhixin; Gu, Ming; Zhang, Xiaozhe; Xiao, Hongbin

    2016-05-27

    The essential attributes of a solvent system for separation polar compounds on CCC are polarity, selectively and performance. Here, hydrophilic organic/salt-containing aqueous two-phase system (HO/S TPS) was evaluated as an alternative solvent system for CCC separation of polar compounds. Polarity measurements based on Rohrschneider-Snyder parameter was developed as quantitative assessing the polarity of HO/S TPS and comparing with an organic/aqueous system. All investigated 1-butanol/ethanol/saturated ammonium sulfate solution/water (BEAsWat) and 1-butanol/ethanol/saturated dipotassium hydrogen phosphate solution/water (BEDhpWat) systems with polarity values of organic phase from 4.5 to 6.8, were more polar than chloroform/methanol/water (1/1/1). The considerable water content of BEAsWat and BEDhpWat (0/1/1/1/) was 45.4 and 42.6% (w%) of hydrophilic organic phase, and 66.4 and 51.2% (w%) of salt-containing aqueous phase, respectively, closed to conventional aqueous two-phase system. Therefore, the polarity of HO/S TPS is in the middle of organic/aqueous and aqueous two-phase system. The LogKC values of twenty four polar compounds as model mixture confirmed that the polarities of HO/S TPSs were matched to that of the polar compounds and shown to be a very selective technique capable of separating positional isomers. Moreover, BEAsWat and BEDhpWat systems can be easily retained in CCC column with suitable elution mode. The hydrodynamic behavior reversion of HO/S TPS on hydrodynamic CCC was observed and was tentatively explained based on the density difference. Finally, caffeoylquinic acid isomers and dihydroxybenzoic acid isomers were successfully separated with HO/S TPS on CCC, respectively. Those results demonstrate that HO/S TPS on CCC is a performant and stable way to separate polar compounds from natural products.

  4. Potentiometric titration of uranium reduced by chromic salts in chloridic solutions

    International Nuclear Information System (INIS)

    The utilization of chromic salts for reducing the uranium (VI) from chloridic solutions, for potentiometric dosage is described. This method is used in the range of 0,002 to 1,0 M of uranium. (C.G.C.)

  5. Determination of Stoichiometry of Solutes in Molten Salt Solvents by Correlations of Relative Raman Band Intensities

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Berg, Rolf W.

    1999-01-01

    Raman spectroscopy has been used to determine the stoichiometry of solute complexes in molten salts at high temperatures under static equilibrium conditions, A simple formalism is derived for correlating relative Raman band intensities with stoichiometric coefficients. The experimental procedures...

  6. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  7. The structure and terahertz dynamics of water confined in nanoscale pools in salt solutions.

    Science.gov (United States)

    Turton, David A; Corsaro, Carmelo; Candelaresi, Marco; Brownlie, Angela; Seddon, Ken R; Mallamace, Francesco; Wynne, Klaas

    2011-01-01

    The behaviour of liquid water below its melting point is of great interest as it may hold clues to the properties of normal liquid water and of water in and on the surfaces of biomolecules. A second critical point, giving rise to a polyamorphic transition between high and low density water, may be hidden in the supercooled region but cannot be observed directly. Here it is shown that water can be locked up in nano-pools or worm-like structures using aqueous LiCl salt solutions and can be studied with terahertz spectroscopies. Very high dynamic range ultrafast femtosecond optical Kerr effect (OKE) spectroscopy is used to study the temperature-dependent behaviour of water in these nano-pools on timescales from 10 fs to 4 ns. These experiments are complemented by temperature-dependent nuclear magnetic resonance (NMR) diffusion measurements, concentration-dependent Fourier-transform infrared (FTIR) measurements, and temperature-dependent rheology. It is found that liquid water in the nanoscale pools undergoes a fragile-to-strong transition at about 220 K associated with a sharp increase in the inhomogeneity of translational dynamics.

  8. Structural organization of cetyltrimethylammonium sulfate in aqueous solution: The effect of Na2SO4.

    Science.gov (United States)

    Feitosa, Eloi; Brazolin, Marcelo Rodrigo Savério; Naal, Rose Mary Zumstein Georgetto; Del Lama, Maria Perpétua Freire de Morais; Lopes, Josias R; Loh, Watson; Vasilescu, Marilena

    2006-07-15

    We used dynamic light scattering (DLS), steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO(2-)4 as divalent counterion. We obtained the critical micelle concentration (cmc), aggregation number (N(agg)), area per monomer (a0), hydrodynamic radius (R(H)), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R(H) approximately 16 A is roughly independent on Na2SO4 concentration; below and above this concentration range R(H) increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R(H) increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a0, initially increases steeply with Na2SO4 concentration, and then decreases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N(agg) obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H(mic) = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy TDelta S(mic) = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven.

  9. Amino acid salt solutions for carbon dioxide capture

    OpenAIRE

    Majchrowicz, Magdalena Elzbieta

    2014-01-01

    Reactive absorption is a common process in the chemical industry and is used, among others, in the treatment of CO2 containing industrial gas streams. The current work was a part of a project with the aim to assess new reactive solvents based on amino acid salts for CO2 removal from industrial gas streams. Initially, a group of promising amino acid salts (taurine, sarcosine, L-proline, -alanine, 6-aminohexanoic acid and DL-methionine) was screened for their CO2 absorption kinetics, pKa value...

  10. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  11. Amino acid salt solutions for carbon dioxide capture

    NARCIS (Netherlands)

    Majchrowicz, Magdalena Elzbieta

    2014-01-01

    Reactive absorption is a common process in the chemical industry and is used, among others, in the treatment of CO2 containing industrial gas streams. The current work was a part of a project with the aim to assess new reactive solvents based on amino acid salts for CO2 removal from industrial gas s

  12. Structure of a model salt bridge in solution investigated with 2D-IR spectroscopy

    CERN Document Server

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Woutersen, Sander

    2013-01-01

    Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in solution. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridging the infrared response of Gdm+ and Ac- change significantly, and in the 2D-IR spectrum, salt bridging of the molecules appears as cross peaks. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes involved in the salt bridge, as well as the coupling between them. In this manner we reconstruct the geometry of the solvated salt bridge.

  13. Influence of starch origin on rheological properties of concentrated aqueous solutions

    OpenAIRE

    Stojanović Željko P.; Jeremić Katarina B.; Jovanović Slobodan M.

    2011-01-01

    The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starc...

  14. Salt effect on the (polyethylene glycol 8000 + sodium sulfate) aqueous two-phase system: Relative hydrophobicity of the equilibrium phases

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luisa A., E-mail: laferreira@deb.uminho.pt [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Teixeira, Jose A. [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2011-08-15

    Highlights: > Gibbs free energy of transfer of a methylene group on PEG 8000 - Na{sub 2}SO{sub 4} ATPS. > Influence of salt additive on the hydrophobic character of the coexisting phases. > Partitioning behavior of a series of five sodium salts of DNP-amino acids. > A relationship between {Delta}G(CH{sub 2}), TLL and I of the salt additive was established. - Abstract: The relative hydrophobicity of the phases of several {l_brace}polyethylene glycol (PEG) 8000 + sodium sulfate (Na{sub 2}SO{sub 4}){r_brace} aqueous two-phase systems (ATPSs), all containing 0.01 mol . L{sup -1} sodium phosphate buffer (NaPB, pH 7.4) and increasing concentration of a salt additive, NaCl or KCl, up to 1.0 mol . L{sup -1}, was measured by the free energy of transfer of a methylene group between the phases, {Delta}G(CH{sub 2}). The {Delta}G(CH{sub 2}) of the systems was determined by partitioning of a homologous series of five sodium salts of dinitrophenylated (DNP) - amino acids with aliphatic side chains in three different tie-lines of each biphasic system. The relative hydrophobicity of the phases ranged from -0.125 to -0.183 kcal . mol{sup -1}, being the NaCl salt the one to provide the more effective changes. The results show that, within each system, there is a linear relationship between the {Delta}G(CH{sub 2}) and the tie-line length (TLL), and biphasic systems with high salt additive concentration present the most negative {Delta}G(CH{sub 2}) values. Therefore, the feasibility of establishing a relationship between the relative hydrophobicity of the phases in a given TLL and the ionic strength of the salt additive was investigated and a satisfactory correlation was found for each salt.

  15. Density and sound speed study of hydration of 1-butyl-3-methylimidazolium based amino acid ionic liquids in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Apparent and partial molar volumes of aqueous AAILs at T = (293.15 to 313.15) K. • Isothermal and adiabatic compressibilities of AAILs in aqueous solution at T = 298.15 K. • Method for direct estimation of hydration numbers due to electrostriction is given. • Internal pressure and hydration numbers for AAILs at T = 298.15 K. • Results obtained demonstrate kosmotropic behavior of AAILs. - Abstract: Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, L-alanine, L-valine, L-leucine and L-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in

  16. Extraction and purification of anthraquinones derivatives from Aloe vera L. using alcohol/salt aqueous two-phase system.

    Science.gov (United States)

    Tan, Zhi-jian; Li, Fen-fang; Xu, Xue-lei

    2013-08-01

    An alcohol/salt aqueous two-phase system (ATPS) composed of 1-propanol and (NH4)2SO4 was employed to purify anthraquinones (AQs) extracted from Aloe vera L. The main influencing system parameters such as type of alcohol, type and concentration of salt, temperature and pH were investigated in detail. Under the optimal extraction conditions, AQs can be extracted into alcohol-rich phase with high extraction efficiency, meanwhile majority polysaccharides, proteins, mineral substances and other impurities were extracted into salt-rich phase. Partitioning of AQs is dependent on hydrophobic interaction, hydrogen bond interaction, and salting-out effect in ATPS. Temperature also played a great role in the partitioning. After ATPS extraction, alcohol can be recycled by evaporation; moreover, salt can be recycled by dilution crystallization method. Compared with other liquid-liquid extractions, this alcohol/salt system is much simpler, lower in cost with easier recovery of phase-forming components, which has the potential scale-up in down-processing of active ingredients in plant.

  17. Tetraethyl Orthosilicate Coated Hydroxyapatite Powders for Lead Ions Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Rodica V. Ghita

    2014-01-01

    Full Text Available The goal of this study was to synthetize and characterize a porous material based on tetraethyl orthosilicate (TEOS coated hydroxyapatite (HApTh after removal experiments of Pb2+ ions from aqueous solutions. In order to study the morphology and composition, the samples obtained after removal experiments of Pb2+ ions from aqueous solution with the initial Pb2+ ion concentrations of the aqueous solutions were 0.1 g·L−1 (HApTh-50 and 0.9 g·L−1 (HApTh-450 have been investigated by scanning electron microscopy (SEM equipped with an energy dispersive X-ray spectrometer (EDS, Fourier transform infrared spectroscopy (FTIR, and transmission electron microscopy (TEM. Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled concentration of Pb2+. After the removal experiment of Pb2+ ions from solutions, porous hydroxyapatite nanoparticles were transformed into HApTh-50 and HApTh-450 due to the adsorption of Pb2+ ions followed by a cation exchange reaction. The obtained results show that the porous HApTh nanopowders could be used for Pb2+ ions removal from aqueous solutions.

  18. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    Directory of Open Access Journals (Sweden)

    G. Ganbavale

    2014-05-01

    Full Text Available This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200–273 K. Water activity (aw at low temperatures (T is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB, differential scanning calorimetry (DSC, and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids and aqueous 2-(2-ethoxyethoxyethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for TTaw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice nucleation ability of organic–water systems.

  19. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  20. Investigation of Durasil absorbers for the removal of radionuclides from aqueous solutions

    International Nuclear Information System (INIS)

    Inorganic ion-exchange materials supplied by the Duratek Corporation, Maryland, USA have been tested in batch contact experiments to assess their effectiveness in removing radionuclides from aqueous solutions. The three absorbers tested, D10, D70 and D190, showed an affinity for all fourteen radionuclides present in the test solutions. (author)

  1. Study on Thermosensitive Micellization of Dextran-g-PNIPAAm in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    Dan ZHAO; Li Qun WANG; Ke Hua TU; Song Wei TAN

    2006-01-01

    The thermosensitive micellization of dextran-g-PNIPAAm in aqueous solutions has been investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscope. The formed polymeric micelles showed different diameters of about 20 nm or 100nm, when the solution temperature was below or above the phase transition temperature.

  2. KINETICS OF THE HYDROXYPROPYLATION OF POTATO STARCH IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    LAMMERS, G; STAMHUIS, EJ; BEENACKERS, AACM

    1993-01-01

    Kinetic results are presented for the hydroxypropylation of Potato starch with methyloxirane in aqueous solution. Reaction temperatures were varied from 303 to 362 K. Sodium hydroxide was used as a catalyst. The overall conversion rate of methyloxirane in alkaline starch solution is determined by th

  3. Temporarily plugging a subterranean reservoir with a self-foaming aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Berkshire, D.C.; Lybarger, J.H.; Reisberg, J.; Richardson, E.A.; Scheuerman, R.F.

    1980-11-11

    Portions of a subterranean reservoir are temporarily plugged by injecting an aqueous liquid solution which contains nitrogen gasgenerating reactants, a foaming surfactant and a pH controlling system arranged so that the solution remains relatively unreactive within the well but forms a relatively immobile foam within the pores or other openings within the reservoir formation.

  4. Aqueous solutions of proline and NaCl studied by differential scanning calorimetry at subzero temperatures

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Jørgensen, Bo; Nielsen, Jette

    1997-01-01

    The hydration properties of proline are studied by differential scanning calorimetry (DSC) in aqueous solutions during freezing to -60 degrees C and subsequent heating to +20 degrees C. The concentration of proline in the freeze concentrated solution was estimated to approximately 50 wt% (w...

  5. Modeling flavor release from aqueous sucrose solutions, using mass transfer and partition coefficients

    NARCIS (Netherlands)

    Nahon, D.F.; Harrison, M.; Roozen, J.P.

    2000-01-01

    The penetration theory of interfacial mass transfer was used to model flavor release from aqueous solutions containing different concentrations of sucrose. The mass transfer coefficient and the gas/solution partition coefficient are the main factors of the model influencing the release in time. Para

  6. Morphological modifications of selenium by recrystallization of its aqueous complex solutions.

    Science.gov (United States)

    Batabyal, Sudip K; Basu, C; Das, A R; Sanyal, G S

    2006-07-01

    Recrystallization of elemental selenium (Se) from aqueous solution in presence of sodium sulphite (Na2SO3) and sodium sulphide (Na2S) acting as complexing agents has resulted in the formation of nano and microstructures of Se having five different morphological modifications. (1) An aqueous solution of sodium selenosulphate (Na2SO3Se) obtained by dissolving Se in Na2SO3 under refluxing condition yields hemispherical microcrystals. (2) The filtrate of the above reaction mixture on aging produces hexagonal prismatic microrods of Se. Addition of Na2SO3Se solution to formalin (HCHO) at room temperature and refluxing conditions generates (3) Se nanorods, and (4) spherical microcrystals, respectively. (5) Recrystallization of Se from aqueous solution of Na2S develops flower shaped microcrystals.

  7. Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies.

    Science.gov (United States)

    Laybourn, Andrea; Katrib, Juliano; Palade, Paula A; Easun, Timothy L; Champness, Neil R; Schröder, Martin; Kingman, Samuel W

    2016-02-21

    Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε') and loss factors (ε'') of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies. PMID:26822947

  8. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute

    Science.gov (United States)

    Nam, H. O.; Bengtson, A.; Vörtler, K.; Saha, S.; Sakidja, R.; Morgan, D.

    2014-06-01

    Fluoride salts and their interactions with metals are of wide interest for the nuclear community. In this work, first-principles molecular dynamics (FPMD) was employed to study both pure molten fluoride salt and fluoride salt with dissolved solute Cr ions (a common corrosion product) at high temperature (823-1423 K). Two types of molten fluoride salts, namely flibe (LiF-BeF2) and flinak (LiF-NaF-KF), with the Cr0, Cr2+ and Cr3+ ions were chosen as a target system for the FPMD modeling. The prediction of thermo-kinetic properties of pure fluoride salt, such as the equilibrium volume, density, bulk modulus, coefficient of thermal expansion, and self-diffusion coefficient, provide useful extensions of existing data and verify the accuracy of the FPMD simulation in modeling of fluoride salts. The FPMD modeling of solute Cr in fluoride salt shows the effect of Cr valence on diffusivity and local structure in the salt.

  9. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H.O.; Bengtson, A.; Vörtler, K.; Saha, S.; Sakidja, R.; Morgan, D., E-mail: ddmorgan@wisc.edu

    2014-06-01

    Fluoride salts and their interactions with metals are of wide interest for the nuclear community. In this work, first-principles molecular dynamics (FPMD) was employed to study both pure molten fluoride salt and fluoride salt with dissolved solute Cr ions (a common corrosion product) at high temperature (823–1423 K). Two types of molten fluoride salts, namely flibe (LiF–BeF{sub 2}) and flinak (LiF–NaF–KF), with the Cr{sup 0}, Cr{sup 2+} and Cr{sup 3+} ions were chosen as a target system for the FPMD modeling. The prediction of thermo-kinetic properties of pure fluoride salt, such as the equilibrium volume, density, bulk modulus, coefficient of thermal expansion, and self-diffusion coefficient, provide useful extensions of existing data and verify the accuracy of the FPMD simulation in modeling of fluoride salts. The FPMD modeling of solute Cr in fluoride salt shows the effect of Cr valence on diffusivity and local structure in the salt.

  10. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.; Plummer, L.N.; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  11. Electrical Potential, Mass Transport and Velocity Distribution of Electro-osmotic Flow in a Nanochannel by Incorporating the Variation of Dielectric Constant of Aqueous Electrolyte Solution

    CERN Document Server

    Padidhapu, Rajendra; Brahmajirao, V

    2016-01-01

    We consider a coupled system of Navier Stokes, Maxwell Stefan and Poisson Boltzmann equations by incorporating the variation of dielectric constant, which governs the electro osmotic flow in nano channel, describing the evolution of the velocity, concentration and potential fields of dissolved constituents in an aqueous electrolyte solution. We apply the finite difference technique to solve one and two dimensional systems of these equations. The solutions give an extremely accurate prediction of the dielectric constant for a variety of salts and a wide range of concentrations.

  12. Succinic acid in aqueous solution : connecting microscopic surface composition and macroscopic surface tension

    OpenAIRE

    Werner, Josephina; Julin, Jan; Dalirian, Maryam; Prisle, Nønne; Öhrwall, Gunnar; Persson, Ingmar; Björneholm, Olle; Riipinen, Ilona

    2014-01-01

    The water vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experim...

  13. Strontium separation with ultrafiltration membranes from dilute aqueous solutions

    International Nuclear Information System (INIS)

    The separation of Sr2+ from dilute and trace solutions of low activity by means of hollow fiber Amicon ultrafiltration membranes is studied. The cation is absorbed on colloidal particles of titanium oxide formed directly in solution, and the coloidal dispersion is filtrated. The method has been studied under several different operative conditions (pH, Ti/Sr ratio, the presence of interfering ions, colloid formation time) with the aim of determining the optimum conditions to develop a separation process

  14. Zeolite for strontium separation from concentrated sodium salt solutions

    International Nuclear Information System (INIS)

    Strontium sorption from solutions with concentration of 5 mol/l sodium chloride on zeolites of different structure is investigated. Synthetic potassium zeolite of the K-G(13) chabasite type is established to be used to purify the solutions given from strontium radionuclides. Capacity of K-G(13) zeolite for strontium in the solution with concentration of 5 mol/l sodium chloride is 0.65 mmol/g

  15. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yinglian [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); College of Food Science and Engineering, Qingdao Agricultural University of China, Qingdao 266109, Shandong Province (China); Li, Chunsheng; Xu, Ying [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); Wang, Dongfeng, E-mail: wangdf@ouc.edu.cn [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China)

    2014-09-01

    Highlights: • Ultrasonic promotes formation of crystal nucleus and QDs were synthesized in 0.5 h. • The new heating method provides a PLQY of up to 97.13%. • The synthesis mechanism of the core shell structure of the CdTe/CdS QDs was inferred. • The preparation method was efficient, simple and clean. - Abstract: A novel simple method for fast and efficient synthesis of aqueous CdTe/CdS quantum dots (QDs) with core–shell structure was developed by using salt water bath heating with the ultrasonic-assisted technique in this paper. The formation of crystal nucleus was promoted by ultrasonic and CdTe/CdS QDs with blue fluorescence were synthesized only in 0.5 h. The heat source was bath heating in salt water solution at 60% NaCl and the heating temperature could reach 105 °C. The heating method solved the biggest drawback of low photoluminescence quantum yield (PLQY) of ordinal bath heating in water. The preparation was cheap, simple and had less pollution to the environment. The properties of the CdTe/CdS QDs were thoroughly investigated by ultraviolet–visible (UV–vis), photoluminescence (PL), transmission electron microscope (TEM), laser size analysis, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Different CdTe/CdS QDs with core shell structure were efficiently synthesized and the maximum PLQY could reach 97.13% when refluxing at 105 °C for 2 h. These QDs exhibited uniform dispersity, high fluorescence intensity, good optical property and long life of fluorescent. The synthesis mechanism of the core shell structure of the QDs was inferred that the Cd{sup 2+} might coordinate with sulfur (S) as well as thiol propionate (–SCH{sub 2}CH{sub 2}COO{sup −1}) to constitute two relatively thick compound layers on the QDs surface as passive shells.

  16. Stability of peptides in high-temperature aqueous solutions

    Science.gov (United States)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  17. Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(III)-SiO2 catalyst

    International Nuclear Information System (INIS)

    This article presents preparation, characterization and evaluation of heterogeneous Fe(III)-SiO2 catalysts for the photo-Fenton degradation of polyacrylamide (PAM) in aqueous solution. Fe(III)-SiO2 catalysts are prepared by impregnation method with two iron salts as precursors, namely Fe(NO3)3 and FeSO4, and are characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. The irradiated Fe(III)-SiO2 is complexed with 1,10-phenanthroline, then is measured by UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS) and XPS to confirm the oxidation state of Fe in solid state. By investigating the photo-Fenton degradation of PAM in aqueous solution, the results indicate that Fe(III)-SiO2 catalysts exhibit an excellent photocatalytic activity in the degradation of PAM. Moreover, the precursor species and the OH-/Fe mole ratio affect the photocatalytic activity of Fe(III)-SiO2 catalysts to a certain extent. Finally, the amount of Fe ions leaching from the Fe(III)-SiO2 catalysts is much low

  18. Effect of electrolytes on surface tension and surface adsorption of 1-hexyl-3-methylimidazolium chloride ionic liquid in aqueous solution

    International Nuclear Information System (INIS)

    Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (Amin) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C6mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I- > Br- > Cl- for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.

  19. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    Science.gov (United States)

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  20. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution

    Science.gov (United States)

    Jiao, Caina; Wang, Yanen; Li, Menghua; Wu, Qiuhua; Wang, Chun; Wang, Zhi

    2016-06-01

    In this paper, a magnetic nanoporous carbon (Fe3O4/NPC) was successfully synthesized by using MOF-5 as carbon precursor and Fe salt as magnetic precursor. The texture properties of the as-synthesized nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N2 adsorption-desorption isotherms. The Fe3O4/NPC had a high surface area with strong magnetic strength. Its adsorption behavior was tested by its adsorption capacity for the removal of methylene blue from aqueous solution. The results demonstrated that the Fe3O4/NPC had a high adsorption capacity, rapid adsorption rate, and easy magnetic separabilty. Moreover, the adsorbent could be easily regenerated by washing it with ethanol. The Fe3O4/NPC can be used as a good alternative for the effective removal of organic dyes from wastewater.

  1. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik (CNRS-UMR); (NIH); (ILL)

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  2. Equilibrium Studies of Some Metal Ions onto Modified Orange Mesocarp Extract in Aqueous Solution

    OpenAIRE

    Ibezim-Ezeani, Millicent U.; Okoye, Francis A.; Akaranta, Onyewuchi

    2012-01-01

    This paper examines the equilibrium removal of Zinc, Copper, Nickel and Cobalt ions from aqueous solutions by cation exchange resins synthesized using orange mesocarp extract. The percentage metal ion exchange of Carboxylated-Toluene Di-isocyanate Orange Mesocarp Extract Resin (CTOR) increased with increase in pH of the solution phase, while that of Sulphonated-Toluene Di-isocyanate Orange Mesocarp Extract Resin (STOR) was relatively uniform with increase in solution pH. The results also show...

  3. Radiation induced degradation of ketoprofen in dilute aqueous solution

    International Nuclear Information System (INIS)

    The intermediates and final products of ketoprofen degradation were investigated in 0.4 mmol dm−3 solution by pulse radiolysis and gamma radiolysis. For observation of final products UV−vis spectrophotometry and HPLC separation with diode array detection were used, and for identification MS was used. The reactions of •OH lead to hydroxycyclohexadienyl type radical intermediates, in their further reactions hydroxylated derivatives of ketoprofen form as final products. The hydrated electron is scavenged by the carbonyl oxygen and the electron adduct protonates to ketyl radical •OH is more effective in decomposing ketoprofen than hydrated electron. Chemical oxygen demand and total organic carbon content measurements on irradiated aerated solutions showed that using irradiation technology ketoprofen can be mineralised. The initial toxicity of the solution monitored by the Daphnia magna test steadily decreases with irradiation. Using 5 kGy dose no toxicity of the solution was detected with this test. - Highlights: ► In •OH reactions hydroxylated derivatives of ketoprofen form as stable products. ► •OH is more effective in decomposing ketoprofen than hydrated electron. ► Toxicity of the ketoprofen solution decreases with irradiation.

  4. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A.; Malayeri, M.R. [Institute for Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute for Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics, German Aerospace Centre (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2008-11-15

    The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 {mu}m for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 {mu}m) decreases more rapidly than that of 0.54 {mu}m. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture. (author)

  5. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    Science.gov (United States)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  6. Corrosion fatigue behavior of high strength brass in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A. [Suez Canal Univ., Dept. of Metallurgy and Materials Engineering (Egypt)

    2000-07-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 {alpha}-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  7. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution.

    Science.gov (United States)

    Wijeratne, Sithara S; Penev, Evgeni S; Lu, Wei; Li, Jingqiang; Duque, Amanda L; Yakobson, Boris I; Tour, James M; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  8. Radiolysis of Reactive Azo Dyes in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Agustin N.M. Bagyo

    2004-07-01

    Full Text Available The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected.

  9. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with mono valence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.

  10. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    徐铜文; 杨伟华; 何柄林

    2001-01-01

    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to hulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated with in chosen parameters. It is revealed that ion partition is not related solely withthe respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoreticalcal culations were compared with the experimental data and a good agreement was observed.

  11. Reversible Sol-Gel Transitions in Aqueous Solutions of N-Isopropylacrylamide Ionic Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Krzyminski, Karol J.; Jasionowski, Marek; Gutowska, Anna

    2008-04-01

    Ionic copolymers of N-isopropylacrylamide (NIPA) exhibiting sol-gel transitions in aqueous solutions were investigated. The studies were aimed at understanding of the structure-property relationship in design of injectable, in situ forming gels for potential biomedical applications in delivery of therapeutics and tissue engineering. Aqueous solutions of NIPA ionic copolymers were found to flow freely at ambient temperatures and formed soft gels with controlled syneresis above 32°C, the lower critical solution temperature of NIPA. The sol-gel transitions and temperature dependent properties of the resulting gels were analyzed using dynamic rheometry, UV and IR spectrometry, and were found to be controlled by the molecular weight and composition of copolymers, ionization state of comonomers, and composition of aqueous solvent.

  12. Synthesis of polyamidoxime-functionalized nanoparticles for uranium(VI) removal from neutral aqueous solutions

    International Nuclear Information System (INIS)

    It is important to separate uranium(VI) from water environment due to its high toxicity and radioactivity. A new kind of polystyrene nanoparticles with polyamidoxime is reported here for removal of uranium(VI) from aqueous solutions. The obtained PSt nanoparticles have a tunable sorption capacity. The sorption process follows pseudo-second-order kinetics, and the equilibrium can be reached within 6 h. Furthermore, the optimal pH value of sorption process is 6.5, and the adsorbents can be recycled well for uranium(VI) sorption from aqueous solution. This work indicates that the polyamidoxime-functionalized PSt nanoparticles may be used as a good adsorbent for the removal of uranium(VI) from neutral aqueous solution. (author)

  13. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    Science.gov (United States)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  14. Removal of radium from aqueous solutions using adsorbent produced from coconut coir pith

    International Nuclear Information System (INIS)

    A study was conducted to evaluate the potential use of the coconut coir pith as an adsorbent for the removal of radium from aqueous solutions. Experiments to establish adsorptions as a function of pH and contact time were carried out. The results showed that radium adsorption are dependent upon pH and contact time of coconut coir pith with aqueous solutions. 70-80% of radium were adsorbed in the neutral to alkaline pH range. The amount of radium adsorbed also increased with contact time, reaching an optimum after 250 min. Thus, it can be concluded that the coconut coir pith has the potential to be used as an adsorbent in radium removal from aqueous solutions. (Author)

  15. APPLICATION OF NONIONIC TEMPERATURE SENSITIVE HYDROGEL FOR CONCENTRATION OF PROTEIN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    SUN Yishi; QIU Zhiyong; HONG Yaoliang

    1992-01-01

    Six different N-alkyl substituted acrylamide nonionic hydrogels were prepared and their swelling characteristics were measured. Poly N-isopropyl acrylamide (PNIPA) and poly N-n-propylacrylamide (PNNPA) temperature sensitive hydrogels were chosen as the nonionic temperature sensitive hydrogels for concentration of very dilute aqueous protein solution. The separation properties of PNIPA and PNNPA hydrogels with different network dimensions were studied and the modification of the hydrogels was surveyed in order to decrease their surface adsorption of protein molecules. The experimental results of the concentration of BSA (Bovin serum albumin) dilute aqueous solution by hydroxylpropyl methacrylate (HPMA) copolymerized PNIPA hydrogel were given. The value and the limitation of concentration of dilute aqueous protein solution by this method was evaluated.

  16. Standard enthalpies of formation of α-aminobutyric acid and products of its dissociation in an aqueous solution

    Science.gov (United States)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.

    2016-08-01

    Heats of solution of crystalline α-aminobutyric acid in water and in aqueous solutions of potassium hydroxide at 298.15 K are measured by means of direct calorimetry. Standard enthalpies of formation of the amino acid and products of its dissociation in an aqueous solution are calculated.

  17. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  18. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    Science.gov (United States)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  19. Biosorption of strontium from aqueous solutions onto spent coffee grounds

    International Nuclear Information System (INIS)

    A set of experiments was carried out to evaluate the strontium uptake potential of spent coffee grounds (SCG) by batch tests in aqueous medium. Adsorption of Sr2+ as a function of contact time and adsorbent dose, pH, particles size, agitation speed, temperature and co-ions presence was investigated. Obtained results revealed that the maximum adsorption took place at pH range of 5-8 and temperature values between 283 and 333 K. Particles size effect was not very significant and agitation speed influenced on the equilibrium time. Competitive adsorption experiments allowed us to classify the negative effect on the Sr2+ uptake according to this order Al3+ ≫ Co2+ > Mg2+ > Ca2+ ≫ Na+ > K+ > Cs+. Kinetic study indicated that the Sr2+ uptake was fast and it was well fitted by the pseudo second order reaction model. Adsorption isotherm was well interpreted by Langmuir model. The maximum adsorption capacity was found to be 69.01 mg g−1 at pH 7, 293 K, particles sizes = 200-400 μm and agitation speed 250 rpm. The thermodynamic study revealed that the process was spontaneous (ΔG0 0 2+ (ΔG0 0 > 0) and occurred by physical adsorption (Ea = 8.37 kJ mol-1). FTIR analysis showed carboxylic acid and amino group presence on SCG surface playing a vital role in Sr2+ biosorption. (author)

  20. Study of Penetration Kinetics of Sodium Hydroxide Aqueous Solution into Wood Samples

    Directory of Open Access Journals (Sweden)

    Lubomír Lapčík

    2013-12-01

    Full Text Available The kinetics of unidirectional penetration of NaOH aqueous solution into rectangular samples of wood oriented parallel to a stern axis were studied. Scots pine (Pinus sylvestris, European larch (Larix decidua, blackthorn (Prunus spinosa, white willow (Salix alba, and horse-chestnut wood (Aesculus hippocastanum were studied in this work. The time dependence of liquid incorporation was measured by the volumetric method as a change of total volume of coexisting liquid (NaOH/H2O phase. The total thickness of the swollen surface layer d and mean value of the apparent diffusion coefficient of aqueous NaOH solution at 22 °C were determined.