WorldWideScience

Sample records for aqueous processing material

  1. Analysis of residual organic materials in aqueous radioactive streams from the Purex process

    International Nuclear Information System (INIS)

    New solid phase extraction methods have been developed to allow determination of residual normal paraffin hydrocarbon (NPH) and tri-n-butyl phosphate (TBP) in aqueous radioactive streams from the Purex process. The techniques concentrate organic materials and separate them from radioactive species for analysis by gas chromatography. TBP and NPH have good radiolytic and chemical stability and have low aqueous solubility. However, they can contaminate aqueous streams and cause processing difficulties. Knowledge of the concentration of organic materials in aqueous waste is useful in assessing impact on pollution control equipment. The storage quality of diluent-washed aqueous plutonium product solution can be determined by a gas chromatographic analysis for residual TBP. 4 refs., 1 fig., 7 tabs

  2. Aqueous processing of composite lithium ion electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  3. Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials

    Science.gov (United States)

    Clobes, Jason Kenneth

    Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the

  4. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  5. Study of non aqueous reprocessing methods. Final progress report. [Container materials for pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Teitel, R. J.; Luderer, J. E.; Henderson, T. M.

    1978-11-17

    The problems associated with container materials for selected pyrochemical processes and process containment conditions are reviewed. A rationale for container materials selection is developed. Candidate process container materials are presented, and areas warranting further development are identified. 14 tables.

  6. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  7. Iron-sulfides, iron-oxides and aqueous processing of organic materials in CM and CI meteorites and IDPs

    Science.gov (United States)

    Rietmeijer, F. J.

    Why do CM meteorites have such a rich variety of organics? D/H isotope ratios prove an interstellar component of the organic matter in CM and CI carbonaceous meteorites wherein the complex ``organics'' could in part be due to Fischer-Tropsch type (FTT) processes and processing of organic precursors on Fe-sulfide, Fe-oxide or clay catalysts. ``Origin of Life'' scenarios refer to the richly varied organics in CM (Murchison) meteorites as the precursor materials delivered to the Earth 4.2-3.9 Gyrs ago. Aggregate interplanetary dust particles (IDPs) have more carbon, incl. an interstellar component, than CI and CM meteorites but their original ``organics'' and amounts are modified by pyrolysis during atmospheric entry. Here, I will assume that anhydrous aggregate IDPs formed the originally anhydrous CI and CM matrix. These IDPs contain submicron CHON, mixed and `silicate' principal components (PCs), e.g. Fe-rich serpentine dehydroxylate, (Mg,Fe)3Si2O7, PCs [Fe/(Mg+Fe)(fe) = 0.3-0.8], and micron-size Fe-sulfides, olivine and pyroxenes. In a Mg-Fe-Si diagram with an Fe-apex, these PC compositions plot on a serpentine, (Mg,Fe)/Si line. The hydrated CI matrix compositions also define a straight line that, anchored at serpentine, fe = 0.3, is rotated towards higher (Mg,Fe)/Si ratios with increasing serpentine fe-ratio when during hydration of an initially ``serpentine dehydroxylate PC'' CI matrix reacted with Fe-sulfide, Fe-oxide, or both. The straight line defining hydrated CM matrix compositions is rotated even more towards higher (Mg,Fe)/Si ratios when hydrated CI-like material continued reacting with Fe-oxide and Fe-sulfide and formed tochilinite, a mineral unique to CM meteorites. Continuous hydration of IDP-like material with an ample supply of Fe-minerals acting as catalysts for formation and processing ``organics'' would have affected the redox conditions of a buffered C-H-O-S aqueous fluid during the time ``organics' were modified to the unique mélanges of CM

  8. Sorption of estrogens and pesticides from aqueous solution by a humic acid and raw and processed plant materials

    Science.gov (United States)

    Loffredo, Elisabetta; Taskin, Eren

    2016-04-01

    The huge number of organic contaminants released in water as a consequence of anthropogenic activities have detrimental effects to environmental systems and human health. Industrial products and byproducts, pharmaceuticals, pesticides, detergents and so on impose increasing costs for wastewater decontamination. Adsorption techniques can be successfully used for the treatment of wastewaters to remove contaminants of various nature. Humic acids (HA) have well-known adsorptive capacities towards hydrophilic and, especially, hydrophobic compounds. In the recent years, alternative low-cost adsorbents, especially originated from agricultural wastes and food industries residues, such as wood chips, almond and coconut shells, peanut and rice husks, are under investigation. Biochar is also considered a promising and relatively low-cost adsorbent, even if there are still knowledge gaps about the influence of feedstock type, pyrolysis conditions, physical and chemical properties on its potential and safe use. In the present work, a HA from a green compost was used along with three other materials of plant origin to remove two estrogens, 4-tert-octylphenol and 17-β-estradiol, and two pesticides, carbaryl and fenuron, from an aqueous solution. The four molecules were spiked in water each at a concentration of 1 mg L-1. The materials were: a biochar obtained from 100% red spruce pellet pyrolysed at 550 °C, spent coffee grounds and spent tea leaves. Kinetics curves and adsorption isotherms studies were performed using a batch equilibrium method. Adsorption data obtained for each compound were fitted to a linear equation and non-linear Freundlich and Langmuir models. Kinetics data of the four compounds onto all adsorbents showed an initial very rapid adsorption which was completed in few hours when it reached equilibrium. The two estrogens were adsorbed onto all materials more quickly than the two less hydrophobic pesticides. Significant differences among adsorbents and the

  9. Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6

    Science.gov (United States)

    Shirafuji, Tatsuru; Noguchi, Yohei; Yamamoto, Taibou; Hieda, Junko; Saito, Nagahiro; Takai, Osamu; Tsuchimoto, Akiharu; Nojima, Kazuhiro; Okabe, Youji

    2013-12-01

    Solution plasma processing (SPP) has been performed on multiwalled carbon nanotubes (MWCNTs) in ammonia aqueous solution. The MWCNTs, which do not disperse in aqueous solution, uniformly dispersed after the SPP. Only 2 h was required to obtain 10 g of the dispersed MWCNTs, while 7 days and additional chemicals were required for 185 mg in a previous study. The X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the SPP-treated MWCNTs revealed that nitrogen- and oxygen-containing groups are formed on the MWCNTs. Serious damage to the MWCNT structure was not observed in the Raman spectrum or transmission electron microscopy images of the SPP-treated MWCNTs. The composite materials prepared using polyamide 6 with the SPP-treated MWCNTs showed better tensile, bending, and impact strength than those prepared with nontreated MWCNTs.

  10. Corrosion processes of austenitic stainless steels and copper-based materials in gamma-irradiated aqueous environments

    International Nuclear Information System (INIS)

    The U.S. Department of Energy is evaluating a site located at Yucca Mountain in Nye County, Nevada, as a potential high-level nuclear waste repository. The rock at the proposed repository horizon (above the water table) is densely welded, devitrified tuff, and the fluid environment in the repository is expected to be primarily air-steam. A more severe environment would be present in the unlikely case of intrusion of vadose groundwater into the repository site. For this repository location, austenitic stainless steels and copper-based materials are under consideration for waste container fabrication. This study focuses on the effects of gamma irradiation on the electrochemical mechanisms of corrosion for the prospective waste container materials. The radiolytic production of such species as hydrogen peroxide and nitric acid are shown to exert an influence on corrosion mechanisms and kinetics

  11. Liberation of chromium from ferrochrome waste materials utilising aqueous ozonation and the advanced oxidation process / Yolindi van Staden

    OpenAIRE

    Van Staden, Yolindi

    2014-01-01

    During ferrochrome (FeCr) production, three types of generic chromium (Cr) containing wastes are generated, i.e. slag, bag filter dust (BFD) and venturi sludge. The loss of these Cr units contributes significantly to the loss in revenue for FeCr producers. In this study, the liberation of Cr units was investigated utilising two case study waste materials, i.e. BFD from a semi-closed submerged arc furnace (SAF) operating on acid slag and the ultrafine fraction of slag (UFS) orig...

  12. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  13. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  14. ASRM process development in aqueous cleaning

    Science.gov (United States)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  15. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    Science.gov (United States)

    Shi, Xingzhao

    A broad range of electrochemical techniques are employed in this dissertation to investigate a selected set of aqueous electrochemical systems that are relevant for materials processing in the fabrication of microelectronic devices and direct alcohol fuel cells. In terms of technical applications, this work covers three main experimental systems: (i) chemical mechanical planarization (CMP), (ii) electro-less nickel deposition, and (iii) direct alkaline glycerol fuel cells. The first two areas are related to electronic device fabrications and the third topic is related to cost-effective energy conversion. The common electrochemical aspect of these different systems is that, in all these cases the active material characteristics are governed by complex (often multi-step) reactions occurring at metal-liquid (aqueous) interfaces. Electro-analytical techniques are ideally suited for studying the detailed mechanisms of such reactions, and the present investigation is largely focused on developing adequate analytical strategies for probing these reaction mechanisms. In the fabrication of integrated circuits, certain steps of materials processing involve CMP of Al deposited on thin layers of diffusion barrier materials like Ta/TaN, Co, or Ti/TiN. A specific example of this situation is found in the processing of replacement metal gates used for high-k/metal-gate transistors. Since the commonly used barrier materials are nobler than Al, the Al interface in contact with the barrier can become prone to galvanic corrosion in the wet CMP environment. Using model systems of coupon electrodes and two specific barrier metals, Ta and Co, the electrochemical factors responsible for these corrosion effects are investigated here in a moderately acidic (pH = 4.0) abrasive-free solution. The techniques of cyclic voltammetry and impedance spectroscopy are combined with strategic measurements of galvanic currents and open circuit potentials (OCPs). L-ascorbic acid (AA) is employed as a

  16. AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Andrea R. Szkurhan; Michael K. Georges

    2004-01-01

    An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations,under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.

  17. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Science.gov (United States)

    Sareen, N.; Schwier, A. N.; Shapiro, E. L.; Mitroo, D.; McNeill, V. F.

    2010-02-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10-6 M-1 min-1 and kH3O+II≤10-3 M-1 min-1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS). Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  18. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  19. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  20. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  1. Photochemical processing of aqueous atmospheric brown carbon

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2015-01-01

    Full Text Available Atmospheric Brown Carbon (BrC is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS or methylglyoxal (MGAS are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate atmospheric relevance of this work, we also performed direct photolysis experiments on water soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  2. Photochemical processing of aqueous atmospheric brown carbon

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2015-06-01

    Full Text Available Atmospheric brown carbon (BrC is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS or methylglyoxal (MGAS are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  3. Photochemical processing of aqueous atmospheric brown carbon

    Science.gov (United States)

    Zhao, R.; Lee, A. K. Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J. P. D.

    2015-06-01

    Atmospheric brown carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  4. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    Energy Technology Data Exchange (ETDEWEB)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  5. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  6. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  7. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  8. Ultrasonic Processing of Materials

    Science.gov (United States)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  9. Aqueous Processing of WC-Co Powders

    OpenAIRE

    Andersson, Karin M.

    2004-01-01

    The object of this work is to obtain a fundamentalunderstanding of the principal issues concerning the handlingof an aqueous WC-Co powder suspension. The WO3 surface layer on the oxidised tungsten carbidepowder dissolves at pH>3 with the tungsten concentrationincreasing linearly with time. Adding cobalt powder to thetungsten carbide suspension resulted in a significant reductionof the dissolution rate at pH<10. Electrokinetic studiesindicated that the reduced dissolution rate may be rel...

  10. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    Science.gov (United States)

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte. PMID:26759354

  11. Laser processing of materials

    Indian Academy of Sciences (India)

    J Dutta Majumdar; I Manna

    2003-06-01

    Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wavelength, energy/power and beam-modes/configurations. As a result, lasers find wide applications in the mundane to the most sophisticated devices, in commercial to purely scientific purposes, and in life-saving as well as life-threatening causes. In the present contribution, we provide an overview of the application of lasers for material processing. The processes covered are broadly divided into four major categories; namely, laser-assisted forming, joining, machining and surface engineering. Apart from briefly introducing the fundamentals of these operations, we present an updated review of the relevant literature to highlight the recent advances and open questions. We begin our discussion with the general applications of lasers, fundamentals of laser-matter interaction and classification of laser material processing. A major part of the discussion focuses on laser surface engineering that has attracted a good deal of attention from the scientific community for its technological significance and scientific challenges. In this regard, a special mention is made about laser surface vitrification or amorphization that remains a very attractive but unaccomplished proposition.

  12. Removal of aluminum from aqueous solution by organic materials of agricultural use

    International Nuclear Information System (INIS)

    With the objective of identify characteristics of organic materials of common use in agriculture, related to the aluminum removal from aqueous systems, a chemical characterization of six organic materials was carried out. Their capacity to remove aluminum was evaluated in the laboratory by correlating the observed Al-removal with their characteristics. 6 materials were used as follows: rice straw, chicken manure, cowpea, compost, earth warm compost and leonardite oxidable organic C, total N, P, Ca, Mg, Na, K and Al, pH, carbonates, CEC, exchangeable cations, hydrosoluble n and p, fulvic and humic acids, together with their totals acidity and functional groups (carboxylic and phenolic) were evaluated. To estimate the al-removal capacity by the organic materials in aqueous systems, seven aqueous solutions with different Al concentrations (from o to 900 mmol/L) were prepared at an initial pH value of 4.2 and a relation of organic material: aqueous of 180 mg: 200 ml. after shaking and filtration, the pH values and al concentration (by atomic absorption) were determined in the equilibrium solution. The adsorbed Al by the organic materials was calculated by the difference between the initial al concentrations and the amount found in the equilibrium solution. The al removal using all the organic materials was also measured from an aqueous solution, which contained 900 mmol/L of Al in a pH value range between 2.4 and 4.2. The most effective organic material to remove al was the chicken manure, this material removed up to the 80% of Al, leaving in the aqueous solutions concentrations up to 50 mmol/L. the effectiveness of the rest organic materials was as follows: compost, earth warm compost, cowpea, rice straw and leonardite. Positive and significative correlations were obtained between the Al-retention and the following variables: pH values of organic materials, pH values of the equilibrium solution, CaCO3 content, total and hydrosoluble P, total sum and exchangeable sum

  13. Aqueous Tape Casting Process with Styrene-acrylic Latex Binder

    Institute of Scientific and Technical Information of China (English)

    CUI Xue-min; OUYANG Shi-xi; HUANG Yong; YU Zhi-yong; ZHAO Shi-ke; WANG Chang-an

    2004-01-01

    A commercial styrene-acrylic latex binder has been investigated as a good binder for aqueous Al2O3 suspensions tape-casting process. This paper focuses on the forming film mechanism of latex binder, the rheological behaviors of the suspensions, physical properties of green tapes and drying process of aqueous slurries with latex binder system. The drying process of the alumina suspensions is shown to follow a two-stage mechanism (the first stage: evaporation controlled process; and the second stage: diffusion controlled process). During the drying stage of the suspensions, the compressive force presses the latex particles and makes them be distorted, which results in cross-linking structure in contacted latex particles of the solidified tapes.A smooth-surface and high-strength green tape was fabricated by aqueous tape casting with latex binder system. The results from the SEM images of the crossing section microstructure of green tapes show that the latex is a very suitable binder for aqueous tape casting.

  14. Raw material versus processing

    International Nuclear Information System (INIS)

    Some brazilian aspects related with the obtainment of raw materials for advanced ceramic products are described. The necessity of import raw materials by the advanced ceramic industries is mentioned, generating dangerous depedence for the country. The brazilian mineral reserves for using in raw materials of advanced ceramic are also cited. (C.G.C.)

  15. Organic-aqueous crossover coating process for the desmopressin orally disintegrating microparticles.

    Science.gov (United States)

    Kim, Ju-Young; Hwang, Kyu-Mok; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok

    2015-02-01

    The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed. A pharmacokinetic study of the ODMs was also conducted in eight beagle dogs. It was found that sucrose beads should be coated using organic solvents to preserve their original morphology. For the active coating, the aqueous coating solution should be used for drug stability. When sucrose beads were coated using organic-aqueous crossover coating process, double-layer ODMs with round shapes were produced with detectable impurities below limit of US Pharmacopeia. The median size of ODMs was 195.6 μm, which was considered small enough for a good mouthfeel. The ODMs dissolved in artificial saliva within 15 s because of hydrophilic materials including sucrose and HPC in the ODMs. Because of its fast-dissolving properties, 100% release of the drug was reached within 5 min. Pharmacokinetic parameters including Cmax and AUC24 indicated bioequivalence of the ODMs and the conventional immediate release tablets. Therefore, by using the organic-aqueous crossover coating process, double-layer ODMs were successively prepared with small size, round shapes and good drug stability. PMID:24252109

  16. Ammonia removal from an aqueous solution and method for the production of a fertilizer material

    NARCIS (Netherlands)

    Kelder, E.M.; Ursem, W.N.J.; Roos, R.A.; Marijnissen, J.C.M.

    2011-01-01

    The invention provides method for the removal of ammonia from air and converting the ammonia in a fertilizer material, comprising (a) contacting at least part of the air with an aqueous liquid, wherein the aqueous liquid is a solvent for ammonia, to provide an ammonia containing aqueous liquid,and(b

  17. High mobility epitaxial graphene devices via aqueous-ozone processing

    Science.gov (United States)

    Yager, Tom; Webb, Matthew J.; Grennberg, Helena; Yakimova, Rositsa; Lara-Avila, Samuel; Kubatkin, Sergey

    2015-02-01

    We find that monolayer epitaxial graphene devices exposed to aggressive aqueous-ozone processing and annealing became cleaner from post-fabrication organic resist residuals and, significantly, maintain their high carrier mobility. Additionally, we observe a decrease in carrier density from inherent strong n-type doping to extremely low p-type doping after processing. This transition is explained to be a consequence of the cleaning effect of aqueous-ozone processing and annealing, since the observed removal of resist residuals from SiC/G enables the exposure of the bare graphene to dopants present in ambient conditions. The resulting combination of charge neutrality, high mobility, large area clean surfaces, and susceptibility to environmental species suggest this processed graphene system as an ideal candidate for gas sensing applications.

  18. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

    OpenAIRE

    Knoll, Andrew Herbert; Squyres, S. W.; Arvidson, R. E.; Bell, J. F.; Calef, F., III; Clark, B.C.; Cohen, B. A.; Crumpler, L. A.; P.A. Souza; Farrand, W. H.; Gellert, R.; Grant, J; Hurowitz, J. A.; Herkenhoff, K. E.; J. R. Johnson

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing...

  19. Differential capacitance probe for process control involving aqueous dielectric fluids

    Science.gov (United States)

    Svoboda, John M.; Morrison, John L.

    2002-10-08

    A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.

  20. Modeling Non-aqueous Phase Liquid Displacement Process

    Institute of Scientific and Technical Information of China (English)

    Yang Zhenqing; Shao Changjin; Zhou Guanggang; Qiu Chao

    2007-01-01

    A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interfacial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.

  1. Designing magnetic composite materials using aqueous magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Galicia, Jose Alberto [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Sandre, Olivier [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Cousin, Fabrice [Laboratoire Leon Brillouin, UMR 12 CNRS/CEA CEA-Saclay - 91191, Gif-sur-Yvette (France); Guemghar, Dihya [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Menager, Christine [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France); Cabuil, Valerie [Laboratoire Liquides Ioniques et Interfaces Chargees - Equipe Colloides Inorganiques, UMR 7612 CNRS/Universite Pierre et Marie Curie (Paris 6), 4 place Jussieu, case 63 - 75252 Paris Cedex 05 (France)

    2003-04-23

    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optical experiments with the probes. This study requires conditions suitable for including the magnetic particles as probes without disturbing the clay suspensions. The third part presents giant magnetoliposomes, which encapsulate magnetic nanoparticles. Shape transitions are obtained with either a magnetic field or an osmotic stress.

  2. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  3. Nanofibers of Ca2Fe2O5: A novel material for aqueous supercapacitor

    Science.gov (United States)

    Sundriyal, Sandeep Kumar; Bhagwan, Jai; Sharma, Yogesh

    2016-05-01

    Porous, aligned and high aspect ratio nanofibers of Ca2Fe2O5 (CFO) have been fabricated by varying various system and process parameter of electrospinning technique for the first time. CFO nanofibers are further characterized by XRD, FESEM and BET surface area. The diameter of as-spun nanofibers of CFO was found to be polymer concentration dependent. Heating profile is found to be responsible for alignment of CFO nanofibers. For the first time, novel CFO nanofibers were subjected to cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) cycling to investigate its energy storage performance as electrode material for aqueous supercapacitor, and accordingly preliminary results are discussed.

  4. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material

    International Nuclear Information System (INIS)

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na+ and Fe3+ solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous material, and

  5. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  6. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  7. Microstructural processes in irradiated materials

    Science.gov (United States)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  8. Heavy oils processing materials requirements crude processing

    Energy Technology Data Exchange (ETDEWEB)

    Sloley, Andrew W. [CH2M Hill, Englewood, CO (United States)

    2012-07-01

    Over time, recommended best practices for crude unit materials selection have evolved to accommodate new operating requirements, feed qualities, and product qualities. The shift to heavier oil processing is one of the major changes in crude feed quality occurring over the last 20 years. The three major types of crude unit corrosion include sulfidation attack, naphthenic acid attack, and corrosion resulting from hydrolyzable chlorides. Heavy oils processing makes all three areas worse. Heavy oils have higher sulfur content; higher naphthenic acid content; and are more difficult to desalt, leading to higher chloride corrosion rates. Materials selection involves two major criteria, meeting required safety standards, and optimizing economics of the overall plant. Proper materials selection is only one component of a plant integrity approach. Materials selection cannot eliminate all corrosion. Proper materials selection requires appropriate support from other elements of an integrity protection program. The elements of integrity preservation include: materials selection (type and corrosion allowance); management limits on operating conditions allowed; feed quality control; chemical additives for corrosion reduction; and preventive maintenance and inspection (PMI). The following discussion must be taken in the context of the application of required supporting work in all the other areas. Within that context, specific materials recommendations are made to minimize corrosion due to the most common causes in the crude unit. (author)

  9. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    Science.gov (United States)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  10. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  11. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    Science.gov (United States)

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  12. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  13. Materials Applications for Non-Lethal: Aqueous Foams

    International Nuclear Information System (INIS)

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  14. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  15. Microwave processing of materials. 2

    International Nuclear Information System (INIS)

    This volume has been divided into nine topical parts. The papers in Part I provide a general overview of materials processing throughout many parts of the world. Papers in Part II give some previously unpublished applications of microwave energy and show clearly instances in which the kinetics of chemical reactions have been enhanced. Part III contains papers which describe the design and development of applicators which can be used to apply electromagnetic fields to various materials. Part IV gives papers which are attempting to numerically model the complex interactions of electromagnetic radiation with materials and bring some scientific insight into the unusual observations made by materials scientists. Part V gives a number of papers concerned with the microwave processing of ceramic materials. Unusual microstructures, reduced activation energies for densification, and improved properties are all mentioned in these papers. Part VI contains papers pertinent to the effects observed for biological specimens. In particular, a new technique for detecting the presence of the AIDS virus using microwave energy is described. Part VII gives papers which enumerate several commercial applications of microwave energy. Part VIII gives a series of papers which encompass a wide area of research on polymers and polymer composites sponsored by DARPA and managed by the U.S. Air Force and Army. Part IX contains papers which describe the various techniques for determining dielectric properties of materials, an extremely important area of research for supporting the use of electromagnetic energy in heating materials

  16. Plasma Processing of Advanced Materials

    Energy Technology Data Exchange (ETDEWEB)

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  17. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  18. FNAS materials processing and characterization

    Science.gov (United States)

    Golben, John P.

    1991-01-01

    Research on melt-sintered high temperature superconducting materials is presented. The vibrating sample magnetometer has become a useful characterization tool for the study of high temperature superconductors. Important information regarding the superconducting properties of a sample can be obtained without actually making contact with the sample itself. A step toward microgravity processing of high temperature superconductors was taken. In the future, the samples need to be optimized prior to this processing of the sample before the specific effects of the microgravity environment can be isolated. A series of melt-sintered samples show that bulk processing of high temperature superconductors is getting better.

  19. Process and self-acidifying liquid system for dissolving a siliceous material in a remote location

    Energy Technology Data Exchange (ETDEWEB)

    Lybarger, J.H.; Templeton, C.C.; Richardson, E.A.; Scheuerman, R.F.

    1980-12-02

    A process is provided for dissolving a siliceous material in a remote location into which a fluid can be flowed. The process comprises the following: 1) mixing at least one aqueous liquid, at least one water-soluble fluoride salt, and at least one relatively slowly reactive acid-yielding material that yeilds an acid capable of converting an aqueous solution of the fluoride salt to an aqueous solution of hydrofluoric acid, to form a substantially homogeneous liquid system in which the components interact to provide an aqueous solution that contains enough hydrofluoric acid to dissolve bentonite while having a pH of at least approx. 2; 2) flowing the liquid system into contact with siliceous material to be dissolved; and 3) adjusting the composition of the liquid system and the rate of flowing it so that the siliceous material is contacted by the system while the bentonite-dissolving proportion of hydrofluoric acid is present in the aqueous solution. 5 claims.

  20. Aqueous ammonia process for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Darde, V.; Thomsen, K.; Stenby, E.H. (Technical Univ. of Denmark, Dept. of Chemical and Biochemical Engineering, Kgs. Lyngby (Denmark)); Well, W.J.M. van (DONG Energy Power, Chemical and Materials Dept (Denmark))

    2009-09-15

    This work deals with the study of a post combustion carbon dioxide capture process using aqueous solutions of ammonia as solvent. Amine solutions have been commonly used for the commercial production of CO{sub 2}. The main disadvantage related to the use of amine solutions is the high energy consumption (3.5 - 4 GJ/ton CO{sub 2}) and the high degradation rate of the amines. The heat of absorption of carbon dioxide by ammonia is significantly lower than for alkanolamines. Hence, this process shows good perspectives. However, a scientific understanding of the processes is required. In order to simulate and optimize the process, a thermodynamic model for the system is required. The properties of the NH{sub 3}-CO{sub 2}-H{sub 2}O system were previously modeled using the Extended UNIQUAC electrolyte model in the temperature range from 0 to 110 deg. C, the pressure range from 0 to 100 bars and for a molality of ammonia up to approximately 80. In this work, the validity of this model was extended up to 150 deg. C. Also additional data for the enthalpy of partial evaporation and speciation data were used. The equilibrium composition and enthalpy of the different streams of the process have been studied, based on the information from a patent. The results show that solid phases consisting of ammonium carbonate compounds are formed in the absorber. It also shows that the pure CO{sub 2} stream that leaves the stripper is pressurized. The energy requirements in the absorber and in the desorber have been studied. An energy consumption in the desorber lower than 2 GJ/ton CO{sub 2} can be reached. (au)

  1. Multifunctional modification of wool using an enzymatic process in aqueous-organic media.

    Science.gov (United States)

    Hossain, Kh M Gaffar; González, María Díaz; Lozano, Guillem Rocasalbas; Tzanov, Tzanko

    2009-04-20

    An enzymatic method using laccases for grafting the water insoluble phenolic compound lauryl gallate on wool fabric was developed. To find the compromise conditions at which the substrate is soluble while the enzyme remains active, the reaction was carried out in an 80/20 (v/v, %) aqueous-ethanol mixture, where the enzyme retains 75-80% of its activity. The enzymatic coating of wool with lauryl gallate provided in a one-step process a multifunctional textile material with antioxidant, antibacterial and water repellent properties. PMID:19428731

  2. Waste package materials selection process

    International Nuclear Information System (INIS)

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  3. Modelling Hospital Materials Management Processes

    Directory of Open Access Journals (Sweden)

    Raffaele Iannone

    2013-06-01

    integrated and detailed analysis and description model for hospital materials management data and tasks, which is able to tackle information from patient requirements to usage, from replenishment requests to supplying and handling activities. The model takes account of medical risk reduction, traceability and streamlined processes perspectives. Second, the paper translates this information into a business process model and mathematical formalization.The study provides a useful guide to the various relevant technology‐related, management and business issues, laying the foundations of an efficient reengineering of the supply chain to reduce healthcare costs and improve the quality of care.

  4. Modelling Hospital Materials Management Processes

    OpenAIRE

    Raffaele Iannone; Alfredo Lambiase; Salvatore Miranda; Stefano Riemma; Debora Sarno

    2013-01-01

    Materials management is an important issue for healthcare systems because it influences clinical and financial outcomes. Before selecting, adapting and implementing leading or optimized practices, a good understanding of processes and activities has to be developed. In real applications, the information flows and business strategies involved are different from hospital to hospital, depending on context, culture and available resources; it is therefore difficult to find a comprehensive and exh...

  5. Industrial Materials Processing Laser Markets

    Science.gov (United States)

    Followwill, Dorman

    1989-03-01

    The way I would like to handle this morning is first, to give you an overview before I put anything up in terms of slides. An overview of the study that we produced a couple of months ago. It is entitled "Industrial Materials Processing Laser Markets", and if you want information on that particular study, then you can speak with me at the coffee break.

  6. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.

    Science.gov (United States)

    Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-05-24

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active

  7. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    Science.gov (United States)

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater. PMID:26512324

  8. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    Science.gov (United States)

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater.

  9. Sonochemically induced decomposition of energetic materials in aqueous media.

    Science.gov (United States)

    Qadir, Lala R; Osburn-Atkinson, Elizabeth J; Swider-Lyons, Karen E; Cepak, Veronica M; Rolison, Debra R

    2003-03-01

    This study demonstrates that ultrasound rapidly degrades the energetic compounds RDX (cyclo-1,3,5-trinitramine-2,4,6-trimethylene) and ADN (ammonium dinitramide) in aqueous microheterogeneous media. The conditions for effective degradation of these nitramines, as monitored by UV absorption spectroscopy, were determined by varying sonication time, the heterogeneous phase and its suspension density, and the concentration of NaOH. In the presence of 5 mg/ml of aluminum powder and at pH approximately 12 (10 mM NaOH), 74% of the RDX and 86% of the ammonium dinitramide (ADN) in near-saturated solutions decompose within the first 20 min of sonication (20 kHz; 50 W; < or =5 degrees C). Sonication without Al powder and base yields minimal degradation of either RDX and ADN (approximately 5-10%) or the nitrite/nitrate ions that are expected byproducts during RDX and ADN degradation. Sonication at high pH in the presence of dispersed aluminosilicate zeolite, alumina, or titanium dioxide also yields minimal degradation. Preliminary electrochemical studies and product analyses indicate that in situ ultrasonic generation of metallic aluminum and/or aluminum hydride drives reductive denitration of the nitramines. Sonochemical treatment in the presence of a reductant offers an effective and rapid waste remediation option for energetic waste compounds. PMID:12531718

  10. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    Science.gov (United States)

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  11. Moessbauer Mineralogical Evidence for Aqueous Processes at Gusev Crater and Meridiani Planum

    Science.gov (United States)

    Morris, R. V.; Klingelhoefer, G.

    2004-12-01

    The Moessbauer spectrometers on the MER rovers have measured the relative abundances of iron with respect to both oxidation state and iron-bearing phase at Gusev Crater (Spirit rover) and Meridiani Planum (Opportunity rover). The assemblage of phases indicates aqueous alteration processes at both landing sites. Although the rock and soil of the Gusev Crater plains are dominated by Fe(2+) in olivine-bearing basalt (~Fo60), a Fe(3+)-rich component (nanophase ferric oxide, np-Ox) has significant abundance in surface soils (13-28% of total Fe) and in the surface coatings (rinds) of certain rocks (39%) but not in rock interiors exposed by grinding (5-6%). The mode of occurrence of np-Ox implies that it is the product of oxidative alteration of Fe(2+) silicate and oxide phases in the presence of H2O. The ubiquitous presence of sulfur in soil and in rock coatings, as determined by the MER-A APXS instrument, suggests that the alteration occurred under acid-sulfate conditions, so that both hydrolytic and sulfatic reactions are viable. A possible source for the weathering agents is volcanic emanations rich in H2O and SO2. Generally, rocks in the Columbia Hills are significantly more altered than those in the Gusev plains, with a higher proportion of Fe(3+) oxide phases compared to Fe(2+) silicate phases. This mineralogical dichotomy implies a difference in the timing, rate, duration, and/or mechanism of alteration for basaltic material in the Gusev plains compared to basaltic material in the Columbia Hills. It is possible, for example, that the basaltic material in the Columbia Hills underwent aqueous alteration in a paleoclimate that favored nearly complete alteration and that the basaltic material of the Gusev plains will not achieve the degree of alteration exhibited by the Columbia Hills under current martian surface conditions. Because its structure contains the hydroxide anion, the Moessbauer detection of the hydroxide sulfate jarosite (K,Na)Fe3(SO4)2(OH)6 in outcrops

  12. The processing of semiconductor materials

    Science.gov (United States)

    1979-01-01

    Five experiments involving the processing of semiconductor materials were performed during the Skylab mission. After discussions on semiconductors and their unique electronic properties, and techniques of crystal growth, these five experiments are presented. Four melt growth experiments were attempted: (1) steady state growth and segregation under zero gravity (InSb); (2) seeded, containerless solidification of InSb; (3) influence of gravity-free solidification on microsegregation; and (4) directional solidification of InSb-GaSb alloys. One vapor growth experiment, crystal growth by vapor transport, was attempted.

  13. Computational Material Processing in Microgravity

    Science.gov (United States)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  14. Sodium Titanium Phosphate as Anode Materials for Aqueous Sodium-ion Batteries

    Science.gov (United States)

    Wu, Wei

    Renewable energy technology has become one of the promising energy solutions in the future. However, limited by their cyclic behavior, large scale energy storage devices are needed to boost their adoptions in the market. The existing energy storage technologies have limitations that inhibit their adoptions for large scale applications. Our group suggests that one reasonable technology that might overcome these issues is the neutral pH aqueous electrolyte sodium-ion battery. One potential anode material is NaTi2(PO4)3, which has a relatively flexible NASICON skeleton structure and is known in general to have stable performance characteristics in extreme environments. In this work, there are four objectives to study this potential anode material: 1) Develop a rapid method to synthesize electrochemically functional NaTi2(PO4)3. In this case "Electrochemically functional" means the material can store usable capacity for practical application in a composite electrode. 2) Quantify the effect of intimate carbon on NaTi2(PO4)3 electrochemical functionality. (Electrochemical functionality regards the capacity and rate capability of electrode materials) 3) Investigate the stability of NaTi2(PO 4)3 in pH and thermal extremes and the mechanism of capacity fading under different cycling conditions. 4) Examine the performance of NaTi 2(PO4)3 in high salt concentration electrolyte and Li+ electrolyte. NaTi2(PO4)3 has been successfully synthesized via a rapid microwave method. The highest specific capacity is around 85mAh/g has been demonstrated. The effect of different carbon materials (namely graphite and carbon nanotubes) and different processes of adding them (pre and post- synthesis) on the electrochemical performance for sodium titanium phosphate has been extensively studied. Graphite coated NaTi2(PO4) 3 with carbon nanotubes composite electrode has demonstrated a specific capacity of 130mAh/g around theoretical value at 0.1C rate. The effect of the electrolyte (with

  15. Amylose Rich Starch as an Aqueous Based Pharmaceutical Coating Material - Review

    OpenAIRE

    Dureja, H; Khatak, S.; KHATAK M; Kalra, M.

    2011-01-01

    Until about 1950, sugar was the first choice as coating agent for pharmaceutical preparations. As the tablets coating technique was changed from sugar coating to film coating, a number of polymers like Methyl Cellulose (MC), Hydroxy Propyl Methyl Cellulose (HPMC) and Ethyl Cellulose (EC) become the main coating materials in place of sugar. As for as aqueous coating materials are concerned, Sodium Carboxy Methyl Cellulose (Sod. CMC), Polyvinyl Acetate (PA), Polyvinyl Pyrrolidone (PVP), Sodium ...

  16. Process for acidizing hot siliceous material

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerman, R. F.; Silverman, S. A.

    1985-10-22

    The dissolving of siliceous material in an environment containing corrodable metal and having a temperature exceeding about 300/sup 0/ F. is improved by using an aqueous solution containing an amount of ammonium fluoride equivalent to that in a 2-3 molar solution of hydrogen fluoride and enough weak acid and weak acid salt to provide a pH of near to but less than 7.

  17. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  18. CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

    OpenAIRE

    Yuan, Jinliang; Yu, Jong-Sung; Sundén, Bengt

    2015-01-01

    A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electroc...

  19. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    Science.gov (United States)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  20. Preparation and Characterization of M-Type Barium Ferrite Fibers via Aqueous Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    GONG Cairong; FAN Guoliang; SONG Chonglin; L(U) Gang

    2007-01-01

    BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)( HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 μm corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the precursor sol. And using diethanolamine or hexadecylamine as an additive, well-structured BaFe12O19 fibers could be obtained.

  1. Emerging materials by advanced processing

    International Nuclear Information System (INIS)

    This volume contains 36 contributions with following subjects (selection): Densification of highly reactive aluminium titanate powders; influence of precursor history on carbon fiber characteristics; influence of water removal rate during calcination on the crystallization of ZrO2 from amorphous hydrous precipitates; tape casting of AlN; influence of processing on the properties of beta-SiC powders; corrosion of SiSiC by gases and basic slag at high temperature; influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys; mechanical alloying for development of sintered steels with high hard phase content (NbC); early stages of mechanical alloying in Ni-Ti and Ni-Al powder mixtures; growth and microstructural development of melt-oxidation derived Al2O3/Al-base composites; fabrication of RSBN composites; synthesis of high density coridierite bodies; comparative studies on post-HIP and sinter-HIP treatments on transformation thoughened ceramics; sinter HIP of SiC; precipitation mixing of Si3N4 with bimetallic oxides; temperature dependence of the interfacial energies in Al2O3-liquid metal systems; synthesis and microstructural examination of Synroc B; solid state investigation of ceramic-metal bonding; thermophysical properties of MgAl2O4; preparation, sintering and thermal expansion of MgAl2O4; microstructural studies on alumina-zirconia and metallized alumina ceramics; electrodeposition of metals (e.g. Ti, Mo, In) and metal oxides from molten salts; electrochemical deposition of Ti from nonaqueous media (DMSO, DMF); lithium as anode material in power sources (passivation); reduction of chromium(VI) when solar selective black chromium is deposited; thermodynamic optimization of phase diagrams (computer calculations); optimization of Na-Tl phase diagram; phase relations in the Y-Si-Al-O-N system: Controlled manufacturing of alpha/beta-SIALON composites. (MM)

  2. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-01

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  3. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.fr

    2015-09-15

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO{sub 4} (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O{sub 4} materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO{sub 4} (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Caaqueous liquids. • Narrow size distributions explained by ionic association in non-aqueous media. • Nanoparticles of less than 10 nm size and highest ever specific surface areas were obtained. • Optical gap of scheelites changes in the series Ca

  4. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  5. Organic-inorganic hybrid materials for boron removal from aqueous media

    OpenAIRE

    SANFELIU CANO, CRISTINA

    2016-01-01

    [EN] The present PhD thesis is centred in the design (using concepts of supramolecular chemistry), synthesis and characterization of different hybrid organic-inorganic materials for boron removal from aqueous media. The interaction between boron and organic groups, polyols, used in the development of these new adsorbents is also studied. In the first part of the thesis it is presented a brief review of supramolecular chemistry concepts, chemistry of boron and also the main methods for bor...

  6. Adsorption of methylene blue from aqueous solution on zeolitic material for color and toxicity removal

    OpenAIRE

    Denise Alves Fungaro; Lucas Caetano Grosche; Alessandro Pinheiro; Juliana de Carvalho Izidoro; Sueli Ivone Borrely

    2011-01-01

    The adsorption of methylene blue (MB) from aqueous solution was carried out using zeolite. This adsorbent material was synthesized from fly ash as a low-cost adsorbent, allowing fly ash to become a recycled residue. Factors that affected adsorption were evaluated: initial dye concentration, contact time and temperature. The equilibrium of adsorption was modeled by Langmuir, Freundlich and Temkin models. The adsorption obtained data were well described by Temkin, the adsorption isotherm model....

  7. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  8. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.

  9. Material and process selection using product examples

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2001-01-01

    a search engine, and through hyperlinks can relevant materials and processes be explored. Realising that designers are very sensitive to user interfaces do all descriptions of materials, processes and products include graphical descriptions, i.e. pictures or computer graphics.......The objective of the paper is to suggest a different procedure for selecting materials and processes within the product development work. The procedure includes using product examples in order to increase the number of alternative materials and processes that is considered. Product examples can...... communicate information about materials and processes in a very concentrated and effective way. The product examples represent desired material properties but also includes information that can not be associated directly to the material, e.g. functional or perceived attributes. Previous studies suggest...

  10. Material and process selection using product examples

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2002-01-01

    a search engine, and through hyperlinks can relevant materials and processes be explored. Realising that designers are very sensitive to user interfaces do all descriptions of materials, processes and products include graphical descriptions, i.e. pictures or computer graphics.......The objective of the paper is to suggest a different procedure for selecting materials and processes within the product development work. The procedure includes using product examples in order to increase the number of alternative materials and processes that is considered. Product examples can...... communicate information about materials and processes in a very concentrated and effective way. The product examples represent desired material properties but also includes information that can not be associated directly to the material, e.g. functional or perceived attributes. Previous studies suggest...

  11. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  12. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  13. Electrospinning Materials, Processing, and Applications

    CERN Document Server

    Wendorff, Joachim H; Greiner, Andreas

    2012-01-01

    Bringing together the world's experts in the field, this book summarizes the state-of-the art in electrospinning with detailed coverage of the various techniques, material systems, and their resulting fiber structures and properties, theoretical aspects, and applications. Throughout the book, the current status of knowledge is introduced with a critical view on accomplishments and novel persepectives. An experimental section gives hands-on guidance to beginners and experts alike.

  14. Sustainable carbon materials from hydrothermal processes

    CERN Document Server

    Titirici, Maria-Magdalena

    2013-01-01

    The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application fo

  15. Certification of the equivalent spherical diameters of silica nanoparticles in aqueous solution - Certified Reference Material ERM®-FD304

    OpenAIRE

    FRANKS Katrin; BRAUN ADELINA; CHAROUD-GOT Jean; COUTEAU Olivier; KESTENS Vikram; LAMBERTY MARIE ANDREE; Linsinger, Thomas; Roebben, Gert

    2011-01-01

    This report describes the certification of several equivalent spherical diameters of silica nanoparticles in aqueous solution, Certified Reference Material (CRM) ERM®-FD304. The CRM has been certified by the European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Geel, BE. ERM-FD304 consists of silica nanoparticles suspended in aqueous solution. The intended use of this CRM is t o check the performance of instruments and methods that determine...

  16. Possibilities of Laser Processing of Paper Materials

    Science.gov (United States)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  17. Modelling of the aqueous debittering process of Lupinus mutabilis Sweet

    NARCIS (Netherlands)

    Carvajal-Larenas, F.E.; Nout, M.J.R.; Boekel, van M.A.J.S.; Linnemann, A.R.

    2013-01-01

    We investigated the process of lupin debittering by soaking, cooking and washing in water using a newly designed hydroagitator. The effect on alkaloids content, solids in the product, final weight, processing time and water and energy consumption were expressed in a mathematical model for optimizati

  18. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material; Remocion de azul indigo y cadmio presentes en soluciones acuosas empleando un material zeolitico modificado y un material carbonoso activado

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez S, E. E.

    2011-07-01

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na{sup +} and Fe{sup 3+} solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous

  19. Roadmap for Process Equipment Materials Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  20. Materials, Processes, and Environmental Engineering Network

    Science.gov (United States)

    White, Margo M.

    1993-01-01

    Attention is given to the Materials, Processes, and Environmental Engineering Network (MPEEN), which was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory of NASA-Marshall. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. The data base is NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team (NOET) to be hazardous to the environment. The data base also contains the usage and performance characteristics of these materials.

  1. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    Science.gov (United States)

    Afanasiev, Pavel

    2015-09-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra.

  2. The influence of ionizing radiation on the formation of polymeric material from aqueous malononitrile

    International Nuclear Information System (INIS)

    The CN group might have made it appearance in the early stages of chemical evolution, for this reason the radiolytic behavior of nitriles have relevance to the study of prebiotic chemistry. A systematic study of the influence of the irradiation on nitriles and dinitriles have been carried at ICN. In this paper we present the formation of polymeric material from the γ irradiation of aqueous solutions of malonitrile 0.1 M, oxygen free, at their natural ph s. The analysis of the radiolytic product was by exclusion chromatography, some characteristics of the polymer material were found by IR spectroscopy, Biuret test, etc. The results showed that in this system several polymeric materials are formed with a molecular weight about 10,000 daltons. (Author)

  3. Amylose Rich Starch as an Aqueous Based Pharmaceutical Coating Material - Review

    Directory of Open Access Journals (Sweden)

    H. Dureja

    2011-01-01

    Full Text Available Until about 1950, sugar was the first choice as coating agent for pharmaceutical preparations. As the tablets coating technique was changed from sugar coating to film coating, a number of polymers like Methyl Cellulose (MC, Hydroxy Propyl Methyl Cellulose (HPMC and Ethyl Cellulose (EC become the main coating materials in place of sugar. As for as aqueous coating materials are concerned, Sodium Carboxy Methyl Cellulose (Sod. CMC, Polyvinyl Acetate (PA, Polyvinyl Pyrrolidone (PVP, Sodium Alginate, Poly Ethyl Glycol and HPMC etc. are used either alone or in combination. Starch, especially amylose rich starch is known to have good film forming property. Therefore amylose rich starch is now-a-days used as aqueous based coating materials for pharmaceutical coating. It is successfully used for coating in combination with sorbitol and glycerol as plasticizer. A nine months study on prepared films justifies the stability of amylose rich starch. Both the dispersion and solution of amylose rich starch are used for coating purpose. The amylose rich starch composition for this is 70% amylose and 30% amylopectin. Aging problems are overcome by proper type and proper concentration of plasticizer. The coating with amylose rich starch provides safety, economic and ecological benefits.

  4. Multiphase simulation of mine waters and aqueous leaching processes

    Directory of Open Access Journals (Sweden)

    Pajarre Risto

    2016-01-01

    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  5. Removal of Pu-238 from aqueous process streams using a polymer filtration process

    Science.gov (United States)

    Jarvinen, Gordon D.; Purdy, Geraldine M.; Rau, Karen C.; Remeroski, M. L.; Reimus, Mary Ann H.; Ramsey, Kevin B.; Foltyn, Elizabeth M.; Smith, Barbara F.; Robison, Thomas W.

    2001-02-01

    A glovebox facility is under construction at Los Alamos that will recover a significant quantity of the impure Pu-238 that exists in scrap and residues from past production operations. The general flowsheet consists of milling, acid dissolution, ion exchange, precipitation, calcination, oxygen isotope exchange, and waste treatment operations. As part of the waste treatment operations we are using polymer filtration to remove Pu-238 to meet facility discharge limits. Polymer filtration (PF) technology uses water-soluble polymers prepared with selective receptor sites to sequester metal ions, organic molecules, and other species from dilute aqueous solutions. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using ultrafiltration (UF) methods. Water and small, unbound components of the solution pass freely through the UF membrane while the polymer concentrates in the retentate. The permeate stream is ``cleaned'' of the components bound to the polymer and can be used in further processing steps or discharged. The concentrated retentate solution can be treated to give a final waste form or to release the sequestered species from the receptor sites by adjusting the conditions in the retentate solution. The PF technology is part of our work to develop a safe, reliable and cost-effective scrap recovery operation with high process efficiencies, minimal waste generation, and high product purity. .

  6. Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material

    OpenAIRE

    Natalie Jenkins; Clayton Petty; Jonathan Phillips

    2016-01-01

    A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >108 over the full range of dielectric thicknesses of 0.38–3.9 mm and discharge times of 0.25–>100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknes...

  7. Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dehghani

    2016-01-01

    Full Text Available Background High levels of nitrate anion are frequently detected in many groundwater resources in Fars province. Objectives The present study aimed to determine the removal efficiency of nitrate from aqueous solutions by electrocoagulation process using aluminum and iron electrodes. Materials and Methods A laboratory-scale batch reactor was conducted to determine nitrate removal efficiency using the electrocoagulation method. The removal of nitrate was determined at pH levels of 3, 7, and 11, different voltages (15, 20, and 30 V, and operation times of 30, 60, and 75 min, respectively. Data were analyzed using the SPSS software version 16 (Chicago, Illinois, USA and Pearson’s correlation coefficient was used to analyze the relationship between the parameters. Results Results of the present study showed that the removal efficiency was increased from 27% to 86% as pH increased from 3 to 11 at the optimal condition of 30 V and 75 min operation time. Moreover, by increasing the reaction time from 30 V to 75 min the removal efficiency was increased from 63% to 86%, respectively (30 V and pH = 11. Pearson’s correlation analysis showed that there was a significant relationship between removal efficiency and voltage and reaction time as well (P < 0.01. Conclusions In conclusion, the electrocoagulation process can be used for removing nitrate from water resources because of high efficiency, simplicity, and relatively low cost.

  8. Aqueous Processes for Dyeing Generic, Unmodified Polypropylene Fiber

    Directory of Open Access Journals (Sweden)

    Murari L. Gupta

    2010-06-01

    Full Text Available Acid leuco vat dyeings of polypropylene (PP fabrics in combinations of a trichromatic series of colorants (red, yellow and blue plus an orange were performed in order to determine the compatibility of the component colorants in the developed single stage, batch exhaust dyeing process reported earlier. Cross-section micrographs of dyed fibers revealed the absence of "ring-dyeing". Tensile tests and X-ray crystallinity results confirmed that the developed dyeing process did not significantly alter the tensile strength and modulus of the dyed PP textiles. PP fabrics dyed with simulated, continuous acid vat dyeing processes (pad-steam and pad-dry heat demonstrated good color yields and levelness with adequate fastness to crocking, washing and dry cleaning.

  9. Impact of backmixing of the aqueous phase on two-component rare earth separation process

    Institute of Scientific and Technical Information of China (English)

    WU Sheng; CHENG Fuxiang; LIAO Chunsheng; YAN Chunhua

    2013-01-01

    Solvent extraction based on mixer-settler is the major industrial method of rare earth (RE) separation.In the mixer-settler extraction process,due to the insufficient settling time in normal circumstances,backmixing of the aqueous phase could have significant impact on the process of RE extraction separation.Therefore on the basis of the extraction equilibrium and mass balance of the mixer-settler extraction process,here we developed a mathematic expression of the aqueous phase backmixing in a two-component separation process,and obtained a quantitative analysis of the backmixing effect on the purification process by the approximations according to certain hypotheses.Two extraction systems of La/Ce and Pr/Nd separation were chosen as the examples to analyze the backmixing effect,and the results showed that the aqueous backmixing had greater influence in the scrubbing segment than in the extraction segment,especially in the system with a high separation factor such as La/Ce separation.Therefore it was suggested that the aqueous backmixing effect should be well attended in the design and application of RE extraction separation.

  10. Multifunctional Polycrystalline Ferroelectric Materials Processing and Properties

    CERN Document Server

    Pardo, Lorena

    2011-01-01

    This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Mate...

  11. Thermodynamic study of the adsorption of chromium ions from aqueous solution on waste corn cobs material

    Directory of Open Access Journals (Sweden)

    Rafael A. Fonseca-Correa

    2014-12-01

    Full Text Available The paper shows the results of a study obtaining activated carbon from corn cobs and determining its use as an adsorbent for the removal of Cr3+ from aqueous solutions. The finely ground precursor was subjected to pyrolysis at 600 and 900 °C in a nitrogen atmosphere and chemical activation with H2O2 and HNO3. The effects of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained were tested. The samples were characterised chemically and texturally. Were obtained microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and exhibited differences acid-base character of the surface. The results obtained shows that a suitable good option of the activation procedure for corncobs permits the production of economic adsorbents with high sorption capacity for Cr3+ from aqueous solutions. A detailed study of immersion calorimetry was performed with carbons prepared from corn cobs to establish possible relationships with these materials between the enthalpies of immersion and textural and chemical parameters.

  12. Total Flavonoids Content in the Raw Material and Aqueous Extractives from Bauhinia monandra Kurz (Caesalpiniaceae)

    Science.gov (United States)

    Fernandes, Ana Josane Dantas; Ferreira, Magda Rhayanny Assunção; Randau, Karina Perrelli; de Souza, Tatiane Pereira; Soares, Luiz Alberto Lira

    2012-01-01

    The aim of this work was to evaluate the spectrophotometric methodology for determining the total flavonoid content (TFC) in herbal drug and derived products from Bauhinia monandra Kurz. Several analytical parameters from this method grounded on the complex formed between flavonoids and AlCl3 were evaluated such as herbal amount (0.25 to 1.25 g); solvent composition (ethanol 40 to 80%, v/v); as well as the reaction time and AlCl3 concentration (2 to 9%, w/v). The method was adjusted to aqueous extractives and its performance studied through precision, linearity and preliminary robustness. The results showed an important dependence of the method response from reaction time, AlCl3 concentration, sample amount, and solvent mixture. After choosing the optimized condition, the method was applied for the matrixes (herbal material and extractives), showing precision lower than 5% (for both parameters repeatability and intermediate precision), coefficient of determination higher than 0.99, and no important influence could be observed for slight variations from wavelength or AlCl3 concentration. Thus, it could be concluded that the evaluated analytical procedure was suitable to quantify the total flavonoid content in raw material and aqueous extractives from leaves of B. monandra. PMID:22701375

  13. Humic Acid Degradation via Solar Photo-Fenton Process in Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Seyed Ali Sajjadi

    2015-08-01

    Full Text Available Control of mutagenic and carcinogenic disinfection by-products, particularly Trihalomethanes (THMs and Halo Acetic Acids (HAAs in water treatment process is critical, due to their adverse effects on human health. Generally, reducing the toxicity of these by-products hinges on prior removal of the precursor materials, such as Humic Acid (HA in drinking water. This study was conducted to investigate the role of some parameters that could affect the removal of HA, including HA (5 and 10 ppm and H2O2 (20, 40, 60, and 80 ppm initial concentrations, Iron (II, sulfate heptahydrate dosage (4, 8, 12, and 16 ppm, pH (2, 3, 4 and 5, Oxidation time (5, 10, 15 and 30 min, and Sunlight levels (322±13 kWm-2. To accelerate the process of HA removal, the Solar Photo-Fenton (SPF process was employed by direct irradiation of converged sunlight in a Parabolic Trough Collectors (PTC, with 3m2 effective area. HA levels were measured via quantifying Dissolved Organic Carbon (DOC concentrations by means of a TOC Analyzer method. The results showed that the SPF process is under control of the Fe & H2O2 ratio, the Fe2+ dosage and especially the pH quantity. In optimal condition, (pH: 4, oxidation time: 30min, initial HA levels: 50 ppm, H2O2 concentrations: 20 ppm Fe+2 levels: 4 ppm, the study found more than 98% DOC removal. In conclusion, the SPF, as an economically effective technique, could be applied for the removal of HA in aqueous environments.

  14. Evolutionary optimization of production materials workflow processes

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter;

    2014-01-01

    We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment of the ...... where a baked goods company seeks to improve production time while simultaneously minimising the cost and use of resources....

  15. Paradigm shift in materials processing; the intelligent processing revolution

    International Nuclear Information System (INIS)

    During the last several decades, the importance of materials processing in the control of microstructure and materials properties has been recognized and, accordingly, the materials engineering community has dedicated much effort to studying the physics of the process. These endeavors have provided an understanding of the phenomena which are relevant. However, a paradigm shift is taking place in that the physics oriented approach to materials processing is being replaced by a control oriented approach. What is needed today is the ability to control the process and, thus, the trajectory of the controllable variables in a temporal space. Such a knowledge based approach to materials processing which requires understanding, sensors, and controls is the revolution taking place in the materials engineering field. The essence is a process which can learn and develop ''intelligence'' as it progresses. This address will present and discuss the basis and the need for a knowledge based approach to materials processing. Furthermore, specific industrial examples will be given to illustrate implementation of intelligent processing. Finally, the challenges ahead and the impediments we face as a community will also be addressed. (orig.)

  16. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing.

    Science.gov (United States)

    Dávila, Izaskun; Gordobil, Oihana; Labidi, Jalel; Gullón, Patricia

    2016-07-01

    Vine shoots were subjected to non-isothermal aqueous processing. A range of severities (S0) from 3.20 to 4.65 was assayed and their effects in terms of solubilization, composition, molar mass distribution, structural characterization and thermal stability of the liquors were studied using HPLC, HPSEC, TGA and FTIR. The spent solids were characterized by HPLC and FTIR. When autohydrolysis was carried out at S0=4.01, the substrate solubilization achieved a 38.7% of the raw material and 83.1% of the initial xylan was converted into xylooligosaccharides (XOS). The amount of TOS (total oligosaccharides) in the hydrolysates was 28.4g/L while the other non volatile compounds (ONVC) were 0.08g/g NVC. The spent solid from the treatment at S0=4.01 was composed about 90% of cellulose and lignin. Therefore, it can be concluded that autohydrolysis is a suitable pretreatment of vine shoots such as a first stage of a biomass refinery. PMID:27054881

  17. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  18. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mego, W.A.

    1999-09-07

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  19. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  20. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate

    Directory of Open Access Journals (Sweden)

    Elizabeth Rojas García

    2014-12-01

    Full Text Available A Metal-Organic Framework (MOF, iron-benzenetricarboxylate (Fe(BTC, has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997 and revealed the ability of Fe(BTC to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1. The high recovery of the dye showed that Fe(BTC can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes.

  1. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    OpenAIRE

    Carmen Zaharia; Victoria Fedorcea; Adrian Beda; Victor Amarandei; Augustin Muresan

    2014-01-01

    The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes) applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its) were tested for determination of the best performance in effluent decolorat...

  2. Aircraft gas turbine materials and processes.

    Science.gov (United States)

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  3. Final report on CCQM-K79: Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous matrix

    Science.gov (United States)

    Hein, Sebastian; Philipp, Rosemarie; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza

    2013-01-01

    The 2010 CCQM-K79 'Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous media' is the second key comparison directly testing the chemical measurement services provided to customers by National Metrology Institutes (NMIs) and Designated Institutes (DIs). CCQM-K79 compared the assigned ethanol values of proficiency test (PT) and certified reference materials (CRMs) using measurements made on these materials under repeatability conditions. Nine NMIs submitted 27 CRM or value-assigned PT materials for evaluation. These materials represent many of the higher-order reference materials then available for this commercially and forensically important measurand. The assigned ethanol mass fraction in the materials ranged from 0.1 mg/kg to 334 mg/kg. All materials were stored and prepared according the specifications provided by each NMI. Samples were processed and analyzed under repeatability conditions by one analytical team using a gas chromatography with flame ionization detection (GC-FID) method of demonstrated trueness and precision. Given the number of materials and the time required for each analysis, the majority of the measurements were made in two measurement campaigns ('runs'). Due to a shipping delay from one NMI, an unanticipated third campaign was required. In all three campaigns, replicate analyses (three injections of one preparation separated in time) were made for one randomly selected unit of each of the 27 materials. Nine of the 27 materials were gravimetrically diluted before measurement to provide solutions with ethanol mass fraction in the established linear range of the GC-FID method. The repeatability measurement value for each analyzed solution was estimated as the mean of all replicate values. The within- and between-campaign variance components were estimated using one-way ANOVA. Markov Chain Monte Carlo Bayesian analysis was used to estimate 95% level-of-confidence coverage intervals for the mean values. Uncertainty

  4. Nonminimum Phase Behavior of Laser Material Processing

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Weerkamp, N.P.; Meijer, J.; Postma, S.

    2001-01-01

    Optical sensors are increasingly applied in laser material processing to monitor and control the lasermaterial interaction zone. Dynamic models, relating the sensor signals (e.g. as temperature or molten area) to the process inputs (e.g. laser power or beam velocity), provide the basis for the desig

  5. Artificial intelligence in the materials processing laboratory

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  6. An improved approach for process monitoring in laser material processing

    Science.gov (United States)

    König, Hans-Georg; Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-04-01

    Process monitoring is used in many different laser material processes due to the demand for reliable and stable processes. Among different methods, on-axis process monitoring offers multiple advantages. To observe a laser material process it is unavoidable to choose a wavelength for observation that is different to the one used for material processing, otherwise the light of the processing laser would outshine the picture of the process. By choosing a different wavelength, lateral chromatic aberration occurs in not chromatically corrected optical systems with optical scanning units and f-Theta lenses. These aberrations lead to a truncated image of the process on the camera or the pyrometer, respectively. This is the reason for adulterated measurements and non-satisfying images of the process. A new approach for solving the problem of field dependent lateral chromatic aberration in process monitoring is presented. Therefore, the scanner-based optical system is reproduced in a simulation environment, to predict the occurring lateral chromatic aberrations. In addition, a second deflecting system is integrated into the system. By using simulation, a predictive control is designed that uses the additional deflecting system to introduce reverse lateral deviations in order to compensate the lateral effect of chromatic aberration. This paper illustrates the concept and the implementation of the predictive control, which is used to eliminate lateral chromatic aberrations in process monitoring, the simulation on which the system is based the optical system as well as the control concept.

  7. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    Science.gov (United States)

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS.

  8. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    Science.gov (United States)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  9. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  10. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    Science.gov (United States)

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity. PMID:26114268

  11. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  12. A low energy aqueous ammonia CO2 capture process

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Waseem Arshad, Muhammad; Blaker, Eirik Ask;

    2014-01-01

    by increasing temperature and L/G ratio but this leads to higher heat consumption, jeopardizing the economic feasibility. Here we developed, investigated, and optimized a novel CO2 capture process design using aqueous ammonia as solvent. The proposed configuration replaces the traditional stripper for solvent......The most pressing challenges regarding the use of ammonia for CO2 capture are the precipitation limitation and the energy penalty of solvent regeneration. Precipitation-free operation is a vital task since solids may cause the shutdown of the plant. Precipitation and slurry formation can be avoided...... with existing aqueous ammonia CO2 capture processes. Moreover, the thermal reactor can operate at 1 bar and 86 °C, therefore the NH3 regeneration temperature is reduced by approximately 50 qC. The integration of low- and mid- temperature waste heat becomes possible which can greatly improve the economics...

  13. Advances in Processing of Bulk Ferroelectric Materials

    Science.gov (United States)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  14. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. PMID:26761603

  15. A Novel Process for the Aqueous Extraction of Linseed Oil Based on Nitrogen Protection

    OpenAIRE

    Yuan Gao; Ning Wang; Lirong Xu; Xiuzhu Yu

    2015-01-01

    In order to prevent the oxidation of linseed oil and emulsification during extraction process, Nitrogen-protected and Salt-Assisted Aqueous Extraction (NSAE) of linseed oil was investigated in this study. Nitrogen-protected and salt-assisted were found to be the most effectively in weakening oil oxidation and improving the oil yield, respectively. The highest oil recovery of 87.55% was achieved under optimal conditions of sodium carbonate solution concentration (2 mol/L), solution-to-flour ra...

  16. A general and facile one-pot process of isothiocyanates from amines under aqueous conditions

    OpenAIRE

    Nan Sun; Bin Li,; Jianping Shao; Weimin Mo; Baoxiang Hu; Zhenlu Shen; Xinquan Hu

    2012-01-01

    A general and facile one-pot protocol for the preparation of a broad range of alkyl and aryl isothiocyanates has been developed from their corresponding primary amines under aqueous conditions. This synthetic process involves an in situ generation of a dithiocarbamate salt from the amine substrate by reacting with CS2 followed by elimination to form the isothiocyanate product with cyanuric acid as the desulfurylation reagent. The choice of solvent is of decisive importance for the successful ...

  17. Coprecal: materials accounting in the modified process

    International Nuclear Information System (INIS)

    This report presents the design and evaluation of an advanced materials accounting system for a uranium-plutonium nitrate-to-oxide coconversion facility based on the General Electric Coprecal process as modified by Savannah River Laboratory and Plant and DuPont Engineering. The modifications include adding small aliquot tanks to feed the process and reconfiguring the calciner filter systems. Diversion detection sensitivities for the modified Coprecal process are somewhat better than the original Coprecal design, but they are still significantly worse than a same-sized conversion facility based on the oxalate (III) precipitation process

  18. Heat accumulation during pulsed laser materials processing.

    Science.gov (United States)

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  19. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.

    Science.gov (United States)

    Yao, Shiyu; Chen, Zhaolai; Li, Fenghong; Xu, Bin; Song, Jiaxing; Yan, Lulin; Jin, Gan; Wen, Shanpeng; Wang, Chen; Yang, Bai; Tian, Wenjing

    2015-04-01

    Without using any environmentally hazardous organic solution, we fabricated hybrid solar cells (HSCs) based on the aqueous-solution-processed poly(3-hexylthiophene) (P3HT) dots and CdTe nanocrystals (NCs). As a novel aqueous donor material, the P3HT dots are prepared through a reprecipitation method and present an average diameter of 2.09 nm. When the P3HT dots are mixed with the aqueous CdTe NCs, the dependence of the device performance on the donor-acceptor ratio shows that the optimized ratio is 1:24. Specifically, the dependence of the device performance on the active-layer thermal annealing conditions is investigated. As a result, the optimized annealing temperature is 265 °C, and the incorporation of P3HT dots as donor materials successfully reduced the annealing time from 1 h to 10 min. In addition, the transmission electron microscopy and atomic force microscopy measurements demonstrate that the size of the CdTe NCs increased as the annealing time increased, and the annealing process facilitates the formation of a smoother interpenetrating network in the active layer. Therefore, charge separation and transport in the P3HT dots:CdTe NCs layer are more efficient. Eventually, the P3HT dots:CdTe NCs solar cells achieved 4.32% power conversion efficiency. The polymer dots and CdTe NCs based aqueous-solution-processed HSCs provide an effective way to avoid a long-time thermal annealing process of the P3HT dots:CdTe NCs layer and largely broaden the donor materials for aqueous HSCs. PMID:25781480

  20. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    International Nuclear Information System (INIS)

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g-1. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  1. Process for preparing electromagnetic interference shileding materials

    OpenAIRE

    Thomassin, Jean-Michel; Jérôme, Christine; Detrembleur, Christophe; Alexandre, Michaël; Huynen, Isabelle

    2011-01-01

    The present invention relates to a process for preparing an electromagnetic interference shielding material, or a precursor thereof, comprising a first polymer matrix and carbon conductive loads, said process comprises the steps of: (a) Forming a reaction mixture comprising carbon conductive loads and a polymerizable medium said polymerizable medium comprising one or more monomers dissolved in a solvent, (b) Exposing the reaction mixture to polymerization conditions to polymerize said polymer...

  2. Plasma characterization studies for materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Pfender, E.; Heberlein, J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  3. High-performance magnetic carbon materials in dye removal from aqueous solutions

    Science.gov (United States)

    Gao, Xiaoming; Zhang, Yu; Dai, Yuan; Fu, Feng

    2016-07-01

    To obtain a novel adsorbent with excellent adsorption capacity and convenient magnetic separation property, magnetic activated semi-coke was prepared by KOH activation method and further modified by FeCl3. The surface morphology, physical structure, chemical properties and textural characteristics of unmodified semi-coke, KOH-modified semi-coke and magnetic activated semi-coke were characterized by scanning electron microscopy, X-ray powder diffraction, N2 adsorption-desorption measurement, and electronic differential system. The adsorption characteristics of the magnetic activated semi-coke were explored for the removal of methyl orang (MO), methylene blue (MB), congo red (CR), acid fuchsin (AF), and rhodamine B (RB) from aqueous solution. The effects of adsorption parameters, including adsorbent dosage, pH and contact time, were investigated by comparing the adsorption properties of the magnetic activated semi-coke to RB. The result showed that the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. The adsorption experiment data indicated that the pseudosecond order model and the Langmuir model could well explain the adsorption processes of RB on the magnetic activated semi-coke, and the maximum adsorption capacity (qm) was 526.32 mg/g. The values of thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that the adsorption process depended on the temperature of the aqueous phase, and it was spontaneous and exothermic in nature. As the addition of the magnetic activated semi-coke, the color of the solution significantly faded. Subsequently, fast aggregation of the magnetic activated semi-coke from their homogeneous dispersion in the presence of an external magnetic field could be happened. So, the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity.

  4. PREFACE: Processing, Microstructure and Performance of Materials

    Science.gov (United States)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  5. Materials processing in space: Future technology trends

    Science.gov (United States)

    Barter, N. J.

    1980-01-01

    NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.

  6. Different Concepts of Materiality in Userdriven Processes

    DEFF Research Database (Denmark)

    Helms, Niels Henrik; Tellerup, Susanne

    This paper introduces the Quadrant model for innovation. The model should be seen as a generative model for structuring processes in innovation with complex partnerships. The paper discusses the model and especially emphasises the need for, and the different concepts of materiality in innovation....

  7. Physical and biochemical processes in composting material.

    NARCIS (Netherlands)

    Ginkel, van J.T.

    1996-01-01

    In the composting process temperature and oxygen concentrations are essential parameters. A main objective of this thesis is to formulate a mathematical model which can predict these parameters. In this model a number of important material properties must be used: composition in terms of volume frac

  8. Food Processing Curriculum Material and Resource Guide.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge.

    Intended for secondary vocational agriculture teachers, this curriculum guide contains a course outline and a resource manual for a seven-unit food processing course on meats. Within the course outline, units are divided into separate lessons. Materials provided for each lesson include preparation for instruction (student objectives, review of…

  9. Trends In Materials Processing With Laser Radiation

    Science.gov (United States)

    Herziger, G.; Kreutz, E. W.

    1989-04-01

    The objectives of reactive chemical and nonreactive thermal processing with laser radiation are outlined giving indication that processing with laser radiation is governed by a hierarchy of time constants originating from photon-matter interaction, phase transition dynamics, laser source excitation fluctuations,, and optical feedback in combination with the influence of beam delivery systems, processing/shielding gas flow configurations, robotics, production lines and environment. The minimization of losses by heat flow, reflection and transmission and the stringent need for quality assurance require as first approach the control of processing, which is mainly due to the capability of laser radiation source. The current status of laser radiation sources is reported giving information on the state of the art of processing with laser radiation in combination with subsequent demonstration of future trends and developments with respect to radiation sources, beam delivery, beam shaping, materials, processing and quality assurance.

  10. Advanced laser processing of glass materials

    Science.gov (United States)

    Sugioka, Koji; Obata, Kotaro; Cheng, Ya; Midorikawa, Katsumi

    2003-09-01

    Three kinds of advanced technologies using lasers for glass microprocessing are reviewed. Simultaneous irradiation of vacuum ultraviolet (VUV) laser beam, which possesses extremely small laser fluence, with ultraviolet (UV) laser achieves enhanced high surface and edge quality ablation in fused silica and other hard materials with little debris deposition as well as high-speed and high-efficiency refractive index modification of fused silica (VUV-UV multiwavelength excitation processing). Metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials, resulting in surface microstructuring, high-speed holes drilling, crack-free marking, color marking, painting and metal interconnection for the various kinds of glass materials (laser-induced plasma-assisted ablation (LIPAA)). In the meanwhile, a nature of multiphoton absorption of femtosecond laser by transparent materials realizes fabrication of true three-dimensional microstructures embedded in photosensitive glass.

  11. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels

    Science.gov (United States)

    This research studied the characteristics of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as a novel adsorbent material for removal of pesticide paraquat, from aqueous solution, with potential applications in curbing environmental risk from such herbicides. PAAm-MC hydrogels with differe...

  12. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  13. Bioremediation of zirconium from aqueous solution by coriolus versicolor: process optimization

    International Nuclear Information System (INIS)

    In the present study the potential of live mycelia of Coriolus versicolor was explored for the removal of zirconium from simulated aqueous solution. Optimum experimental parameters for the bioremediation of zirconium using C. versicolor biomass have been investigated by studying the effect of mycelia dose, concentration of zirconium, contact time and temperature. The isothermal studies indicated that the ongoing bioremediation process was exothermic in nature and obeyed Langmuir adsorption isotherm model. The Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) of bioremediation were also determined. The result showed that bioremediation of zirconium by live C. versicolor was feasible and spontaneous at room temperature. The equilibrium data verified the involvement of chemisorption during the bioremediation. The kinetic data indicated the operation of pseudo-second order process during the biosorption of zirconium from aqueous solution. Maximum bioremediation capacity (110.75 mg/g) of C. versicolor was observed under optimum operational conditions: pH 4.5, biomass dose 0.05 mg/100 mL, contact time 6 h and temperature 30 degree C. The results showed that C. versicolor could be used for bioremediation of heavy metal ions from aqueous systems. (author)

  14. Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material.

    Science.gov (United States)

    Quiroz, Marco A; Sánchez-Salas, José L; Reyna, Silvia; Bandala, Erick R; Peralta-Hernández, Juan M; Martínez-Huitle, Carlos A

    2014-03-15

    Electrochemical oxidation (ECOx) of 1-hydroxy-2,4-dinitrobenzene (or 2,4-dinitrophenol: 2,4-DNP) in aqueous solutions by electrolysis under galvanostatic control was studied at Pb/PbO2, Ti/SnO2, Ti/IrxRuySnO2 and Si/BDD anodes as a function of current density applied. Oxidative degradation of 2,4-DNP has clearly shown that electrode material and the current density applied were important parameters to optimize the oxidation process. It was observed that 2,4-DNP was oxidized at few substrates to CO2 with different results, obtaining good removal efficiencies at Pb/PbO2, Ti/SnO2 and Si/BDD anodes. Trends in degradation way depend on the production of hydroxyl radicals (OH) on these anodic materials, as confirmed in this study. Furthermore, HPLC results suggested that two kinds of intermediates were generated, polyhydroxylated intermediates and carboxylic acids. The formation of these polyhydroxylated intermediates seems to be associated with the denitration step and substitution by OH radicals on aromatic rings, this being the first proposed step in the reaction mechanism. These compounds were successively oxidized, followed by the opening of aromatic rings and the formation of a series of carboxylic acids which were at the end oxidized into CO2 and H2O. On the basis of these information, a reaction scheme was proposed for each type of anode used for 2,4-D oxidation.

  15. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  16. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  17. Evaluation of adsorption of uranium from aqueous solution using biochar materials

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Wagner Clayton; Guilhen, Sabine Neusatz; Ortiz, Nilce; Fungaro, Denise Alves, E-mail: wcorrea@ipen.br, E-mail: snguilhen@ipen.br, E-mail: notriz@ipen.br, E-mail: dfungaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Uranium is present in the environment as a result of leaching from natural deposits and activities associated with nuclear fuel, copper mining, uranium mining, milling industry, etc. For the purpose of protecting ecosystem stability and public health, it is crucial to eliminate uranium from aqueous solutions before they are discharged into the environment. Various technologies have been used for removing U(VI) ions from aqueous systems. Among these methods, adsorption has been applied in wastewater because of simple operation procedure and high removal efficiency. Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for energy in Brazil being transformed into charcoal. Biochar exhibits a great potential as an adsorbent because of favorable physical/chemical surface characteristics. The objective of this work was to evaluate the adsorption potential of biochar materials prepared from pyrolysis of Bamboo (CBM), Eucalyptus (CEM) and Macauba (CMA) nuts for the removal of uranium from solutions. Adsorption experiments were carried out by a batch technique. Equilibrium adsorption experiments were performed by shaking a known amount of biochar material with 100 mL of U(VI) solution in Erlenmeyer flasks in a shaker at 120 rpm and room temperature (25 deg C) for 24 h. The adsorbent was separated by centrifugation from the solution. The U(VI) concentration remaining in the supernatant solution was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The influences of different experimental parameters such as solution pH and bioadsorbent dose on adsorption were investigated. The highest uranium adsorption capacity were obtained at pH 3.0 and 16 g/L biomass dosage for CMA, pH 3.0 and 12 g/L biomass dosage for CBM and pH 2.0 and 10 g/L biomass dosage for CEM. The results demonstrated that the biomass derived char can be used as a low-cost adsorbent for removal of uranium from wastewater. (author)

  18. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    OpenAIRE

    Mohamed Bouraada; Mohand Said Ouali; Louis Charles de Ménorval

    2016-01-01

    Two modified layered double hydroxides (HT) have been synthesized by intercalating both sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS) surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR) dye removal from aqueous solution. Batch studies were carried out to ad...

  19. Dielectric barrier discharge processing of aerospace materials

    Science.gov (United States)

    Scott, S. J.; Figgures, C. C.; Dixon, D. G.

    2004-08-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin.

  20. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 1: Surface tension depression and light-absorbing products

    Science.gov (United States)

    Schwier, A. N.; Shapiro, E. L.; Sareen, N.; McNeill, V. F.

    2009-07-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The light-absorbing products form on the order of minutes, and solution composition continues to change over several days. The results suggest an aldol condensation pathway involving the participation of the ammonium ion. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit surface tension depression. Methylglyoxal uptake could potentially change the optical properties, climate effects, and heterogeneous chemistry of the seed aerosol over its lifetime.

  1. Excitonic and photonic processes in materials

    CERN Document Server

    Williams, Richard

    2015-01-01

    This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic.  Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties.  Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics,  border security, and nuclear nonproliferation.  Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

  2. Physical processes at material laser treatment

    International Nuclear Information System (INIS)

    Physical processes occurring during interaction of power focused IR radiation with the material surface under treatment: plasma, vapour and drop flow of cavern material at cutting and welding, melt hydrodynamics at alloying, optical break-down on the surface, combustion of plasma flame, are considered. Problems on propagation, reflection and absorption of power laser radiation are discussed. Problems related to heat treatment of the sample surface-hardening, amorphization of the metal surface layer and alloying, are considered. Problems on deep metal welding and cutting, as well as laser drilling are discussed. The results of experimental and theoretical calculations, describing the effect of CO2-laser pulse-periodic radiation on materials, are presented

  3. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    Science.gov (United States)

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  4. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bai, D.; Li, J.; Chen, S.B.; Chen, B.-H. [National University of Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    2001-10-01

    Polycyclic aromatic hydrocarbons (PAHs) released in such processes as incomplete coal combustion and during the disposal of coal tar, are subject to strict emission controls in which the determination of PAHs has to be addressed. PAHs have low aqueous solubility which necessitates preconcentration prior to the analytical determination of PAHs. A novel but simple cloud-point extraction (CPE) process is developed to preconcentrate the trace of selected polycyclic aromatic hydrocarbons (PAHs) with the use of the readily biodegradable nonionic surfactant of secondary ethyoxylated alcohol Tergitol 15-S-7 as extractant. The concentrations of PAHs, mixtures of naphthalene and phenanthrene as well as pyrene in the spiked samples were determined with the new CPE process at ambient temperature (23{degree}C) followed by high performance liquid chromatography (HPLC) with fluorescence detection. More than 80% of phenanthrene and pyrene, respectively, and 96% of naphthalene initially present in the aqueous solutions with concentrations near or below their aqueous solubilities were recovered using this new CPE process. Importantly Tergitol 15-S-7 does not give any fluorometric signal to interfere with fluorescence detection of PAHs in the UV range. No special washing step is, thus, required to remove surfactant before HPLC analyses. Different experimental conditions were studied. The optimum conditions for the preconcentration and determination of these selected PAHs at ambient temperature have been established as the following: (1) 3 wt% surfactant; (2) addition of 0.5 M Na{sub 2}SO{sub 4}; (3) 10 min for equilibration time; and (4) 3000 rpm for centrifugal speed with duration of 10 min. 50 refs., 7 figs.

  5. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. [University of Nottingham Malaysia Campus, Semenyih, Selangor (Malaysia)

    2012-04-15

    Biosorption of cadmium(II) ions (Cd{sup 2+}) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd{sup 2+} uptake was highly dependent on the initial pH and Cd{sup 2+} removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd{sup 2+} concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd{sup 2+} from aqueous solution. (orig.)

  6. Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2012-10-01

    Full Text Available This work aims to study the removal of Cu(II and Cr(VI from aqueous solutions with commercial coffee wastes. Materials with no further treatment such as coffee residues from café may act as adsorbents for the removal of Cu(II and Cr(VI. Equilibrium data were successfully fitted to the Langmuir, Freundlich and Langmuir-Freundlich model (L-F. The maximum adsorption capacity of the coffee residues can reach 70 mg/g for the removal of Cu(II and 45 mg/g for Cr(VI. The kinetic data were fitted to pseudo-first, -second and -third order equations. The equilibrium was achieved in 120 min. Also, the effect of pH on adsorption and desorption was studied, as well as the influence of agitation rate. Ten cycles of adsorption-desorption were carried out revealing the strong reuse potential of these low-cost adsorbents; the latter was confirmed from a brief economic approach.

  7. Adsorption of methylene blue from aqueous solution on zeolitic material for color and toxicity removal

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2011-03-01

    Full Text Available The adsorption of methylene blue (MB from aqueous solution was carried out using zeolite. This adsorbent material was synthesized from fly ash as a low-cost adsorbent, allowing fly ash to become a recycled residue. Factors that affected adsorption were evaluated: initial dye concentration, contact time and temperature. The equilibrium of adsorption was modeled by Langmuir, Freundlich and Temkin models. The adsorption obtained data were well described by Temkin, the adsorption isotherm model. Thermodynamic calculations suggest that the adsorption of methylene blue on zeolite synthesized from fly ash is a spontaneous and exothermic reaction. Acute toxicity was determined for raw and adsorbed methylene blue solutions, as if it was a real liquid residue. Acute effects were substantially reduced after the adsorption treatment. The values of untreated solution of methylene blue were 16.58 ppm up to 18.64 ppm for Vibrio fischeri bacteria and from 0.16 ppm up to 0.43 ppm for Daphnia similis cladoreca exposed to the dye for 48 hours.

  8. Nanoscale carbon materials from hydrocarbons pyrolysis: Structure, chemical behavior, utilisation for non-aqueous supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Savilov, Serguei V., E-mail: savilov@chem.msu.ru [Lomonosov Moscow State University, Chemistry Department (Russian Federation); Strokova, Natalia E.; Ivanov, Anton S.; Arkhipova, Ekaterina A. [Lomonosov Moscow State University, Chemistry Department (Russian Federation); Desyatov, Andrey V. [D. Mendeleyev University of Chemical Technology of Russia (Russian Federation); Hui, Xia [Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology (China); Aldoshin, Serguei M. [Lomonosov Moscow State University, Faculty of Fundamental Physical and Chemical Engineering (Russian Federation); Lunin, Valery V. [Lomonosov Moscow State University, Chemistry Department (Russian Federation)

    2015-09-15

    Highlights: • N-doped and regular carbon nanomaterials were obtained by pyrolitic technique. • Dynamic vapor sorption of different solvents reveals smaller S{sub BET} values. • Steric hindrance and specific chemical interactions are the reasons for this. • Nitrogen doping leads to raise of capacitance and coulombic efficiency with non-aqueous N-containing electrolyte. - Abstract: This work systematically studies adsorption properties of carbon nanomaterials that are synthesized through hydrocarbons that is a powerful technique to fabricate different kinds of carbon materials, e.g., nanotubes, nanoshells, onions, including nitrogen substituted. The adsorption properties of the as-synthesized carbons are achieved by low temperature nitrogen adsorption and organic vapors sorption. Heptane, acetonitrile, water, ethanol, benzene and 1-methylimidazole, which are of great importance for development of supercapacitors, are used as substrates. It is discovered that while nitrogen adsorption reveals a high specific surface area, this parameter for most of organic compounds is rather small depending not only on the size of its molecule but also on chemical interactions for a pair adsorbent–adsorbate. The experimental values of heat of adsorption for carbon and N-substituted structures, when Coulomb cross-coupling of nitrogen atoms in adsorbent and adsorbate takes place, confirms this supposition.

  9. Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material

    Directory of Open Access Journals (Sweden)

    Natalie Jenkins

    2016-02-01

    Full Text Available A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >108 over the full range of dielectric thicknesses of 0.38–3.9 mm and discharge times of 0.25–>100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >109, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 109. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm3 for discharge times greater than 10 s.

  10. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...... of premature rupture of a stellite weld on a P91 valve used in a power plant. For all four examples, the focus is put on modelling results rather than describing the models in detail. Proper comparison with experimental work is given in all examples for model validation as well as relevant references...

  11. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate

    Science.gov (United States)

    Noh, Jonghyeon; Jeong, Seonju; Lee, Jung-Yong

    2016-08-01

    Polymer solar cells are attracting attention as next-generation energy sources. Scalable deposition techniques of high-quality organic films should be guaranteed to realize highly efficient polymer solar cells in large areas for commercial viability. Herein, we introduce an ultrafast, scalable, and versatile process for forming high-quality organic films on an aqueous substrate by utilizing the spontaneous spreading phenomenon. This approach provides easy control over the thickness of the films by tuning the spreading conditions, and the films can be transferred to a variety of secondary substrates. Moreover, the controlled Marangoni flow and ultrafast removal of solvent during the process cause the films to have a uniform, high-quality nanomorphology with finely separated phase domains. Polymer solar cells were fabricated from a mixture of polymer and fullerene derivatives on an aqueous substrate by using the proposed technique, and the device exhibited an excellent power conversion efficiency of 8.44 %. Furthermore, a roll-to-roll production system was proposed as an air-processable and scalable commercial process for fabricating organic devices.

  12. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The optimum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liquid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  13. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate.

    Science.gov (United States)

    Noh, Jonghyeon; Jeong, Seonju; Lee, Jung-Yong

    2016-01-01

    Polymer solar cells are attracting attention as next-generation energy sources. Scalable deposition techniques of high-quality organic films should be guaranteed to realize highly efficient polymer solar cells in large areas for commercial viability. Herein, we introduce an ultrafast, scalable, and versatile process for forming high-quality organic films on an aqueous substrate by utilizing the spontaneous spreading phenomenon. This approach provides easy control over the thickness of the films by tuning the spreading conditions, and the films can be transferred to a variety of secondary substrates. Moreover, the controlled Marangoni flow and ultrafast removal of solvent during the process cause the films to have a uniform, high-quality nanomorphology with finely separated phase domains. Polymer solar cells were fabricated from a mixture of polymer and fullerene derivatives on an aqueous substrate by using the proposed technique, and the device exhibited an excellent power conversion efficiency of 8.44 %. Furthermore, a roll-to-roll production system was proposed as an air-processable and scalable commercial process for fabricating organic devices. PMID:27507624

  14. Laser processing and analysis of materials

    CERN Document Server

    Duley, W W

    1983-01-01

    It has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo­ chemistry is undergo...

  15. Photolytic process for gasification of carbonaceous material

    International Nuclear Information System (INIS)

    Process and apparatus are disclosed for converting carbon dioxide to carbon monoxide by subjecting the carbon dioxide to radiation in the presence of carbonaceous material such as coal to form carbon monoxide. The preferred form of radiation is solar energy, and the process is preferably carried out in an atmosphere essentially free of oxygen. The invention also includes subjecting carbon monoxide to radiation to form purified carbon and useful heat energy. The two procedures can be combined into a single process for converting solar or other energy into useful thermal energy with the production of useful products. The reactor apparatus is specifically designed to carry out the radiation-induced conversions. Coal can be desulfurized and its caking characteristics altered by solar radiation in the presence of suitable gases. 3 figures

  16. Treatment of Aqueous Solutions

    NARCIS (Netherlands)

    Van Spronsen, J.; Witkamp, G.J.

    2013-01-01

    The invention is directed to a process for the recovery or removal of one or more crystallizable compounds from an aqueous solution containing, apart from the said crystallizable compounds, one or more organic or inorganic scale- forming or scale-inducing materials having a lower solubility in water

  17. Evaluation of nonaqueous processes for nuclear materials

    International Nuclear Information System (INIS)

    A working group was assigned the task of evaluating the status of nonaqueous processes for nuclear materials and the prospects for successful deployment of these technologies in the future. In the initial evaluation, the study was narrowed to the pyrochemical/pyrometallurgical processes closely related to the processes used for purification of plutonium and its conversion to metal. The status of the chemistry and process hardware were reviewed and the development needs in both chemistry and process equipment technology were evaluated. Finally, the requirements were established for successful deployment of this technology. The status of the technology was evaluated along three lines: (1) first the current applications were examined for completeness, (2) an attempt was made to construct closed-cycle flow sheets for several proposed applications, (3) and finally the status of technical development and future development needs for general applications were reviewed. By using these three evaluations, three different perspectives were constructed that together present a clear picture of how complete the technical development of these processes are

  18. Removal Mechanism of Aqueous Lead by a Novel Eco-material:Carbonate Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Huanyan XU; Lei YANG; Peng WANG; Yu LIU; Mingsheng PENG

    2007-01-01

    Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage increases with decreasing pH values and reaches a maximum at pH=2-3. Under some conditions,the lead residual concentration is below national integrated wastewater discharge standard, even drinking water standard. The removal behavior is a complicated non-homogeneous solid/liquid reaction, which can be described by two stages from kinetic point of view. At the earlier stage, reaction rate is so fast that its kinetic course is intricate, which requires further study. At the latter stage, the rate of reaction becomes slow and the process of reaction accords with one order reaction kinetic equation. Experimental results show that the relationship between reaction rate constant k1 and temperature T accords to Arrhenius Equation, and the activation energy of sorption (Ea) is 11.93 k J/mol and frequency factor (A) is 2.51 s-1. X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive X-ray fluoresence spectrometer (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) test were conducted in this work. It is indicated that the main mechanism is dissolution-precipitation, accompanying with superficial sorption.

  19. Sol gel process for the preparation of solid electrolyte material

    International Nuclear Information System (INIS)

    The reality that fossil fuels are running out is driving the development of fuel cells. These fuel cells offer attractive and alternative energy sources because of high conversion efficiency, low pollution, light weight, and high power density. In this article, status of fuel cells and ceramic fuel cells have been discussed with particular emphasis on stabilized zirconia widely used as solid electrolyte material in solid oxide fuel cells (SOFCs) due to its high oxygen ion conductivity. The study is also focused on low cost process for synthesis of 12 mol% yttria stabilized zirconia (12YSZ) powder from the zirconia sol prepared by hydrothermal treatment of zirconium nitrate solution with an aqueous electrolyte extraction by organic extractant. The 12YSZ powder found to be pure white crystalline. 12YSZ calcined powder were sintered at 1200 degree C for 1-6 hours durations. Phase, purity, crystallinity and morphology of 12YSZ were examined by differential thermal analysis (DTA), thermogravimetry(TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. SEM indicated the size range 0.2 - 5 micron. The results revealed that the product material (pellet) can be sintered into uniformly size fine grained ceramic of > 98% theoretical density around 1200 degree C for 6 hours as compared to the pellet sintered for 1 hour at the same temperature. (author)

  20. 2010 Membranes: Materials & Processes Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  1. Saving Material with Systematic Process Designs

    Science.gov (United States)

    Kerausch, M.

    2011-08-01

    Global competition is forcing the stamping industry to further increase quality, to shorten time-to-market and to reduce total cost. Continuous balancing between these classical time-cost-quality targets throughout the product development cycle is required to ensure future economical success. In today's industrial practice, die layout standards are typically assumed to implicitly ensure the balancing of company specific time-cost-quality targets. Although die layout standards are a very successful approach, there are two methodical disadvantages. First, the capabilities for tool design have to be continuously adapted to technological innovations; e.g. to take advantage of the full forming capability of new materials. Secondly, the great variety of die design aspects have to be reduced to a generic rule or guideline; e.g. binder shape, draw-in conditions or the use of drawbeads. Therefore, it is important to not overlook cost or quality opportunities when applying die design standards. This paper describes a systematic workflow with focus on minimizing material consumption. The starting point of the investigation is a full process plan for a typical structural part. All requirements are definedaccording to a predefined set of die design standards with industrial relevance are fulfilled. In a first step binder and addendum geometry is systematically checked for material saving potentials. In a second step, blank shape and draw-in are adjusted to meet thinning, wrinkling and springback targets for a minimum blank solution. Finally the identified die layout is validated with respect to production robustness versus splits, wrinkles and springback. For all three steps the applied methodology is based on finite element simulation combined with a stochastical variation of input variables. With the proposed workflow a well-balanced (time-cost-quality) production process assuring minimal material consumption can be achieved.

  2. Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hengxuan; Zhao, Xuan, E-mail: zhxinet@tsinghua.edu.cn; Wei, Jiying; Li, Fuzhi

    2014-08-15

    Highlights: • A novel pathway of synthesizing magnetic hexacyanoferrate material was developed. • The synthesized material can offer a high capacity for sorption of cesium. • The material can offer a fast removal of cesium in kinetic performance. • The fine M-PTH particle can be easily separated from wastewater for recirculation. - Abstract: The rapid development of the nuclear power plant in China leads to increasing attention to the treatment of low-level radioactive wastewater (LLRW). One of possibilities is the application of inorganic adsorbent like potassium titanium hexacyanoferrate (PTH), which can exhibit the effective adsorption of cesium. In this paper, the PTH material was optimized by means of being loaded on magnetite substrate. The synthesized material (magnetic PTH, M-PTH), with a particle size of less than 100 nm, can offer a high capacity and favorable kinetic performance, however, without difficulties of separation from the LLRW due to its magnetic characterizations. The batch experiments demonstrate that cesium sorption isotherm of M-PTH coincide well with Langmuir model. The calculated capacity amounts to 0.517 mmol/g, approximately 1.5 times the capacity of zeolite materials. The sorption process follows the pseudo-second-order sorption model. In the initial phase the rate-controlling step is intraparticle diffusion. With the Cs accumulation on the particle surface, external diffusion performs an important role together with intraparticle diffusion.

  3. Electromagnetic Processing of Materials Materials Processing by Using Electric and Magnetic Functions

    CERN Document Server

    Asai, Shigeo

    2012-01-01

    This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrica...

  4. A new process for preparation of soybean protein concentrate with hexane-aqueous ethanol mixed solvents.

    Science.gov (United States)

    Zhang, Wei-Nong; Liu, Da-Chuan

    2005-01-01

    A new process for the preparation of soybean protein concentrate (SPC) by directly extracting full-fat soy flour with a mixture of hexane and aqueous ethanol was established. Compared with conventional methods, it has some advantages, such as saving energy and reducing protein denaturation caused by heat action during solvent recovery, because this process saves one step of solvent recovery. The effects of aqueous ethanol concentration and the mixure ratio (hexane to ethanol) on the degree of protein denaturation and product quality were investigated, on the basis of which the orthogonal tests were performed. The optimum technical parameters were obtained by analyzing the results of the orthogonal tests with statistical methods. We found that SPC can be obtained by extracting full-fat soy flour under the following conditions: mixture ratio hexane: 90% ethanol, 9:1, v/v; extraction temperature, 45 degrees C; ratio of solid to solvents, (1:2 w/v); and 5 repeated extractions (15 min each time). The results of quality analysis showed that solubility of the product was improved significantly [nitrogen solubility index (NSI) 46.6%] compared with that for ethanol washing of protein concentrate (NSI 8.7%). PMID:16152943

  5. Review of irradiated uranium recycling processes by non-aqueous method

    International Nuclear Information System (INIS)

    Recycling processes of irradiated uranium fuel by non aqueous method have been reviewed. The fluoride volatilization process is carried out by dissolving irradiated uranium fuel in BrF3 or CIF3 to produce UF6 volatile gas and PuF4 and fission products in fluoride form which are then separated by distillation. The chloride volatility process is used for U-Zr alloy fuel by using hydro chlorination process at temperature of 350-600oC to separate ZrCl4 volatile from UCI3 which is then dissolved and distilled. The processes which are carried out at high temperature are pyrochemical and pyrometallurgical. Development of fluorides volatility process for the separation of U-Pu from irradiated uranium fuel is fluidization technique. Oxidation and fluorination reaction can be carried out in a fluidized bed reactor. DUPIC process uses spent fuel of PWR which is directly pulverized into powder for Candu reactor fuel. The review shows that due to the advantage and simplicity, the pyrochemical and oxidation-reduction process can be developed in Indonesia to study the separation of U-Pu from fission products in the irradiated fuel. The fluidization technique can also be developed, but it needs a special facility to handle gaseous reagent. (author)

  6. Process simulation of CO2 capture with aqueous ammonia using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Maribo-Mogensen, Bjørn; van Well, Willy J.M.;

    2012-01-01

    of the process is necessary.In this work, the performance of the carbon dioxide capture process using aqueous ammonia has been analyzed by process simulation. The Extended UNIQUAC thermodynamic model available for the CO2–NH3–H2O system has been implemented in the commercial simulator Aspen Plus®1 by using...

  7. [Determination of the migration of seven photoinitiators in food packaging materials into aqueous solvent].

    Science.gov (United States)

    Liu, Pengyan; Huang, Enjie; Chen, Yanjie

    2012-12-01

    The quantity of photoinitiators (PIs) migrated into hydrosoluble foods from packaging materials is usually very small. It is hardly detectable by using the current methods. For this reason, the article describes a new effective method for detecting the migration of PIs. In this method, the migration experiment was done in aqueous food simulation. After the PIs in printing inks used in food contact materials were extracted from the solution via solid-phase microextraction (SPME) using 65 microm polydimethylsiloxane/divinylbenzene (PDMS-DVB)-coated fiber, their migration amounts were determined by gas chromatography-mass spectrometry (GC-MS) in the selected ion monitoring mode (SIM). The PIs determined by SPME/GC-MS were benzophenone (BP), 1-hydroxycyclohexyl-phenylketone (CPK), ethyl-4-dimethyl-aminobenzoate (EDMAB), 4-methylbenzophenone (4-MBP), 2, 2-dimethoxy-2-phenylacetophenone (2,2-DMPA), methyl 2-benzoylbenzoate (OMBB) and 2-ethylhexyl-4-dimethyl-aminobenzoate (EHDAB). The limits of detection (S/N = 3) were between 0.0012 and 0.0069 microg/L. The linearity ranged from 0.03 to 1.0 microg/L (r2 > 0.9909). The recoveries were in the range from 70.8% to 112.0% (n = 3) with the relative standard deviations no more than 14.0%. Twenty samples were tested by using this developed method. The analytical results showed that BP was detected in all samples, and the migration amounts of BP were from 0.002 to 0.074 microg/dm2; 4-MBP was detected in ten samples, and the migration amounts of 4-MBP were from 0.006 to 0.019 microg/dm2; CPK was detected in three samples, and its amounts were 0.005, 0.005, 0.007 microg/dm2; 2,2-DMPA was detected as 0.009 microg/dm2 in one sample. The determination of real samples showed this method is feasible. The method is sensitive, simple and free from organic solvents. It could make reference to migrating determination of PIs in printing inks on food packaging surface. PMID:23593879

  8. Investigating the Structure-Property Relationships of Aqueous Self-Assembled Materials

    Science.gov (United States)

    Krogstad, Daniel Vincent

    The components of all living organisms are formed through aqueous self-assembly of organic and inorganic materials through physical interactions including hydrophobic, electrostatic, and hydrogen bonding. In this dissertation, these physical interactions were exploited to develop nanostructured materials for a range of applications. Peptide amphiphiles (PAs) self-assemble into varying structures depending on the physical interactions of the peptides and tails. PA aggregation was investigated by cryo-TEM to provide insight on the effects of varying parameters, including the number and length of the lipid tails as well as the number, length, charge, hydrophobicity, and the hydrogen bonding ability of the peptides. It was determined that cylindrical micelles are most commonly formed, and that specific criteria must be met in order to form spherical micelles, nanoribbons, vesicles or less ordered aggregates. Controlling the aggregated structure is necessary for many applications---particularly in therapeutics. Additionally, two-headed PAs were designed to act as a catalyst and template for biomimetic mineralization to control the formation of inorganic nanomaterials. Finally, injectable hydrogels made from ABA triblock copolymers were synthesized with the A blocks being functionalized with either guanidinium or sulfonate groups. These oppositely charged polyelectrolyte endblocks formed complex coacervate domains, which served as physical crosslinks in the hydrogel network. The mechanical properties, the network structure, the nature of the coacervate domain and the kinetics of hydrogel formation were investigated as a function of polymer concentration, salt concentration, pH and stoichiometry with rheometry, SAXS and SANS. It was shown that the mechanical properties of the hydrogels was highly dependent on the structural organization of the coacervate domains and that the properties could be tuned with polymer and salt concentration. Polymer and salt concentration were

  9. Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM)

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Qinxue [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Chen, Zhiqiang, E-mail: czq0521@tom.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lian, Jiaxiang; Feng, Yujie; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer We synthesized a novel adsorbent-lipoid adsorption material (LAM). Black-Right-Pointing-Pointer We investigate the adsorption behavior isotherms of nitrobenzene on LAM. Black-Right-Pointing-Pointer We investigate the adsorption kinetics of nitrobenzene on LAM. Black-Right-Pointing-Pointer We proved that the reaction is spontaneous and is an exothermic reaction. Black-Right-Pointing-Pointer The removal efficiency of LAM was higher than that of GAC. - Abstract: In this study, a novel adsorbent referred to as a lipoid adsorption material (LAM) was synthesized with a hydrophobic nucleolus (triolein) and hydrophilic membrane structure (polyamide). The LAM was applied to the adsorption and removal of nitrobenzene from aqueous systems. Experiments were carried out to investigate the adsorption behavior of nitrobenzene on LAM, including the development of adsorption isotherms, the determination of adsorption kinetics, and to explore the influence of adsorbent dosage, contact time, temperature and the initial concentration of nitrobenzene on adsorption. The performance of LAM was compared with equal amounts of granular activated carbon (GAC) for adsorption. The adsorption isotherms for LAM were found to be described by the Linear equation, while the adsorption isotherms for granular activated carbon (GAC) were described by the Freundlich equation. Results indicated that the adsorption of nitrobenzene by LAM occurred mainly due to the partition function caused by the triolein nucleolus. Two kinetics models, pseudo-first-order and pseudo-second-order models were used to fit the experimental data for LAM adsorption. By comparing the correlation coefficients, it was found that the pseudo-first-order model was most suitable to describe the adsorption of nitrobenzene on LAM. The results also indicated that the factors that affect the adsorption rate would be either the nitrobenzene concentration or the character of the adsorbent

  10. Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials

    Energy Technology Data Exchange (ETDEWEB)

    Knorr Jr, Daniel B., E-mail: daniel.knorr.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Williams, Kristen S. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Baril, Neil F. [U.S. Army, RDECOM, CERDEC, NVSED, Ft. Belvoir, VA 22060, United States of America (United States); Weiland, Conan [National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America (United States); Andzelm, Jan W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Lenhart, Joseph L., E-mail: joseph.l.lenhart.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Woicik, Joseph C.; Fischer, Daniel A. [National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America (United States); Tidrow, Meimei Z.; Bandara, Sumith V. [U.S. Army, RDECOM, CERDEC, NVSED, Ft. Belvoir, VA 22060, United States of America (United States); Henry, Nathan C. [U.S. Army, RDECOM, CERDEC, NVSED, Ft. Belvoir, VA 22060, United States of America (United States); Corbin Company, Alexandria, VA 22314, United States of America (United States)

    2014-11-30

    Graphical abstract: - Highlights: • HCl and citric acid showed excellent oxide removal on III/V surfaces. • Aminosilane (APTES) passivation coatings were deposited at 1–20 nm on InAs and GaSb. • These coatings showed high ionic nitrogen levels near the interface via XPS. • DFT was used to find adsorption energies of APTES with and without -OH groups. • DFT modeling showed APTES–NH{sub 3}{sup +} hydrogen abstraction to form surface -OH groups. - Abstract: Focal plane arrays of strained layer superlattices (SLSs) composed of InAs/GaSb are excellent candidates for infrared imaging, but one key factor limiting their utility is the lack of a surface passivation technique capable of protecting the mesa sidewall from degradation. Along these lines, we demonstrate the use of aqueous 3-aminopropyl triethoxysilane (APTES) deposited as a surface functionalizing agent for subsequent polymer passivation on InAs and GaSb surfaces following a HCl/citric acid procedure to remove the conductive oxide In{sub 2}O{sub 3}. Using atomic force microscopy, variable angle spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and modeling with density functional theory (DFT), we demonstrate that APTES films can successfully be deposited on III-V substrates by spin coating and directly compare these films to those deposited on silicon substrates. The HCl/citric acid surface preparation treatment is particularly effective at removing In{sub 2}O{sub 3} without the surface segregation of In oxides observed from use of HCl alone. However, HCl/citric acid surface treatment method does result in heavy oxidation of both Ga and Sb, accompanied by segregation of Ga oxide to the surface. Deposited APTES layer thickness did not depend on the substrate choice, and thicknesses between 1 and 20 nm were obtained for APTES solution concentrations ranging from 0.1 to 2.5 vol %. XPS results for the N1s band of APTES showed that

  11. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, E. I., E-mail: suvorova@ns.crys.ras.ru; Klechkovskaya, V. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences (Russian Federation)

    2010-12-15

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  12. Short-pulse laser materials processing

    International Nuclear Information System (INIS)

    The goal of this project was to develop, through experiments and modeling, a better understanding of the physics issues and machining techniques related to short-pulse laser materials processing. Although we have successfully demonstrated many types of cuts in a wide range of materials, our general short-pulse machining scientific knowledge and our ability to model the complex physical processes involved are limited. During this past year we made good progress in addressing some of these issues, but there remain many unanswered questions. Section 2 begins with a theoretical look at short-pulse laser ablation of material using a 1-D radiation-hydrodynamic code which includes a self-consistent description of laser absorption and reflection from an expanding plasma. In Section 3 we present measurements of scaling relationships, hole drilling progression, electric field and polarization effects, and a detailed look at the interesting structures formed during hole drilling of metals under various conditions. Section 4 describes the consequences of the presence of a prepulse before the main drilling pulse. In Section 5 we take a brief look at the plasma plume: how it can be useful, and how we can avoid it. Finally, Section 6 contains a couple of examples of machining non-metals. The laser system used for practically all the experimental results presented here was a short-pulse laser based on Ti:sapphire, which produced 150-fs pulses (minimum) centered at 825 nm, of energy up to 5 mJ at 1 kHz, or 5 W average power

  13. X-ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Quinn, J. E.; Graff, T. G.

    2015-12-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 wt. %) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 wt. % in the upper horizon to as high as 15 wt. % in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soil had lower X-ray amorphous contents of about 5 wt. % througout the profile. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during

  14. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    DU GaoXiang; ZHENG ShuiLin; DING Hao

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The op-timum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liq-uid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  15. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Steudel, R. [Technische Univ. Berlin (Germany). Inst. fuer Anorganische und Analytische Chemie

    1996-04-01

    A detailed reaction mechanism is proposed for the formation of crystalline elemental sulfur from aqueous sulfide by oxidation with transition-metal ions like V{sup 5}, Fe{sup 3}, Cu{sup 2}, etc. The first step is the formation of HS{center_dot} radicals by one-electron oxidation of HS{sup {minus}} ions. These radicals exist at pH values near 7 mainly as S{center_dot}{sup {minus}}. Their spontaneous decay results in the formation of the disulfide ion S{sub 2}{sup 2{minus}}. The further oxidation of disulfide either by S{center_dot}{sup {minus}} radicals or by the transition-metal ions yields higher polysulfide ions from which the homocyclic sulfur molecules S{sub 6}, S{sub 7}, and S{sub 8} are formed. In water these hydrophobic molecules form clusters which grow to droplets of liquid sulfur (sulfur sol). Depending on the composition of the aqueous phase, crystallization of the liquid sulfur as either {alpha}- or {beta}-S{sub 8} is rapid or delayed. Surfactants delay this solidification, while certain cations promote it. All these reactions are proposed to take place in desulfurization plants working by the Stretford, Sulfolin, Lo-Cat, SulFerox, or Bio-SR processes. In addition, the sulfur produced from sulfide by oxidizing sulfur bacteria is formed by the same mechanism, which now explains many observations made previously (including the formation of the byproducts thiosulfate, polythionates, and sulfate).

  16. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  17. Evaluation of Electro-Fenton Process Performance for COD and Reactive Blue 19 Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2013-02-01

    Full Text Available Background and Objectives: Synthetic dyes represent one of the largest groups of pollutants in wastewater of dying industries. Discharging these wastewaters into receiving streams not only affects the aesthetic but also reduces photosynthetic activity. Electrochemical advanced oxidation processes such as Electro-Fenton process are low operational and have high mineralization degree of pollutants. In this study, we investigated affective factors in this process to determine the optimum conditions for dye and COD removal from aqueous solutions containing Reactive Blue 19 dye.Materials and Methods: Synthetic samples containing Reactive Blue 19 dye were prepared by dissolving dye powder in double distilled water. and the the solution prepared was transferred into pilot electrochemical cell having two anode and cathode electrode made of iron and carbon. Electro-Fenton process was began by adding of Fe2+ ions and establishing electrical potential difference. After testing and at specified time intervals, each sample was collected from the pilot cell, and process performance was evaluated through measuring dye concentration and COD. Results: Based on the results obtained, optimum conditions of Electro-Fenton process for dye and COD removal was determined. Accordingly, potential difference of 20 volt for dye concentration up to 100 mg/L and potential difference of 30 volt for dye concentration of more than 200 mg/L, reaction time 60 minutes, 0.5 mg/L of Fe2+ concentration and suitable pH for the maximum dye removal efficiency equaled 4 respectively. Under such conditions, the dye and COD removal was 100 and 95% respectively.Conclusion: Based on the results obtained, it was revealed that Electro-Fenton process has significant ability in not only dye removal but also in COD removal. Accordingly, it was found that the effective parameters in Electro-Fenton process for removal Reactive Blue19 dye are electric potential difference, concentration of iron ions

  18. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing

    Science.gov (United States)

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M.

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m-1 range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  19. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  20. Integration mockup and process material management system

    Science.gov (United States)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  1. Integration mockup and process material management system

    Science.gov (United States)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  2. Management of high level radioactive aqueous effluents in advanced partitioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, Patrick; Sans, Daniele; Lartigaud, Cathy; Bisel, Isabelle [Commissariat a l' Energie Atomique, Centre de Marcoule, BP 17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    The context of this study is the development of management strategies for the high level radioactive aqueous effluents generated by advanced minor actinides partitioning processes. In the present nuclear reprocessing plants, high level liquid wastes are concentrated via successive evaporations, with or without de-nitration, to reach the inlet specifications of the downstream processing steps. In contrast to the PUREX process, effluents from advanced actinides partitioning processes contain large amounts of organic compounds (complexing agents, buffers or reducing reagents), which could disrupt concentration operations. Thus, in parallel with new partitioning process development, the compatibility of usual concentration operations with the high level liquid waste issued from them are investigated, and, if necessary, additional treatments to eliminate remaining organic compounds are reviewed. The behaviour of each reagent and related identified by-products is studied in laboratory-scale devices representative of industrial operating conditions. Final concentrated solutions (actinide or fission solutions) and the resulting distillates (i.e. decontaminated effluents) are checked in terms of compatibility with the downstream specifications. Process implementation and safety aspects are also evaluated. Kinetic and thermodynamic constants are measured. After the collection of these data, the effectiveness of the overall continuous process of the effluent treatment (combination of elementary operations) is evaluated through semi-empirical models which are also able to optimize the conditions for implementation. First results indicate that nitric acid streams containing complexing agents (oxalic acid, HEDTA, DTPA) will be managed by usual concentration processes, while buffered solutions ( containing glycolic, citric or malonic acid) will require additional treatments to lower organic carbon concentration. Oxidation process by hydrogen peroxide at boiling temperature has

  3. Preparation of silver nanoparticles by a non-aqueous sol-gel process.

    Science.gov (United States)

    Petit, Christophe T G; Alsulaiman, Muath S A; Lan, Rong; Mann, Gregory; Tao, Shanwen

    2013-08-01

    Using a non-aqueous sol-gel process with a direct calcination step in air after prior drying, silver nanoparticles with average size distribution ranging from 20 to 100 nm were synthesised. Studies in reduced atmosphere were also performed with mixed results, both in phase and particle size, as the samples were found to be mixed with an amorphous phase. In oxidising atmosphere, the temperature and dwelling time were found to be critical factors with the former playing a larger role than the latter. Optimally nanoparticles of silver are best prepared by direct calcination in air of the precursor gel at 250 degrees C for 1 hour. Compared to silver particles prepared by microemulsions, the particle size is larger due to the thermal treatment, which causes a growth of the silver particles. PMID:23882777

  4. In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process

    Science.gov (United States)

    Dang, Feng; Mimura, Kenichi; Kato, Kazumi; Imai, Hiroaki; Wada, Satoshi; Haneda, Hajime; Kuwabara, Makoto

    2012-02-01

    Ordered aggregated BaTiO3 nanocubes with a narrow size distribution were obtained in an aqueous process by using bis(ammonium lactate) titanium dihydroxide (TALH) as Ti source in the presence of oleic acid and tert-butylamine. Kinetics of the formation of BaTiO3 nanocubes indicated that an in situ growth mechanism was dominant and the superlattice of nanocubes formed in situ through the growth of BaTiO3 nanoparticles in Ti-based hydrous gel. The size and morphology of nanocubes were controlled by tuning the concentration and molar ratio of surfactants. A novel growth model dependant on the structure of Ti precursor for the formation and morphology control of BaTiO3 nanocubes and their superlattice was demonstrated.Ordered aggregated BaTiO3 nanocubes with a narrow size distribution were obtained in an aqueous process by using bis(ammonium lactate) titanium dihydroxide (TALH) as Ti source in the presence of oleic acid and tert-butylamine. Kinetics of the formation of BaTiO3 nanocubes indicated that an in situ growth mechanism was dominant and the superlattice of nanocubes formed in situ through the growth of BaTiO3 nanoparticles in Ti-based hydrous gel. The size and morphology of nanocubes were controlled by tuning the concentration and molar ratio of surfactants. A novel growth model dependant on the structure of Ti precursor for the formation and morphology control of BaTiO3 nanocubes and their superlattice was demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11594h

  5. Optimization and orthogonal design of an ultrasonic-assisted aqueous extraction process for extracting chlorogenic acid from dry tobacco leaves

    Institute of Scientific and Technical Information of China (English)

    Martin Tongai Mazvimba; YU Ying; CUI Zhi-Qin; ZHANG Ying

    2012-01-01

    Processing parameters for heat reflux and ultrasonic-assisted extraction techniques were optimized.Optimal operating conditions,extraction solvents and extraction yields for both methods were established.Although methanol showed high extraction efficiency in heat reflux extraction,residual amounts of methanol caused adulteration of extracts.To circumvent this drawback,a novel ultrasonic-assisted aqueous extraction process was optimized and orthogonally designed to pave the way for replacing the toxic organic solvent,methanol with water.A new approach which utilizes fractional volumes of an extraction solvent was developed to minimize solvent consumption,improve chlorogenic acid solubility in water and enhance its aqueous extraction from dried tobacco leaves.Desired trajectories for the new ultrasonic assisted aqueous extraction process were found.

  6. 炭材料对铀的吸附%Adsorption of Uranium by Carbon Materials from Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    李兴亮; 宋强; 刘碧君; 刘春霞; 王航; 耿俊霞; 陈震; 刘宁; 李首建

    2011-01-01

    Uranium is both the major constituent of nuclear fuel and one of the key nuclides in spent fuel reprocessing.Separation of uranium in various aqueous effluent streams via adsorption or solid-phase extraction can not only recycle this precious resource,but also reduce the cost for the final disposal of radioactive wastes.Carbon based sorbents,at least potentially,should play a correspondingly important role for this purpose.Carbon materials were chosen as the adsorbing material because of their large specific surface area,better acid and alkaline stability and higher radiation and thermal resistance.The adsorption capacity of carbon materials can be improved by surface oxidization and other chemical or physical modifications,such as impregnating,coating,or grafting functional molecules or groups that can extract uranium selectively from liquid solution.Comparing with other modification methods,grafting technology is a promising method because of its excellent affinity and high selectivity.Uranium in aqueous wastes can be effectively removed by electrosorption onto electrode made of carbon fibers.It seems that electrosorption process for the removal of uranium has a prospect of industrialization because of the high electrosorption efficiency and the low-cost regeneration of carbon fiber electrode.%铀既是核燃料的主要成分又是乏燃料后处理的关键核素。将铀从乏燃料后处理流程中的高放射性料液或者其他含铀废水中分离出来既可以将此宝贵的核燃料回收使用,又有利于降低乏燃料处理后期的处置费用以及减少铀对环境的污染。而从海水、盐湖水、尾矿废水等贫铀水体中提取铀则可能是解决将来铀资源匮乏的主要方法。炭质材料具有较大的比表面积、较高的孔隙率,耐高温,抗辐射,对各种酸碱环境有很高稳定性,而且本身无毒,环境友好,有望作为吸附剂或固相萃取材料用于从水体中吸附分离铀。本文介绍了活

  7. Performance of Cement-Based Materials in Aggressive Aqueous Environments State-of-the-Art Report, RILEM TC 211 - PAE

    CERN Document Server

    Bertron, Alexandra; Belie, Nele

    2013-01-01

    Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial.  These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening.  Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods.  Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represe...

  8. Processes for fabricating composite reinforced material

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  9. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  10. Supercritical fluid processing: opportunities for new resist materials and processes

    Science.gov (United States)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  11. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc. PMID:27261730

  12. Investigations on IR-spectroscopic process analysis of phosphate in aqueous solution

    International Nuclear Information System (INIS)

    This thesis is focusing on the development and optimization of a new analysis system for phosphate in aqueous solution based on FTIR-spectrometry. The investigation was aiming at an application in process analytical chemistry. Since the quality control of non-nutritive sweetened carbonated beverages (diet soft drinks) is still performed manually by means of the photometric molybdenum blue reaction, there is an industrial demand for an automated analysis system for phosphate in the concentration range of 200 to 600 mg/L. Because of technical and economic aspects the transferability of the method on a filter instrument is taken into further considerations. First experiments were concentrating on the stretching vibrations of the individual dissociation states of phosphate in the spectral region from 900 to 1200 cm-' and on their suitability for quantitative analysis. Finally, the reagent addition by means of an ion-exchange membrane (Nafion) was investigated. With that method it is principally possible to change the pH without any mechanical component. Although a good repeatability (3 mg/L) was obtained in phosphate standard solutions, it was not possible to achieve a conversion independent of the reagent (donor) flow rate. This would be achieved, if the conversion was close to equilibrium. However, this was not realized within a reasonable period of time. Summing up a new concept for measuring phosphate in aqueous solution by means of pH-modulation was developed, which largely fulfills the practical requirements concerning stability, reproducibility and precision of the flow system. Moreover the transferability to a simple filter instrument based on a single bandpass filter is achieved with the concept of an alternately changing pH. (author)

  13. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  14. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, A. [VIT University, School of Biotechnology, Chemical and Biomedical Engineering (India); Raichur, Ashok M. [Indian Institute of Science, Department of Materials Engineering (India); Chandrasekaran, N.; Prathna, T. C.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.co [VIT University, School of Biotechnology, Chemical and Biomedical Engineering (India)

    2010-01-15

    Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.

  15. Materials, Applications and Processes in Photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Keller, N.; Robert, D.; Herrmann, J.M.; Keller, V. (eds.)

    2007-04-15

    Catalysis Today publishes special issues only. The Journal focuses on the rapid publication of invited papers devoted to currently important topics in catalysis and related subjects. Both fundamental and applied aspects of catalysis are covered. While many of the issues are concerned with heterogeneous catalysis, subjects such as homogeneous catalysis and enzymatic catalysis may also be included. Subjects related to catalysis such as techniques, adsorption, process technology and others are included if there is a clear relationship with catalysis. This special issue concerns 21 papers on Materials, Applications and Processes in Photocatalysis: (1) Photoactive titania nanostructured thin films: Synthesis and characteristics of ordered helical nanocoil array; (2) The design of highly active rectangular column-structured titanium oxide photocatalysts and their application in purification systems; (3) Photosensitization of TiO{sub 2} by M{sub x}O{sub y} and M{sub x}S{sub y} nanoparticles for heterogeneous photocatalysis applications; (4) Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization; (5) In situ characterization of the highly dispersed Mo{sup 6+}-oxide species supported onto various oxides and their photocatalytic reactivities; (6) The photocatalytic reforming of methanol; (7) Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production; (8) Visible light induced hydrogen evolution over the heterosystem Bi{sub 2}S{sub 3}/TiO{sub 2}; (9) Modeling and optimizing irradiance on planar, folded, and honeycomb shapes to maximize photocatalytic air purification; (10) Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption-scattering models; (11) Photoreactions occurring on metal-oxide surfaces are not all photocatalytic: Description of criteria and conditions for processes to be photocatalytic; (12) Temperature dependent

  16. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    E. L. Shapiro

    2009-04-01

    Full Text Available Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4 aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500–600 amu products were observed when ammonium sulfate ((NH42SO4 or sodium chloride (NaCl was present in the aqueous phase. The products formed in (NH42SO4 or ammonium nitrate (NH4NO3 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300–400 nm develops within two hours, and absorption between 400–600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest a mechanism involving the participation of the ammonium ion. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  17. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    Science.gov (United States)

    Shapiro, E. L.; Szprengiel, J.; Sareen, N.; Jen, C. N.; Giordano, M. R.; McNeill, V. F.

    2009-01-01

    Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4) aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500-600 amu) products were observed when ammonium sulfate ((NH4)2SO4) or sodium chloride (NaCl) was present in the aqueous phase. The products formed in the (NH4)2SO4 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300-400 nm develops within two hours, and absorption between 400-600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest that an aldol condensation mechanism is active in the glyoxal-(NH4)2SO4system, resulting in the formation of pi-conjugated products. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  18. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    E. L. Shapiro

    2009-01-01

    Full Text Available Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4 aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500–600 amu products were observed when ammonium sulfate ((NH42SO4 or sodium chloride (NaCl was present in the aqueous phase. The products formed in the (NH42SO4 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300–400 nm develops within two hours, and absorption between 400–600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest that an aldol condensation mechanism is active in the glyoxal-(NH42SO4system, resulting in the formation of pi-conjugated products. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  19. Pulsed RF Plasma Source for Materials Processing

    Science.gov (United States)

    Nasiruddin, Abutaher Mohammad

    A pulsed rf plasma source was evaluated for materials processing. A pulsed rf discharge of carbon tetrafluoride (CF_4), sulfur hexafluoride (SF _6), oxygen (O_2), or acetylene (C_2H_2 ) created the plasmas. The frequency and duration of the rf discharge were about 290 kHz and 30 musec, respectively. The repetition rate was 1 discharge per minute. Plasma diagnostics included Langmuir probes, a photodiode dectector, an optical multichannel analyzer (OMA), and a microwave interferometer. Langmuir probe measurements showed that at a position 67 cm away from the rf coil, CF_4 plasma arrived in separate packets. Plasma densities and electron temperatures at this position were in the range 4 times 10^{11} cm ^{-3} to 1.8 times 10^{13} cm ^{-3} and 2 eV to 8.3 eV, respectively. The OMA measurements identified neutral atomic fluorine in the CF_4 plasma and neutral atomic oxygen in the O_2 plasma. A plasma slab model of the microwave interferometer was applied to predict the interferometer response. The measured response was found to be almost identical to the predicted response. The influence of different reactor parameters on plasma parameters was studied. Metal barriers of different geometry were used to control the ratio of charged particles to atomic neutrals in the plasma chamber. Four plasma structures were identified: precursor plasma, shock induced plasma, driver plasma, and delayed glow plasma. Pulsed CF _4 and SF_6 plasmas were used to etch silicon dioxide (SiO_2 ) grown on silicon wafers. The SF_6 plasma etched SiO_2 at a rate of about 0.71 A per discharge and the CF_4 plasma deposited a non-uniform film (possibly polymer) instead of etching. The C_2H _2 plasma deposited plasma polymerized acetylene on a KBr pellet with a deposition rate of 127 A per discharge. An FT-IR spectrum of the deposited film showed that carbon -to-carbon double bonds as well as carbon-to-hydrogen bonds were present. This device can be used in plasma assisted deposition and/or synthesis

  20. Application of Ozone Related Processes to Mineralize Tetramethyl Ammonium Hydroxide in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Chyow-San Chiou

    2013-01-01

    Full Text Available Tetramethyl ammonium hydroxide (TMAH is an anisotropic etchant used in the wet etching process of the semiconductor industry and is hard to degrade by biotreatments when it exists in wastewater. This study evaluated the performance of a system combined with ultraviolet, magnetic catalyst (SiO2/Fe3O4 and O3, denoted as UV/O3, to TMAH in an aqueous solution. The mineralization efficiency of TMAH under various conditions follows the sequence: UV/O3 > UV/H2O2/O3 > H2O2/SiO2/Fe3O4/O3 > H2O2/O3 > SiO2/Fe3O4/O3 > O3 > UV/H2O2. The results suggest that UV/O3 process provides the best condition for the mineralization of TMAH (40 mg/L, resulting in 87.6% mineralization, at 60 min reaction time. Furthermore, the mineralization efficiency of SiO2/Fe3O4/H2O2/O3 was significantly higher than that of O3, H2O2/O3, and UV/H2O2. More than 90% of the magnetic catalyst was recovered and easily redispersed in a solution for reuse.

  1. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  2. PERFORMANCE EVALUATION OF ELECTROCOAGULATION PROCESS FOR DIAZINON REMOVAL FROM AQUEOUS ENVIRONMENTS BY USING IRON ELECTRODES

    Directory of Open Access Journals (Sweden)

    E. Bazrafshan, A. H. Mahvi, S. Nasseri, M. Shaieghi

    2007-04-01

    Full Text Available The present study investigates the removal of pesticide by electrocoagulation process. A glass tank in 1.56 L volume with four iron plate electrodes was used to perform the experiments. The electrodes connected to a DC power supply (bipolar mode. The tank was filled with synthetic wastewater were which contained diazinon pesticide in concentration of 10, 50 and 100 mg/L. The percent of diazinon removal was measured at pH= 3, 7 and 10 and in electric potential range of 20-40V by thin layer chromatography method. The results indicated that initial concentration of diazinon can affect efficiency removal and for higher concentrations of diazinon, higher electrical potential or more reaction time is needed. The results showed that for a given time, the removal efficiency increased significantly with increase of voltage. The highest electrical potential (40V produced the quickest treatment with >99% diazinon reduction occurring after 60 min. The final pH for iron electrodes was always higher than initial pH. Finally it can be concluded that electrocoagulation process (using iron electrodes is a reliable, efficient and cost-effective method for removal of diazinon from aqueous environments, especially designed for pH=3 and voltage=40V.

  3. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions

    International Nuclear Information System (INIS)

    Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O3 and O3/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O3 combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O3/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O3/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O3/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated

  4. Removal of Zn(II) from dilute aqueous solutions and radioactive process wastewater by foam separation

    International Nuclear Information System (INIS)

    Ion, precipitate and adsorbing colloid flotations of zinc(II) from dilute aqueous solutions have been investigated over a wide pH range using the anionic surfactant Aerosol OT or the cationic collector cetyl pyridinium chloride. In case of adsorbing colloid flotation (ACF) iron oxyhydroxide and aluminium hydroxide were used, either separately or together, as coprecipitants. The precipitate flotation curves were compared with the corresponding theoretical one calculated from the data published for Zn(II) hydrolysis. In addition to the effect of pH on the percent removal the effects of collector concentration, ionic strength, bubbling time and metal ion concentration were investigated and the optimum conditions were established. High removals could be achieved especially with ACF. The results obtained are discussed with respect to the chemical state of zinc, the ionization behaviour of the collectors and properties of the coprecipitants. The developed ACF process was applied to the removal of 65Zn from radioactive process wastewater. (author). 45 refs., 6 figs., 4 tabs

  5. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  6. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    Science.gov (United States)

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  7. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  8. Laser Processing of Materials Fundamentals, Applications and Developments

    CERN Document Server

    Schaaf, Peter

    2010-01-01

    Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.

  9. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Mohamed Bouraada

    2016-07-01

    Full Text Available Two modified layered double hydroxides (HT have been synthesized by intercalating both sodium dodecylsulfate (SDS and sodium dodecylbenzenesulfonate (SDBS surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR dye removal from aqueous solution. Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorption isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorption of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g for BBR dye were much higher than those of HT-SDBS (204.1 mg/g. The intercalated Mg-Al layered double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively high concentrations, whereas HT-CO3 may only be used to remove anionic dyes of low concentrations.

  10. Universal Orbital Material Processing Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need for sustainable space operations and full utilization of the International Space Station (ISS) and specifically to advance the "Materials,...

  11. Photocatalytic degradation of phenol in Aqueous Solutions by Fe(III-doped TiO2/UV Process

    Directory of Open Access Journals (Sweden)

    R Nabizadeh Nodehi

    2011-01-01

    Full Text Available "n "nBackgrounds and Objectives: Phenol and phenolic compounds are widely used in industry and daily liFe, and are of high interest due to stability in the environment, dissolution ability in water and health problems. In this regard, phenol removal from water is of high importance. The purpose of this study was to investigate the efficiency of photodegradation process for removal of phenol from aqueous system by use of Fe-doped TiO2 nanoparticles prepared by sol-gel method."nMaterials and Methods: Phenol concentrations of 5, 10, 50 and 100 mg/L were prepared and exposed to UV and Fe-doped TiO2, separately and simultaneously. Also the effect of initial phenol concentration, Fe-doped TiO2 loading and pH were studied. Various doses of photocatalist investigated for Fe- doped TiO2 were 0.25, 0.5 and 1 g/L. pH was studied at three ranges, acidic (pH=3, neutral (pH=7 and alkaline (pH=11."nResults: Maximum degradation was obtained at acidic pH, 0.5 g/L of Fe-doped TiO2 for all of phenol concentrations. With increasing initial concentration of phenol, photocatalytic degradation decreased. In comparison with Fe-doped TiO2/UV process, efficiency of UV radiation alone was low in phenol degradation (% 64.5 at 100 mg/l of phenol concentration. Also the amount of phenol adsorbed on the Fe-doped TiO2 was negligible at dark conditions."nConclusion: Results of this study showed that Fe(III- doped TiO2 nanoparticles had an important effect on photocatalytic degradation of high initial phenol concentration when Fe(III-doped TiO2/ UV process applied.

  12. Performance evaluation of modified Fenton process using Nano scale zero-valent iron in nitrate reduction from aqueous solution

    Directory of Open Access Journals (Sweden)

    Behrooz karimi

    2013-05-01

    Full Text Available Backgrounds and Objectives: Nowadays, global concerns about nitrate in groundwater and its adverse impact on health have increased. This study aims to evaluate the efficiency of nitrate reduction from aqueous solution through modified Fenton process using Nano scale zero-valent iron. Material and Methods: This research was an experimental study and performed at laboratory scale. Nitrate reduction was conducted by advanced oxidation process of Fe°/FeІІ/FeШ/H2O2 at pH 2-10, contact time 10-90 min, nitrate concentrations of 50-300 mg/L, and the molar ratio of [H2O2]/[Fe] 0.5-5. The effect of adding H2O2, molar ratio of reagents, contact time, and pH on nitrate removal was examined and optimal conditions for each of these parameters were determined. Spectrophotometer Dr/5000 was used to measure nitrate in the effluent. Results: We found that the optimal parameters in our studywere pH 3, the molar ratio [H2O2]/[Fe°] of 0.5, and the contact time 15 min. By applying these conditions, nitrate removal efficiency at the retention time 15 min, initial nitrate concentration of 100 mg/L, iron concentration of 10 mg/L, and pH 4 for FeШ، FeІІ، Fe°، FeІІ/Fe°/H2O2 and FeШ/Fe°/H2O2 was 10.5, 27.6, 36.5, 62.3, and 74% respectively. Conclusion: According to the experimental results, it was determined that modified Fenton process using zero iron nano-particles can reduce nitrate under optimal conditions and this method can be used for the removal of similar compounds.

  13. Evaluation of Performance Catalytic Ozonation Process with Activated Carbon in the Removal of Humic Acids from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Gh. Asgari

    2011-01-01

    Full Text Available Introduction & Objective: In recent years, the use of alternative disinfectants and the control of natural organic matters are two approaches that are typically applied in water treatment utilities to reduce the formation of chlorinated disinfection by-products. Catalytic ozonation is a new technology used to promote the efficiency of ozonation. The goal of this study was to survey the feasibility application of activated carbon as a catalyst in ozonation process for removal of humic acids from aqueous solution. Materials & Methods: This experimental study has been done in laboratory of water and wastewater chemistry, Tarbiat Modarres University. The solid structure and chemical composition of activated carbon were analyzed by X-ray fluorescence (XRF. Ozonation and catalytic ozonation experiments were performed in a semi-batch reactor and the mass of ozone produced was measured by iodometric titration methods. Concentration changes of humic acid in samples with a concentration of 15 mg/l were determined by using spectrophotometer at an absorbance wavelength of 254 nm. To evaluate the performance of catalytic ozonation in humic acid removal, total organic carbon and trihalomethane formation potential were evaluated and the results were analyzed by Excel software. Results: Catalytic ozone results showed that using activated carbon as a catalyst increased humic acid decomposition up to 11 times and removal efficiency increased with increasing pH (4-12 and catalyst dosage (0.25-1.5 g/250cc. The experimental results showed that catalytic ozonation was most effective in less time (10 min with considerable efficiency (95% compared to the sole ozonation process (SOP. Conclusion: The results indicated that the catalytic ozonation process, compared to SOP, was less affected by radical scavenger, and total organic carbon, and trihalomethane formation potential removal achieved were 30% and 83%, respectively. (Sci J Hamadan Univ Med Sci 2011;17(4:25-33

  14. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    Science.gov (United States)

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution. PMID:27442887

  15. Optimization of an aqueous tablet-coating process containing carboxymethylated Cassia fistula gum.

    Science.gov (United States)

    Rai, Parshu Ram; Tiwary, Ashok Kumar; Rana, Vikas

    2012-06-01

    The present investigation was aimed at developing and optimizing a simple aqueous tablet-coating formulation and its process. 5-Fluorouracil (5-FU) was used to ascertain the relative lipophilic/hydrophilic behavior of the coating system. Optimization was performed by evaluating the adhesive force strength and cohesive force strength of the tablet coat using a texture analyzer. The in vitro release of 5-FU was found to decrease with an increase in (tablet surface-coat) adhesive force strength. The (tablet-tablet) cohesive force strength was reduced by the addition of magnesium silicate to the coating solution. The addition of magnesium silicate (0.2% w/v) to the carboxymethyl Cassia fistula gum-chitosan (CCG-CH) coating surface significantly inhibited the release of 5-FU possibly due to an increase in the hydrophobic character of the coated tablet surface. This was possible by coating cohesive force strength reduction coating compositions (CCG-CH (70:30) and 0.3% magnesium silicate). Further, the FTIR-ATR and DSC analyses suggested the pivotal role of magnesium silicate in modifying the release of 5-FU from CCG-CH-coated tablets due to hydrogen bonding of its Si-O-Si or Mg-O groups with -OH moieties of CCG-CH.

  16. Infrared Thermochromic Properties of VO2 Thin Films Prepared through Aqueous Sol-gel Process

    Institute of Scientific and Technical Information of China (English)

    LIU Dongqing; CHENG Haifeng; ZHENG Wenwei; ZHANG Chaoyang

    2012-01-01

    The stoichiometric vanadium(Ⅳ) oxide thin films were obtained by controlling the temperature,time and pressure of annealing.The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 nm VO2 thin films in the 7.5 μm-14 μm region were discussed.The derived VO2 thin film samples were characterized by Raman,XRD,XPS,AFM,SEM,and DSC.The resistance and infrared emissivity of VO2 thin films under different temperature were measured,and the thermal images of films were obtained using infrared imager.The results show that the VO2 thin film annealed at 550 ℃ for 10 hours through aqueous sol-gel process is pure and uniform.The 900 nm VO2 thin film exhibits better IR thermochromic property than the 400 nm VO2 thin film.The resistance of 900 nm VO2 film can change by 4orders of magnitude and the emissivity can change by 0.6 during the phase transition,suggesting the outstanding IR thermochromic property.The derived VO2 thin film can control its infrared radiation intensity and lower its apparent temperature actively when the real temperature increases,which may be applied in the field of energy saving,thermal control and camouflage.

  17. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species.

    Science.gov (United States)

    Demoisson, Frédéric; Mullet, Martine; Humbert, Bernard

    2005-11-15

    Pyrite, an iron sulfide, occurs in many soils and sediments, making it an important natural reductant of toxic metal pollutants. This study investigated the processes leading to aqueous Cr(VI) reduction by pyrite in a closed thermostated (25 +/- 0.1 degrees C) system and under an argon atmosphere. Synthetic pyrite suspensions were reacted with a range of Cr(VI) solutions from 0 to 7 x 10(-4) M and at pH 2-8. Metal species concentrations were continuously monitored during a period lasting approximately 20 h. Preliminary experiments carried out in acidic media without Cr(VI) have shown that some pyrite dissolution occurred. Then, metal species concentration changes with time during pyrite oxidation by Cr(VI) solutions exhibited two distinct trends depending on the complete or incomplete Cr(VI) removal. As long as chromate existed in solution, the Cr-(Ill) to Fe(lIl) ratio was found to be an effective parameter to investigate the pyrite reaction stoichiometry with Cr(VI). Experimental values close to 2 suggest that sulfur compounds with oxidation states between 0 and 2 should be formed during pyrite oxidation by Cr(VI). If Cr(VI) was completely reduced from solution, then the pyrite oxidation by Fe(lll) ions took place to generate ferrous ions. PMID:16323772

  18. Application of adsorption process by activated carbon derived from scrap tires for Pb+2 removal from aqueous solutions

    OpenAIRE

    Edris Hoseinzadeh; Ali Reza Rahmani; Ghorban Asgari; Mohamad Taghi Samadi; Ghodratollah Roshanaei; Mohammad Reza Zare

    2013-01-01

    Background and Aim: Heavy metals have been recognized as very poisonous elements and their discharge into water sources can cause damaging effects on human and environmental health. The present study aimed at producing activated carbon from scrap tires and using it in removing Pb+2 from synthetic aqueous solutions. Materials and Methods: In this experimental study, activated carbon powder was derived from scrap tires under laboratory conditions. The effect of Pb (II) ions wi...

  19. Methodology and findings of the NRC's materials licensing process redesign

    International Nuclear Information System (INIS)

    This report describes the work and vision of the team chartered to redesign the process for licensing users of nuclear materials. The Business Process Redesign team was chartered to improve the speed of the existing licensing process while maintaining or improving public safety and to achieve required resource levels. The report describes the team's methods for acquiring and analyzing information about the existing materials licensing process and the steps necessary to radically change this process to the envisioned future process

  20. Novel Method for Breakthrough Removal of Azo Dye from Aqueous Environment Using Integrated Coagulation and Fenton Process

    OpenAIRE

    Sherine Awad; Usama Eldemerdash

    2014-01-01

    Fenton process has proven to be efficient in the removal of color and chemical oxygen demand (COD) from the aqueous environment. However, the environment, health, and economic constraints on the dosage of hydrogen peroxide represent a limitation towards a wide practical use of this approach. In this study, a novel approach is proposed; this includes the treatment with ferrous oxide through coagulation followed by integrated Fenton process. However, the excess ferrous and ferric ions from the ...

  1. Efficiency Effectiveness of Photochemical and Sonochemical Processes Combined with Hydrogen Peroxide in Degradation of Basic Violet 16 (BV16 from Aqueous Solutions: A Kinetic Study

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2013-05-01

    Conclusion: The results showed that UV/H2O2 and US/H2O2 processes can be effective in the removal of BV16 from aqueous solutions. Considering dye removal efficiency and availability, photochemical process combined with hydrogen peroxide can be recommended as a fast effective method for removal of dyes from aqueous solutions.

  2. Laser hearth melt processing of ceramic materials

    Science.gov (United States)

    Richard Weber, J. K.; Felten, J. J.; Nordine, Paul C.

    1996-02-01

    A new technique for synthesizing small batches of oxide-based ceramic and glass materials from high purity powders is described. The method uses continuous wave CO2 laser beam heating of material held on a water-cooled copper hearth. Contamination which would normally result during crucible melting is eliminated. Details of the technique are presented, and its operation and use are illustrated by results obtained in melting experiments with a-aluminum oxide, Y-Ba-Cu-O superconductor material, and the mixtures, Al2O3-SiO2, Bi2O3-B2O3, Bi2O3-CuO. Specimen masses were 0.05-1.5 g.

  3. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Kenneth M. [Brown Univ., Providence, RI (United States); Mustard, John F. [Brown Univ., Providence, RI (United States); Salvatore, Mark R. [Arizona State Univ., Mesa, AZ (United States)

    2015-03-05

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  4. Alteration of immature sedimentary rocks on Earth and Mars: Recording aqueous and surface-atmosphere processes

    Science.gov (United States)

    Cannon, Kevin M.; Mustard, John F.; Salvatore, Mark R.

    2015-05-01

    Rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. However, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water-rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water-rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. Our results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  5. Crystallization processes of hydrous metal oxides in the presence of aqueous-phase

    International Nuclear Information System (INIS)

    Evaluation of solubility-limiting solid is a central theme for predicting the rate of radionuclide release from HLW repository to the accessible environment. Such solids which control the concentration of radionuclide in subsurface water are considered to be sparingly soluble hydrous oxides. However, most of the hydrous oxides are thermodynamically unstable and alter from the amorphous form into crystal (oxyhydroxide or oxide), which, in turn, changes the solubility of radionuclide drastically. So far, such crystallization rates have been hardly clarified. This co-operative research focused on (1) the crystallization process from amorphous Fe(OH)3 to goethite, i.e., α-FeO(OH), and (2) the precipitation of Ce(III) or Ce(IV) and the chemical change in ageing. To begin with, the method to determine the crystallization fraction has been developed for the study. This method using TG(thermogravimetry)-curve quantifies the mole fraction of crystalline hydrous oxides, e.g., (Fe in goethite)/(total Fe in hydrous iron oxides precipitated). Using this method, the crystallization process of Fe(OH)3 was examined. The experimental parameters were the ageing time, pH-value, temperature, and dehydration methods. The results suggested that the aqueous phase plays an important role in changing the chemical structure into the crystal form. This tendency was observed also in the hydrous oxides of Ce(III) and Ce(IV). Further, the crystallization rate of Ce(OH)4 to CeO2 depended on the initial amount of CeO2 in ageing (although its amount of CeO2 was relatively small as compared to Ce(OH)4). These information will contribute to predicting the solubility-limiting solid in the performance assessment of HLW repository system. (author)

  6. MATERIAL AND ENVIRONMENTAL SUSTAINABILITY IN CERAMIC PROCESSING

    Science.gov (United States)

    Materials Characterization The density of 3124 Ferro Frit and Mason Chrome Free Black Pigment was measured to be 2.4911 g/cm3 and 5.0703 g/cm3 respectively. The single point, BET and Langmuir surface area of 3124 Ferro Frit was deter...

  7. Advanced materials: processing, characterisation and applications

    International Nuclear Information System (INIS)

    The topics discussed in this symposium are: polymer nanocomposites, Li-ion batteries, materials for electrochemical systems, photoelectrochemical and photovoltaic solar cells, crystal growth, thin films, reaction dynamics and kinetics, catalysis, coordination compounds and irradiation studies. Papers relevant to INIS are indexed separately

  8. Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Larsen-Olsen, Thue Trofod; Andreasen, Birgitta;

    2011-01-01

    of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were...... processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active layer)....

  9. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  10. Multiphysical Simulation of Laser Material Processing

    Science.gov (United States)

    Otto, Andreas; Koch, Holger; Vazquez, Rodrigo Gomez

    Within this paper a multiphysical simulation model is presented that is capable for simulating a wide range of laser processes like e.g. laser beam welding, brazing, cutting, drilling or ablation. Some important aspects of the model are explained more in detail and results from test cases are compared with analytical solutions revealing the high accuracy of the model. Finally exemplary results from process simulations on laser beam remote cutting of steel and laser beam scribing of silicon wafers are given.

  11. Behavior of the sorption of 60 Co in aqueous solution on inorganic materials as function of p H

    International Nuclear Information System (INIS)

    The sorption of the 60 Co is evaluated in aqueous solution on Mg O, MnO2, TiO2, Sn O, activated carbon and hydrotalcite calcined as a function of the p H, using the method for lots and quantifying at the 60 Co for gamma spectrometry. Likewise it was explained the one behavior of the sorption of the 60 Co in the materials with base in the chemical species of this radioactive isotope in aqueous solution. The chemical species of the 60 Co in solution were identified by electrophoresis of high voltage for the different p H values. It was found that under the experimental conditions, the 60 Co showed a significant sorption on MnO2, TiO2 and activated carbon. On the other hand, in Mg O, Sn O and calcined hydrotalcite also was observed a sorption, although in smaller quantities. The studied hydrated metallic oxides retained the 60 Co for ion exchange via. It was found that the 60 Co was present as a cationic specie to p H 1, 3, 5 and 7 and like a neutral specie to alkaline p H. (Author)

  12. Leaching effect in gadolinia-doped ceria aqueous suspensions for ceramic processes

    Science.gov (United States)

    Caldarelli, A.; Mercadelli, E.; Presto, S.; Viviani, M.; Sanson, A.

    2016-09-01

    Gadolinium doped ceria (CGO) is a commonly used electrolytic material for Solid Oxide Fuel Cells (SOFCs) and for this reason different shaping methods for its deposition are reported in literature. Most of these processes are based on the use of organic-based CGO suspensions, but water-based processes are acquiring increasingly interest for their economical and environmental friendly properties. In this paper we reported how the components of water-based suspension and some unexpected process parameters can deeply affect the functional properties of the final powder. In particular, we observed that CGO powders are strongly affected by ionic leaching induced by furoic acid used as dispersant: the extent of this leaching was related to the dispersant concentration and suspension's ball-milling-time; the phenomenon was confirmed by ICP-AES analyses on suspensions surnatant. Most importantly, ionic leaching affected the electrical properties of CGO: leached powder showed a higher ionic conductivity as a consequence of a partial removal of Gd ions at the grain boundaries. This work is therefore pointing out that when considering water-based suspensions, it is extremely important to carefully consider all the process parameters, including the organic components of the ceramic suspension, as these could lead to unexpected effects on the properties of the powder, affecting the performance of the final shaped material.

  13. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis

    2012-01-01

    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  14. Dielectric particle injector for material processing

    Science.gov (United States)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  15. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  16. Processing of monolayer materials via interfacial reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  17. Process for recovering organic values from aqueous solutions containing both organic values and scale-forming ions

    Energy Technology Data Exchange (ETDEWEB)

    Blytas, G.C.; Diaz, Z.

    1989-03-07

    A process is described for the recovery of organic values from aqueous solutions containing both organic values and scale-forming ions, consisting of: electrodialyzing as feed an organic value-containing aqueous solution containing scale-forming ions in a membrane-containing electrodialysis unit to obtain: (1) a concentrate stream containing a major portion of the scale-forming ions from the feed, and (2) a diluate stream containing a major portion of the organic values in the feed, supplying to the side of the membranes within the electrodialysis unit forming the concentrate stream an aqueous carrier stream substantially free of organic values, and in an amount sufficient to substantially reduce or prevent the formation of scale on the membranes, withdrawing the concentrate stream from the electrodialysis unit, fractionating the dilute stream by fractionation-distillation, recycling the overhead fraction as at least a portion of the aqueous carrier stream supplied to the side of the membranes forming the concentrate stream within the electrodialysis unit, and withdrawing the organic product stream from the fractionation distillation step.

  18. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 2: Product identification using Aerosol-CIMS

    Science.gov (United States)

    Sareen, N.; Shapiro, E. L.; Schwier, A. N.; McNeill, V. F.

    2009-07-01

    We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize secondary organic material formed by methylglyoxal with ammonium sulfate in aqueous aerosol mimics. Bulk reaction mixtures were diluted and atomized to form submicron aerosol particles. Organics were detected using Aerosol-CIMS in positive and negative ion mode using I- and H3O+·(H2O)n as reagent ions. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These results support previous observations by us and others that ammonium sulfate plays a critical role in the SOA formation chemistry of dicarbonyl compounds.

  19. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics – Part 2: Product identification using Aerosol-CIMS

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2009-07-01

    Full Text Available We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS to characterize secondary organic material formed by methylglyoxal with ammonium sulfate in aqueous aerosol mimics. Bulk reaction mixtures were diluted and atomized to form submicron aerosol particles. Organics were detected using Aerosol-CIMS in positive and negative ion mode using I− and H3O+·(H2On as reagent ions. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These results support previous observations by us and others that ammonium sulfate plays a critical role in the SOA formation chemistry of dicarbonyl compounds.

  20. From aqueous metal-solutions to sub-micron powders by a chemical reduction process and ods-products by co-precipitation

    International Nuclear Information System (INIS)

    Different metal-powders like Cu, Ni and precious metals like Ag, Au, Pt or Pd can be produced by adding a suitable reducing agent to an aqueous metal solution. In some cases it is also possible to produce homogeneous solid solution powders. The particle-sizes can be varied in dependence of the reducing parameters like dilution of the solutions and temperature. Submicron powders far below 1 μm as well as particle-sizes up to 5 μm can be produced. A simultaneous co-precipitation of solutions containing the dissolved metal as well as Zr-, or Y-compounds is possible to obtain ODS-materials thereof. Subsequent conventional PM-processing like sintering with simultaneous transformation into oxides and subsequent deformation produces e.g. Zr-, or Y-oxide stabilized materials with suitable mechanical properties. (author)

  1. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K.

  2. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K. PMID:27177317

  3. Influence of enzymes on the oil extraction processes in aqueous media

    Directory of Open Access Journals (Sweden)

    Ricochon Guillaume

    2010-11-01

    Full Text Available The methods of oil aqueous extraction process (AEP assisted by enzymes are, over the last 50 years, an alternative designed to replace traditional methods of extraction using organic solvents. To extract the oil using an AEP, the use of specific enzymes, able to hydrolyze some or all components of seeds, can significantly increase the yields of extraction. Hydrolyzing the different constituents of cell walls (cellulose, hemicellulose, pectins, proteins, etc., enzymes are able to enhance the liberation of the oil. A number of physico-chemical parameters must also be considered for the better expression of the enzymatic mixture, while maintaining the quality of oils and meals. This article presents the various factors influencing the release of oil in aqueous media and the main results obtained by this process on various substrates.

  4. 2003 research briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  5. 2005 Research Briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  6. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  7. A new process for preparing dialdehyde by catalytic oxidation of cyclic olefins with aqueous hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    YU, Hong-Kun; PANG, Zhen; HUANG, Zu-En; CAI, Rui-Fang

    2000-01-01

    A novel peroxo-nioboplosphate was synthesized for the first time and used as a catalyst in the oxidation reaction of cyclic olefins with aqueous hydrogen peroxide to prepare dialdehydes. The catalyst was characterized by elemental analysis,thermographic analyses, IR, UV/vis, 31P NMR and XPS ~ as [ π-C5H5N(CH2)i3CH3 ]2 [Nb406 (O2)2 (PO4)2] ·6H20 (PTNP). It showed high selectivity to glutaraldehyde in the catalytic oxidation of cyclopentene with aqueous hydrogen peroxide in ethanol.

  8. Nomenclature and terminology - standards for materials and processes

    OpenAIRE

    Frey, Jeremy; Borkum, Mark

    2014-01-01

    Professor Frey will try and highlight some of the issues around nomenclature and terminology that arise when materials and processes need to be described especially in the context of being computer and human readable and processable.

  9. Preparation of gas-tight strontium-doped lanthanum cobaltate by an aqueous sol-gel process

    NARCIS (Netherlands)

    Chen, C.H.; Kruidhof, H.; Bouwmeester, H.J.M.; Burggraaf, A.J.

    1996-01-01

    Gas-tight dense membranes of highly Sr-doped LaCoO3 (such as the composition La0.3Sr0.7CoO3 chosen in this study) are difficult to prepare using usual synthesis processes. This report presents an aqueous sol-gel route using metal acetates as precursors to achieve this goal. Hydrogen peroxide and amm

  10. Liquid-liquid equilibriums in aqueous solutions of demixing amines loaded with gas for CO 2 capture processes

    OpenAIRE

    Coulier, Y; Lowe, A.; Coxam, Jean Yves; Ballerat-Busserolles, Karine

    2015-01-01

    International audience Carbon Capture and Storage (CCS) is a solid option for CO2 mitigation in the atmosphere. One option is the CO2 capture from industrial effluents followed by storage in secured sites. Capture processes are based on selective absorption/desorption cycles of gas in aqueous solutions of amines[1]. The cost of CO2 treatment with classical alkanolamines is a limitation for the use of this technology. The development of breakthrough technologies is needed to optimize the se...

  11. Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis

    OpenAIRE

    Chethana, S.; Nayak, Chetan A.; M.C. Madhusudhan; Raghavarao, K. S. M. S.

    2014-01-01

    C-phycocyanin, a natural food colorant, is gaining importance worldwide due to its several medical and pharmaceutical applications. In the present study, aqueous two-phase extraction was shown to be an attractive alternative for the downstream processing of C-phycocyanin from Spirulina platensis. By employing differential partitioning, C-phycocyanin selectively partitioned to the polymer rich (top) phase in concentrated form and contaminant proteins to the salt rich (bottom) phase. This resul...

  12. GPC Light Shaper for energy efficient laser materials processing

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson;

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous...... because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different optimized shapes, they can be even more precise and energy efficient for materials processing. The cost...

  13. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    Science.gov (United States)

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  14. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  15. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  16. Radiation Processing of Advanced Composite Materials

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and γ-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose

  17. Adsorption of phenol from aqueous solution by a hierarchical micro-nano porous carbon material

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with...

  18. A critical study on efficiency of different materials for fluoride removal from aqueous media

    Science.gov (United States)

    2013-01-01

    Fluoride is a persistent and non-biodegradable pollutant that accumulates in soil, plants, wildlife and in human beings. Therefore, knowledge of its removal, using best technique with optimum efficiency is needed. The present survey highlights on efficacy of different materials for the removal of fluoride from water. The most important results of extensive studies on various key factors (pH, agitation time, initial fluoride concentration, temperature, particle size, surface area, presence and nature of counter ions and solvent dose) fluctuate fluoride removal capacity of materials are reviewed. PMID:23497619

  19. Porous nickel coatings on steel tubes formed by aqueous colloidal processing

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, B.; Sanchez-Herencia, A.J.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Carretera de Valencia Km. 24,300, Arganda del Rey, E-28500 Madrid (Spain)

    2002-09-01

    A main goal in the manufacture of composite materials is the possibility of applying the colloidal approach to powder metallurgy. Here porous nickel coatings have been prepared in the inner walls of steel tubes by a simple, low-cost colloidal process. Coatings treated at 650 C show good adhesion to the steel surface and a higher porosity that bulk bodies, as desired for manufacturing inner linings on long steel tubes such as those used for heat-exchange applications. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. Glyoxal processing outside clouds: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Science.gov (United States)

    Ervens, B.; Volkamer, R.

    2010-05-01

    This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions in aqueous aerosol particles that form secondary organic aerosol (SOA). Recent laboratory results on glyoxal reactions are reviewed and a consistent set of reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds to form (a) oligomers, (b) nitrogen-containing products, (c) photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles compared to cloud droplets and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud) chemistry. The application of this new module in a chemical box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the atmospheric relevance of SOA formation from glyoxal. During day time a photochemical (most likely radical-initiated) process is the major SOA formation pathway forming ~5 μg m-3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt). During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids) contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5

  1. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel;

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  2. Development of the Aqueous Processes for Removing NOx from Flue Gases.

    Science.gov (United States)

    Chappell, Gilford A.

    A screening study was conducted to evaluate the capability of aqueous solutions to scrub NOx from the flue gases emitted by stationary power plants fired with fossil fuels. The report summarizes the findings of this laboratory program. The experimental program studied the following media for absorption of NOx from flue gases containing no NOx:…

  3. Computer Simulation of the Process of Quenching Large-Size Parts in Water and Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    N.I.Kobasko; W.S.Morhuniuk; V.V.Dobrivecher; A.M.Weinov

    2004-01-01

    The article presents results of the computer simulation of quenching large-size parts in water and aqueous solutions. It has been shown that the main attention should be paid to eliminating film boiling and providing uniform cooling at the surface of the part to be quenched. Simplified formulas for calculating the optimal time of cooling large-size steel parts are presented.

  4. THE DEVELOPMENT OF AQUEOUS THERMODYNAMIC MODELS: APPLICATION TO WASTE TANK PROCESSING AND VADOSE ZONE ISSUES

    Science.gov (United States)

    The presence of a wide range of radionuclides, metal ions, inorganic ligands, and organic chelating agents combined with the high base and electrolyte concentration in the Hanford waste tanks creates some unique and difficult problems in modeling the aqueous thermodynamics of the...

  5. Effect of electrochemical treatment in H2SO4 aqueous solution on carbon material derived from cellulose with added guanidine phosphate

    Science.gov (United States)

    Tsubota, Toshiki; Wang, Chuanshu; Murakami, Naoya; Ohno, Teruhisa

    2013-03-01

    The electrochemical treatment in a 1 M H2SO4 aqueous solution is applied to the carbon material synthesized from cellulose mixed with guanidine phosphate. The capacitance value increased by the addition of guanidine phosphate; furthermore, the value significantly increased by the electrochemical treatment and was higher than 350 F g-1 at 50 mA g-1. The process used in this study, that is, removing the lignin from wood waste products, such as bamboo, and then mixing with guanidine phosphate before the heat treatment followed by an electrochemical treatment, should be of benefit for the synthesis of a high performance material for the electrodes of electrochemical capacitors. The significant enhancement of the capacitance value appears in the range of 1.5 V∼2.8 V vs. Ag/AgCl for the applied maximum voltage. This voltage range is consistent with the voltage for the significant enhancement of the current value in the CV curve. The change in the capacitance value should be related to the electrochemical reaction of the water electrolysis. The XPS data indicated that the concentrations of both the N atom and the O atom on the surface increased after the electrochemical process.

  6. Application of high magnetic fields in advanced materials processing

    Institute of Scientific and Technical Information of China (English)

    MA Yanwei; XIAO Liye; YAN Luguang

    2006-01-01

    Recently, steady magnetic fields available from cryogen-free superconducting magnets open up new ways to process materials. In this paper,the main results obtained by using a high magnetic field to process several advanced materials are reviewed. These processed objects primarily include superconducting, magnetic, metallic and nanometer-scaled materials. It has been found that a high magnetic field can effectively align grains when fabricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical viewpoint of magnetization energy.

  7. Sol-gel materials for optofluidics - process and applications

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm

    2011-01-01

    This Ph.D. thesis is concerned with the use of sol-gel materials in optofluidic applications and the physics of DNA molecules in nanoconfinement. The bottom-up formation of solid material, which is provided by the sol-gel process, enables control of the chemical composition and porosity...... of the material. At early stages of gelation, thin gel coatings can be structured by nanoimprint lithography, and purely inorganic silica materials can be obtained by subsequent thermal annealing. The sol-gel process thus constitutes a unique method for nanofabrication of silica materials of special properties....... In this work, sol-gel silica is introduced as a new material class for the fabrication of lab-on-a-chip devices for DNA analysis. An imprint process with a rigid, non-permeable stamp was developed, which enabled fabrication of micro- and nanofluidic silica channels in a single process step without use of any...

  8. KINETICS OF DENSIFICATION PROCESSES OF POWDER MATERIALS UNDER ELECTROPULSE SINTERING

    NARCIS (Netherlands)

    Grigoryev, E. G.

    2009-01-01

    The process of electropulse sintering of ferrous and high-speed steel powder materials by powerful pulse current and external pressure was investigated. Formation of high density and high strength structure of ferrous and highspeed steel powder materials was analyzed and optimal process parameters w

  9. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials. PMID:26503039

  10. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  11. Computer-Aided Process Model For Carbon/Phenolic Materials

    Science.gov (United States)

    Letson, Mischell A.; Bunker, Robert C.

    1996-01-01

    Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.

  12. Portable nuclear material detector and process

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Kenneth J (Aiken, SC); Fulghum, Charles K (Aiken, SC); Harpring, Lawrence J (North Augusta, SC); Huffman, Russell K (Augusta, GA); Varble, Donald L (Evans, GA)

    2008-04-01

    A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.

  13. [INVITED] Ultrafast laser micro-processing of transparent material

    Science.gov (United States)

    Watanabe, Wataru; Li, Yan; Itoh, Kazuyoshi

    2016-04-01

    Focusing ultrafast laser pulses inside a transparent material induces localized permanent structural modifications. Using these permanent structural modifications, one can produce photonic devices and micro-channels inside the bulk of a transparent material in three-dimensions. By virtue of localized melting and resolidification in materials, joining or welding is achieved between pieces of the same or different materials. This welding technique for transparent materials using ultrafast laser pulses is also reviewed along with applications to hermetic sealing. The mechanisms and applications of ultrafast laser micro-processing in transparent material are discussed.

  14. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Science.gov (United States)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-11-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water (a 10% surface tension reduction from that of pure water) and 62(±1) dyn cm-1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution). Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  15. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    CERN Document Server

    Li, Zhi; Sareen, Neha; McNeill, V Faye

    2011-01-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(\\pm2) dyn/cm in pure water and 62(\\pm1) dyn/cm in AS solutions. Surface t...

  16. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-07-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water and 62(±1 dyn cm−1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  17. DISTRIBUTION OF ACTINIDES BETWEEN THE AQUEOUS AND ORGANIC PHASES IN THE TALSPEAK PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Kyser, E.

    2010-09-02

    One objective of the US Department of Energy's Office of Nuclear Energy (DOE-NE) is the development of sustainable nuclear fuel cycles which improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and complement institutional measures limiting proliferation risks. Activities in progress which support this objective include the development of advanced separation technologies to recover the actinides from used nuclear fuels. With the increased interest in the development of technology to allow closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, at this time, the level of understanding associated with the chemistry and the control of the process variables is not acceptable for deployment of the process on an industrial scale. To address this issue, DOE-NE is supporting basic scientific studies focused on the TALSPEAK process through its Fuel Cycle Research and Development (R&D) program. One aspect of these studies is an experimental program at the Savannah River National Laboratory (SRNL) in which temperature-dependent distribution coefficients for the extraction of actinide elements in the TALSPEAK process were measured. The data were subsequently used to calculate conditional enthalpies and entropies of extraction by van't Hoff analysis to better understand the thermodynamic driving forces for the TALSPEAK process. In the SRNL studies, the distribution of Pu(III) in the TALSPEAK process was of particular interest. A small amount of Pu(III) would be present in the feed due to process losses and valence adjustment in prior recovery operations. Actinide elements such as Np and Pu have multiple stable oxidation states in aqueous solutions; therefore the oxidation state for these elements must be controlled in the TALSPEAK process, as the extraction chemistry is

  18. Materials-based process tolerances for neutron generator encapsulation.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    2007-10-01

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

  19. Surface engineering of glazing materials and structures using plasma processes

    International Nuclear Information System (INIS)

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes

  20. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  1. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material.

    Science.gov (United States)

    Yin, Ping; Xu, Qiang; Qu, Rongjun; Zhao, Guifang; Sun, Yanzhi

    2010-01-15

    A novel inorganic-organic composite material silica gel microspheres encapsulated by imidazole functionalized polystyrene (SG-PS-azo-IM) has been synthesized and characterized. This composite material was used to investigate the adsorption of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), Hg(II), Pb(II), Pd(II), Pt(II), Ag(I), and Au(III) from aqueous solutions, and the research results displayed that SG-PS-azo-IM has the highest adsorption capacity for Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation, and the maximum adsorption capacity for Au(III) is 1.700 mmol/g. The adsorption selectivity, the dynamic adsorption and desorption properties of SG-PS-azo-IM for Au(III) have also been studied. The results showed that SG-PS-azo-IM had excellent adsorption for Au(III) in four binary ions system, especially in the systems of Au(III)-Zn(II) and Au(III)-Cu(II), and almost Au(III) could be desorbed with the eluent solution of 0.5% thiourea in 1 mol/L HCl. Moreover, this novel composite material was used to preconcentrate Au(III) before its determination by flame atomic adsorption spectrometry. In the initial concentration range of 0.10-0.20 microg/mL, multiple of enrichment could reach 5.28. Thus, silica gel encapsulated by polystyrene coupling with imidazole (SG-PS-azo-IM) is favorable and useful for the removal of transition metal ions, and the high adsorption capacity makes it a good promising candidate material for Au(III) removal.

  2. Modeling of material flow in friction stir welding process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a 3D numerical model to study the material flow in the friction stir welding process. Results indicate that the material in front of the pin moves upwards due to the extrusion of the pin, and then the upward material rotates with the pin. Behind the rotating tool, the material starts to move downwards and to deposit in the wake. This process is the real cause to make friction stir welding process continuing successfully. The tangent movement of the material takes the main contribution to the flow of the material in friction stir welding process. There exists a swirl on the advancing side and with the increase of the translational velocity the inverse flow of the material on the advancing side becomes faster. The shoulder can increase the velocity of material flow in both radial direction and tangent direction near the top surface. The variations of process parameters do have an effect on the velocity field near the pin, especially in the region in which the material flow is faster.

  3. Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under arctic field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Glenn A.; Bausch, Alexandra R. [Department of Chemistry, Villanova University, Villanova, PA 19085 (United States); Grannas, Amanda M., E-mail: amanda.grannas@villanova.edu [Department of Chemistry, Villanova University, Villanova, PA 19085 (United States)

    2011-05-15

    Organochlorine (OC) contaminants are transported to the Polar Regions, where they have the potential to bioaccumulate, presenting a threat to the health of wildlife and indigenous communities. They deposit onto snowpack during winter, and accumulate until spring, when they experience prolonged solar irradiation until snowmelt occurs. Photochemical degradation rates for aldrin and dieldrin, in frozen aqueous solution made from MilliQ water, 500 {mu}M hydrogen peroxide solution or locally-collected melted snow were measured in a field campaign near Barrow, AK, during spring-summer 2008. Significant photoprocessing of both pesticides occurs; the reactions depend on temperature, depth within the snowpack and whether the predominant phase is ice or liquid water. The effect of species present in natural snowpack is comparable to 500 {mu}M hydrogen peroxide, pointing to the potential significance of snowpack-mediated reactions. Aldrin samples frozen at near 0 deg. C were more reactive than comparable liquid samples, implying that the microenvironments experienced on frozen ice surfaces are an important consideration. - Highlights: > Photodegradation rates for aldrin and dieldrin in frozen aqueous solutions made from MilliQ water, H{sub 2}O{sub 2} or melted snow are reported. > Photoprocessing depends on temperature, depth beneath the snowpack surface and dominant phase. > Species present in natural snowpack have a photosensitizing effect comparable to 500 {mu}M H{sub 2}O{sub 2}. > Aldrin samples frozen at near 0 deg. C were more reactive than comparable liquid samples. > Collectively we find that frozen aqueous surfaces play a unique role in aldrin and dieldrin photochemistry. - A field study finds that frozen aqueous solutions of aldrin and dieldrin undergo photochemical degradation under arctic snowpack conditions. The reactions are enhanced in frozen systems and by natural snowpack constituents.

  4. Process for application of powder particles to filamentary materials

    Science.gov (United States)

    Baucom, Robert M. (Inventor); Snoha, John J. (Inventor); Marchello, Joseph M. (Inventor)

    1991-01-01

    This invention is a process for the uniform application of polymer powder particles to a filamentary material in a continuous manner to form a uniform composite prepreg material. A tow of the filamentary material is fed under carefully controlled tension into a spreading unit, where it is spread pneumatically into an even band. The spread filamentary tow is then coated with polymer particles from a fluidized bed, after which the coated filamentary tow is fused before take-up on a package for subsequent utilization. This process produces a composite prepreg uniformly without imposing severe stress on the filamentary material, and without requiring long, high temperature residence times for the polymer.

  5. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  6. Processing and analysis techniques involving in-vessel material generation

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  7. Applications of Friction Stir Processing during Engraving of Soft Materials

    Directory of Open Access Journals (Sweden)

    V. Kočović

    2015-12-01

    Full Text Available Friction stir processing has extensive application in many technological operations. Application area of friction stir processing can be extended to the processing of non-metallic materials, such as wood. The paper examines the friction stir processing contact between a specially designed hard and temperature-resistant rotating tool and workpiece which is made of wood. Interval of speed slip and temperature level under which the combustion occurs and carbonization layer of soft material was determined. The results of the research can be applied in technological process of wood engraving operations which may have significant technological and aesthetic effects.

  8. Comparison of materials accounting in conversion and coconversion processes

    International Nuclear Information System (INIS)

    Materials accounting systems performances are compared for plutonium nitrate-to-oxide conversion [Oxalate (III)] and uranium-plutonium coconversion (Coprecal and modified Coprecal). These processes have the same design basis plutonium throughput and achieve this throughput in parallel operating lines. However, the process line configurations differ. In comparing the materials loss detection sensitivities for the three processes, we find better materials loss detection sensitivity for the Oxalate (III) process than for either of the two Coprecal processes, better single-balance detection sensitivity for the original Coprecal than for the modified Coprecal, and better long-term detection sensitivity (> 1d) for the modified Coprecal than for the original Coprecal. Sensivity differences result from differences in in-process inventories, feeding arrangements, and scrap generation

  9. Process optimization for developer soluble immersion topcoat material

    Science.gov (United States)

    Nakagawa, Hiroki; Goto, Kentarou; Shima, Motoyuki; Takahashi, Junichi; Shimokawa, Tsutomu; Ichino, Katsunori; Nagatani, Naohiko; Kyoda, Hideharu; Yoshihara, Kosuke

    2007-03-01

    The 193 nm immersion lithography has been increasingly applied to the semiconductor device mass production. Topcoat material would be used in many such cases. Topcoat film can maximize the scan speed during immersion exposure step and also prevent small molecules from leaching out of resist film. However, the use of the topcoat material in the mass production affects productivity including throughput and chemical cost. To manage this problem, we attempted to improve topcoat coating process to reduce the topcoat material consumption. Using JSR NFC TCX041, the developersoluble type topcoat material, as a model material, we examined a new coating process which introduces a pre-wet treatment using a solvent which was chosen to be appropriate for this purpose. With this new coating process, we achieved 65 percent (or more) reduction of the topcoat material consumption compared with the current standard coating process (dynamic coating). From the result of film surface observations and leaching tests, it was learned that the topcoat film properties by the new coating process are equivalent to those by the standard coating process. The process performance after development also indicated good results.

  10. Friction Stir Processing of Particle Reinforced Composite Materials

    Directory of Open Access Journals (Sweden)

    Daniel Solomon

    2010-01-01

    Full Text Available The objective of this article is to provide a review of friction stir processing (FSP technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  11. Chalcogenide material strengthening through the lens molding process

    Science.gov (United States)

    Nelson, J.; Scordato, M.; Lucas, Pierre; Coleman, Garrett J.

    2016-05-01

    The demand for infrared transmitting materials has grown steadily for several decades as markets realize new applications for longer wavelength sensing and imaging. With this growth has come the demand for new and challenging material requirements that cannot be satisfied with crystalline products alone. Chalcogenide materials, with their unique physical, thermal, and optical properties, have found acceptance by designers and fabricators to meet these demands. No material is perfect in every regard, and chalcogenides are no exception. A cause for concern has been the relatively low fracture toughness and the propensity of the bulk material to fracture. This condition is amplified when traditional subtractive manufacturing processes are employed. This form of processing leaves behind micro fractures and sub surface damage, which act as propagation points for both local and catastrophic failure of the material. Precision lens molding is not a subtractive process, and as a result, micro fractures and sub surface damage are not created. This results in a stronger component than one produced by traditional methods. New processing methods have also been identified that result in an even stronger surface that is more resistant to breakage, without the need for post processing techniques that may compromise surface integrity. This paper will discuss results achieved in the process of lens molding development at Edmund Optics that result in measurably stronger chalcogenide components. Various metrics will be examined and data will be presented that quantifies component strength for different manufacturing processes.

  12. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics – Part 1: Surface tension depression and light-absorbing products

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2009-07-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The light-absorbing products form on the order of minutes, and solution composition continues to change over several days. The results suggest an aldol condensation pathway involving the participation of the ammonium ion. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit surface tension depression. Methylglyoxal uptake could potentially change the optical properties, climate effects, and heterogeneous chemistry of the seed aerosol over its lifetime.

  13. Adsorption characteristics of haloacetonitriles on functionalized silica-based porous materials in aqueous solution.

    Science.gov (United States)

    Prarat, Panida; Ngamcharussrivichai, Chawalit; Khaodhiar, Sutha; Punyapalakul, Patiparn

    2011-09-15

    The effect of the surface functional group on the removal and mechanism of dichloroacetonitrile (DCAN) adsorption over silica-based porous materials was evaluated in comparison with powdered activated carbon (PAC). Hexagonal mesoporous silicate (HMS) was synthesized and functionalized by three different types of organosilanes (3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane and n-octyldimethysilane). Adsorption kinetics and isotherm models were used to determine the adsorption mechanism. The selective adsorption of five haloacetonitriles (HANs) in the single and mixed solute systems was also studied. The experiments revealed that the surface functional groups of the adsorbents largely affected the DCAN adsorption capacities. 3-Mercaptopropyl-grafted HMS had a high DCAN adsorption capacity compared to PAC. The adsorption mechanism is believed to occur via an ion-dipole electrostatic interaction in which water interference is inevitable at low concentrations of DCAN. In addition, the adsorption of DCAN strongly depended on the pH of the solution as this related to the charge density of the adsorbents. The selective adsorption of the five HANs over PAC was not observed, while the molecular structure of different HANs obviously influenced the adsorption capacity and selectivity over 3-mercaptopropyl-grafted HMS. PMID:21752539

  14. Research of developing and processing technology of new visual and optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jae; Kim, K. H.; Rhee, C. K.; Lee, H. G.; Kim, W. W.; Jeon, C. J.; Park, S.; Kim, H. S

    2000-08-01

    Crystalline TiO{sub 2} powder with rutile phase for the plastic lens material was prepared by the homogeneous precipitation process at ambient or low temperatures (HPPLT) using simply heating aqueous TiOCl{sub 2} solution. The transparent TiO{sub 2} thin films and CR39/TiO{sub 2} composite lens were fabricated using dispersed TiO{sub 2} particle in the aqueous or organic solution. The monodisperse TiO{sub 2} ultrafine particles with the diameters of 40 {approx} 400 nm were obtained from aqueous TiOCl{sub 2} solution with an appropriate Ti{sup 4+} concentration by the HPPLT. The process was carried out under the conditions in the ranges of 17 {approx} 230 deg C to prevent H{sub 2}O evaporation completely and to make it freely or to prevent it thoroughly. The existence of SO{sub 4}{sup 2-} ion in aqueous TiOCl{sub 2} solution make the preferential growth of the acicular primary particles suppressed, resulting in the spherical or round primary particles with the anatase phase. The ultrafine TiO{sub 2} powder by the HPPLT was well dispersed with sizes of 20 {approx} 50 nm in n-butyl alcohol solution. The mixture of TiO{sub 2} particles with silica sol, corresponding to 1.0 wt.% SiO{sub 2} in 99 wt.% (TiO{sub 2} + H{sub 2}O) aqueous solution was coated with 40 {approx} 50 nm thickness on the substrate. The optical transmittance of CR39/TiO{sub 2} composite lens with increase in the addition of the ultrafine TiO{sub 2} powder decreases gradually although TiO{sub 2} particles were well dispersed in n-butyl alcohol solution. Thus, it can be thought that it is appropriate to add 0.3 mL of 1.0 g TiO{sub 2}/1000 mL n-butyl alcohol solution to the CR39 solution for the CR39/TiO2 composite lens with optical transmittances more than 90 %. It was also confirmed that PMMA/TiO{sub 2} composite thin films showed a similar transmittance like the CR39/TiO{sub 2} composite lens.

  15. Research of developing and processing technology of new visual and optical materials

    International Nuclear Information System (INIS)

    Crystalline TiO2 powder with rutile phase for the plastic lens material was prepared by the homogeneous precipitation process at ambient or low temperatures (HPPLT) using simply heating aqueous TiOCl2 solution. The transparent TiO2 thin films and CR39/TiO2 composite lens were fabricated using dispersed TiO2 particle in the aqueous or organic solution. The monodisperse TiO2 ultrafine particles with the diameters of 40 ∼ 400 nm were obtained from aqueous TiOCl2 solution with an appropriate Ti4+ concentration by the HPPLT. The process was carried out under the conditions in the ranges of 17 ∼ 230 deg C to prevent H2O evaporation completely and to make it freely or to prevent it thoroughly. The existence of SO42- ion in aqueous TiOCl2 solution make the preferential growth of the acicular primary particles suppressed, resulting in the spherical or round primary particles with the anatase phase. The ultrafine TiO2 powder by the HPPLT was well dispersed with sizes of 20 ∼ 50 nm in n-butyl alcohol solution. The mixture of TiO2 particles with silica sol, corresponding to 1.0 wt.% SiO2 in 99 wt.% (TiO2 + H2O) aqueous solution was coated with 40 ∼ 50 nm thickness on the substrate. The optical transmittance of CR39/TiO2 composite lens with increase in the addition of the ultrafine TiO2 powder decreases gradually although TiO2 particles were well dispersed in n-butyl alcohol solution. Thus, it can be thought that it is appropriate to add 0.3 mL of 1.0 g TiO2/1000 mL n-butyl alcohol solution to the CR39 solution for the CR39/TiO2 composite lens with optical transmittances more than 90 %. It was also confirmed that PMMA/TiO2 composite thin films showed a similar transmittance like the CR39/TiO2 composite lens

  16. CI chondrite-like clasts in the Nilpena polymict ureilite - Implications for aqueous alteration processes in CI chondrites

    Science.gov (United States)

    Brearley, Adrian J.; Prinz, Martin

    1992-01-01

    Petrographic studies of Nilpena polymict ureilite have revealed the presence of small quantities of carbonaceous chondrite matrix clasts. Detailed electron microprobe and TEM studies show that the chemistry and fine-scale mineralogy of one of these clasts is consistent with CI carbonaceous chondrite matrix. Compared to Orgeuil, the phyllosilicate, sulfide, and oxide mineralogy suggests that the Nilpena clasts may represent a less altered type of CI matrix. It is suggested that increased oxidation and aqueous alteration of Nilpena-type materials could result in the formation of the type of mineral assemblage observed in Orgueil. Increased alteration produces progressive more Mg-rich phyllosilicates and more Fe(3+)-rich iron oxides, such as ferrihydrite. As a function of increased alteration, Ca is also progressively leached from the matrix material to form carbonate veins. The depletion of Ca in CI chondrite matrices suggests the Ivuna and Alais may be intermediate in their degree of alteration to Nilpena and Orgueil.

  17. Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2014-12-01

    Full Text Available Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in aqueous suspension affording significant amounts of formic acid. The results indicated that the presence of the sensitizers is beneficial for the photoactivity, confirming the important role of Cu(II co-ordinated in the middle of the macrocycles. A comparison between Cu(II phthalocyanines and Cu(II porphyrins indicated that the Cu(II- phthalocyanine sensitizer was more efficient in the photoreduction of CO2 to formic acid, probably due to its favorable reduction potential.

  18. Structural optimization for materially informed design to robotic production processes

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2015-01-01

    Hyperbody’s materially informed Design-to-Robotic-Production (D2RP) processes for additive and subtractive manufacturing aim to achieve performative porosity in architecture at various scales. An extended series of D2RP experiments aiming to produce prototypes at 1:1 scale wherein design materiality

  19. Application of highly porous materials for simazine removal from aqueous solutions.

    Science.gov (United States)

    Esposito, Serena; Garrone, Edoardo; Marocco, Antonello; Pansini, Michele; Martinelli, Paola; Sannino, Filomena

    2016-10-01

    The removal of simazine from both pure water and solute-bearing well water was studied by adsorption on two solids: zeolite H-Y from the commercial Na form and porous silica tailored by the sol-gel technique. The pH dependence of the amount adsorbed in a closed system at constant total simazine content as well as the apparent isotherms of adsorption was measured in all four cases. The low ion content of natural water suffices to alter the adsorption features in the case of silica, but not with zeolite H-Y. Iteration of the adsorption process onto constant amounts of solid allowed bringing the residual simazine concentration below 0.05 mg/L, the value allowed by Italian laws in wastewaters. PMID:26852791

  20. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  1. Optical materials by a modified sol-gel nanoparticle process

    OpenAIRE

    Schmidt, Helmut K.; Mennig, Martin

    2000-01-01

    The use of sol-gel derived nanoparticles leads to interesting new materials and systems for optics. The basic principle, to combine transparent matrices with nanoparticles in sizes below remarkable scattering losses opens up new material technologies. The processing is almost as simple as sol-gel processing, and the use of polymerizable nanoparticle even leads to high performance coatings by using simple polymer techniques.

  2. Femtosecond laser processing of photovoltaic and transparent materials

    OpenAIRE

    Sanghoon AHN

    2013-01-01

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused...

  3. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  4. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Science.gov (United States)

    Ervens, B.; Volkamer, R.

    2010-09-01

    This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA) in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a) oligomers, (b) nitrogen-containing products, (c) photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud) chemistry for the same conditions (liquid water content, particle size). The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated) process is the major SOA formation pathway forming ∼5 μg m-3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt). During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids) contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7). Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend on aerosol loading or water content, which indicates a

  5. Al-MoSi2 Composite Materials: Analysis of Microstructure, Sliding Wear, Solid Particle Erosion, and Aqueous Corrosion

    Science.gov (United States)

    Gousia, V.; Tsioukis, A.; Lekatou, A.; Karantzalis, A. E.

    2016-02-01

    In this effort, AMCs reinforced with new intermetallic phases, were produced through casting and compared as far as their microstructure, sliding wear, solid particle erosion, and aqueous corrosion response. Casting was selected as a production method based on the concept: (a) ease-to-handle and low cost production route and (b) optimum homogeneity of the reinforcing phase distribution. The MoSi2 phase was produced through vacuum arc melting and the resulting drops were milled for 30 h to produce fine powder, the characteristics of which were ascertained through SEM-EDS and XRD analysis. MoSi2 was used as precursor source for the final reinforcing phase. The powder material was incorporated in molten Al1050 alloy to additions of 2, 5 and 10 vol.% respectively. Extensive reactivity between the molten Al and the MoSi2 particles was observed, leading to the formation of new reinforcing phases mainly of the Al-Mo system. In all cases, a uniform particle distribution was observed, mainly characterized by isolated intermetallic phases and few intermetallic phase clusters. Sliding wear showed a beneficial action of the reinforcing phase on the wear of the composites. Surface oxidation, plastic deformation, crack formation, and debris abrasive action were the main degradation features. The results of solid particle erosion showed that the mechanism is different as the impact angle and the vol.% change. Regarding the corrosion, the analysis revealed localized corrosion effects. The composite behavior was not altered significantly compared to that of the monolithic matrix.

  6. Processing of high performance composites based on peek by aqueous suspension prepregging

    Directory of Open Access Journals (Sweden)

    Liliana Burakowski Nohara

    2010-06-01

    Full Text Available The use of polyamic acid (PAA precursor as interphase in polymer composites is one of the many applications of polyimides (PIs. In this work, composites based on poly(ether-ether-ketone (PEEK and carbon fibers were prepared using two manufacturing techniques for thermoplastic composites: hot compression molding, and aqueous polymeric suspension prepregging using PIs as interphase. Two PAAs were synthesized and used as interphases: 3,3'-4,4'-benzophenonetetracarboxylic dianhydride/oxydianiline (BTDA/ODA and pyromellitic dianhydride/oxydianiline (PMDA/ODA. The PAA/PI systems were analyzed by differential scanning calorimetry (DSC, thermogravimetry (TGA, Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance (NMR. Results from these analyses confirmed the synthesis of these compounds. Aqueous polymeric suspension prepregging was more efficient than hot compression molding when the PMDA/ODA PAA/PI interphase was used; also, the interlaminar shear strength of composites produced using this technique was 14.5% higher than the one produced using hot compression molding.

  7. Oxidative dissolution of spent nuclear fuel in aqueous alkaline solutions - An alternative to the Purex process?

    Energy Technology Data Exchange (ETDEWEB)

    Runde, Wolfgang; Peper, Shane; Brodnax, Lia; Crooks, William; Zehnder, Ralph; Jarvinen, Gordon

    2004-07-01

    As an alternative to acidic reprocessing of spent nuclear, oxidative dissolution of UO{sub 2} into aqueous alkaline solutions and subsequent separation of fission products is considered. The efficacy of such a method is limited by the kinetics of the UO{sub 2} dissolution and the capacity of alkaline solutions for dissolved U(VI) species. We performed a series of dissolution studies on UO{sub 2} and U{sub 3}O{sub 8} in aqueous alkaline solutions applying various oxidants. Among the oxidative agents commonly used to transform low-valence actinides into their higher oxidation states, H{sub 2}O{sub 2} has proven to be the most effective in basic media. Consequently, we investigated the dissolution of UO{sub 2} and U{sub 3}O{sub 8} in NaOH-H{sub 2}O{sub 2} and Na{sub 2}CO{sub 3}-H{sub 2}O{sub 2} solutions and determined the dissolution kinetics as a function of peroxide and hydroxide (carbonate) concentrations. Methods to remove fission products, e.g., Cs, Sr, Ba and Zr, from alkaline solutions will be evaluated based upon their decontamination factors. We will discuss the feasibility of using chemically oxidizing alkaline solutions as an alternative spent nuclear fuel reprocessing method based on results from experimental quantitative investigations. (authors)

  8. Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution

    Directory of Open Access Journals (Sweden)

    Kiyoharu Tadanaga

    2015-03-01

    Full Text Available Spinel Li4Ti5O12 thin films were prepared by a mist CVD process, using an aqueous solution of lithium nitrate and a water-soluble titanium lactate complex as the source of Li and Ti, respectively. In this process, mist particles ultrasonically atomized from a source aqueous solution were transferred by nitrogen gas to a heating substrate to prepare thin films. Scanning electron microscopy observation showed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 500 nm were obtained. In the X-ray diffraction analysis, formation of Li4Ti5O12 spinel phase was confirmed in the obtained thin film sintered at 700 °C for 4 h. The cell with the thin films as an electrode exhibited a capacity of about 110 mAh g−1, and the cell showed good cycling performance during 10 cycles.

  9. Preparation of Wear Resistant Materials by Melting and Diffusion Process

    Institute of Scientific and Technical Information of China (English)

    YU Shihao; WEI Xueping; ZENG Hui

    2012-01-01

    A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process,in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid.Microstructure of the material was examined by OM,SEM,and XRD,and alloy elements in the diffusion layer were studied by EDS,and the hardness of the material was tested by HRS.The experimental results show that the material gradually changes hardness,which is due to the uniformly existents of carbide particles on martensite matrix and the gradient distribution of vanadium and carbide.

  10. Friction stir welding tool and process for welding dissimilar materials

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  11. Process for electrolytic deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  12. Process for electroless deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  13. Photocatalytic Reduction of Nitrate in Aqueous Solutions using  Ag-doped TiO2/UV Process

    Directory of Open Access Journals (Sweden)

    Saeed Parastar

    2012-10-01

    Full Text Available Background and Objectives: Pollution of water resources to nitrate is an environmental problem in many parts of the world. This problem possibly causes diseases such as methemoglobinemia, lymphatic system cancer and Leukemia. Hence, nitrate control and removal from water resources is necessary. Considering that application of nanomaterials in treatment of environmental pollutants has become an interesting method, in this research use of Ag-doped TiO2 nanoparticles synthesized through photodeposition produced under UV irradiation was studied for removal of nitrate from aqueous solutions.Materials and Methods: Three nitrate concentrations of 20, 50, and 100 mg/L were considered. In order to determine the effect of Ag-doped TiO2 nanoparticles on  nitrate removal, dosages of  0.1, 0.4, 0.8 and 1.2 g/L nanoparticles were used; pH range of 5-9 was also considered. The effect of Ag-doped TiO2 nanoparticles both in darkness and under UV irradiation was studied. Moreover, the presence of chloride and sulfate anions on the system removal efficiency was investigated.Results: The optimum performance of nitrate removal (95.5% was obtained using nitrate concentration of 100 mg/L, in acidic pH and 0.8 g/L Ag-TiO2. Increase of nanoparticle dosage up to 0.8 g/L, increased the removal efficiency, but for 1.2 g/L dosage of nanoparticles, the removal efficiency decreased. Maximum reduction performance without nanoparticles, under UV irradiation and under darkness conditions were 32% and 23.3% , respectively. In addition, we found that presence of sulfate and chloride anions in aqueous solution reduced efficiency of nitrate removal.Conclusion: Results of this study showed that Ag-doped TiO2 nanoparticles may be efficiently used for nitrate removal from aqueous solutions.

  14. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-11-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water (a 10% surface tension reduction from that of pure water and 62(±1 dyn cm−1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  15. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  16. Processing and characterization of novel biobased and biodegradable materials

    Science.gov (United States)

    Pilla, Srikanth

    Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They

  17. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  18. Designing Educative Curriculum Materials: A Theoretically and Empirically Driven Process

    Science.gov (United States)

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Arias, Anna Maria; Bismack, Amber Schultz; Marulis, Loren M.; Iwashyna, Stefanie K.

    2014-01-01

    In this article, the authors argue for a design process in the development of educative curriculum materials that is theoretically and empirically driven. Using a design-based research approach, they describe their design process for incorporating educative features intended to promote teacher learning into existing, high-quality curriculum…

  19. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    CERN Document Server

    Mehrer, Helmut

    2007-01-01

    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  20. Investigating the Efficiency of UV/H2O2 Process for Removal of Linear Alkylbenzene Sulfonate (LAS in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    R Nabizadeh Nodehi

    2011-01-01

    Full Text Available "n "nBackgrounds and Objective: Surfactants are one of the largest pollutants which exist in urban and industrial wastewaters. Large quantities of surfactants have entered to the environment since last decade due to increased use of synthetic detergent in industrial and home consumptions.In this study, the efficiency of UV/H2O2 process in removal of linear alkylbenzane sulfonate (LAS from aqueous solutions was investigated."nMaterials and Methods: In this study methylene blue active substane(MBASmethod and spectrometery were used to determine anion and residual surfactant respectively. In this study important variables were H2O2 concentration, initial concentration of surfactant, pH and duration of UV radiation. The effect of UV/H2O2 process on the degradation of LAS was analyzed statistically by using Multiple Linear Regression test."nResults: The resulted showed that after 20 minute, ultraviolet radiation solely removed 38.44 percent of Anionic detergent, Hydrogen peroxide showed no significant removal of detergent solution in the time course study. The efficiency of UV/H2O2 process in 10, 20 and 30 minute were to 86.2, 90 and 96.5 %, respectively."nConclusion: The results showed that the efficiency of ultraviolet radiation and hydrogen peroxide process in anionic detergent was not significant thoogh it was considerable in combination process (UV/H2O2.

  1. Kinetic Processes Crystal Growth, Diffusion, and Phase Transformations in Materials

    CERN Document Server

    Jackson, Kenneth A

    2004-01-01

    The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on th

  2. The Algorithm of Intelligent Compensation in Flexible Material Processing

    Institute of Scientific and Technical Information of China (English)

    TANG Luxin; DENG Xiaohui; LIU Zhiyuan

    2006-01-01

    Flexible material is easy to be distorted in high speed sewing process, so it must be tracked in the process. In this paper, The mathematics model is established with computer visual measure and digital image process for distorted flexible material. By the means of optimizing initial iterative value, the distorted variable of two correlated subareas evaluated. The method based on improved steepest descent algorithm and simulation annealing algorithm is proposed. It has been proven that the evaluating the algorithm's error and convergent speed by the method of numerical emulate is the effective approach.

  3. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  4. Concurrent materials and process selection in conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Stephen D.; Knorovsky, Gerald A.

    2000-08-16

    A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach facilitates the product design and manufacturing process. Using a Windows-based computer video display and a data base of materials and their properties, the designer can ascertain the preferred composition of two parts based on various operating/environmental constraints such as load, temperature, lifetime, etc. Optimum joinder of the two parts may simultaneously be determined using a joining process data base based upon the selected composition of the components as well as the operating/environmental constraints.

  5. Process for separating actinide ions from aqueous basic solutions containing carbonates. Verfahren zur Abtrennung von Aktinoidenionen aus waessrigen, basischen, carbonhaltigen Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Haag, J.; Sameh, A.

    1986-01-09

    The waste liquid is subjected to the following stages of the process: Treatment with concentrated phosphoric acid. Decomposition of the phosphoric acid ester H/sub 3/PO/sub 4/ adduct compounds formed in the first stage. Saponification of the phosphoric acid ester and draining off a saponification product. Cooling the drained off saponification product and separation of the organic phase formed during cooling of the aqueous phase. Burning the organic phase. Returning the aqueous phase to the saponification stage and solidifying the aqueous phases or residues containing the impurities.

  6. Exercises in 80223 Numerical Modelling of Thermal Processing of Materials

    DEFF Research Database (Denmark)

    Frandsen, Jens Ole

    , guidelines are given on how to write the report which has to be handed in at the end of the course. The exercise book is a updated version of the exercise book from 1999. The exercise book is used in the course 42224 'Numerical Process Modelling' which earlier was called 80223 'Numerical Modelling of Thermal......This exercise book contains exercise instructions for the 7 compulsory exercises (Exercise 1-7) and the final exercise (Exercise 8) in the course 80223 'Numerical Modelling of Thermal Processing of Materials'. The exercise book also contains written program examples in 'C' and 'Pascal'. Finally...... Processing of Materials'. The original copy is kept in the archives of TM on the ground floor of building 425. A copy of the exercise book can be made available by contacting the secretary on the ground floor of building 425. Please give the following number: TM 00.01 (TM = Thermal processing of Materials)...

  7. The processes for fissile material flux management: theory vs practice

    International Nuclear Information System (INIS)

    Bel-V has carried out a thorough control of some licensees in order to check if the official accountability of fissile material matched the experimental fissile material fluxes in the processes. The following approach was adopted: 1) Understand how the licensee has kept count of the official accountability over the years (it must be noted that the past method used was evaluated and recognized by the regulator); 2) Observe and get an in-depth understanding of the processes carried out by the licensee; 3) Compare these processes with the information (yields, chemical reactions, byproducts formation...) published in scientific literature; 4) Localize parts of the installation or equipment where an accumulation of fissile material could take place; 5) Ask the licensee for a sample analysis in parts of the equipment where the localization study showed a risk of accumulation or loss of fissile material; 6) Compare the analysis results with the official accountability values; 7) If applicable, suggest any process modification in order to improve the recovery of fissile material; 8) In the future, eventually estimate the potential necessary corrections of the official accountability of fissile material (administrative task). Bel-V has not detected any major problems that necessitate immediate action. However, this study has identified parts of equipment in some facilities where the accumulation rate of fissile material is higher than expected. On the other hand, experimental analyzes have excluded some places where fissile material was supposed to be prone to accumulation. Finally the licensees and Bel-V have localized places where chemical side reactions or very slow kinetic reactions have altered the molecular form of the fissile material. The article is followed by the slides of the presentation

  8. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  9. Polymer solar cells - Non toxic processing and stable polymer photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, R.

    2012-07-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (approx1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient cell must be achieved. For a continuous success it is therefore essential to transfer the accomplishments from the laboratory to large scale facilities for actual production. In order to do so, several issues have to be approached. Among these are more environmentally friendly processing and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding to several GW{sub peek}, this is not a suitable approach from neither a production nor environmental point of view. As a consequence new materials, which can be processed from more environmentally friendly solvents (preferably water), need to be developed. In this thesis, the issue has been approached through synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells as it slows down diffusion though the active layer, but just as important it renders the layer insoluble. This allows for further processing, using the same solvent, without dissolving already processed layers, and resulted in the first ever reported solar cells where all layers are processed from aqueous or semi-aqueous solution. As previously mentioned many advantages can be achieved by use of thermocleavable materials. Unfortunately the cleavage temperatures are too

  10. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors

    Science.gov (United States)

    Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R.

    2014-05-01

    Nanowire Na0.35MnO2 was prepared by a simple and low energy consumption hydrothermal method; its electrochemical performance as a cathode material for aqueous asymmetric supercapacitors in Na2SO4 solution was investigated. Due to the nanowire structure its capacitance (157 F g-1) is much higher than that of the rod-like Na0.95MnO2 (92 F g-1) from solid phase reaction although its sodium content is lower. When it is assembled into an asymmetric aqueous supercapacitor using activated carbon as the counter electrode and aqueous 0.5 mol L-1 Na2SO4 electrolyte solution, the nanowire Na0.35MnO2 shows an energy density of 42.6 Wh kg-1 at a power density of 129.8 W kg-1 based on the total weight of the two electrode material, higher than those for the rod-like Na0.95MnO2, with an energy density of 27.3 Wh kg-1 at a power density of 74.8 W kg-1, and that of LiMn2O4. The new material presents excellent cycling behavior even when dissolved oxygen is not removed from the electrolyte solution. The results hold great promise for practical applications of this cathode material since sodium is much cheaper than lithium and its natural resources are rich.

  11. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    X.J.Lee; L.Y.Lee; L.P.Y.Foo; K.W.Tan; D.G.Hassell

    2012-01-01

    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+).The reaction temperature was varied from 650 to 850℃,while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min,respectively.Results show that nanosorbents synthesised at a reaction temperature of 650℃ had the smallest average diameter (75 nm),largest BET surface area (68.95m2/g) and least amount of impurity (0.98 wt.% Fe).A series of batch sorption tests were performed to evaluate the effects of initial pH,initial metal concentration and contact time on Ni2+ removal by the nanosorbents.The equilibrium data fitted well to Freundlich isotherm.The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type.Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step.This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature,is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.

  12. Materials and processes for spacecraft and high reliability applications

    CERN Document Server

    D Dunn, Barrie

    2016-01-01

    The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Sp...

  13. Material quality development during the automated tow placement process

    Science.gov (United States)

    Tierney, John Joseph

    Automated tow placement (ATP) of thermoplastic composites builds on the existing industrial base for equipment, robotics and kinematic placement of material with the aim of further cost reduction by eliminating the autoclave entirely. During ATP processing, thermoplastic composite tows are deposited on a preconsolidated substrate at rates ranging from 10--100mm/s and consolidated using the localized application of heat and pressure by a tow placement head mounted on a robot. The process is highly non-isothermal subjecting the material to multiple heating and cooling rates approaching 1000°C/sec. The requirement for the ATP process is to achieve the same quality in seconds (low void content, full translation of mechanical properties and degree of bonding and minimal warpage) as the autoclave process achieves in hours. The scientific challenge was to first understand and then model the relationships between processing, material response, microstructure and quality. The important phenomena affecting quality investigated in this study include a steady state heat transfer simulation, consolidation and deconsolidation (void dynamics), intimate contact and polymer interdiffusion (degree of bonding/mechanical properties) and residual stress and warpage (crystallization and viscoelastic response). A fundamental understanding of the role of materials related to these mechanisms and their relationship to final quality is developed and applied towards a method of process control and optimization.

  14. Coal conversion processes and their materials requirements. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Voorde, M. van de; Betteridge, W.

    1984-01-01

    The coal conversion processes combustion, gasification and liquefaction are discussed with respect to current industrial developments and material problems in industrial plants due to fouling, corrosion and erosion. The available materials are discussed by means of high temperature corrosion, erosion, ductibility, creep, fatigue and physical properties. Ceramics and refractories which are particularly used as thermal insulation are also discussed by means of corrosion and erosion and mechanical properties.

  15. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    OpenAIRE

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane module. A simple and easy method to measure the oxygen nonstoichiometry of a perovskite material is described in chapter 2. A Computing Fluid Dynamic (CFD) model is developed in chapter 3 to describe th...

  16. High-temperature superconductors: Fundamental properties and novel materials processing

    International Nuclear Information System (INIS)

    These proceedings are a peer refereed, published account of Symposium M, High Temperature Superconductor Fundamental Properties and Novel Materials Processing, held at the November 29--December 2, 1989 meeting of the Materials Research Society in Boston, Massachusetts. The papers are organized under the following headings: Theory, crystal chemistry and thermodynamic properties; Synthesis and characterization: bulk powder, Synthesis and characterization: films and superlattices; Microstructural studies, Critical currents and flux dynamics; Physical properties; Applications-oriented studies

  17. Electron paramagnetic resonance of material properties and processes

    Energy Technology Data Exchange (ETDEWEB)

    Brower, K. L.

    1980-01-01

    This paper demonstrates, primarily for the non-specialist and within the context of new and recent achievements, the diagnostic value of electron paramagnetic resonance (EPR) in the study of material properties and processes. I have selected three EPR studies which demonstrate the elegance and uniqueness of EPR in atomic defect studies and exemplify unusual achievements through the use of new techniques for material measurement and preparation. A brief introduction into the origin, interaction, and detection of unpaired electrons is included.

  18. Photolysis pathway of nitroaromatic compounds in aqueous solutions in the UV/H2O2 process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; YANG Chun; GOH Ngoh Khang

    2006-01-01

    Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.

  19. Feasibility study of a solar reactor for phenol treatment by the Photo-Fenton process in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, K.R.B.; Nascimento, C.A.O.; Guardani, R.; Teixeira, A.C.S.C. [University of Sao Paulo, Chemical Engineering Department, Sao Paulo (Brazil)

    2012-12-15

    Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96-100 %. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Process optimization for effective column separation of 106Ru from aqueous waste associated with spent reprocessing solvent in storage tanks

    International Nuclear Information System (INIS)

    The present work deals with another waste stream resulting from reprocessing operations, viz. the aqueous solution present in substantial quantities as the bottom layer in tanks storing spent TBP-dodecane solvent. The effective separation of 106Ru from aqueous waste streams generated during reprocessing of spent nuclear fuel is difficult because of its complex aqueous chemistry

  1. Advanced electrical and electronics materials processes and applications

    CERN Document Server

    Gupta, K M

    2015-01-01

    This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments.   Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and exa

  2. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    Science.gov (United States)

    da Silva, Alessandra Furtado; Welz, Bernhard; Curtius, Adilson J.

    2002-12-01

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l -1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg -1 were satisfactory for a routine procedure.

  3. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra Furtado da; Welz, Bernhard; Curtius, Adilson J

    2002-12-02

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 {mu}m, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 {mu}g of each modifier was applied using 25 injections of 20 {mu}l of modifier solution (500 mg l{sup -1}), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg{sup -1} were satisfactory for a routine procedure.

  4. Preparation of Nano/Micron Composite Materials by Process Method

    Institute of Scientific and Technical Information of China (English)

    GAN Ai-feng; WEI Qi; JI; Yuan; HU Chuan-xin; YAO Jun-min

    2004-01-01

    This thesis put forward a method that controls the process of synthesizing nanomaterial to realize the composite of nanomaterial and micronmaterial. This thesis realizes the composite of nanomaterial and micronmaterial by adding micronmaterial during production of nanomaterial through sol-gel method, also introduces the technique and experiment's process preparation of nanocomposite material, and successfully prepared nanocomposite materials with nano-PbTiO3 covered on the surface of micron-Ni. According to the sample's SEM-pictures, the core-shell can be observed plate microstructure, and it is uniform, tight, full and good.

  5. ASSESSMENT OF KINETIC PROCESSES OF HARDENING OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    P. V. Voronov

    2010-12-01

    Full Text Available Problem statement. Kinetic processes are of huge importance when producing building units and operating them as well. However, both technological and operation parameters are determined by the structure of a material under study.Results and conclusions. Kinetics with asymptotic approximation at hardening of building materials is analyzed. The validity of use of new kinetic equation is proved, characterizing harden composite systems and taking into consideration structural and topological peculiarities of new solid-like phase formation directly effecting the evolution of the processes. Results of research of change of strength at solidification a cement-sandy solution with various additives are submitted.

  6. Early Thermal Evolution of Planetesimals and its Impact on Processing and Dating of Meteoritic Material

    CERN Document Server

    Gail, H -P; Breuer, D; Spohn, T

    2013-01-01

    Radioisotopic ages for meteorites and their components provide constraints on the evolution of small bodies: timescales of accretion, thermal and aqueous metamorphism, differentiation, cooling and impact metamorphism. Realising that the decay heat of short-lived nuclides (e.g. 26Al, 60Fe), was the main heat source driving differentiation and metamorphism, thermal modeling of small bodies is of utmost importance to set individual meteorite age data into the general context of the thermal evolution of their parent bodies, and to derive general conclusions about the nature of planetary building blocks in the early solar system. As a general result, modelling easily explains that iron meteorites are older than chondrites, as early formed planetesimals experienced a higher concentration of short-lived nuclides and more severe heating. However, core formation processes may also extend to 10 Ma after formation of Calcium-Aluminum-rich inclusions (CAIs). A general effect of the porous nature of the starting material ...

  7. Materials Control System for Enriched Uranium Chemical Processing Facility for Irradiated Nuclear Materials

    International Nuclear Information System (INIS)

    Systems for management and control of nuclear material in an enriched uranium chemical processing facility are not too different from those historically used in the chemical industry. The difference is one of degree rather than substance. The monetary and strategic value of the material being processed as well as the potential health and safety hazards inherent in handling nuclear material often dictate a level of effort and system detail above that which might seem reasonable to the casual observer. Among those areas of consideration which are of particular importance in the development of an effective nuclear materials management (NMM) system as based on experience gained at the Idaho Chemical Processing Plant are the following: organizational structure, accounting system, measurement system, implementation and integration of system, records and reports, internal audit, and inventory management. (author)

  8. A kinetic model of Ti(Ⅳ)-catalyzed H2O2/O3 process in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Shaoping Tong; Shuqin Zhao; Xiaofei Lan; Chunan Ma

    2011-01-01

    To well describe the Ti(Ⅳ)-catalyzed H2O2/O3 reaction in aqueous solution,a kinetic model was established based on its mechanism.This model was then validated by the experiments of acetic acid degradation in aqueous solution.It was found that the correlation coefficient of fittings was higher than 0.970.Three key operating factors affecting organic degradation in the Ti(Ⅳ)-catalyzed H2O2/O3 process were studied,including Ti(Ⅳ) concentration,dissolved ozone concentration and initial H2O2 concentration.Furthermore,some experiments were conducted to determine the rate constant for dissolved ozone decomposition initiated by Ti2O52+.The rate constant measured is almost in accord with the data analyzed by this kinetic model.The goodness of fittings demonstrated that this model could well describe the kinetics of the Ti(Ⅳ)-catalyzed H2O2/O3 reaction mathematically and chemically.Therefore,this kinetic model can provide some useful information to optimize the parameters in ozonation of water containing certain pollutants.

  9. Advanced Oxidation of the Endosulfan and Profenofos in Aqueous Solution Using UV/H2O22 Process

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available Degradation of two pesticides, endosulfan and profenofos, was investigated in aqueous solution using a combination of ultraviolet (UV light and hydrogen peroxide (H2O2. Photochemical experiments based on the L9 (34 three-level orthogonal array of the Taguchi method with four control factors including initial pesticide concentrations (10, 15 and 20 mg/l, UV irradiation times (30, 60 and 90 min, pH (5, 6.5 and 8 and H2O2 (0.1, 0.01 and 0.05 M were conducted. The endosulfan and profenofos were analyzed using gas chromatography with electron capture detector (ECD and gas chromatography with mass spectrometry (GC-MS respectively. Under the optimum conditions, 96.5% of the endosulfan and 98.5% of the profenofos were removed in about 90 min. The study also showed that the oxidation rate was enhanced more during the UV/H2O2 process in comparison to direct photolysis. The results of our study suggested that the concentration of 0.1 molar H2O2 and 10 ppm of pesticide in the solution at pH 8 with 90 min UV irradiation time were the optimal conditions for the photochemical degradation of two pesticides. The photochemical degradation with UV/H2O2 can be an efficient method to remove the endosulfan and profenofos from aqueous solution.

  10. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    Directory of Open Access Journals (Sweden)

    Renwu Zhou

    Full Text Available Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS. Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  11. g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants

    Science.gov (United States)

    Pi, Liu; Jiang, Rui; Zhou, Wangchi; Zhu, Hua; Xiao, Wei; Wang, Dihua; Mao, Xuhui

    2015-12-01

    Converting the waste biomasses with high-carbon content into value-added materials is an environmental-friendly way for their utilization. In this study, a leaf-derived biochar is modified with graphitic C3N4 to fulfill an affordable composite material capable of removing organic pollutants via adsorptive and photocatalytic processes simultaneously. The preparation process includes a carbonization process of chestnut leaf biomass and a followed condensation reaction of melamine at 520 °C. The characterization shows that biochar and C3N4 existed in the composites in their pristine status, and the effective connection of C3N4 and biochar was established. The adsorptive performance of the composites is governed by the biochar content in the composite, thus showing favorable performance for the removal of cationic dye methylene blue (MB). The condensation reaction of the melamine precursor has a coalescing effect on the dispersed biochar, resulting in the growth of particle size of composite. The composites prepared at different biochar/melamine ratios all show a photocatalytic activity on decolorization of MB. In terms of the specific photocatalytic activity of C3N4 in the composite, biochar/melamine ratio of 0.5:1 is the best. Unlike the conventional adsorptive carbon materials which have saturated adsorption capacity, the composite in this study retain a sustaining decontamination capability due to the photocatalytic degradation of adsorbed organic pollutants under irradiation.

  12. The Effect of Microwaves on Aqueous Corrosion of Glass

    OpenAIRE

    Lynch, Matthew Earl

    2006-01-01

    Glass corrodes in aqueous environments. The corrosion process is well-understood for many circumstances involving long periods of time at room temperature as well as processes that involve conventional heating, but the effect of microwave energy on glass corrosion has never been fully investigated. It was suspected that microwaves may alter or accelerate the aqueous corrosion processes that occur in glass which contribute to migration into foods or other materials. Lithium disilicate (Li2O...

  13. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing

    Science.gov (United States)

    Keum, Hohyun; Yang, Zining; Han, Kewen; Handler, Drew E.; Nguyen, Thong Nhu; Schutt-Aine, Jose; Bahl, Gaurav; Kim, Seok

    2016-01-01

    Enabling unique architectures and functionalities of microsystems for numerous applications in electronics, photonics and other areas often requires microassembly of separately prepared heterogeneous materials instead of monolithic microfabrication. However, microassembly of dissimilar materials while ensuring high structural integrity has been challenging in the context of deterministic transferring and joining of materials at the microscale where surface adhesion is far more dominant than body weight. Here we present an approach to assembling microsystems with microscale building blocks of four disparate classes of device-grade materials including semiconductors, metals, dielectrics, and polymers. This approach uniquely utilizes reversible adhesion-based transfer printing for material transferring and thermal processing for material joining at the microscale. The interfacial joining characteristics between materials assembled by this approach are systematically investigated upon different joining mechanisms using blister tests. The device level capabilities of this approach are further demonstrated through assembling and testing of a microtoroid resonator and a radio frequency (RF) microelectromechanical systems (MEMS) switch that involve optical and electrical functionalities with mechanical motion. This work opens up a unique route towards 3D heterogeneous material integration to fabricate microsystems. PMID:27427243

  14. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing.

    Science.gov (United States)

    Keum, Hohyun; Yang, Zining; Han, Kewen; Handler, Drew E; Nguyen, Thong Nhu; Schutt-Aine, Jose; Bahl, Gaurav; Kim, Seok

    2016-01-01

    Enabling unique architectures and functionalities of microsystems for numerous applications in electronics, photonics and other areas often requires microassembly of separately prepared heterogeneous materials instead of monolithic microfabrication. However, microassembly of dissimilar materials while ensuring high structural integrity has been challenging in the context of deterministic transferring and joining of materials at the microscale where surface adhesion is far more dominant than body weight. Here we present an approach to assembling microsystems with microscale building blocks of four disparate classes of device-grade materials including semiconductors, metals, dielectrics, and polymers. This approach uniquely utilizes reversible adhesion-based transfer printing for material transferring and thermal processing for material joining at the microscale. The interfacial joining characteristics between materials assembled by this approach are systematically investigated upon different joining mechanisms using blister tests. The device level capabilities of this approach are further demonstrated through assembling and testing of a microtoroid resonator and a radio frequency (RF) microelectromechanical systems (MEMS) switch that involve optical and electrical functionalities with mechanical motion. This work opens up a unique route towards 3D heterogeneous material integration to fabricate microsystems. PMID:27427243

  15. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing

    Science.gov (United States)

    Keum, Hohyun; Yang, Zining; Han, Kewen; Handler, Drew E.; Nguyen, Thong Nhu; Schutt-Aine, Jose; Bahl, Gaurav; Kim, Seok

    2016-07-01

    Enabling unique architectures and functionalities of microsystems for numerous applications in electronics, photonics and other areas often requires microassembly of separately prepared heterogeneous materials instead of monolithic microfabrication. However, microassembly of dissimilar materials while ensuring high structural integrity has been challenging in the context of deterministic transferring and joining of materials at the microscale where surface adhesion is far more dominant than body weight. Here we present an approach to assembling microsystems with microscale building blocks of four disparate classes of device-grade materials including semiconductors, metals, dielectrics, and polymers. This approach uniquely utilizes reversible adhesion-based transfer printing for material transferring and thermal processing for material joining at the microscale. The interfacial joining characteristics between materials assembled by this approach are systematically investigated upon different joining mechanisms using blister tests. The device level capabilities of this approach are further demonstrated through assembling and testing of a microtoroid resonator and a radio frequency (RF) microelectromechanical systems (MEMS) switch that involve optical and electrical functionalities with mechanical motion. This work opens up a unique route towards 3D heterogeneous material integration to fabricate microsystems.

  16. Preliminary assessment of the performance of oyster shells and chitin materials as adsorbents in the removal of saxitoxin in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Melegari Silvia P

    2012-08-01

    Full Text Available Abstract Background This study evaluated the adsorption capacity of the natural materials chitin and oyster shell powder (OSP in the removal of saxitoxin (STX from water. Simplified reactors of adsorption were prepared containing 200 mg of adsorbents and known concentrations of STX in solutions with pH 5.0 or 7.0, and these solutions were incubated at 25°C with an orbital shaker at 200 RPM. The adsorption isotherms were evaluated within 48 hours, with the results indicating a decrease in STX concentrations in different solutions (2–16 μg/L. The kinetics of adsorption was evaluated at different contact times (0–4320 min with a decrease in STX concentrations (initial concentration of 10 μg/L. The sampling fractions were filtered through a membrane (0.20 μm and analyzed with high performance liquid chromatography to quantify the STX concentration remaining in solution. Results Chitin and OSP were found to be efficient adsorbents with a high capacity to remove STX from aqueous solutions within the concentration limits evaluated (> 50% over 18 h. The rate of STX removal for both adsorbents decreased with contact time, which was likely due to the saturation of the adsorbing sites and suggested that the adsorption occurred through ion exchange mechanisms. Our results also indicated that the adsorption equilibrium was influenced by pH and was not favored under acidic conditions. Conclusions The results of this study demonstrate the possibility of using these two materials in the treatment of drinking water contaminated with STX. The characteristics of chitin and OSP were consistent with the classical adsorption models of linear and Freundlich isotherms. Kinetic and thermodynamic evaluations revealed that the adsorption process was spontaneous (ΔGads

  17. Challenges of selecting materials for the process of biomass gasification in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Boukis, N.; Habicht, W.; Hauer, E.; Dinjus, E. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Chemie

    2010-07-01

    A new process for the gasification of wet biomass is the reaction in supercritical water. The product is a combustible gas, rich in hydrogen with a high calorific value. The reaction is performed under high temperatures - up to 700 C - and pressures up to 30 MPa. The combination of these physical conditions and the corrosive environment is very demanding for the construction materials of the reactor. Only few alloys exhibit the required mechanical properties, especially the mechanical strength at temperatures higher than 600 C. Ni-Base alloys like alloy 625 can be applied up to a temperature of 700 C and are common materials for application under supercritical water conditions. During gasification experiments with corn silage and other biomasses, corrosion of the reactor material alloy 625 appears. The gasification of an aqueous methanol solution in supercritical water at temperatures up to 600 C and 25 - 30 MPa pressure results in an product gas rich in hydrogen, carbon dioxide and some methane. Alloy 625 shows very low corrosion rates in this environment. It is obvious that the heteroatoms and salts present in biomass cause corrosion of the reactor material. (orig.)

  18. Hole-selective and impedance characteristics of an aqueous solution-processable MoO3 layer for solution-processable organic semiconducting devices

    Science.gov (United States)

    Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Park, Byoungchoo

    2015-02-01

    We herein report an investigation of aqueous solution-processable molybdenum-oxide (MoO3) hole-selective layers fabricated for solution-processable organic semiconducting devices. A homogeneous MoO3 layer was successfully deposited via spin-coating using aqueous solutions of ammonium heptamolybdate as a MoO3 precursor. The use of the solution-processable MoO3 layer as a hole-injecting layer (HIL) on an indium-tin-oxide (ITO) anode in solution-processable organic light-emitting diodes (OLEDs) resulted in excellent device performance in terms of the brightness (maximum brightness of 37,000 cd m-2) and the efficiency (peak efficiency of 25.2 cd A-1), comparable to or better than those of a reference OLED with a conventional poly(ethylenedioxy thiophene):poly(styrene sulfonate) (PEDOT:PSS) HIL. Such good device performance is attributed to the water-processable MoO3 hole-selective layers, which allowed the formation of a high-quality film and provided good matching of the energy levels between adjacent layers with improved hole-injecting properties, impedance characteristics, and stability. Furthermore, polymer solar cells (PSCs) with a MoO3 layer used as a hole-collecting layer (HCL) showed improved power conversion efficiency (3.81%), which was higher than that obtained using the PEDOT:PSS HCL. These results clearly indicate the benefits of using a water-processable MoO3 layer, which effectively acts as a hole-selective layer on an ITO anode and provides good hole-injection/collection, electron-blocking and energy-level-matching properties, and improved stability. They, therefore, offer considerable promise as an alternative to a conventional PEDOT:PSS layer in the production of high-performance solution-processable organic semiconducting devices.

  19. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    Directory of Open Access Journals (Sweden)

    C. M. Pavuluri

    2015-01-01

    Full Text Available To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA and biogenic aerosols (BA, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2 and malonic (C3 and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4 and C5-C7 diacids showed a significant increase (ca. 10 times during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8 that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8 is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  20. Chemistry of material preparation by the sol-gel process

    OpenAIRE

    Schmidt, Helmut K.

    1988-01-01

    A survey over the role of chemistry in sol-gel processing is given. The basic chemistry of the sol-gel process is complex due to the different reactivities of the network forming and the network modifying components and the wide variety of reaction parameters. Despite the important progress in the investigations of the mechanisms of hydrolysis and condensation, a direct relation of reaction parameters to material properties is still very difficult.

  1. Holographic femtosecond laser manipulation for advanced material processing

    Science.gov (United States)

    Hasegawa, Satoshi; Hayasaki, Yoshio

    2016-02-01

    Parallel femtosecond laser processing using a computer-generated hologram displayed on a spatial light modulator, known as holographic femtosecond laser processing, provides the advantages of high throughput and high-energy use efficiency. Therefore, it has been widely used in many applications, including laser material processing, two-photon polymerization, two-photon microscopy, and optical manipulation of biological cells. In this paper, we review the development of holographic femtosecond laser processing over the past few years from the perspective of wavefront and polarization modulation. In particular, line-shaped and vector-wave femtosecond laser processing are addressed. These beam-shaping techniques are useful for performing large-area machining in laser cutting, peeling, and grooving of materials and for high-speed fabrication of the complex nanostructures that are applied to material-surface texturing to control tribological properties, wettability, reflectance, and retardance. Furthermore, issues related to the nonuniformity of diffraction light intensity in optical reconstruction and wavelength dispersion from a computer-generated hologram are addressed. As a result, large-scale holographic femtosecond laser processing over 1000 diffraction spots was successfully demonstrated on a glass sample.

  2. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g−1. The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  3. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane modul

  4. Dielectric-Particle Injector For Processing Of Materials

    Science.gov (United States)

    Leung, Philip L.; Gabriel, Stephen B.

    1992-01-01

    Device generates electrically charged particles of solid, or droplets of liquid, fabricated from dielectric material and projects them electrostatically, possibly injecting them into electrostatic-levitation chamber for containerless processing. Dielectric-particle or -droplet injector charges dielectric particles or droplets on zinc plate with photo-electrons generated by ultraviolet illumination, then ejects charged particles or droplets electrostatically from plate.

  5. High gradient magnetic separation for powder material processing

    OpenAIRE

    Idziaszek-Gonzalez, Alicja; Kozlowski, Waldemar

    2013-01-01

    High gradient magnetic separators are widely used in both research and industry. The aim of the work is the analysis of magnetic separation for powder material processing. The paper presents the simulations of magnetic field for magnetic separators with various filter shapes. Finite Element Analysis has been used to get the magnetic field over the studied separator grid.

  6. Effects of process parameters on material removal rate in WEDM

    Directory of Open Access Journals (Sweden)

    H. Singh

    2009-01-01

    Full Text Available Purpose: In this paper, the effects of various process parameters of WEDM like pulse on time (TON, pulse offtime (TOFF, gap voltage (SV, peak current (IP, wire feed (WF and wire tension (WT have been investigatedto reveal their impact on material removal rate of hot die steel (H-11 using one variable at a time approach. Theoptimal set of process parameters has also been predicted to maximize the material removal rate.Design/methodology/approach: The experimental studies were performed on ELECTRONICA SPRINTCUTWEDM machine.Findings: The material removal rate (MRR directly increases with increase in pulse on time (TON and peakcurrent (IP while decreases with increase in pulse off time (TOFF and servo voltage (SV.Practical implications: Wire electrical discharge machining (WEDM is a specialized thermal machiningprocess capable of accurately machining parts which have varying hardness, complex shapes and sharp edgesthat are very difficult to be machined by the traditional machining processes. The practical technology of theWEDM process is based on the conventional EDM sparking phenomenon utilizing the widely accepted noncontacttechnique of material removal.Originality/value: We can say that the wire feed and wire tension are neutral input parameters.

  7. Issues in Freeze Drying of Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王维; 陈墨; 陈国华

    2012-01-01

    Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.

  8. Raw material changes and their processing parameters in an extrusion cooking process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    In this work, the effects of raw material and process parameters on product expansion in a fish feed extrusion process were investigated. Four different recipes were studied with a pilot-scale twin-screw co-rotating extruder according to a set of pre-defined processing conditions. In the four...

  9. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    Energy Technology Data Exchange (ETDEWEB)

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  10. Identification of light absorbing oligomers from glyoxal and methylglyoxal aqueous processing: a comparative study at the molecular level

    Science.gov (United States)

    Finessi, Emanuela; Hamilton, Jacqueline; Rickard, Andrew; Baeza-Romero, Maria; Healy, Robert; Peppe, Salvatore; Adams, Tom; Daniels, Mark; Ball, Stephen; Goodall, Iain; Monks, Paul; Borras, Esther; Munoz, Amalia

    2014-05-01

    Numerous studies point to the reactive uptake of gaseous low molecular weight carbonyls onto atmospheric waters (clouds/fog droplets and wet aerosols) as an important SOA formation route not yet included in current models. However, the evaluation of these processes is challenging because water provides a medium for a complex array of reactions to take place such as self-oligomerization, aldol condensation and Maillard-type browning reactions in the presence of ammonium salts. In addition to adding to SOA mass, aqueous chemistry products have been shown to include light absorbing, surface-active and high molecular weight oligomeric species, and can therefore affect climatically relevant aerosol properties such as light absorption and hygroscopicity. Glyoxal (GLY) and methylglyoxal (MGLY) are the gaseous carbonyls that have perhaps received the most attention to date owing to their ubiquity, abundance and reactivity in water, with the majority of studies focussing on bulk physical properties. However, very little is known at the molecular level, in particular for MGLY, and the relative potential of these species as aqueous SOA precursors in ambient air is still unclear. We have conducted experiments with both laboratory solutions and chamber-generated particles to simulate the aqueous processing of GLY and MGLY with ammonium sulphate (AS) under typical atmospheric conditions and investigated their respective aging products. Both high performance liquid chromatography coupled with UV-Vis detection and ion trap mass spectrometry (HPLC-DAD-MSn) and high resolution mass spectrometry (FTICRMS) have been used for molecular identification purposes. Comprehensive gas chromatography with nitrogen chemiluminescence detection (GCxGC-NCD) has been applied for the first time to these systems, revealing a surprisingly high number of nitrogen-containing organics (ONs), with a large extent of polarities. GCxGC-NCD proved to be a valuable tool to determine overall amount and rates of

  11. A novel process for the aqueous extraction of oil from Camellia oleifera seed and its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Yu, X.

    2013-09-01

    Full Text Available Aqueous extraction is a promising green alternative to hexane extraction. This study used a salt effect-aided aqueous extraction process (AEP-SE for extracting Camellia oleifera seed oil (COSO to improve oil extractability and avoid emulsification in the aqueous system. The highest oil extractability rate of 88.8% was obtained under 1.48 mol L–1 sodium carbonate, a solution-to-flour ratio of 3.85, and 3.23h of extraction time with the quality of the aqueous system-extracted oil being similar to those of a commercial sample of COSO and hexane-extracted oil in terms of color, iodine value and saponifcation value, although its moisture content was higher. Furthermore, the free fatty acid content of the aqueous system-extracted oil was lower than that of the solvent-extracted oil. The values of the inibihitory concentration at 50% of oil obtained by AEP-SE and organic solvent extraction as measured by DPPH scavenging activity essay, were 2.27 mg/mL and 3.31 mg/mL. AEP-SE is therefore a promising environmentally friendly method for the large-scale preparation of COSO.La extracción acuosa es una alternativa verde muy prometedora a la extracción con hexano. En este estudio se utilizó como ayuda en el proceso de extracción acuosa (AEP-SE el efecto de una sal para la extracción de aceite de semilla de Camellia oleifera (COSO para mejorar la extractabilidad y evitar la formación de emulsiones en el sistema acuoso. La mayor velocidad de extracción de aceite, 88,8%, se obtuvo con una concentración de carbonato de sodio de 1,48 mol L–1, una relación de solución a la harina de 3,85, y 3.23h de tiempo de extracción, con una calidad del aceite extraído con el sistema acuoso similares a los de una muestra comercial de COSO extraida con hexano, en términos de índice de yodo, de color, y de índice de saponificación, aunque su contenido en humedad fue mayor. Además, el contenido de acidez libre del aceite extraido con el sistema acuoso fu

  12. Cadmium isotope fractionation of materials derived from various industrial processes.

    Science.gov (United States)

    Martinková, Eva; Chrastný, Vladislav; Francová, Michaela; Šípková, Adéla; Čuřík, Jan; Myška, Oldřich; Mižič, Lukáš

    2016-01-25

    Our study represents ϵ(114/110) Cd NIST3108 values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ(114/110) CdNIST3108 values of 1.0±0.2, 0.2±0.2, 1.3±0.1, -2.3±0.2 and -0.1±0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ(114/110) Cd NIST3108 values. The heaviest ϵ(114/110) CdNIST3108 value of 58.6±0.9 was found for slag resulting from coal combustion, and the lightest ϵ(114/110) CdNIST3108 value of -23±2.5 was observed for waste material after Pb refinement. It is evident that ϵ(114/110) Cd NIST3108 values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products.

  13. Food material properties and early hominin processing techniques.

    Science.gov (United States)

    Zink, Katherine D; Lieberman, Daniel E; Lucas, Peter W

    2014-12-01

    Although early Homo is hypothesized to have used tools more than australopiths to process foods prior to consumption, it is unknown how much the food processing techniques they used altered the material properties of foods, and therefore the masticatory forces they generated, and how well they were able to comminute foods. This study presents experimental data on changes to food material properties caused by mechanical tenderization (pounding with a stone tool) and cooking (dry roasting) of two foods likely to have been important components of the hominin diet: meat and tubers. Mechanical tenderization significantly decreased tuber toughness by 42%, but had no effect on meat toughness. Roasting significantly decreased several material properties of tubers correlated with masticatory effort including toughness (49%), fracture stress (28%) and elastic modulus (45%), but increased the toughness (77%), fracture stress (50%-222%), and elastic modulus of muscle fibers in meat (308%). Despite increasing many material properties of meat associated with higher masticatory forces, roasting also decreased measured energy loss by 28%, which likely makes it easier to chew. These results suggest that the use of food processing techniques by early Homo probably differed for meat and tubers, but together would have reduced masticatory effort, helping to relax selection to maintain large, robust faces and large, thickly enameled teeth.

  14. Cadmium isotope fractionation of materials derived from various industrial processes.

    Science.gov (United States)

    Martinková, Eva; Chrastný, Vladislav; Francová, Michaela; Šípková, Adéla; Čuřík, Jan; Myška, Oldřich; Mižič, Lukáš

    2016-01-25

    Our study represents ϵ(114/110) Cd NIST3108 values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ(114/110) CdNIST3108 values of 1.0±0.2, 0.2±0.2, 1.3±0.1, -2.3±0.2 and -0.1±0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ(114/110) Cd NIST3108 values. The heaviest ϵ(114/110) CdNIST3108 value of 58.6±0.9 was found for slag resulting from coal combustion, and the lightest ϵ(114/110) CdNIST3108 value of -23±2.5 was observed for waste material after Pb refinement. It is evident that ϵ(114/110) Cd NIST3108 values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products. PMID:26452089

  15. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer....../fullerene mixtures and evaporated metal electrodes in a flat multilayer geometry. It is likely that significant advances can be found by pursuing many of these novel ideas further and the purpose of this review is to highlight these reports and hopefully spark new interest in materials and methods that may...

  16. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    Directory of Open Access Journals (Sweden)

    Susy Albert

    2012-12-01

    Full Text Available Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepense culm were prepared and subjected to four different pretreatment. Daedaleopsis confragosa was found to be effective in biopulping with a supplement of Potato dextrose broth medium to the raw material.

  17. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  18. Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics.

    Science.gov (United States)

    Slavíček, Petr; Kryzhevoi, Nikolai V; Aziz, Emad F; Winter, Bernd

    2016-01-21

    The knowledge of primary processes following the interaction of high-energy radiation with molecules in liquid phase is rather limited. In the present Perspective, we report on a newly discovered type of relaxation process involving simultaneous autoionization and proton transfer between adjacent molecules, so-called proton transfer mediated charge separation (PTM-CS) process. Within PTM-CS, transients with a half-transferred proton are formed within a few femtoseconds after the core-level ionization event. Subsequent nonradiative decay of the highly nonequilibrium transients leads to a series of reactive species, which have not been considered in any high-energy radiation process in water. Nonlocal electronic decay processes are surprisingly accelerated upon proton dynamics. Such strong coupling of electronic and nuclear dynamics is a general phenomenon for hydrogen-bonded systems, however, its probability correlates strongly with hydration geometry. We suggest that the newly observed processes will impact future high-energy radiation-chemistry-relevant modeling, and we envision application of autoionization spectroscopy for identification of solution structure details. PMID:26712083

  19. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  20. Development of laser materials processing and laser metrology techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designedand fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs.

  1. Enabling materials and processes for large aerospace mirrors

    Science.gov (United States)

    Matson, Lawrence E.; Chen, Ming Y.

    2008-07-01

    The use of monolithic glass to produce large, rigid segmented members for lightweight space-based mirror systems appears to have reached its limits due to the long production lead times, high processing costs, and launch load/weight requirements. New material solutions and processes are required to meet the US Air Force's optical needs for directed energy, reconnaissance/surveillance, and communications. Mirror structural substrates made out of advanced materials (metal, ceramic, and polymer), composites, foams, and microsphere arrays should allow for CTE and modulus tailorability, low-density, and high values in strength, stiffness, thermal conductivity and toughness. Conventional mechanical polishing to visual specifications for figure and surface finish roughness requirements will be difficult, due to the multi-phase complexities of these new systems. Advances in surface removal technologies as well as replication processes will be required to produce the required optical finishes with reduced schedule and cost. In this paper selected material and process solutions being considered will be discussed.

  2. Multiscale characterization and representation of composite materials during processing.

    Science.gov (United States)

    Zobeiry, Navid; Forghani, Alireza; Li, Chao; Gordnian, Kamyar; Thorpe, Ryan; Vaziri, Reza; Fernlund, Goran; Poursartip, Anoush

    2016-07-13

    Given the importance of residual stresses and dimensional changes in composites manufacturing, process simulation has been the focus of many studies in recent years. Consequently, various constitutive models and simulation approaches have been developed and implemented for composites process simulation. In this paper, various constitutive models, ranging from elastic to nonlinear viscoelastic; and simulation approaches ranging from separated flow/solid phases to multiscale integrated phases are presented and their applicability for process simulation is discussed. Attention has been paid to practical aspects of the problem where the complexity of the model coupled with the complexity and size scaling of the structure increases the characterization and simulation costs. Two specific approaches and their application are presented in detail: the pseudo-viscoelastic cure hardening instantaneously linear elastic (CHILE) and linear viscoelastic (VE). It is shown that CHILE can predict the residual stress formation in simple cure cycles such as the one-hold cycle for HEXCEL AS4/8552 where the material does not devitrify during processing. It is also shown that using this simple approach, the cure cycle can be modified to lower the residual stress level and therefore increase the mechanical performance of the composite laminate. For a more complex cure cycle where the material is devitrified during a post-cure, it is shown that a more complex model such as VE is required. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242297

  3. Cyclic voltammetry: a tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process.

    Science.gov (United States)

    Peres, António M; Freitas, Patrícia; Dias, Luís G; Sousa, Mara E B C; Castro, Luís M; Veloso, Ana C A

    2013-12-15

    Chloroanisoles, namely 2,4,6-trichloroanisole, are pointed out as the primary responsible of the development of musty off-flavours in bottled wine, due to their migration from cork stoppers, which results in huge economical losses for wine industry. A prevention step is the detection of these compounds in cork planks before stoppers are produced. Mass spectrometry gas chromatography is the reference method used although it is far beyond economical possibilities of the majority of cork stoppers producers. In this work, a portable cyclic voltammetry approach was used to detect 2,4,6-trichloroanisole extracted from natural cork planks to the aqueous phase during the cork boiling industrial treatment process. Analyses were carried out under ambient conditions, in less than 15 min with a low use of solvent and without any sample pre-treatment. The proposed technique had detection (0.31±0.01 ng/L) and quantification (0.95±0.05 ng/L) limits lower than the human threshold detection level. For blank solutions, without 2,4,6-trichloroanisole addition, a concentration in the order of the quantification limit was estimated (1.0±0.2 ng/L), which confirms the satisfactory performance of the proposed methodology. For aqueous samples from the industrial cork planks boiling procedure, intra-day repeatabilities were lower than 3%, respectively. Also, 2,4,6-trichloroanisole contents in the aqueous samples determined by this novel approach were in good agreement with those obtained by GC-MS (correlation coefficient equal to 0.98), confirming the satisfactory accuracy of the proposed methodology. So, since this novel approach is a fast, low-cost, portable and user-friendly method, it can be an alternative and helpful tool for in-situ industrial applications, allowing accurate detection of releasable 2,4,6-trichloroanisole in an earlier phase of cork stoppers production, which may allow implementing more effective cork treatments to reduce or avoid future 2,4,6-trichloroanisole

  4. A facile aqueous strategy for the synthesis of high-brightness LaPO{sub 4}:Eu nanocrystals via controlling the nucleation and growth process

    Energy Technology Data Exchange (ETDEWEB)

    Che, Dongchen; Zhu, Xiaoxu [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Liu, Peifeng; Duan, Yourong [Cancer Institute of Shanghai Jiao Tong University, Shanghai 200032 (China); Wang, Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Zhang, Qinghong [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Li, Yaogang, E-mail: yaogang_li@dhu.edu.cn [Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201602 (China)

    2014-09-15

    Ellipsoidal nanocrystalline LaPO{sub 4}:Eu has been realized through an aqueous method by using microwave irradiation and microfluidic system. Through this method, we can control the nucleation and growth process. The as-prepared nanoparticles are pure monazite phase and water-dispersible and monodisperse, with a mean diameter of 4 nm and length of 6 nm. Luminescence data indicate the samples have a strong orange–red emission corresponding to {sup 5}D{sub 0}→{sup 7}F{sub 1} transition. Under the optimized conditions, the quantum yield is 21%. According to MTT assay, the nanoparticles are non-toxic materials and good biocompatibility. Therefore the LaPO{sub 4}:Eu nanoparticles may possess the potential to serve as a luminescent bioimaging probe. - Highlights: • We synthesize LaPO{sub 4}:Eu nanocrystals by controlling the nucleation and growth process. • The LaPO{sub 4}:Eu nanocrystals are obtained from a microfluidic reactor using microwave. • The LaPO{sub 4}:Eu nanocrystals are water-dispersible and monodisperse. • The LaPO{sub 4}:Eu nanocrystals show superior fluorescence with low cytotoxicity.

  5. Radiolytically-induced novel materials and their application to waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Massimo Bertino, Akira Tokuhiro, Tadashi Tokuhiro

    2007-12-05

    In the present NEER project we investigated two different types of gel materials with respect to potential applications in environmental remediation, including mixed waste generated from the nuclear fuel cycles. The materials under study were: (1) silica-polymer based aerogel composites into which specific metallic cations diffuse into and remain, and (2) polymer gels made of thermo-sensitive polymer networks, whose functional groups can be ''tailored'' to have a preferred affinity for specific cations, again diffusing into and remaining in the network under a volumetrically, contractive phase-transition. The molecular, diffusion of specific cations, including those of concern in low-level waste streams, into the gel materials studied here indicates that a scaled, engineered system can be designed so that it is passive; that is, minimal (human) intervention and risk would be involved in encapsulating LLW species. In addition, the gel materials hold potential significance in environmental remediation of and recovery of metallic cations identified in respective domains and physico-chemical processes. In brief, silica gels start as aqueous/liquid solutions of base catalyzed silica hydrogels and metal ions (targeted species), such as silver. The metal ions are reduced radiolytically and migrate through the solution to form clusters. Upon post-irradiation processing, aerogel monoliths, extremely lightweight but mechanically strong, that encapsulate the metals are produced. Interestingly the radiolytic or photonic source can be gamma-rays and/or other rays from ''artificial sources'', such as reactors, or ''inherent sources'' like those characterizing mixed waste. Polymer gels, in contrast exhibit thermally-induced volumetric contraction at 20-50 C by expelling water from the gels physical state. Further, some functional groups that capture di- or tri-valent cations from aqueous solutions can be incorporated

  6. Radiolytically-induced novel materials and their application to waste processing

    International Nuclear Information System (INIS)

    In the present NEER project we investigated two different types of gel materials with respect to potential applications in environmental remediation, including mixed waste generated from the nuclear fuel cycles. The materials under study were: (1) silica-polymer based aerogel composites into which specific metallic cations diffuse into and remain, and (2) polymer gels made of thermo-sensitive polymer networks, whose functional groups can be ''tailored'' to have a preferred affinity for specific cations, again diffusing into and remaining in the network under a volumetrically, contractive phase-transition. The molecular, diffusion of specific cations, including those of concern in low-level waste streams, into the gel materials studied here indicates that a scaled, engineered system can be designed so that it is passive; that is, minimal (human) intervention and risk would be involved in encapsulating LLW species. In addition, the gel materials hold potential significance in environmental remediation of and recovery of metallic cations identified in respective domains and physico-chemical processes. In brief, silica gels start as aqueous/liquid solutions of base catalyzed silica hydrogels and metal ions (targeted species), such as silver. The metal ions are reduced radiolytically and migrate through the solution to form clusters. Upon post-irradiation processing, aerogel monoliths, extremely lightweight but mechanically strong, that encapsulate the metals are produced. Interestingly the radiolytic or photonic source can be gamma-rays and/or other rays from ''artificial sources'', such as reactors, or ''inherent sources'' like those characterizing mixed waste. Polymer gels, in contrast exhibit thermally-induced volumetric contraction at 20-50 C by expelling water from the gels physical state. Further, some functional groups that capture di- or tri-valent cations from aqueous solutions can be incorporated into the polymer networks on synthesis, including by radiolytic

  7. MISSE in the Materials and Processes Technical Information System (MAPTIS )

    Science.gov (United States)

    Burns, DeWitt; Finckenor, Miria; Henrie, Ben

    2013-01-01

    Materials International Space Station Experiment (MISSE) data is now being collected and distributed through the Materials and Processes Technical Information System (MAPTIS) at Marshall Space Flight Center in Huntsville, Alabama. MISSE data has been instrumental in many programs and continues to be an important source of data for the space community. To facilitate great access to the MISSE data the International Space Station (ISS) program office and MAPTIS are working to gather this data into a central location. The MISSE database contains information about materials, samples, and flights along with pictures, pdfs, excel files, word documents, and other files types. Major capabilities of the system are: access control, browsing, searching, reports, and record comparison. The search capabilities will search within any searchable files so even if the desired meta-data has not been associated data can still be retrieved. Other functionality will continue to be added to the MISSE database as the Athena Platform is expanded

  8. QUALITY AND PROCESSES OF BANGLADESH OPEN UNIVERSITY COURSE MATERIALS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    K. M. Rezanur RAHMAN

    2006-04-01

    Full Text Available A new member of the mega-Universities, Bangladesh Open University (BOU introduced a course team approach for developing effective course materials for distance students. BOU teaching media includes printed course books, study guides, radio and television broadcasts, audiocassettes and occasional face-to-face tutorials. Each course team comprises specialist course writer(s, editor, trained style editor, graphic designer,illustrator, audio-visual producer and anonymous referees. An editorial board or preview committee is responsible for the final approval for publishing or broadcasting materials for learners. This approach has been proved to be effective, but appeared to be complicated and time-consuming. This report focuses on the quality and processes of BOU course materials development taking into account the strengths and weaknesses of the current approach.

  9. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system.

    Science.gov (United States)

    Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan

    2016-09-01

    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). PMID:26922478

  10. Optimization of the Parameters Affecting the Fenton Process for Decolorization of Reactive Red 198 (RR-198 from the Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2015-10-01

    Full Text Available Background: Recently, there has been a great concern about the consumption of dyes because of their toxicity, mutagenicity, carcinogenicity, and persistence in the aquatic environment. Reactive dyes are widely used in textile industry. Advanced oxidation processes are one of the cost-effective methods for the removal of these dyes. The main aims of this study were determining the feasibility of using Fenton process in removing Reactive Red 198 (RR-198 dye from aqueous solution and determining the optimal conditions. Methods: This is a cross-sectional study conducted at a laboratory scale. A total of 69 samples were considered and the effect of pH, Fe (II concentration, H2O2 concentration, initial dye concentration and reaction time were investigated. Results: According to the results, a maximum removal efficiency of 92% was obtained at pH of 3 and the reaction time of 90 min; also, the concentration of Fe (II, H2O2, initial dye concentration were 100 mg/L, 50 mg/L, and 100 mg/L, respectively. The results revealed that by increasing the concentration of Fe (II, H2O2 and initial dye, the removal efficiency was increased. Conclusions: The results showed that Fenton process could be used as a cost-effective method for removing RR-198 dye from textile wastewater efficiently.

  11. The influence of non-aqueous radiochemical processes on radiation parameters of spent fuel and radioactive wastes

    International Nuclear Information System (INIS)

    The influence of the technology applied for separation of radioactive elements on radiation parameters of fuel and wastes when using non-aqueous radiochemical processing of spent fuels are studied. The results of calculational modelling the fuel recycle in the BREST-1200 reactor closed fuel cycle are considered. The data characterizing contribution of separate elements in potential biological danger (dose) and the dependence of the potential biological danger of the wastes on regenerated fuel cooling time are discussed. It is shown that plutonium and americium give the main contributions into the fuel potential biological danger in time period of 40-1000 years. For monitored cooling of 120-150 years the balance between natural uranium potential biological danger and that of wastes at different waste compositions is achievable. The fission product contributions into potential biological danger differ slightly for different variants of the processing technology. The 99Tc contribution is noticeable only in the case of metallurgical processing. The conclusion is made that differences in radiochemical technologies applied for waste fracturing and fuel purification degree do not influence in principle on capabilities for radiation balance achieving. For a long-time perspective the radiation balance is determined by plutonium, americium and their decay products. The technology peculiarities may change radiation characteristics of wastes only at separate stages of cooling and do not affect greatly the radiation balance as a whole

  12. Sono-Fenton process for metronidazole degradation in aqueous solution: Effect of acoustic cavitation and peroxydisulfate anion.

    Science.gov (United States)

    Ammar, Hafedh Belhadj

    2016-11-01

    The present work investigates the application of an improved treatment approach based on the ultrasound irradiation as clean technology driven Fenton in the presence of peroxydisulfate anion (S2O8(2-)) for the removal of metronidazole (MTZ) from aqueous solution. The sono-generation of sulfate radicals (SO4(-)) as a stronger oxidizing agent from S2O8(2-) (redox potential of 2.6V) has improved the degradation of MTZ. However, no studies have focused on the removal of MTZ using peroxydisulfate anion under sono-Fenton process. The MTZ concentration measurement during the processing allowed the evaluation of the kinetics of organic matter decay. The results have shown that the degradation of MTZ dependent on Fe(2+)/H2O2 molar ratio, temperature and S2O8(2-) concentration. The MTZ concentration decay follows pseudo first-order kinetics, within the range studied. Sono-Fenton process using low iron and hydrogen peroxide doses was proved to be an efficient method for the elimination of MTZ with high degradation rates. At optimum conditions, 96% of MTZ removal was achieved at 60°C in the presence of 1mM of S2O8(2-). PMID:27245967

  13. Exercises in 80223 Numerical Modelling of Thermal Processing of Materials

    DEFF Research Database (Denmark)

    Frandsen, Jens Ole

    This exercise book contains exercise instructions for the 7 compulsory exercises (Exercise 1-7) and the final exercise (Exercise 8) in the course 80223 'Numerical Modelling of Thermal Processing of Materials'. The exercise book also contains written program examples in 'C' and 'Pascal'. Finally......, guidelines are given on how to write the report which has to be handed in at the end of the course. The exercise book exists in a newer, updated version from 2000. The original copy is kept in the archives of TM on the ground floor of building 425. A copy of the exercise book can be made available...... by contacting the secretary on the ground floor of building 425. Please give the following number: TM 99.05 (TM = Thermal processing of Materials)...

  14. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  15. CO2 capture using aqueous ammonia: kinetic study and process simulation

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J.M.; Stenby, Erling Halfdan;

    2011-01-01

    to 0.6. The results were compared with those found for 30 wt% mono-ethanolamine (MEA) solutions.The capture process was simulated successfully using the simulator Aspen Plus coupled with the extended UNIQUAC thermodynamic model available for the NH3–CO2–H2O system. For this purpose, a user model...

  16. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  17. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    Science.gov (United States)

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  18. Advanced aqueous reprocessing in P and T strategies: process demonstrations on genuine fuels and targets

    Energy Technology Data Exchange (ETDEWEB)

    Satmark, B.; Apostolidis, C.; Courson, O.; Malmbeck, R.; Carlos, R.; Pagliosa, G.; Romer, K.; Glatz, J.P. [European Commission, DG-JRC, Institute for Transuranium Elements, Hot Cell Technology, Karlsruhe (Germany)

    2000-07-01

    In the present work the performance of several processes used for advanced reprocessing of commercial LWR fuels as well as transmutation targets is compared. As a first step uranium and plutonium were recovered by PUREX type reprocessing. The raffinate, containing fission products, lanthanides and the minor actinides (MA) were used as feed for the second step in which minor actinides and lanthanides were separated from the bulk of the fission products. The five different processes tested use CMPO, DIDPA, TRPO, Diamide and CYANEX 923 as extractant. In the third step MA are separated from lanthanides. Here three processes were tested, i.e. using CYANEX 301, the synergistic mixture of di-chloro substituted CYANEX 301 and TOPO, and BTP solvents. Column-, batch- and continuous counter-current extraction techniques were used for the tests. The different processes will be described and discussed in terms of performances and efficiencies for Am and Cm. Efficient separation of MA from different genuine fuel solutions could be demonstrated and thereby also the possibility of closing a future transmutation fuel cycle. The combination, Diamide and BTP was found to be the best among extractants tested to achieve an efficient MA recovery from spent fuel. (authors)

  19. Advanced aqueous reprocessing in P and T strategies: process demonstrations on genuine fuels and targets

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, B.; Apostolidis, C.; Carlos, R.; Courson, O.; Glatz, J.P.; Malmbeck, R.; Pagliosa, G.; Roemer, K.; Serrano-Purroy, D. [European Commission, JRC, Inst. for Transuranium Elements, Karlsruhe (Germany)

    2004-07-01

    In the present work the performance of several processes used for advanced reprocessing of commercial LWR fuels as well as transmutation targets is compared. As a first step uranium and plutonium were recovered by PUREX type reprocessing. The raffinate, containing fission products including lanthanides and the minor actinides (MA) was used as feed for the second step in which minor actinides and lanthanides were separated from the bulk of the fission products. The five different processes tested use CMPO, DIDPA, TRPO, diamide and CYANEX 923 as extractants. In the third step MA are separated from lanthanides. Here three processes were tested, i.e. using CYANEX 301, the synergistic mixture of di-chloro substituted CYANEX 301 and TOPO, and BTP solvents. Column-, batch- and continuous counter-current extraction techniques were used for the tests. The different processes will be described and discussed in terms of performances and efficiencies for Am and Cm separation. Efficient separation of MA from different genuine fuel solutions could be demonstrated and thereby also the possibility of closing a future transmutation fuel cycle. The combination of diamide and BTP seems to be the best, among extractants tested, to achieve an efficient MA recovery from spent fuel. (orig.)

  20. Model development and process simulation of postcombustion carbon capture technology with aqueous AMP/PZ solvent

    NARCIS (Netherlands)

    van der Spek, Mijndert; Arendsen, Richard; Ramirez, Andrea; Faaij, André

    2016-01-01

    This study presents the development, application, and uncertainty analysis of a process simulation model for postcombustion CO2 capture with an AMP/PZ solvent blend based on state of the art knowledge on AMP/PZ solvent technology. The development includes the improvement of the physical property mod

  1. Power beams and their comparative positioning in advanced materials processing

    International Nuclear Information System (INIS)

    Power Beam Technology covering laser, electron and plasma beams belongs to a class of novel manufacturing techniques. Availability of high power density in localized area along with flexible-controllability of the process makes them attractive for material processing applications. The use of power beams in cutting, welding and melting has been known for over five decades. However, it is only recently that the use of power beams in non-thermal and non-equilibrium processing is emerging as an area of active interest. This paper addresses some of the issues related to the underlying principles of power beams, the comparative strengths and weaknesses of the different techniques and their implementation in processing environment. (author)

  2. Plasma spouted/fluidized bed for materials processing

    Science.gov (United States)

    Sathiyamoorthy, D.

    2010-02-01

    Plasma when coupled with spout/fluidized bed reactor for gas-solid reaction brings in several advantages such as high rate of heat and mass transfer, generation of high bulk temperature using a thin jet of plasma itself as a heat source. The science and technology of plasma and fluidization or spouted bed are well established except of these two put together for high temperature application. Plasma heating of fluid/ spouted bed can bring down the size of the equipment and increase the productivity. However the theory and practice of the hybrid technology has not been tested in a variety of applications that involves high temperature synthesis of materials, TRISO particle coating for nuclear fuel particle, thermal decomposition of refractory type ore, halogenations of minerals, particulate processes and synthesis of advanced materials. This paper gives an account of the use and exploitation of plasma coupled with spouted/ fluidized bed especially for material processing and also addresses the issues for adapting the same in the era of developing advanced high temperature materials.

  3. Additive Manufacturing: Multi Material Processing and Part Quality Control

    OpenAIRE

    Pedersen, David Bue; De Chiffre, Leonardo; Hansen, Hans Nørgaard

    2013-01-01

    Denne Ph.D afhandling,?Additive Manufacturing: Multi Material Processing and Part Quality Control?, omhandler additive fremstillingsmetoder, hvilket er en familie af processer der er kendetegnet ved at de er computerstyret, de drager nytte af en høj grad af automation, og de fremstiller emner lagvis ved addition af materiale. To områder af særlig interesse er addreseret i denne afhandling. De er begge forankret i to meget forskellige områder, men tjener fælles formål. At styrke additive frems...

  4. Process optimization electrospinning fibrous material based on polyhydroxybutyrate

    Science.gov (United States)

    Olkhov, A. A.; Tyubaeva, P. M.; Staroverova, O. V.; Mastalygina, E. E.; Popov, A. A.; Ischenko, A. A.; Iordanskii, A. L.

    2016-05-01

    The article analyzes the influence of the main technological parameters of electrostatic spinning on the morphology and properties of ultrathin fibers on the basis of polyhydroxybutyrate. It is found that the electric conductivity and viscosity of the spinning solution affects the process of forming fibers macrostructure. The fiber-based materials PHB lets control geometry and optimize the viscosity and conductivity of a spinning solution. The resulting fibers have found use in medicine, particularly in the construction elements musculoskeletal.

  5. Radiation Processed Materials in Products from Polymers for Agricultural Applications

    International Nuclear Information System (INIS)

    This publication results from a technical meeting on radiation processed materials in products from polymers for agricultural applications, which was held from 8 to 12 July 2013 at the IAEA in Vienna. The meeting provided a forum for the sharing of practical experiences and lessons learned, and reviewed the recent developments in the use of radiation technologies for the preparation of environmental friendly products based on polymers for agricultural applications

  6. Modeling of the proteolysis process of fish collagen raw materials

    OpenAIRE

    Дуденко, Ніна Василівна; Дьяков, Олександр Георгійович; Панікарова, Богдана Олександрівна

    2014-01-01

    The studies aimed at modeling the process of fish collagen raw material proteolysis by using enzyme preparations of collagenase and bromelin are given in the paper. The data for determining reasonable ranges of the proteolysis parameters, in particular, the temperature and duration of the proteolysis, pH and concentration of enzyme preparations, are given. The obtained set of data indicates the high efficiency of collagenase in relation to connective-tissue proteins. The mathematical model of...

  7. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  8. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    OpenAIRE

    Susy Albert; Amee Padhiar

    2012-01-01

    Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepens...

  9. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

    1985-01-01

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  10. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.; Foster, E.P.

    1985-11-26

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  11. Insights into Aqueous-phase processing through Comparison of the Organic Chemical Composition of Atmospheric Particles and Cloud Water in the Southeast United States

    Science.gov (United States)

    Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2014-12-01

    Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.

  12. Mulch materials in processing tomato: a multivariate approach

    Directory of Open Access Journals (Sweden)

    Marta María Moreno

    2013-08-01

    Full Text Available Mulch materials of different origins have been introduced into the agricultural sector in recent years alternatively to the standard polyethylene due to its environmental impact. This study aimed to evaluate the multivariate response of mulch materials over three consecutive years in a processing tomato (Solanum lycopersicon L. crop in Central Spain. Two biodegradable plastic mulches (BD1, BD2, one oxo-biodegradable material (OB, two types of paper (PP1, PP2, and one barley straw cover (BS were compared using two control treatments (standard black polyethylene [PE] and manual weed control [MW]. A total of 17 variables relating to yield, fruit quality, and weed control were investigated. Several multivariate statistical techniques were applied, including principal component analysis, cluster analysis, and discriminant analysis. A group of mulch materials comprised of OB and BD2 was found to be comparable to black polyethylene regarding all the variables considered. The weed control variables were found to be an important source of discrimination. The two paper mulches tested did not share the same treatment group membership in any case: PP2 presented a multivariate response more similar to the biodegradable plastics, while PP1 was more similar to BS and MW. Based on our multivariate approach, the materials OB and BD2 can be used as an effective, more environmentally friendly alternative to polyethylene mulches.

  13. Potential of antioxidant extracts produced by aqueous processing ofrenewable resources for the formulation of cosmetics

    OpenAIRE

    Balboa, Elena M.; Soto, Maria Luisa; Daniele R. Nogueira; González-López, Noelia; Conde, Enma; Moure, Andrés; Vinardell Martínez-Hidalgo, Ma. Pilar; Mitjans Arnal, Montserrat; Domínguez, Herminia

    2014-01-01

    The performance of natural extracts obtained from underutilized and residual vegetal and macroalgal biomass processed with food-grade green solvents was compared with that of commercial antioxidants. Selected extracts were obtained from two terrestrial sources: winery byproducts concentrate (WBC) and chestnut burs hydrothermally fractionated extract (CBAE), and from two underutilized seaweeds: Sargassum muticum extracts, either extracted with ethanol (SmEE) or after alginate extraction and hy...

  14. Homogeneous and heterogeneous aqueous phase oxidation of phenol with fenton-like processes

    OpenAIRE

    Messele, Selamawit Ashagre

    2014-01-01

    In the last decades, various chemical oxidation techniques have been developed to overcome the inconveniences associated to conventional treatment of industrial wastewaters. Advanced oxidation processes (AOPs) have been reported to be effective for the degradation of soluble organic contaminants from wastewaters containing non-biodegradable organic pollutants, because they can often provide an almost total degradation, under reasonably mild conditions of temperature and pressure. Among them, ...

  15. Material modeling for multistage tube hydroforming process simulation

    Science.gov (United States)

    Saboori, Mehdi

    The Aerospace industries of the 21st century demand the use of cutting edge materials and manufacturing technology. New manufacturing methods such as hydroforming are relatively new and are being used to produce commercial vehicles. This process allows for part consolidation and reducing the number of parts in an assembly compared to conventional methods such as stamping, press forming and welding of multiple components. Hydroforming in particular, provides an endless opportunity to achieve multiple crosssectional shapes in a single tube. A single tube can be pre-bent and subsequently hydroformed to create an entire component assembly instead of welding many smaller sheet metal sections together. The knowledge of tube hydroforming for aerospace materials is not well developed yet, thus new methods are required to predict and study the formability, and the critical forming limits for aerospace materials. In order to have a better understanding of the formability and the mechanical properties of aerospace materials, a novel online measurement approach based on free expansion test is developed using a 3D automated deformation measurement system (AramisRTM) to extract the coordinates of the bulge profile during the test. These coordinates are used to calculate the circumferential and longitudinal curvatures, which are utilized to determine the effective stresses and effective strains at different stages of the tube hydroforming process. In the second step, two different methods, a weighted average method and a new hardening function are utilized to define accurately the true stress-strain curve for post-necking regime of different aerospace alloys, such as inconel 718 (IN 718), stainless steel 321 (SS 321) and titanium (Ti6Al4V). The flow curves are employed in the simulation of the dome height test, which is utilized for generating the forming limit diagrams (FLDs). Then, the effect of stress triaxiality, the stress concentration factor and the effective plastic

  16. Studies of neutron methods for process control and criticality surveillance of fissile material processing facilities

    International Nuclear Information System (INIS)

    The development of radiochemical processes for fissile material processing and spent fuel handling need new control procedures enabling an improvement of plant throughput. This is strictly related to the implementation of continuous criticality control policy and developing reliable methods for monitoring the reactivity of radiochemical plant operations in presence of the process perturbations. Neutron methods seem to be applicable for fissile material control in some technological facilities. The measurement of epithermal neutron source multiplication with heuristic evaluation of measured data enables surveillance of anomalous reactivity enhancement leading to unsafe states. 80 refs., 47 figs., 33 tabs. (author)

  17. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  18. Influence of processing and storage conditions on the mechanical and barrier properties of films cast from aqueous wheat gluten dispersions

    NARCIS (Netherlands)

    Lens, J.P.; Graaf, de L.A.; Stevels, W.M.; Dietz, C.H.J.T.; Verhelst, K.C.S.; Vereijken, J.M.; Kolster, P.

    2003-01-01

    A method was developed to prepare films based on industrial wheat gluten, from aqueous dispersion at neutral pH. An essential step in this procedure is to prepare aqueous dispersions in such a way that coagulation of the vital wheat gluten is prevented. In contrast to current procedures, adjustment

  19. Design studies of interaction processes between melt reactor core material composition, coolant and construction material

    International Nuclear Information System (INIS)

    This effort presents results of the design studies performed for correct conducting of out-of-pile experiments at the National Nuclear Center of the Republic of Kazakhstan facilities to study interaction processes between the melt fuel composition and core materials, which might take place during accidents at the nuclear power plants. The design methods are considered to determine electromagnetic parameters of the facility melting unit - an induction melting furnace, to determine temperature fields in furnace construction component materials during the experiment process and at the moment of melt discharge. The methods are presented to calculate temperature fields and thermal flows in experimental device modelling a reactor vessel bottom when it contacts with the melt fuel composition. The results of thermal electric and hydraulic calculations are presented validating the experimental device operability designed to study the interaction processes between the melt fuel composition and reactor vessel bottom in simulating a residual energy release in the melt by direct current transmitting

  20. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    OpenAIRE

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-01-01

    In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation...

  1. A Two-Step Nanofiltration Process for the Production of Phenolic-Rich Fractions from Artichoke Aqueous Extracts

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2015-04-01

    Full Text Available Commercial nanofiltration (NF membranes in spiral-wound configuration (NP030 from Microdyn Nadir and Desal DK from GE Water & Process Technologies were used in a sequential design in order to produce a separated fraction of phenolic and sugar compounds from an aqueous artichoke extract. For both membranes, the effect of transmembrane pressure (TMP on the permeation flux was evaluated. In optimized conditions of TMP, the NP030 membrane exhibited high rejections of apigenin, cynarin and chlorogenic acid (higher than 85%; on the other hand, very low rejections of fructose, glucose and sucrose (lower than 4% were measured. Starting from an extract with a total antioxidant activity (TAA of 5.28 mM trolox a retentate fraction with a TAA of 47.75 mM trolox was obtained. The NF permeate from the NP030 membrane was processed with the Desal DK membrane in optimized conditions of TMP producing a permeate stream free of phenolic and sugar compounds. Accordingly, as most part of phenolic compounds was removed in the first NF step, the concentration of sugar compounds in the NF retentate had much higher results than that of phenolic compounds.

  2. Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network

    Directory of Open Access Journals (Sweden)

    Manh Ha Bui

    2016-01-01

    Full Text Available This study presents an application of artificial neural networks (ANNs to predict the dye removal efficiency (color and chemical oxygen demand value of Electrocoagulation process from Sunfix Red S3B aqueous solution. The Bayesian regulation algorithm was applied to train the networks with experimental data including five factors: pH, current density, sulphate concentration, initial dye concentration (IDC, and electrolysis time. The predicting performance of the ANN models was validated through the low root mean square error value (9.844 %, mean absolute percentage error (13.776 % and the high determination coefficient value (0.836. Garson, Connection weight method and neural interpretation diagram were also used to study the influence of input variables on dye removal efficiency. For decolorization, the most effective inputs are determined as current density, electrolysis time and initial pH, while COD removal is found to be strongly affected by initial dye concentration and sulphate concentration. Through these steps, we demonstrated ANN’s robustness in modeling and analysis of electrocoagulation process.

  3. Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere.

    Science.gov (United States)

    Zhao, Ya-qi; Wang, Cheng-guo; Bai, Yu-jun; Chen, Guo-wen; Jing, Min; Zhu, Bo

    2009-01-01

    High molecular weight powdery polyacrylonitrile (PAN) polymers were prepared by aqueous suspension polymerization employing itaconic acid (IA) as comonomer and alpha,alpha(')-azobisisobutyronitrile (AIBN) as initiator at 60 degrees C. PAN polymers obtained with different monomer ratios were characterized by EA, DSC, FTIR and XRD. It is investigated that the oxygen element content in PAN polymers increased with the increase of required IA amounts in the feed and heat-treatment temperatures. DSC curves of PAN copolymers exhibited the triplet character, owing to the exothermic cyclization and oxidative reactions during heat-treatment process. Introduction of IA in the feed relaxed exothermic reactions of PAN polymers under air atmosphere. Structure and crystallinity changes were affected by required IA amounts in the feed and enhancement of heat-treatment temperatures. The characteristic functional groups (including C[triple bond]N, C=O, CH(2)) presented in FTIR spectra of PAN polymers indicated copolymerization reaction of AN and IA. Existence of some organic groups (C-O, C=C and/or C=N) indicated formation of ladderlike structure during heat-treatment process. PAN homopolymer had the better crystallinity (mainly peak intensity and peak area around 2theta = 17 degrees) than most RT-PAN copolymers. When heat-treatment temperature is around 210 degrees C, peak intensity, peak area, L(c) and CI of HT-PAN polymers corresponding to samples 1# and 2# got maxima, while crystallinity became weak at higher heat-treatment temperatures. PMID:18922543

  4. Integrated downstream processing of lactoperoxidase from milk whey involving aqueous two-phase extraction and ultrasound-assisted ultrafiltration.

    Science.gov (United States)

    Nandini, K E; Rastogi, Navin K

    2011-01-01

    The present work involves the adoption of an integrated approach for the purification of lactoperoxidase from milk whey by coupling aqueous two-phase extraction (ATPE) with ultrasound-assisted ultrafiltration. The effect of system parameters of ATPE such as type of phase system, polyethylene glycol (PEG) molecular mass, system pH, tie line length and phase volume ratio was evaluated so as to obtain differential partitioning of contaminant proteins and lactoperoxidase in top and bottom phases, respectively. PEG 6000-potassium phosphate system was found to be suitable for the maximum activity recovery of lactoperoxidase 150.70% leading to 2.31-fold purity. Further, concentration and purification of enzyme was attempted using ultrafiltration. The activity recovery and purification factor achieved after ultrafiltration were 149.85% and 3.53-fold, respectively. To optimise productivity and cost-effectiveness of integrated process, influence of ultrasound for the enhancement of permeate flux during ultrafiltration was also investigated. Intermittent use of ultrasound along with stirring (2 min acoustic and 2 min stirring) resulted in increased permeate flux from 0.94 to 2.18 l/m(2) h in comparison to the ultrafiltration without ultrasound. The use of ultrasound during ultrafiltration resulted in increase in flux, but there was no significant change in activity recovery and purification factor. The integrated approach involving ATPE and ultrafiltration may prove to be a feasible method for the downstream processing of lactoperoxidase from milk whey.

  5. Flexible organic electronic devices: Materials, process and applications

    Energy Technology Data Exchange (ETDEWEB)

    Logothetidis, Stergios [Laboratory for Thin Films-Nanosystems and Nanometrology, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54 124 (Greece)], E-mail: logot@auth.gr

    2008-08-25

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs.

  6. System design considerations for free-fall materials processing

    Science.gov (United States)

    Seidensticker, R. G.

    1974-01-01

    The design constraints for orbiting materials processing systems are dominated by the limitations of the flight vehicle/crew and not by the processes themselves. Although weight, size and power consumption are all factors in the design of normal laboratory equipment, their importance is increased orders of magnitude when the equipment must be used in an orbital facility. As a result, equipment intended for space flight may have little resemblance to normal laboratory apparatus although the function to be performed may be identical. The same considerations influence the design of the experiment itself. The processing requirements must be carefully understood in terms of basic physical parameters rather than defined in terms of equipment operation. Preliminary experiments and analysis are much more vital to the design of a space experiment than they are on earth where iterative development is relatively easy. Examples of these various considerations are illustrated with examples from the M518 and MA-010 systems. While these are specific systems, the conclusions apply to the design of flight materials processing systems both present and future.

  7. Materials and Process Activities for NASA's Composite Crew Module

    Science.gov (United States)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  8. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process

    Institute of Scientific and Technical Information of China (English)

    JIAO Shaojun; ZHENG Shourong; YIN Daqiang; WANG Lianhong; CHEN Liangyan

    2008-01-01

    The extensive use of antibiotics has been a worldwide environmental issue. In this study the fate of oxytetracycline (OTC), under photoirradiation, is investigated. The results show that OTC photolysis follows first order model kinetics. Direct photolysis rate is found to be dependent on the initial OTC concentration, with a k value ranging from 0.0075 to 0.0141 min-1, in the OTC concentration from 40 to 10 mg/L. OTC photolysis is highly pH-dependent and strongly enhanced at a high pH value, with a k value of 0.0629 min-1 at pH 9. Enhanced OTC photolysis has also been observed in the presence of nitrate and low concentration of dissolved organic matter. Upon irradiation for 240 min, only 13.5% reduction of TOC occurs in spite of a rapid consumption of 90% of OTC. The byproducts from OTC photolysis have been analyzed using high-performance liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), and the degradation pathway of OTC in the photo process is proposed. By employing luminescent bacterium to assess the adversity of the degradation compounds, an increased effect of toxicity occurs in spite of the great consumption of OTC in the photoirradiation process. After irradiation for 240 min, the inhibition rate is 47%, significantly higher than the initial rate of 21% (p < 0.05), revealing a potentially higher adversity risk on the microorganism upon OTC photolysis.

  9. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  10. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  11. Applying commercial robotic technology to radioactive material processing

    Energy Technology Data Exchange (ETDEWEB)

    Grasz, E.L. (Lawrence Livermore National Lab., CA (USA)); Sievers, R.H. Jr. (Science Applications International Corp., San Diego, CA (USA))

    1990-11-01

    The development of robotic systems for glove box process automation is motivated by the need to reduce operator radiation dosage, minimize the generation of process waste, and to improve the security of nuclear materials. Commercial robotic systems are available with the required capabilities but are not compatible with a glove box environment. Alpha radiation, concentrated dust, a dry atmosphere and restricted work space result in the need for unique adaptations to commercial robotics. Implementation of these adaptations to commercial robotics require performance trade-offs. A design and development effort has been initiated to evaluate the feasibility of using a commercial overhead gantry robot for glove box processing. This paper will present the initial results and observations for this development effort. 1 ref.

  12. Effect of Processing Route on the Stability of Aqueous ZrO2 Suspensions

    Institute of Scientific and Technical Information of China (English)

    Xiaoli WANG; Lucun GUO

    2006-01-01

    The relationship between processing route and suspension stability in ZrO2-H2O-PANH4 system was investigated through rheology study. The work showed that two suspensions with identical PANH4 concentration and final solution condition but prepared by different routes differed greatly in stability. This behavior is attributed to their different distribution state of PANH4 on ZrO2 surface that is determined by the adsorption affinity depending on pH condition in solution. High affinity at pH 5.0 induces a nonuniform distribution of soluble PAA- (polyacrylicacid) on particle surface, which can flocculate the suspension strongly, while low affinity at pH 9.0 induces an uniform distribution of polymer so that the higher stabilization can be achieved. A simple mathematical model was used to account for the observed results.

  13. SYNTHESIS AND FLUORESCENCE STUDY OF SELF—AGGREGATION PROCESS IN AQUEOUS SOLUTION OF HYDROPHOBILIZED POLYSACCHARIDE

    Institute of Scientific and Technical Information of China (English)

    CAONingning; YUYaoting; 等

    2000-01-01

    Cholesterol modified dextran(CHD) having self-aggrgation or self-assembly property was synthesized from cholesterol and 1,6-hexyldiisocyanate.The degree of substitution of cholesteryl moiety in dextran main line is 3-5 cholesterols the 100 glucose units.We have prepared water solution of CHD using probe type sonifier and N-Phenyl-a-naphthylamine(PNA) as a fluorescent probe to study CHD self-aggregate process.For each solution of two samples,we found that the maximum emission of PNA in CHD concentration.This change corresponds to the formation of micelle-like clusters self-aggregated by the cholesterol moiety once the CHD concentration.This change corresponds to the formation of micelle-like clusters self-aggregated by the cholesterol moiety once the CHD concentration exceeds 0.01mg/ml.

  14. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan;

    2003-01-01

    The parameters with effect on maximum spray rate and maximum relative outlet air humidity when coating pellets in a fluidised bed were investigated. The tested variables include type of water based modified release film coating (Eudragit® NE 30D, Eudragit® RS 30D, Aquacoat ECD®) coating principle...... (top spray, bottom spray), inlet air humidity and type of pellets (sugar spheres, microcrystalline cellulose pellets). The maximum spray rate was not influenced by the coating principles. The highest spray rate was obtained for the film polymer with the lowest tackiness which is assumed......-process calculation of degree of utilisation of the potential evaporation energy (DUE) of the outlet air and the relative outlet air humidity (RH). The spray rate is maximised using set points of DUE and RH as control parameters. The product temperature is controlled simultaneously by regulating the inlet air...

  15. Evaluation of Fenton Oxidation Process Coupled with Biological Treatment for the Removal of Reactive Black 5 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Pegah Bahmani

    2013-06-01

    Full Text Available Biodegradation of azo dyes is difficult due to their complex structures and low BOD to COD ratios. In the present study, the efficiency of using Fenton’s reagent (H2O2 + Fe2+ as a pretreatment process to enhance microbial transformation of reactive black 5 (RB5 in an aqueous system was evaluated. The RB5 with an initial concentration of 250 mg/L was decolorized up to 90% in 60 h by using a bacterial consortium. Fenton’s reagent at a Fe2+ concentration of 0.5 mM and H2O2 concentration of 2.9 mM (molar ratio, 1:5.8 was most effective for decolorization at pH = 3.0. The extent of RB5 removal by the combined Fenton–biotreatment was about 2 times higher than that of biotreatment alone. The production of some aromatic amines intermediates implied partial mineralization of the RB5 in Fenton treatment alone; in addition, decreasing of GC-MS peaks suggested that dearomatization occurred in Fenton-biological process. Fenton pretreatment seems to be a cost–effective option for the biotreatment of azo dyes, due mainly to the lower doses of chemicals, lower sludge generation, and saving of time. Our results demonstrated positive effects of inoculating bacterial consortium which was capable of dye biodegradation with a Fenton’s pretreatment step as well as the benefits of low time required for the biological process. In addition, the potential of field performance of Fenton-biological process because of using bacterial consortium is an other positive effect of it.

  16. Influence of aqueous environment pH on the corrosion behaviour of the CANDU steam generator tubing material

    International Nuclear Information System (INIS)

    The generalized corrosion is an undesirable process because it is accompanied by deposition of the corrosion products which affect the steam generator performances. It is very important to understand the generalized corrosion mechanism in order to evaluate the amounts of corrosion products which exist in the steam generator after a determined period of operation. The purpose of the experimental research consists in the assessment of corrosion behavior of the tube material (Incoloy-800) at normal secondary circuit parameters (temperature - 260 deg. C, pressure - 5.1 MPa). The testing environment was the demineralized water without impurities, at different pH values regulated with morpholine and cycloheyilamine (all volatile treatment). The results are presented as micrographs and graphics representing loss of metal by corrosion, corrosion rate, the total corrosion products, the adherent corrosion product, the released corrosion products and the release of the metal. (authors)

  17. Real-time hyperspectral processing for automatic nonferrous material sorting

    Science.gov (United States)

    Picón, Artzai; Ghita, Ovidiu; Bereciartua, Aranzazu; Echazarra, Jone; Whelan, Paul F.; Iriondo, Pedro M.

    2012-01-01

    The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap.

  18. Bicarbonate of soda paint stripping process validation and material characterization

    Science.gov (United States)

    Haas, Michael N.

    1995-01-01

    The Aircraft Production Division at San Antonio Air Logistics Center has conducted extensive investigation into the replacement of hazardous chemicals in aircraft component cleaning, degreasing, and depainting. One of the most viable solutions is process substitution utilizing abrasive techniques. SA-ALC has incorporated the use of Bicarbonate of Soda Blasting as one such substitution. Previous utilization of methylene chloride based chemical strippers and carbon removal agents has been replaced by a walk-in blast booth in which we remove carbon from engine nozzles and various gas turbine engine parts, depaint cowlings, and perform various other functions on a variety of parts. Prior to implementation of this new process, validation of the process was performed, and materials and waste stream characterization studies were conducted. These characterization studies examined the effects of the blasting process on the integrity of the thin-skinned aluminum substrates, the effects of the process on both air emissions and effluent disposal, and the effects on the personnel exposed to the process.

  19. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  20. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    International Nuclear Information System (INIS)

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H2O2 < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO42−, ClO4− and NO3− media. • In Cl− medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH4+, NO3− and SO42− ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L−1 of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H2O2 and added Fe2+. The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO42−, ClO4− and NO3− media, whereas in Cl− medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO42− medium and three chloroaromatics in Cl− solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4+, NO3− and SO42− ions were released during the mineralization

  1. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric, E-mail: brillas@ub.edu

    2015-06-15

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H{sub 2}O{sub 2} < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media. • In Cl{sup −} medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH{sub 4}{sup +}, NO{sub 3}{sup −} and SO{sub 4}{sup 2−} ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L{sup −1} of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H{sub 2}O{sub 2} (EO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H{sub 2}O{sub 2}. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H{sub 2}O{sub 2} and added Fe{sup 2+}. The oxidation ability increased in the sequence EO-H{sub 2}O{sub 2} < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media, whereas in Cl{sup −} medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO{sub 4}{sup 2−} medium and three chloroaromatics in Cl{sup −} solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH{sub 4

  2. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  3. Removal of Penicillin G by combination of sonolysis and Photocatalytic (sonophotocatalytic) process from aqueous solution: process optimization using RSM (Response Surface Methodology)

    Science.gov (United States)

    Almasi, Ali; Dargahi, Abdollah; Mohamadi, Mitra; Biglari, Hamed; Amirian, Farhad; Raei, Mehdi

    2016-01-01

    Introduction Penicillin G (PG) is used in a variety of infectious diseases, extensively. Generally, when antibiotics are introduced into the food chain, they pose a threat to the environment and can risk health outcomes. The aim of the present study was the removal of Penicillin G from an aqueous solution through an integrated system of UV/ZnO and UV/WO3 with Ultrasound pretreatment. Methods In this descriptive-analytical work dealing with the removal of Penicillin G from an aqueous solution, four significant variables, contact time (60–120 min), Penicillin G concentration (50–150 mg/L), ZnO dose (200–400 mg/L), and WO3 dose (100–200 mg/L) were investigated. Experiments were performed in a Pyrex reactor (batch, 1 Lit) with an artificial UV 100-Watt medium pressure mercury lamp, coupled with ultrasound (100 W, 40 KHz) for PG pre-treatment. Chemical Oxygen Demand (COD) was selected to follow the performance of the photo-catalytic process and sonolysis. The experiments were based on a Central Composite Design (CCD) and analyzed by Response Surface Methodology (RSM). A mathematical model of the process was designed according to the proposed degradation scheme. Results The results showed that the maximum removal of PG occurred in ultrasonic/UV/WO3 in the presence of 50 mg/L WO3 and contact time of 120 minutes. In addition, an increase in the PG concentration caused a decrease in COD removal. As the initial concentration of the catalyst increased, the COD removal also increased. The maximum COD removal (91.3%) achieved by 200 mg/L WO3 and 400 mg/l ZnO, a contact time of 120 minutes, and an antibiotic concentration of 50 mg/L. All of the variables in the process efficiency were found to be significant (p < 0.05). Catalyst dose and contact time were shown to have a positive effect on the response (p < 0.05). Conclusion The research data supported the conclusion that the combination of advanced oxidation process of sonolysis and photocatalytic (sonophotocatalytic

  4. A risk forecasting process for nanostructured materials, and nanomanufacturing

    Science.gov (United States)

    Wiesner, Mark R.; Bottero, Jean-Yves

    2011-09-01

    Nanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries. In this communication, we propose that such a process should include the following six key features: (1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern; (2) a consideration of all pertinent sources of nanomaterials; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts; (4) the ability to adapt and update risk forecasts as new information becomes available; (5) feedback to improve information gathering; and (6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the

  5. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    Science.gov (United States)

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. PMID:26686073

  6. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    Science.gov (United States)

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells. PMID:26436430

  7. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    Science.gov (United States)

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.

  8. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    Science.gov (United States)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  9. New materials for eco-sustainable electrochemical processes: oxygen evolution reaction at different electrode materials

    OpenAIRE

    Ferrara, Francesca

    2008-01-01

    In this thesis, the issue concerns the study of the oxygen evolution reaction (OER) at different electrode materials. The idea to carry out such research is connected with the key role, which OER plays in several electrochemical processes. In a future energy scenario based on renewable energy hydrogen is an attractive energy carrier. Among the others, hydrogen production by water electrolysis is a clean and simple way of storing energy from sources such as solar, wind, and hydroelectric powe...

  10. 1H NMR and Rheological Studies of the Calcium Induced Gelation Process in Aqueous Low Methoxyl Pectin Solutions

    Science.gov (United States)

    Dobies, M.; Kuśmia, S.; Jurga, S.

    2006-07-01

    The 1H NMR relaxometry in combination with water proton spin-spin relaxation time measurements and rheometry have been applied to study the ionic gelation of 1% w/w aqueous low methoxyl pectin solution induced by divalent Ca2+ cations from a calcium chloride solution. The model-free approach to the analysis of 1H NMR relaxometry data has been used to separate the information on the static (β) and dynamic () behaviour of the systems tested. The 1H NMR results confirm that the average mobility of both water and the pectin molecules is largely dependent on the concentration of the cross-linking agent. The character of this dependency (β, and T2 vs. CaCl2 concentration) is consistent with the two-stage gelation process of low methoxyl pectin, in which the formation of strongly linked dimer associations (in the range of 0-2.5 mM CaCl2) is followed by the appearance of weak inter-dimer aggregations (for CaCl2≥ 3.5 mM). The presence of the weak gel structure for the sample with 3.5 mM CaCl2 has been confirmed by rheological measurements. Apart from that, the T1 and T2 relaxation times have been found to be highly sensitive to the syneresis phenomenon, which can be useful to monitor the low methoxyl pectin gel network stability.

  11. Investigation on the photo-induced de-oxygenation process of myoglobin in aqueous solution by use of fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A photo-induced de-oxygenation process of myoglobin (Mb) in aqueous solution was investigated by use of fluorescence spectroscopy. The spectra are characterized by the fluorescence intensity declining gradually after each scan,and the decay of fluorescence intensity being significant in each scan,which is assigned to the release of oxygen from the opening of the heme-pockets induced by illumination. More illumination will cause more release of oxygen; if the temperature of an Mb solution is increased when it is illuminated,the rate of de-oxygenation will be higher. It was found that ligand-oxygen in Fe-porphyrin could be removed from Mb by nitrogen. This indicates that the interac-tion between oxy-Mb and other different gases can be tested by the method of fluorescence spectros-copy. In addition,fluorescence spectroscopy can be employed to probe the energy transfer between Fe-porphyrin and tryptophan or tyrosine in Mb molecules.

  12. ADSORPTION OF Ca(II FROM AQUEOUS SOLUTION ONTO CELLULOSIC FIBERS AND ITS IMPACT ON THE PAPERMAKING PROCESS

    Directory of Open Access Journals (Sweden)

    Guangxiang Yuan

    2011-06-01

    Full Text Available Calcium(II is one of the most common metal ions in papermaking systems. However, the effect of Ca2+ on papermaking processes has not drawn much attention. The adsorption of Ca2+ from aqueous solutions onto bleached Eucalyptus globulus kraft pulp fibers was investigated. Thermodynamic results indicate that the adsorption of Ca2+ onto bleached E. globulus kraft pulp fibers was exothermic, reversible, and spontaneous. The equilibrium data followed Langmuir isotherms. The adsorption basically agrees with the ionic reaction model between carboxyl groups of fibers and Ca2+ in which the molar ratio of carboxyl to Ca2+ is close to 2:1. The binding capacity with carboxyl groups is so strong that the anionic charge of the adsorption sites in fibers can be screened, leading to decreased performance of cationic polyacrylamide for retention and drainage, Alkyl Ketene Dimer (AKD for sizing, and cationic starch for dry strength. The precipitation effect of Ca2+ with three kinds of dissolved and colloidal substances (sodium rosinate, sodium stearate, sodium oxalate also was investigated. The results showed that deposits formed by Ca2+ and dissolved and colloidal substances, which could adsorb to the surfaces of fibers, would affect drainage and retention abilities of cationic polyacrylamide.

  13. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%.

  14. Formation and decay of the peroxy radicals in the oxidation process of Glyoxal, Methylglyoxal and Hydroxyacetone in aqueous solution

    Science.gov (United States)

    Schaefer, Thomas; Weller, Christian; Herrmann, Hartmut

    2013-04-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere in large amounts from biogenic and anthropogenic sources. For example, the semivolatile carbonyl compounds glyoxal and methylglyoxal will be produced in the oxidation process of isoprene, while hydroxyacetone can be formed by the combustion of biomass. Additionally, these semivolatile carbonyl compounds might be important for the formation of secondary organic aerosol (SOA) by partitioning between gas- and liquid phase of pre-existing particles. In the gas phase as well as in the aqueous phase (cloud droplets, fog, rain and deliquescent particles) these compounds can be further oxidized, e.g., by radicals (OH and NO3) leading to peroxy radical and then to substitued organics. There are still uncertainties concerning the oxidation pathways of glyoxal, after H-atom abstraction by, e.g., OH radicals, via alkyl radical to the peroxy radical under addition of molecular oxygen. One concept[1] claims that for dilute solutions ( 1 mM the formation of the peroxy radicals is a minor reaction pathway because of a lower rate constant of k = 1 × 106 M-1 s-1 estimated after Guzman et al., 2006[3]. The difference in the rate constants of the oxygen addition is of about three orders of magnitude and thus leads to different oxidation products and yields in the aqueous solution. Laboratory studies of glyoxal oxidation under varying oxygen concentrations have been performed in order to investigate the importance of the peroxy radical formation and alkyl radical recombination in more detail. The formation and the decay of the formed glyoxyl radicals and glyoxyl peroxy radicals were studied in low and high concentrated oxygen solutions using a laser photolysis long path absorption setup (LP-LPA). Additionally, the Tdependent decay of the peroxy radicals formed in the oxidation of methyglyoxal and hydroxyacetone was also studied using the same experiment. 1 Buxton, G. V., Malone, T. N. und Salmon, G. A., J. Chem. Soc

  15. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  16. Treatment of aqueous outflows by complexation in micellar media and precipitation with a sol-gel process

    International Nuclear Information System (INIS)

    Being able to deal with aqueous outflows from treatment sites in the Hague is a major environmental issue. These outflows are contaminated with organic substances and elements with residual radioactivity. This work deals with the development and optimization of the process of de-polluting, and we aim at removing all pollution from the outflow, and produce a final waste compatible with traditional conditioning matrices in the nuclear area. The separation process consists of two steps: dissolving the pollution in the surfactants micelles, and precipitating a mineral phase via sol-gel transition. Within this thesis, only pollution originating from radionuclides is studied. During the first step, our strategy is to use complexing molecules able to interact with ions and to form mainly solvable complexes at the core of surfactant micelles. Thereafter, the second step consisted to add silica precursor which, after hydrolyse and polycondensation, makes it possible to aggregate those micelles that contain complexes together, and to form a silica phase which precipitates in an in-situ fashion. The goal to de-pollute the outflow was achieved, and the final waste thus produced is a silica powder that contains the micelles and the pollution which, after calcination, is compatible with conditioning matrices such as glass or concrete. A reference system for which the separation process is optimal was defined throughout various studies. This system contains a non-ionic surfactant (P123), an ion that surrogates radionuclides (neodymium), a complexing agent (HDEHP) and a silica precursor (TEOS). Hence, this system was further studied in order to broaden the application scope of the separation process, as well as to understand the mechanisms involved, during the complexation of the ions and the micellar solubilization and during the formation of the silica powder. This study was performed using diffusion, imaging and spectrometry techniques.To conclude, the alternative de

  17. A REVIEW PAPER ON HARDFACING PROCESSES AND MATERIALS

    Directory of Open Access Journals (Sweden)

    G.R.C. PRADEEP,

    2010-11-01

    Full Text Available Wear is the predominant factor that controls the life of any machine part. Metal parts often fail their intended use not because they fracture, but because they wear, which causes them to lose dimension and functionality. Different categories of wear exist, but the most typical modes are – Abrasion, Impact, Metallic (metal to metal,Heat, Corrosion etc. Most worn parts don't fail from a single mode of wear, such as impact, but from a combination of modes, such as abrasion and impact etc. Research is going on over years to reduce the wear either in the form of using a new wear resistant material or by improving the wear resistance of the existing material by addition of any wear resistant alloying element etc. Many methods are in practice. In the last years hardfacing became an issue of intense development related to wear resistant applications. In this paper anattempt has been made to review few hardfacing processes and materials used for the same and the current research being done.

  18. Processing and utilization of wet flue gas desulfurization material

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.; Hassett, D.J. [Cooperative Power Association, Eden Prairie, MN (United States)]|[North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1997-05-01

    Cooperative Power`s Coal Creek Station (CCS) became fully operational in 1981. The two 550-MW units at CCS burn North Dakota lignite. The resulting by-products are fly ash, bottom ash, and wet FGD material. Although disposal of the coal combustion by-products (CCBs) was included in the original site plant at CCS, even early on, consideration was given to utilization of the fly ash as a mineral admixture for concrete and as a partial sorbent replacement for the wet scrubbing system. CCS fly ash has been successfully marketed into North Dakota, Minnesota, and the surrounding region as a construction material that is environmentally benign, highly consistent, and an excellent performer in numerous construction applications. Attempts to use CCS fly ash as part of the scrubbing medium in the wet scrubbing system at the site were not as successful as first hoped, primarily due to the abrasive nature of the fly ash. Currently, CCS scrubbers use lime as the scrubbing medium for SO{sub 2} removal. CCS`s efforts to market its fly ash have been successful, so with increased awareness of the economic advantages of by-product utilization, the favorable US Environmental Protection Agency (EPA) regulatory determination that CCBs are not hazardous, and the improved understanding of potential local and regional markets, Cooperative Power has taken additional steps to investigate the processing and utilization of its wet FGD material. These steps are discussed.

  19. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  20. Application of statistical design of experiment with desirability function for the removal of organophosphorus pesticide from aqueous solution by low-cost material.

    Science.gov (United States)

    Islam, M Azharul; Sakkas, Vasilios; Albanis, Triantafyllos A

    2009-10-15

    This paper deals with the multiple response optimization for the removal of organophosphorus pesticide quinalphos [QP: O,O-diethyl O-2-quinoxalinyl phosphorothioate] from the aqueous solution onto low-cost material and tried to overcome the drawbacks of univariate optimization. Used tea leaves were used as low-cost adsorbent and batch equilibration method was followed for this study. A Box-Behnken design was used to develop response model and desirability function was then used for simultaneous optimization of all affecting parameters in order to achieve the highest removal% of quinalphos. The optimum conditions of factors predicted for quinalphos removal% were found to be: pH 8.83, concentration 7 mg L(-1) and dose 0.40 g. Under these conditions, maximum removal% of quinalphos was obtained 96.31%. Considering the above optimum conditions, the adsorption isotherms were developed and provided adsorption capacity of 196.07 microg g(-1) by using Langmuir equation, indicating that used tea leaves may be applied as a low-cost material for pesticides removal from aqueous matrices.

  1. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability

    Science.gov (United States)

    Tron, Artur; Park, Yeong Don; Mun, Junyoung

    2016-09-01

    In this study, we introduce AlF3-coated LiMn2O4 cathodes, which are cost-effective and environmentally benign, for use in the aqueous rechargeable lithium-ion battery. The homogeneous AlF3 coating on the LiMn2O4 powder is synthesized by a simple chemical deposition method. The thickness of the coating is controlled by varying the quantity of AlF3 used, in order to optimize the balance between polarization and surface stabilization. The optimized LiMn2O4, having 2 wt% coating of AlF3, exhibits a long cycle life having a capacity retention of 90% after 100 cycles, and a highly improved rate capability, when compared with the pristine LiMn2O4 material, in 1 M Li2SO4 aqueous electrolyte solution. The systematic surface analyses, comprising scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analyses, indicate that the AlF3 coating on the LiMn2O4 surface successfully reduces the surface deterioration of LiMn2O4 caused by side reactions between the electrolyte solution and the active material.

  2. Wide-Area Thermal Processing of Light-Emitting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Quick, N. (AppliCote Associates, LLC)

    2011-09-30

    Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is

  3. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    Science.gov (United States)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  4. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  5. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage.

    Science.gov (United States)

    Kim, Youngmok; Welt, Bruce A; Talcott, Stephen T

    2011-05-11

    Ready to drink (RTD) teas are a growing segment in the beverage category, brought about by improvements in the flavor of these products and healthy market trends driven by consumers. The presented results evaluated the antioxidant phytochemical stability of RTD teas from aqueous infusions of traditional green tea (Camellia sinensis) and a botanical tea from yaupon holly (Ilex vomitoria) as influenced by packaging materials during cold storage. Two common packaging materials for RTD products are glass and polyethylene terephthalate (PET) and have been compared to a retortable pouch (RP), an emerging packaging material for various types of food since it is durable, inexpensive, lightweight, and easy to sterilize. Storage stability was then evaluated for each aqueous infusion prepared at 10 g/L at 90 °C for 10 min and evaluated at 3 °C in the absence of light over 12 weeks. Analyses included quantification and characterization of individual polyphenolics by high-performance liquid chromatography-photodiode array and liquid chromatography-electrospray ionization-mass spectrometry as well as changes in total antioxidant capacity. For green tea, concentrations of the three major flavan-3-ols, epigallocatechin gallate, epigallocatechin, and epicatechin gallate were better retained in glass bottles as compared to other packages over 12 weeks. In yaupon holly, chlorogenic acid and its isomers that were the predominant compounds were generally stable in each packaging material, and a 20.6-fold higher amount of saponin was found as compared to green tea, which caused higher stability of flavonol glycosides present in yaupon holly during storage. The antioxidant capacity of green tea was better retained in glass and PET versus RP, whereas no differences were again observed for yaupon holly. Results highlight the superiority of oxygen-impervious glass packaging, but viable alternatives may be utilizable for RTD teas with variable phytochemical compositions. PMID:21434687

  6. Process design of press hardening with gradient material property influence

    Science.gov (United States)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  7. Health Benefits of Geologic Materials and Geologic Processes

    Directory of Open Access Journals (Sweden)

    Robert B. Finkelman

    2006-12-01

    Full Text Available The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. “Terra sigillata,” still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets. Metals and trace elements are being used in some of today’s most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc. that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease.

  8. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  9. Performance Evaluation of Electrochemical Process using Iron and Aluminum Electrodes in Phenol  Removal from Synthetic Aqueous Environment 

    Directory of Open Access Journals (Sweden)

    Hamed Biglari

    2013-02-01

    Full Text Available Background and Objectives: Phenol is one of the most important organic chemicals presenting in water and other environments. It not only brings about hygienic problems but also results in forming 11 toxic priority pollutants in aqueous environments. Hence, the performance of electrocoagulation process using iron and aluminum sacrificial anodes was investigated for removal of phenol.Materials and Methods: We used a glass tank in 1.56 L volume (effective volume 1 L equipped with four iron and aluminum plate electrodes to do experiments (bipolar mode. The tank was filled with synthetic wastewater containing phenol in concentration of 5, 20, 40, and 70 mg/l and to follow the progress of the treatment, each sample was taken at 20 min intervals for up to 80 min. The percent of phenol removal was measured at pH 3, 5, 7, and 9; electrical potential range of 20, 40, and 60 volts; and electrical conductivity of 1000, 1500, 2000, and 3000 µs/cm. Results: It was found that the most effective removal capacities of phenol (95 and 98 % could be achieved when the pH was kept 7 and 5 for iron and aluminum electrodes, reaction time  80 min, electrical conductivity 3000 µs/cm, initial concentration of phenol 5 mg/l, and electrical potential in the range of 20-60 V. Conclusion: The method was found to be highly efficient and relatively fast compared with existing conventional techniques and also it can be concluded that the electrochemical process has the potential to be utilized for the cost-effective removal of phenol from water and wastewater.

  10. Investigation the Efficiency of Electrolysis Process using 3 Dimensional Graphite Electrodes for Decolonization of Phenolphthalein and Phenol red from Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Mohmmad Reza Massoudinejad

    2012-10-01

    Full Text Available Background and Objectives: The presence of chemical dyes in the water resources not only pollutes them, but also brings about death of organisms and serious indemnities to the environment through stopping oxygen production and preventing penetration of the sunlight. In this study, we investigated the efficiency of the electrolysis process for decolonization of phenolphthalein and phenol red from aqueous environment. Materials and Methods: The experiments were conducted in an electrochemical reactor having a working volume of 1 liter equipped with 2 graphite electrodes. This study was conducted at laboratory scale. Samples were prepared by dissolving two phenol red and phenolphthalein dyes in drinking water. Then, the effect of operating parameters such as voltage, inter-electrode distance, and NaCl concentration on the complete dye removal was determined considering optimum retention time using  Factorial variance analyses and the graphs were plotted using MS Excel software.Results: the results showed that the optimum conditions for completely removal of phenolphthalein was achieved applying a voltage of 48 V, the retention time of 9 minutes, 5 cm inter-electrode distance, and the salt concentration of 1.5 g/l, whereas, complete removal of phenol red was achieved applying a voltage of 48 V, the retention time of 8 minutes, 5 cm inter-electrode distance, and the salt concentration of 2 g/l. Under these conditions, COD removal efficiency for phenol red and phenolphthalein was 85 and 80 percent respectively.Conclusion: This study revealed that electrolysis process is an effective method to remove both phenolphthalein and phenol red dyes from effluent, because it can completely remove the dyes in a short time.

  11. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  12. Dual-beam laser thermal processing of silicon photovoltaic materials

    Science.gov (United States)

    Simonds, Brian J.; Teal, Anthony; Zhang, Tian; Hadler, Josh; Zhou, Zibo; Varlamov, Sergey; Perez-Würfl, Ivan

    2016-03-01

    We have developed an all-laser processing technique by means of two industrially-relevant continuous-wave fiber lasers operating at 1070 nm. This approach is capable of both substrate heating with a large defocused beam and material processing with a second scanned beam, and is suitable for a variety of photovoltaic applications. We have demonstrated this technique for rapid crystallization of thin film (~10 μm) silicon on glass, which is a low cost alternative to wafer-based solar cells. We have also applied this technique to wafer silicon to control dopant diffusion at the surface region where the focused line beam rapidly melts the substrate that then regrows epitaxially. Finite element simulations have been used to model the melt depth as a function of preheat temperature and line beam power. This process is carried out in tens of seconds for an area approximately 10 cm2 using only about 1 kW of total optical power and is readily scalable. In this paper, we will discuss our results with both c-Si wafers and thin-film silicon.

  13. Application of telerobotic control to remote processing of nuclear material

    International Nuclear Information System (INIS)

    In processing radioactive material there are certain steps which have customarily required operators working at glove box enclosures. This can subject the operators to low level radiation dosages and the risk of accidental contamination, as well as generate significant radioactive waste to accommodate the human interaction. An automated system is being developed to replace the operator at the glove box and thus remove the human from these risks, and minimize waste. Although most of the processing can be automated with very little human operator interaction, there are some tasks where intelligent intervention is necessary to adapt to unexpected circumstances and events. These activities will require that the operator be able to interact with the process using a remote manipulator in a manner as natural as if the operator were actually in the work cell. This robot-based remote manipulation system, or telerobot, must provide the operator with an effective means of controlling the robot arm, gripper and tools. This paper describes the effort in progress in Lawrence Livermore National Laboratory to achieve this capability. 8 refs

  14. Processing solubility enhancement and Nanoparticles dispersion enhanced Performance Materials through thermomagnetic processing

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Rios, Orlando [ORNL; Kisner, Roger A [ORNL; Muralidharan, Govindarajan [ORNL; Manuel, Michele Viola [University of Florida, Gainesville; Manuel, Michele [University of Florida, Gainesville

    2012-01-01

    This research demonstrates that significantly enhanced materials microstructures and improved performance can be achieved by coupling two previously independent materials research concepts, namely, the thermo-magnetic processing (T-MP)1 and the electromagnetic acoustic transducer (EMAT)2 technologies. In prior, separate NHMFL research endeavors, ORNL researchers have demonstrated that: (1) thermo-magnetic processing (T-MP) can significantly enhance Ni solubility in Fe by up to 30%; and (2) using the electromagnetic acoustic transducer (EMAT) technology can significantly improve cast product homogeneity. Based on these earlier successful results, we proposed simultaneously coupling these two R&D approaches/eff ects (i.e., T-MP with EMAT), in order to simultaneously achieve: (1) enhanced elemental solid-solubility in Mg and in at least one Fe-based alloy; and (2) uniform dispersion of intentional additions of inert nanoparticles in Mg. Developing homogeneous dispersions of inert nanoparticles is and has been pursued as one of the holy grails for achieving unprecedented materials performance and highly desired mechanical properties, e.g., in creep and oxidation resistant alloys. Successfully coupling these two technologies would provide the ability to create uniquely controlled nano-scale microstructures that currently are unachievable by any other materials processing technologies.

  15. Catalyst materials based on plasma-processed alumina nanopowder

    Directory of Open Access Journals (Sweden)

    Dubencovs Konstantins

    2012-01-01

    Full Text Available A platinum catalyst for glycerol oxidation by molecular oxygen has been developed applying the extractive-pyrolytic method and using, as a support, a fine alumina powder with an average particle size of 30-60 nm processed by plasma technology. The extractive-pyrolytic method (EPM allows affixing small amounts of catalytic metals (1-5% with the particle size ranging from several nanometers to several tens of nanometers onto the surface of the support. The prepared material - 4.8 wt. % platinum on nano-sized alumina - can be used as a catalyst for glycerol oxidation by oxygen with conversion up to 84%, in order to produce some organic acids (glyceric and lactic acid with a selectivity of about 60%.

  16. Transitivity Study-Material Process in Business Negotiation

    Institute of Scientific and Technical Information of China (English)

    刘茜

    2013-01-01

    Since China entered into the World Trade Organization and became a member of this institution, business negotiation has become the important implement in communicating and information exchanging in business market. Compared with the past time, more and more companies involve in the business negotiation at present. This paper uses Halliday* s transitivity theory-material process as its theoretical framework to analyze business negotiation. As soon as reading this thesis totally, English teacher, especially business English teachers should add the awareness on considering unconscious points of business negotiation. They should be led to hold the deep cognition and language choice. Moreover, it is hoped for negotiators to have the understanding for choosing the better words and structure in order to make an agreement in business negotiation.

  17. Application of diffraction methods to materials control during processing procedures

    International Nuclear Information System (INIS)

    The application of diffraction analytical methods for the express-express acquisition of data on the materials structural states and determination of their technological characteristics is described. The application of the roentgenostructural analysis for determination of the carbon steel stamping ability, technological plasticity of the 40Kh steel by pressing, the TiN coating thickness on the 40Kh steel in the process of ion-plasma spraying, the perfection of texture in the alloys for the (Nd2Fe14B, SmCo5). The method for determining crystals orientation in turbine blades with the purpose of providing for suitable crystallographic orientation by production of items through the method of directed crystallization for improving their service life is described. The diffraction analytical methods are characterized in comparison to the traditional control methods by the same advantages, which are nondestructive ones, and specified by high expressivity

  18. Fullerenol-containing Materials Derived by Sol-gel Processing

    Institute of Scientific and Technical Information of China (English)

    Haiping XIA; Zhaoyang JIANG; Jianli ZHANG; Jinhao WANG; Yuepin ZHANG; Qiuhua NIE

    2004-01-01

    Water soluble fullerenols were synthesized and incorporated in SiO2, SiO2-TiO2, GPTMS-SiO2, GPTMS-ATPS inorganic and organic-inorganic materials by sol-gel processes. The maximum concentrations of C60(OH)n and C7o(OH)n in the obtained SiO2 gels were estimated to be about 0.6% and 1.5% in weight, respectively. The characteristics of the UV/visible spectra of fullerenols in H2O and various gels were measured and compared. The thermal stability of fullerenols in gels was investigated with differential thermal analysis (DTA). The results indicate that the absorption features of fullerenols in solid gels are similar to those in H2O and the fullerenols in SiO2 are stable at 400℃. The optical limiting effect of the fullerenols was investigated preliminarily.

  19. Prooxidative Potential of Photo-Irradiated Aqueous Extracts of Grape Pomace, a Recyclable Resource from Winemaking Process.

    Science.gov (United States)

    Tsukada, Mana; Nakashima, Takuji; Kamachi, Toshiaki; Niwano, Yoshimi

    2016-01-01

    Our previous study revealed that aqueous extract of grape pomace obtained from a winemaking process could exert bactericidal action upon photo-irradiation via reactive oxygen species (ROS) formation. In the present study, we focused on chemical composition and prooxidative profile of the extract. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis showed that polyphenolic compounds including catechin monomers, dimers, trimers, and polyphenolic glucosides were contained. The polyphenol rich fraction used for the LC-ESI-MS analysis generated hydrogen peroxide (H2O2) upon photo-irradiation possibly initiated by photo-oxidation of phenolic hydroxyl group. That is, reduction of dissolved oxygen by proton-coupled electron transferred from the photo-oxidized phenolic hydroxyl group would form H2O2. The resultant H2O2 was then photolyzed to generate hydroxyl radical (•OH). The prooxidative profile of the extract in terms of •OH generation pattern upon photo-irradiation was similar to that of grape seed extract (GSE) as an authentic polyphenol product and (+)-catechin as a pure polyphenolic compound, and in all the three samples •OH generation could be retained during photo-irradiation for at least a couple of hours. The prooxidant activity of the photo-irradiated extract indicated by •OH yield was more potent than that of the photo-irradiated GSE and (+)-catechin, and this was well reflected in their bactericidal activity in which the photo-irradiated extract could kill the bacteria more efficiently than did the photo-irradiated GSE and (+)-catechin. PMID:27341398

  20. Prooxidative Potential of Photo-Irradiated Aqueous Extracts of Grape Pomace, a Recyclable Resource from Winemaking Process.

    Science.gov (United States)

    Tsukada, Mana; Nakashima, Takuji; Kamachi, Toshiaki; Niwano, Yoshimi

    2016-01-01

    Our previous study revealed that aqueous extract of grape pomace obtained from a winemaking process could exert bactericidal action upon photo-irradiation via reactive oxygen species (ROS) formation. In the present study, we focused on chemical composition and prooxidative profile of the extract. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis showed that polyphenolic compounds including catechin monomers, dimers, trimers, and polyphenolic glucosides were contained. The polyphenol rich fraction used for the LC-ESI-MS analysis generated hydrogen peroxide (H2O2) upon photo-irradiation possibly initiated by photo-oxidation of phenolic hydroxyl group. That is, reduction of dissolved oxygen by proton-coupled electron transferred from the photo-oxidized phenolic hydroxyl group would form H2O2. The resultant H2O2 was then photolyzed to generate hydroxyl radical (•OH). The prooxidative profile of the extract in terms of •OH generation pattern upon photo-irradiation was similar to that of grape seed extract (GSE) as an authentic polyphenol product and (+)-catechin as a pure polyphenolic compound, and in all the three samples •OH generation could be retained during photo-irradiation for at least a couple of hours. The prooxidant activity of the photo-irradiated extract indicated by •OH yield was more potent than that of the photo-irradiated GSE and (+)-catechin, and this was well reflected in their bactericidal activity in which the photo-irradiated extract could kill the bacteria more efficiently than did the photo-irradiated GSE and (+)-catechin.