WorldWideScience

Sample records for aqueous phase catalysis

  1. Efficient and convenient oxidation of benzyl halides to carbonyl compounds with sodium nitrate and acetic acid by phase transfer catalysis in aqueous media

    Directory of Open Access Journals (Sweden)

    Yu Lin Hu

    2010-08-01

    Full Text Available A variety of benzyl halides were converted to the corresponding aldehydes/ketones in good to high yields by phase transfer catalysis combined with sodium nitrate and acetic acid at reflux. As a result, a simple and high yield procedure has been developed.

  2. Specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, Egid B.; Engberts, Jan B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas

  3. Specific acid catalysis and Lewis acid catalysis of Diels-Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, E.B.; Engberts, J.B.F.N.

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diells-Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas

  4. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  5. Core-shell nanoreactors for efficient aqueous biphasic catalysis.

    Science.gov (United States)

    Zhang, Xuewei; Cardozo, Andrés F; Chen, Si; Zhang, Wenjing; Julcour, Carine; Lansalot, Muriel; Blanco, Jean-François; Gayet, Florence; Delmas, Henri; Charleux, Bernadette; Manoury, Eric; D'Agosto, Franck; Poli, Rinaldo

    2014-11-17

    Water-borne phosphine-functionalized core-cross-linked micelles (CCM) consisting of a hydrophobic core and a hydrophilic shell were obtained as stable latexes by reversible addition-fragmentation chain transfer (RAFT) in water in a one-pot, three-step process. Initial homogeneous aqueous-phase copolymerization of methacrylic acid (MAA) and poly(ethylene oxide) methyl ether methacrylate (PEOMA) is followed by copolymerization of styrene (S) and 4-diphenylphosphinostyrene (DPPS), yielding P(MAA-co-PEOMA)-b-P(S-co-DPPS) amphiphilic block copolymer micelles (M) by polymerization-induced self-assembly (PISA), and final micellar cross-linking with a mixture of S and diethylene glycol dimethacrylate. The CCM were characterized by dynamic light scattering and NMR spectroscopy to evaluate size, dispersity, stability, and the swelling ability of various organic substrates. Coordination of [Rh(acac)(CO)2 ] (acac=acetylacetonate) to the core-confined phosphine groups was rapid and quantitative. The CCM and M latexes were then used, in combination with [Rh(acac)(CO)2 ], to catalyze the aqueous biphasic hydroformylation of 1-octene, in which they showed high activity, recyclability, protection of the activated Rh center by the polymer scaffold, and low Rh leaching. The CCM latex gave slightly lower catalytic activity but significantly less Rh leaching than the M latex. A control experiment conducted in the presence of the sulfoxantphos ligand pointed to the action of the CCM as catalytic nanoreactors with substrate and product transport into and out of the polymer core, rather than as a surfactant in interfacial catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crown ethers and phase transfer catalysis in polymer science

    CERN Document Server

    Carraher, Charles

    1984-01-01

    Phase transfer catalysis or interfacial catalysis is a syn­ thetic technique involving transport of an organic or inorganic salt from a solid or aqueous phase into an organic liquid where reaction with an organic-soluble substrate takes place. Over the past 15 years there has been an enormous amount of effort invested in the development of this technique in organic synthe­ sis. Several books and numerous review articles have appeared summarizing applications in which low molecular weight catalysts are employed. These generally include either crown ethers or onium salts of various kinds. While the term phase transfer catalysis is relatively new, the concept of using a phasetrans­ fer agent (PTA) is much older~ Both Schnell and Morgan employed such catalysts in synthesis of polymeric species in the early 1950's. Present developments are really extensions of these early applications. It has only been within the last several years that the use of phase transfer processes have been employed in polymer synthesis...

  7. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util......Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... concept is surveyed by presenting results for the continuous gas-phase hydroformylation of propene, as a reaction example. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006....

  8. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  9. Inverse phase-transfer catalysis: probing its mechanism with competitive transacylation

    Energy Technology Data Exchange (ETDEWEB)

    Fife, W.K.; Xin, Y.

    1987-02-18

    The utility of two-phase water-organic solvent media for organic synthesis is widely recognized. Nearly all reported examples of this methodology involve transport of a reactant from the water phase into the organic phase where it encounters a second reactant to effect reaction. This process commonly known as phase-transfer catalysis (PTC) is the subject of numerous reports and reviews. The literature includes a few examples of a complementary synthetic procedure in which an organic solvent soluble reagent is activated by conversion to an ionic intermediate and transported to the aqueous phase for reaction. The recent report by Mathias and Vaidya describes a new example of this virtually unexplored methodology, which they have named inverse phase-transfer catalysis (IPTC). They report here some preliminary results from their continuing investigation of multiple-phase systems as media for organic reactions which provide significant new insight into the IPTC process.

  10. Hydrodesulfurization catalysis by Chevrel phase compounds

    Science.gov (United States)

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  11. Energy phase shift as mechanism for catalysis

    KAUST Repository

    Beke-Somfai, Tamás

    2012-05-01

    Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal \\'energy recycling\\', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F 1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex. © 2012 Elsevier B.V. All rights reserved.

  12. Dispersed-phase catalysis in coal liquefaction

    International Nuclear Information System (INIS)

    Utz, B.R.; Cugini, A.V.; Frommell, E.A.

    1990-01-01

    This paper reports that the specific reaction (activation) conditions for the conversion of catalyst precursors to unsupported catalyst have a direct effect on the catalytic activity and dispersion. The importance of reaction intermediates in decomposition of ammonium heptamolybdate and ammonium tetrathiomolybdate, and the sensitivity of these intermediates to reaction conditions, were studied in coal liquefaction systems. Recent results indicate that optimization of activation conditions facilitates the formation of a highly dispersed and active form of molybdenum disulfide for coal liquefaction. The use of the catalyst precursors ammonium heptamolybdate, ammonium tetrathiomolybdate, and molybdenum trisulfide for the conversion of coal to soluble products will be discussed. The use of an unsupported dispersed-phase catalyst for direct coal liquefaction is not a novel concept and has been employed in may studies with varying success. Dispersed-phase catalysts soluble and oil-soluble salts, and as finely divided powders. While some methods of catalyst introduction give higher dispersion of the catalyst and greater activity for the liquefaction of coal, all of the techniques allow the formation of a finely dispersed inorganic phase

  13. Modeling and design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Hodges, George; Piccione, Patrick M.

    2011-01-01

    Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it, ...

  14. Aqueous phase processing of secondary organic aerosols

    Science.gov (United States)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  15. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  16. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of combinatorial methods is proposed to rapidly screen catalyst formulations for the advanced development of aqueous phase oxidation catalysts with greater...

  17. Synthesis of a Small Library of Imidazolidin-2-ones using Gold Catalysis on Solid Phase.

    Science.gov (United States)

    La-Venia, Agustina; Medran, Noelia S; Krchňák, Viktor; Testero, Sebastián A

    2016-08-08

    An efficient and high-yielding solid phase synthesis of a small library of imidazolidin-2-ones and imidazol-2-ones was carried out employing a high chemo- and regioselective gold-catalyzed cycloisomerization as a key step. Polymer-supported amino acids derivatized with several alkyne functionalities combined with tosyl- and phenylureas have been subjected to gold-catalysis exhibiting exclusively C-N bond formation. The present work proves the potential of solid phase synthesis and homogeneous gold catalysis as an efficient and powerful synthetic tool for the generation of drug-like heterocycles.

  18. Chiral phase-transfer catalysis in the asymmetric α-heterofunctionalization of prochiral nucleophiles

    Directory of Open Access Journals (Sweden)

    Johannes Schörgenhumer

    2017-08-01

    Full Text Available Chiral phase-transfer catalysis is one of the major catalytic principles in asymmetric catalysis. A broad variety of different catalysts and their use for challenging applications have been reported over the last decades. Besides asymmetric C–C bond forming reactions the use of chiral phase-transfer catalysts for enantioselective α-heterofunctionalization reactions of prochiral nucleophiles became one of the most important field of application of this catalytic principle. Based on several highly spectacular recent reports, we thus wish to discuss some of the most important achievements in this field within the context of this review.

  19. Asymmetric fluorination of α-branched cyclohexanones enabled by a combination of chiral anion phase-transfer catalysis and enamine catalysis using protected amino acids.

    Science.gov (United States)

    Yang, Xiaoyu; Phipps, Robert J; Toste, F Dean

    2014-04-09

    We report a study involving the successful merger of two separate chiral catalytic cycles: a chiral anion phase-transfer catalysis cycle to activate Selectfluor and an enamine activation cycle, using a protected amino acid as organocatalyst. We have demonstrated the viability of this approach with the direct asymmetric fluorination of α-substituted cyclohexanones to generate quaternary fluorine-containing stereocenters. With these two chiral catalytic cycles operating together in a matched sense, high enantioselectivites can be achieved, and we envisage that this dual catalysis method has the potential to be more broadly applicable, given the breadth of enamine catalysis. It also represents a rare example of chiral enamine catalysis operating successfully on α-branched ketones, substrates commonly inert to this activation mode.

  20. Cell Partition in Two Polymer Aqueous Phases

    Science.gov (United States)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  1. Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation

    DEFF Research Database (Denmark)

    Hanning, Christopher William

    The work presented here is focused on the development of a new reaction process. It applies Supported Ionic Liquid Phase (SILP) catalysis to a specific reaction. By reacting methanol and carbon monoxide over a rhodium catalyst, acetic acid can be formed. This reaction is important on a large scal...

  2. Catálise de transferência de fase Phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    Angélica Maria Lucchese

    2000-10-01

    Full Text Available Since its discovery, phase transfer catalysis (PTC has grown considerably and nowadays is one of the most versatile preparative methods. The search for new catalysts, their use in PTC asymmetric synthesis and the attempts to understand their mechanistic role are modern and exciting topics of investigation. A review on main achievements in the last two decades is presented.

  3. Reversible Phase Transfer of Carbon Dots between an Organic Phase and Aqueous Solution Triggered by CO2.

    Science.gov (United States)

    Pei, Xiaoyan; Xiong, Dazhen; Wang, Huiyong; Gao, Shuaiqi; Zhang, Xinying; Zhang, Suojiang; Wang, Jianji

    2018-03-26

    Carbon dots (CDs) have attracted increasing attention in applications such as bio-imaging, sensors, catalysis, and drug delivery. However, unlike metallic and semiconductor nanoparticles, the transfer of CDs between polar and non-polar phases is little understood. A class of amine-terminated CDs is developed and their phase transfer behavior has been investigated. It is found that these CDs can reversibly transfer between aqueous and organic solvents by alternatively bubbling and removing CO 2 at atmospheric pressure. The mechanism of such CO 2 -switched phase transfer involves reversible acid-base reaction of amine-terminated CDs with CO 2 and the reversible formation of hydrophilic ammonium salts. By using the CDs as catalysts, the phase transfer is applied in the Knoevenagel reaction for efficient homogeneous reaction, heterogeneous separation, and recycling of the catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents.

    Science.gov (United States)

    Cheng, Fangchao; Zhao, Xin; Hu, Yingcheng

    2018-02-01

    The exploration of effective deconstruction of biomass complex structures and mild fractionation into individual components is a profound challenge for the development of biorefinery. Herein, a biomass fractionation process, via treating biomass in various aqueous alcohol solutions with the catalysis of acidic ionic liquids 1-butyl-3-methylimidazolium hydrogen sulfate, was demonstrated to fractionate coir and poplar into cellulose materials with a lignin content as low as 0.95% and lignin with a delignification rate of up to 98%. The participation of acidic ionic liquids into the solvent system greatly multiplied the biomass fractionation efficiency. The analysis on effects of the chemical structure and solubility parameter of alcohols on the delignification efficiency provided a rational and meaningful way to predict and screen solvent for the biomass fractionation process. Lignin in the present study exhibited similar structure with milled wood lignin, and comparable molecular and thermal properties with the conventional organosolv lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hydrogen-deuterium exchange of weak carbon acids under phase-transfer catalysis conditions

    International Nuclear Information System (INIS)

    Feldman, D.; Halpern, M.; Rabinovitz, M.

    1985-01-01

    A practical method for hydrogen-deuterium exchange is obtained via extractive hydroxide ion initiated phase-transfer catalysis. The reaction of NaOD/D 2 O system allows the easy production of compounds that otherwise would require very strong bases and aprotic solvents. The strong basicity of OD - anion is attributable to its relative freedom from water molecules when OD - is extracted into the depth of the organic layer. 22 references, 1 table

  6. SILP catalysis in gas-phase hydroformylation and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Riisager, A.; Fehrmann, R. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry; Haumann, M.; Wasserscheid, P. [Univ. Erlangen-Nuernberg (Germany). Lehrstuhl fuer Chemische Reaktionstechnik

    2006-07-01

    Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid-metal catalyst solution highly dispersed on a porous support. The use of a non-volatile, ionic liquid catalyst phase in SILP catalysts results in a stable heterogeneous-type material with selectivity and efficiency like homogeneous catalysts. The silica-supported SILP Rh-bisphosphine hydroformylation catalyst exhibited good activities and excellent selectivities in gas phase hydroformylation with stability exceeding 700 hours time-on-stream. Spectroscopic and kinetic data confirmed the homogeneous nature of the catalyst. In the Rh- SILP catalysed carbonylation of methanol the formation of undesired by-products could be suppressed by variation of residence time and gas pressure. (orig.)

  7. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  8. Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis

    NARCIS (Netherlands)

    Danon, B.; Marcotullio, G.; De Jong, W.

    2013-01-01

    In this paper both the mechanistic and kinetic aspects of furfural formation from pentoses in aqueous acidic media have been reviewed. Based on the reviewed literature, a comprehensive reaction mechanism has been proposed consisting of more than one route, all starting from acyclic xylose, and

  9. Mars Aqueous Processing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  10. Mars Aqueous Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  11. Catalysis in micellar and macromoleular systems

    CERN Document Server

    Fendler, Janos

    1975-01-01

    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  12. Effect of Aqueous Phase Recycling in Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Klemmer, Maika; Madsen, René Bjerregaard; Houlberg, Kasper

    2016-01-01

    The effect of recycling the aqueous phase in a continuous hydrothermal liquefaction process was investigated in terms of product yield distribution, carbon balance, and composition of all main fractions. Using a custom-built continuous reactor system, a long-term experiment was conducted at 350...... degrees C and 250 bar with a feedstock of dried distiller's grains with solubles. In two consecutive recycle experiments, the aqueous phase of the preceding experiment was used as dispersion medium for the feedstock preparation. In these recycle-experiments a significant increase in biocrude yields...... was observed with a maximum increase in the first recycle experiment. However, the recycling of the aqueous phase also resulted in lower heating values and higher water contents in the oil fraction. Based on these findings, recycling the aqueous phase is a trade-off between improved yields and reduced burn...

  13. Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Alsudairi, Amell [Department; Chemistry; Li, Jingkun [Department; Ramaswamy, Nagappan [Department; Mukerjee, Sanjeev [Department; Abraham, K. M. [Department; Jia, Qingying [Department

    2017-06-14

    Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Our data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe(II)/Fe(I) redox center. The Fe(II)/Fe(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe(I) state.

  14. Phase transfer of platinum nanoparticles from aqueous to organic ...

    Indian Academy of Sciences (India)

    Unknown

    in one medium and, thereafter, transferring them to the complementary phase. A number of experimental protocols exist in the literature for the phase transfer of nanoparticles from aqueous to organic phases.20–27. Sarathy et al have demonstrated that colloidal gold, platinum and silver particles first synthesized in water.

  15. SYNTHESIS OF ACRYLIC ESTERS IN PHASE TRANSFER CATALYSIS: KINETICS AND ECOLOGICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    GAGIK TOROSYAN

    2012-06-01

    Full Text Available Phase-Transfer Catalysis (PTC technology is used in the commercial manufacture and also in pollution mitigation treatment processes. In the paper is demonstrated the synthesis of esters of acrylic and metacrylic acids, which have wide applications in the industry for the synthesis of unique polymeric materials, by phase transfer catalysis method. It is necessary to notice that the synthesis of acrylic acids in PTC medium is more important because that compounds are more sensitive at acidic and basic conditions. Here is shown that the offered method has more advantages in comparison with the traditional methods. PTC is characterized by a higher degree of conversion of raw materials into useful products, smaller material and power resources consumption. The offered method for acrylic ester synthesis in comparison with the traditional methods has more advantages: higher process rates, mild reaction conditions, allowing lower energy costs, the complete elimination of hazardous and dangerous organic solvents, all leading to a sharp reduction of air pollution, and volume of generated wastewaters.

  16. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  17. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Directory of Open Access Journals (Sweden)

    Basudeb Basu

    2013-01-01

    Full Text Available Solid-phase organic synthesis (SPOS and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i alumina or silica, either having doped with metal salts or directly, and (ii polyionic resins to either promote various organic reactions or to immobilize reagents/metal catalysts for subsequent use in hydrogenation and cross-coupling reactions. The reaction parameters, scopes, and limitations, particularly in the context of green chemistry, have been highlighted with pertinent approaches by other groups.

  18. Phase transfer of platinum nanoparticles from aqueous to organic ...

    Indian Academy of Sciences (India)

    During shaking of the biphasic mixture, the aqueous platinum nanoparticles complex via either coordination bond formation or weak covalent interaction with the ODA molecules present in the organic phase. This process renders the nanoparticles sufficiently hydrophobic and dispersible in the organic phase.

  19. Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis

    Directory of Open Access Journals (Sweden)

    Eric Monflier

    2012-11-01

    Full Text Available The replacement of hazardous solvents and the utilization of catalytic processes are two key points of the green chemistry movement, so aqueous organometallic catalytic processes are of great interest in this context. Nevertheless, these processes require not only the use of water-soluble ligands such as phosphanes to solubilise the transition metals in water, but also the use of mass transfer agents to increase the solubility of organic substrates in water. In this context, phosphanes based on a cyclodextrin skeleton are an interesting alternative since these compounds can simultaneously act as mass transfer agents and as coordinating species towards transition metals. For twenty years, various cyclodextrin-functionalized phosphanes have been described in the literature. Nevertheless, while their coordinating properties towards transition metals and their catalytic properties were fully detailed, their mass transfer agent properties were much less discussed. As these mass transfer agent properties are directly linked to the availability of the cyclodextrin cavity, the aim of this review is to demonstrate that the nature of the reaction solvent and the nature of the linker between cyclodextrin and phosphorous moieties can deeply influence the recognition properties. In addition, the impact on the catalytic activity will be also discussed.

  20. Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Donghai [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Richland WA 99352; Lercher, Johannes A. [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Richland WA 99352; Dept. of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 Garching 85748 Germany

    2016-10-06

    Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide a kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  1. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  2. Regional Air Quality Model Application of the Aqueous-Phase ...

    Science.gov (United States)

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  3. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Matyáš, Josef

    2017-09-01

    Silica aerogels have a rich history and a unique, fascinating gas-phase chemistry that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. Salient features of the research behind these different applications are presented, and, where appropriate, critical aspects that affect the practical use of the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. The review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.

  4. A new source of methylglyoxal in the aqueous phase

    Directory of Open Access Journals (Sweden)

    M. Rodigast

    2016-03-01

    Full Text Available Carbonyl compounds are ubiquitous in atmospheric multiphase system participating in gas, particle, and aqueous-phase chemistry. One important compound is methyl ethyl ketone (MEK, as it is detected in significant amounts in the gas phase as well as in cloud water, ice, and rain. Consequently, it can be expected that MEK influences the liquid-phase chemistry. Therefore, the oxidation of MEK and the formation of corresponding oxidation products were investigated in the aqueous phase. Several oxidation products were identified from the oxidation with OH radicals, including 2,3-butanedione, hydroxyacetone, and methylglyoxal. The molar yields were 29.5 % for 2,3-butanedione, 3.0 % for hydroxyacetone, and 9.5 % for methylglyoxal. Since methylglyoxal is often related to the formation of organics in the aqueous phase, MEK should be considered for the formation of aqueous secondary organic aerosol (aqSOA. Based on the experimentally obtained data, a reaction mechanism for the formation of methylglyoxal has been developed and evaluated with a model study. Besides known rate constants, the model contains measured photolysis rate constants for MEK (kp  =  5  ×  10−5 s−1, 2,3-butanedione (kp  =  9  ×  10−6 s−1, methylglyoxal (kp  =  3  ×  10−5 s−1, and hydroxyacetone (kp  =  2  ×  10−5 s−1. From the model predictions, a branching ratio of 60 /40 for primary/secondary H-atom abstraction at the MEK skeleton was found. This branching ratio reproduces the experiment results very well, especially the methylglyoxal formation, which showed excellent agreement. Overall, this study demonstrates MEK as a methylglyoxal precursor compound for the first time.

  5. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    Science.gov (United States)

    Elliott, Douglas C [Richland, WA; Werpy, Todd A [West Richland, WA; Wang, Yong [Richland, WA; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

  6. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment.

    Science.gov (United States)

    Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu

    2016-04-15

    We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  8. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  9. Supramolecular catalysis: Refocusing catalysis

    NARCIS (Netherlands)

    van Leeuwen, P.W.N.M.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2008-01-01

    This chapter contains sections titled: * Introduction: A Brief Personal History * Secondary Phosphines or Phosphites as Supramolecular Ligands * Host-Guest Catalysis * Ionic Interactions as a Means to Form Heterobidentate Assembly Ligands * Ditopic Ligands for the Construction of Bidentate Phosphine

  10. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  11. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    Science.gov (United States)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  12. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals.

    Science.gov (United States)

    Zahmakıran, Mehmet; Ozkar, Saim

    2011-09-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties, different to their bulk counterparts, which pave the way for their application in different fields from materials science and engineering to biomedical applications. Of particular interest, the use of metal nanoparticles in catalysis has brought superior efficiency in terms of activity, selectivity and lifetime to heterogeneous catalysis. This article reviews the recent developments in the synthesis routes and the catalytic performance of metal nanoparticles depending on the solvent used for various organic and inorganic transformations. Additionally, we also discuss the prevalent complications and their possible solutions plus future prospects in the field of nanocatalysis.

  13. Adsorption of Carboxylic Acids on Reservoir Minerals from Organic and Aqueous Phase

    DEFF Research Database (Denmark)

    Madsen, Lene; Lind, Ida

    1998-01-01

    Adsorption of organic acids onto North Sea chalk and pure minerals from a hydrocarbon phase and an aqueous phase show that the maximum adsorption is larger for calcite than for silicate surfaces in the hydrocarbon phase. The opposite is observed, however, in the aqueous phase. This suggests...

  14. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  15. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  16. Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially important source of atmospheric aqueous oxidants

    Directory of Open Access Journals (Sweden)

    Z. M. Chen

    2008-04-01

    Full Text Available Recent studies indicate that isoprene and its gas-phase oxidation products could contribute a considerable amount of aerosol through aqueous-phase acid-catalyzed oxidation with hydrogen peroxide (H2O2, although the source of H2O2 is unclear. The present study revealed a potentially important route to the formation of aqueous oxidants, including H2O2, from the aqueous-phase ozonolysis of methacrolein (MAC and methyl vinyl ketone (MVK. Laboratory simulation was used to perform the atmospheric aqueous-phase ozonolysis at different pHs and temperatures. Unexpectedly high molar yields of the products, including hydroxylmethyl hydroperoxide (HMHP, formaldehyde (HCHO and methylglyoxal (MG, of both of these reaction systems have been seen. Moreover, these yields are almost independent of pH and temperature and are as follows: (i for MAC–O3, 70.3±6.3% HMHP, 32.3±5.8% HCHO and 98.6±5.4% MG; and (ii for MVK–O3, 68.9±9.7% HMHP, 13.3±5.8% HCHO and 75.4±7.9% MG. A yield of 24.2±3.6% pyruvic acid has been detected for MVK–O3. HMHP is unstable in the aqueous phase and can transform into H2O2 and HCHO with a yield of 100%. We suggest that the aqueous-phase ozonolysis of MAC and MVK can contribute a considerable amount of oxidants in a direct and indirect mode to the aqueous phase and that these compounds might be the main source of aqueous-phase oxidants. The formation of oxidants in the aqueous-phase ozonolysis of MAC and MVK can lead to substantial aerosol formation from the aqueous-phase acid-catalyzed reaction of H2O2 with MAC, even if there are no other sources of oxidants.

  17. Asymmetric catalysis in aqueous media: use of metal-chiral crown ethers as efficient chiral Lewis acid catalysts in asymmetric aldol reactions

    Directory of Open Access Journals (Sweden)

    Shu Kobayashi

    2001-01-01

    Full Text Available Metal-chiral crown ether complexes have been developed as efficient chiral Lewis acid catalysts for asymmetric aldol reactions of silyl enol ethers with aldehydes in aqueous media. While many excellent catalytic asymmetric reactions have been developed recently, most of them have to be carried out under strictly anhydrous conditions in organic solvents. This is probably due to the instability of many catalysts and/or intermediates in the presence of even a small amount of water. To address this issue, we searched for metal-crown ether complexes on the basis of our "multi-coordination" hypothesis, and found that lead(II and lanthanide(III catalysts worked well as chiral Lewis acids in aqueous media. To the best of our knowledge, these are the first examples of chiral crown-based Lewis acids that can be successfully used in catalytic asymmetric reactions. The catalysts have been characterized by X-ray diffraction, and their unique structures as chiral catalysts have been revealed. Use of water as a solvent is essential in these asymmetric catalysis, and the role of water on these reactions to explain the high reactivity and selectivity has been suggested. Another important point is that kinetic studies have shown the possibility that these types of crown ether complexes would be suitable as chiral catalysts employed in aqueous media. In addition, although the catalytic asymmetric aldol reactions are one of the most powerful carbon-carbon bond-forming methodologies and several successful examples have been reported, the use of aprotic anhydrous solvents and low reaction temperatures (-78 °C has been needed in almost all successful cases. On the other hand, the present reactions proceeded smoothly at -10-0 °C in water-alcohol solutions while retaining high levels of diastereo- and enantioselectivities.

  18. Heterogeneous Catalysis.

    Science.gov (United States)

    Vannice, M. A.

    1979-01-01

    Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)

  19. Aqueous phase oxidation techniques as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Hickman, R.G.; Farmer, J.C.; Chiba, Z.; Gregg, D.W.; Wang, F.T.

    1992-03-01

    The Lawrence Livermore National Laboratory (LLNL) has three aqueous phase techniques under development for oxidation of high value or high risk waste steams. One is direct electrochemical oxidation and one is mediated electrochemical oxidation utilizing regenerable, strongly oxidizing cations such as Ag(II), Co (III), Ce(IV), etc. These cations can either attack oxidizable materials directly and/or indirectly via first reacting with water to generate OH radicals which then attack the oxidizable materials. The third system utilizes H 2 O 2 and UV light to generate OH radicals directly which in turn attack the oxidizable materials. All systems have the advantage of a chemical off-switch in that when the power is turned off, the reaction quickly subsides. All systems operate with low concentrations (typically <5 wt %) of oxidizable materials, therefore, the stored energy for possible run-away reactions is very low. 15 figures, 22 references

  20. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  1. Structure and phase behavior of aqueous methylcellulose solutions

    Science.gov (United States)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  2. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    Science.gov (United States)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  3. The influence of water percolation on flow of light non aqueous phase liquids in soil

    NARCIS (Netherlands)

    Marsman, A.

    2002-01-01

    Keywords ,: multi-phase flow, entrapment, numerical modeling, similarity solution, horizontal migration, percolation theory, relative permeability.

    In this thesis the physical behavior of Light Non-Aqueous Phase Liquids (LNAPL) at the capillary

  4. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases.

    Science.gov (United States)

    Imura, Tomohiro; Hikosaka, Yusuke; Worakitkanchanakul, Wannasiri; Sakai, Hideki; Abe, Masahiko; Konishi, Masaaki; Minamikawa, Hiroyuki; Kitamoto, Dai

    2007-02-13

    The aqueous-phase behavior of mannosylerythritol lipid A (MEL-A), which is a glycolipid biosurfactant produced from vegetable oils by yeast strains of the genus Pseudozyma, was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). MEL-A was found to self-assemble into a variety of distinctive lyotropic liquid crystals including sponge (L3), bicontinuous cubic (V2), and lamella (Lalpha) phases. On the basis of SAXS measurements, we determined the structure of the liquid crystals. The estimated lattice constant for Lalpha was 3.58 nm. DSC measurement revealed that the phase transition enthalpies from the liquid crystal to the fluid isotropic phase were in the range of 0.22-0.44 kJ/mol. Although the present MEL-A phase diagram closely resembled that obtained from relatively hydrophobic poly(oxyethylene) or fluorinated surfactants, the MEL-A L3 region was spread considerably over a wide temperature range (20-65 degrees C) compared to L3 of those surfactants: this is probably due to the unique structure which is molecularly engineered by microorganisms. In this paper, we clarify the aqueous phase diagram of the natural glycolipid biosurfactant MEL-A, and we suggest that the obtained lyotropic crystals are potentially useful as novel nanostructured biomaterials.

  5. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  6. Cyclopropanation of 5-(1-Bromo-2-phenyl-vinyl-3-methyl-4-nitro-isoxazoles under Phase Transfer Catalysis (PTC Conditions

    Directory of Open Access Journals (Sweden)

    Linda Piras

    2015-04-01

    Full Text Available Heavily substituted cyclopropane esters were prepared in high yields, complete diastereoselection and average (up to 58% enantioselectivity. The reaction described herein entailed reacting 4-nitro-5-bromostyrylisoxazoles, a class of powerful Michael acceptors with malonate esters under the catalysis of 5 mol% of a chincona derived phase-transfer catalyst.

  7. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  8. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  9. Reversible, on-demand generation of aqueous two-phase microdroplets

    Science.gov (United States)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya

    2017-08-15

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  10. How to master vanadium oxide stoichiometry and phase formation? Insights in the aqueous precursor chemistry

    OpenAIRE

    Peys, Nick

    2014-01-01

    The main objective of this work was to obtain fundamental insights in the aqueous vanadium precursor chemistry and in their relation to the vanadium oxide stoichiometry=phase formation, obtained via a solution deposition route.

  11. Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System

    Directory of Open Access Journals (Sweden)

    Shuanggen Wu

    2017-12-01

    Full Text Available The magnetic aqueous micellar two-phase system (MAMTPS has the advantages combined of magnetic solid phase extraction (MSPE and aqueous micellar two-phase system (AMTPS. Thus, MAMTPS based on Fe3O4 magnetic nanoparticles (MNPs and a nonionic surfactant Triton X-114 (TX-114 was developed for the extraction, enrichment and removal of three dyes (Congo red, methyl blue, and methyl violet from aqueous solutions in this study. The MNPs Fe3O4@NH2 was screened as the optimal MNPs benefiting the extraction. Then, the influencing factors of MNPs amount, TX-114 concentration, vibration time, and extraction temperature were investigated in detail. The results showed that the extraction efficiencies of three dyes almost reached 100% using MAMTPS under the optimal conditions; MAMTPS had higher extraction ability than the individual MSPE or AMTPS. Thus, MAMTPS had the advantages of simple operation, high extraction ability, easy recycling of MNPs, and short phase-separation time, which showspotential for use in the extraction and analysis of contaminants from water samples.

  12. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation

    DEFF Research Database (Denmark)

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter

    2006-01-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.......A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation....

  13. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase

    International Nuclear Information System (INIS)

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus

    2016-01-01

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350 °C and Residence Times (RT) ranging between 5 and 60 min The effect of reaction conditions on the NO 3 − , PO 4 3 − , SO 4 2 − , Cl − , Na + , and K + ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH 10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275 °C/30 min and 350 °C/10 min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD. - Highlights: • HTL of algal biomass and nutrient reclamation • Microalgae HTL aqueous phase inorganics analysis • Recycle/re-use of aqueous phase for energy or cultivation • Substantial environmental benefit from HTL of aqueous phase • Reuse for cultivation more beneficial than Anaerobic Digestion

  14. Amine-based aqueous polymers for the simultaneous titration and extraction of lactic acid in aqueous two-phase systems.

    Science.gov (United States)

    Planas, J; Varelas, V; Tjerneld, F; Hahn-Hägerdal, B

    1998-06-26

    The partitioning of 10% (w/w) lactic acid in ethylene oxide propylene oxide (EOPO) random copolymers and dextran T500 aqueous two-phase systems was studied. An analysis of variance design was applied to investigate the effect of pH, polymer concentration, and addition of polyethyleneimine to the aqueous two-phase systems. The lowest lactate partition coefficient of 0.09 was obtained at pH 6 in the systems containing 7.2% (w/w) polyethyleneimine. The use of polyethyleneimine as titrating base during the fermentative production of lactic acid was evaluated in batch fermentations with 100 g/l glucose. Yield and productivity of polyethyleneimine titrated fermentations compared with those obtained in fermentations titrated with NaOH and KOH.

  15. CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms

    Science.gov (United States)

    Mouchel-Vallon, Camille; Deguillaume, Laurent; Monod, Anne; Perroux, Hélène; Rose, Clémence; Ghigo, Giovanni; Long, Yoann; Leriche, Maud; Aumont, Bernard; Patryl, Luc; Armand, Patrick; Chaumerliac, Nadine

    2017-03-01

    A new detailed aqueous phase mechanism named the Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) is proposed to describe the oxidation of water soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) which provide global rate constants together with branching ratios for HOṡ abstraction and addition on atmospheric organic compounds. The GROMHE SAR allows the evaluation of Henry's law constants for undocumented organic compounds. This new aqueous phase mechanism is coupled with the MCM v3.3.1 gas phase mechanism through a mass transfer scheme between gas phase and aqueous phase. The resulting multiphase mechanism has then been implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP) that can serve to analyze data from cloud chamber experiments and field campaigns. The simulation of permanent cloud under low-NOx conditions describes the formation of oxidized monoacids and diacids in the aqueous phase as well as a significant influence on the gas phase chemistry and composition and shows that the aqueous phase reactivity leads to an efficient fragmentation and functionalization of organic compounds.

  16. MATHEMATICAL OPTIMIZATION METHODS TO ESTABLISH ACTIVE PHASES ON HETEROGENEOUS CATALYSIS: CASE OF BULK TRANSITION METAL SULPHIDES

    Directory of Open Access Journals (Sweden)

    Iván Machín

    2015-03-01

    Full Text Available This paper presents a set of procedures based on mathematical optimization methods to establish optimal active sulphide phases with higher HDS activity. This paper proposes a list of active phases as a guide for orienting the experimental work in the search of new catalysts that permit optimize the HDS process. Studies in this paper establish Co-S, Cr-S, Nb-S and Ni-S systems have the greatest potential to improve HDS activity.

  17. Poly(Ionic Liquid: A New Phase in a Thermoregulated Phase Separated Catalysis and Catalyst Recycling System of Transition Metal-Mediated ATRP

    Directory of Open Access Journals (Sweden)

    Lan Yao

    2018-03-01

    Full Text Available Poly(ionic liquids (PILs have become the frontier domains in separation science because of the special properties of ionic liquids as well as their corresponding polymers. Considering their function in separation, we designed and synthesized a thermoregulated PIL. That is, this kind of PIL could separate with an organic phase which dissolves the monomers at ambient temperature. When heated to the reaction temperature, they become a homogeneous phase, and they separate again when the temperature falls to the ambient temperature after polymerization. Based on this, a thermoregulated phase separated catalysis (TPSC system for Cu-based atom transfer radical polymerization (ATRP was constructed. The copper catalyst (CuBr2 used here is easily separated and recycled in situ just by changing the temperature in this system. Moreover, even when the catalyst had been recycled five times, the controllability over resultant polymers is still satisfying. Finally, only 1~2 ppm metal catalyst was left in the polymer solution phase, which indicates the really high recycling efficiency.

  18. IONS FROM AQUEOUS PHASE BY WATER HYACINTH (Eichhornia

    African Journals Online (AJOL)

    Preferred Customer

    passive process for adsorption of the metal ions by metabolically inactive biomass. It is dependent on the ... environmentally friendly water filters for heavy metal ions removal in aqueous systems. Currently E. crassipes is .... pore size cellulose nitrate membrane filter and the filtrate was analyzed for the remaining metal.

  19. Phase separation during freezing upon warming of aqueous solutions

    Science.gov (United States)

    Bogdan, A.; Loerting, T.

    2014-11-01

    Using differential scanning calorimetry, we show that the addition of solute(s) to emulsified water lowers the freezing temperature to nanodrops adsorbed on fumed silica resemble bulk water more than water confined in nanoscaled confinement and also more than nanoscaled water domains in aqueous solution.

  20. Electrodeposited ZnO/ Zn Photo catalysts for the Degradation of Benzene-Toluene-Xylene Mixture in Aqueous Phase

    International Nuclear Information System (INIS)

    Ju, L.C.; Wan Azelee Wan Abu Bakar; Rusmidah Ali

    2012-01-01

    The recognition of the ability of volatile organic compounds, (VOCs) to pollute the ground water is now well documented. VOCs such as benzene, toluene and xylene from the petroleum industries processed water leaked through the underground old piping system into the soils and groundwater during its transportation to the wastewater plant. Photo catalysis have been used as a potential system in the degradation of VOCs in the wastewater. However, the powdered form photo catalysts that were used in various studies are difficult to be separated from the aqueous solution at the end of the treatment. Therefore, the main objective of this research is to prepare the electrodeposited photo catalysts for the degradation of aromatic hydrocarbon mixture, benzene-toluene-xylene (BTX) solution under UV light (354 nm). The concentrations of electrolyte and electrodeposition voltages used to prepare the photo catalysts were studied for their efficiency in the degradation. From the research, ZnO/ Zn prepared in 0.8 M NaOH and under 12 V possessed the best catalytic degradation performance by degrading 32.37 % of BTX in the solution. The ZnO/ Zn photo catalyst was characterized using X-ray Diffraction Techniques (XRD) which illustrated high crystallinity of Zn species and reasonably high amorphous phase of ZnO species. (author)

  1. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  2. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  3. A numerical investigation into factors affecting gas and aqueous phase plumes in the subsurface

    Science.gov (United States)

    Thomson, N. R.; Sykes, J. F.; Van Vliet, D.

    1997-10-01

    An investigation into the face and transport of volatile organic compounds (VOCs) in the subsurface requires the consideration of contaminant mass in both the aqueous and soil gas phases. As a result of water/gas phase partitioning, contaminated by partitioning from underlying ground water pollution. Conversely, soil gas can be contaminated by partitioning from underlying ground water VOC plumes. This soil gas and aqueous phase interaction has motivated the popularity of soil gas sampling technology as a method of characterizing ground water VOC contamination. A finite-element-based numerical model was developed to accurately simulate the interaction between the soil gas phase and the aqueous phase. This interaction is complicated since the saturation of the aqueous phase varies dramatically across the capillary fringe. The two-phase flow equations for gas and water are used to describe the flow regime, while the advective-dispersive transport of the VOC is considered in both phases. Dissolution and volatilization from a non-mobile non-aqueous phase liquid is included as a volatile organic contaminant source. A deforming mesh allows the model to accurately track the water table movement, and a Eularian-Lagrangian formulation is used to control some of the numerical difficulties associated with the numerical solution of the advection-dispersion equation. An investigation into diffusion of a VOC from below the water table demonstrated that both the frequency and the magnitude of water table fluctuations have a profound influence on the degree of soil gas contamination. Two-dimensional large-scale, long-term simulations were performed to estimate the aqueous and soil gas phase plumes resulting from an immobilized trichloroethylene residual located in the unsaturated zone. The simulation results indicate that these plumes are very sensitive to the vertical position of the contaminant source. In addition, it was determined that seasonal fluctuations in soil gas VOC

  4. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.

    Science.gov (United States)

    Tai, Zhijun; Zhang, Junying; Wang, Aiqin; Zheng, Mingyuan; Zhang, Tao

    2012-07-18

    A temperature-controlled phase-transfer catalyst-tungsten acid, which in combination with a robust heterogeneous catalyst Ru/C shows a high activity and exceptional reusability for the one-pot conversion of cellulose to ethylene glycol. This binary system can be reused more than 20 times with ethylene glycol yield over 50%.

  5. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions

    NARCIS (Netherlands)

    Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lefferts, Leonardus; Lehtonen, J.

    2016-01-01

    Aqueous-phase reforming (APR) of oxygenated hydrocarbons is a process for the production of hydrogen and light alkanes. The reactants of APR remain in liquid phase during the reaction avoiding an energetically demanding vaporization-step compared to processes such as steam reforming (SR).

  6. Propene Hydroformylation by Supported Aqueous-phase Rh-NORBOS Catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Hjortkjær, Jes

    2003-01-01

    The gas-phase hydroformylation reaction of propene using supported aqueous-phase (SAP) Rh-NORBOS modified catalysts in a continuous flow reactor has been examined. SAP catalysts supported on six different support materials were made by wet impregnation using solutions of the precursor complex Rh...

  7. Phase separation induced fractionation in molar mass in aqueous mixtures of gelatin and dextran

    NARCIS (Netherlands)

    Edelman, M.W.; Tromp, R.H.; Weenen, H.

    2003-01-01

    An overview of the effects of phase separation of aqueous mixtures of gelatin and dextran on the fractionation in molar mass of these two components is given. Molar mass distributions in coexisting phases were investigated using size exclusion chromatography with multiangle laser light scattering.

  8. Differentiation of surface properties of chlorococcalean algae by means of aqueous two phase systems

    Directory of Open Access Journals (Sweden)

    Jan Burczyk

    2014-01-01

    Full Text Available Algal cells belonging to various strains of Chlorococcales (Chlorophyta have been partitioned in aqueous two-phase systems containing ionogenic polymers, DEAE-dextran or SDS-dextran, at various pH values. Strain-specific differences of partition type which have been found in the phase systems used can be useful for distinguishing of algal cells.

  9. Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems

    NARCIS (Netherlands)

    Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.

    2010-01-01

    Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich

  10. Enzyme mass-transfer coefficient in aqueous two-phase systems using static mixer extraction column.

    Science.gov (United States)

    Rostami, K; Alamshahi, M

    2002-09-01

    Recent technical advances in aqueous two-phase systems (ATPS) have made this a sound technique for the extraction of biomacromolecules. The extraction of alpha-amylase was investigated using aqueous two-phase systems formed by sodium sulphate-polyethylene glycol (PEG) in water in a 47-mm inner diameter spray column packed with three types of static mixers. The effects of dispersed-phase flow rate, phase composition, column height and diameter were studied. The extraction column was operated in a semi-batch manner. It was found that the hold-up and volumetric mass transfer coefficients increased with an increase in dispersed (PEG-rich) phase velocity and decreased with increasing phase composition. Empirical correlations were developed for fractional dispersed-phase hold-up and volumetric mass transfer coefficients.

  11. Porous metallosilicates for heterogeneous, liquid-phase catalysis: perspectives and pertaining challenges

    Science.gov (United States)

    Hammond, Ceri; Padovan, Daniele; Tarantino, Giulia

    2018-02-01

    Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-β and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years.

  12. Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications.

    Science.gov (United States)

    Zhang, Panpan; Zhao, Xinne; Zhang, Xuan; Lai, Yue; Wang, Xinting; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-05-28

    A novel β-phase polyvinylidene difluoride (PVDF) nanofibrous membrane decorated with multiwalled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs) was fabricated by an improved electrospinning technique. The morphology of the fabricated PVDF-MWCNT-PtNP nanofibrous membrane was observed by scanning electron microscopy, and the formation of high β-phase in the hybrid nanofibrous membrane was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry. The uniform dispersion of MWCNTs and PtNPs in the PVDF hybrid nanofibrous membrane and their interaction were explored by transmission electron microscopy and X-ray diffraction. For the first time, we utilized this created PVDF-MWCNT-PtNP nanofibrous membrane for biosensor and catalysis applications. The nonenzymatic amperometric biosensor with highly stable and sensitive, and selective detection of both H2O2 and glucose was successfully fabricated based on the electrospun PVDF-MWCNT-PtNP nanofibrous membrane. In addition, the catalysis of the hybrid nanofibrous membrane for oxygen reduction reaction was tested, and a good catalysis performance was found. We anticipate that the strategies utilized in this work will not only guide the further design of functional nanofiber-based biomaterials and biodevices but also extend the potential applications in energy storage, cytology, and tissue engineering.

  13. Novel polymer-polymer conjugates for recovery of lactic acid by aqueous two-phase extraction.

    Science.gov (United States)

    Planas, J; Kozlowski, A; Harris, J M; Tjerneld, F; Hahn-Hägerdal, B

    1999-01-01

    A new family of polymer conjugates is proposed to overcome constraints in the applicability of aqueous two-phase systems for the recovery of lactic acid. Polyethylene glycol-polyethylenimine (PEI) conjugates and ethylene oxide propylene oxide-PEI (EOPO-PEI) conjugates were synthesized. Aqueous two-phase systems were generated when the conjugates were mixed with fractionated dextran or crude hydrolyzed starch. With 2% phosphate buffer in the systems, phase diagrams with critical points of 3.9% EOPO-PEI-3.8% dextran (DEX) and 3.5% EOPO-PEI-7.9% crude starch were obtained. The phase separation temperature of 10% EOPO-PEI solutions titrated with lactic acid to pH 6 was 35 degrees C at 5% phosphate, and increased linearly to 63 degrees C at 2% phosphate. Lactic acid partitioned to the top conjugate-rich phase of the new aqueous two-phase systems. In particular, the lactic acid partition coefficient was 2.1 in 10% EOPO-PEI-8% DEX systems containing 2% phosphate. In the same systems, the partitioning of the lactic acid bacterium, Lactococcus lactis subsp. lactis, was 0.45. The partitioning of propionic, succinic, and citric acids was also determined in the new aqueous two-phase systems. Copyright 1999 John Wiley & Sons, Inc.

  14. A carbon nanotube confinement strategy to implement homogeneous asymmetric catalysis in the solid phase.

    Science.gov (United States)

    Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-03-09

    A readily recyclable asymmetric catalyst has been developed based on the self-assembly of a homogeneous catalyst in a fibrous network of multiwalled carbon nanotubes (MWNTs). Dimerization of an amide-based chiral ligand with a suitable spacer allows for the efficient formation of a heterogeneous catalyst by self-assembly on addition of Er(OiPr)3. The self-assembly proceeds in the MWNT fibrous network and small clusters of assembled catalyst are confined in the MWNTs, producing an easily handled solid-phase catalyst. The resulting MWNT-confined catalyst exhibits a good catalytic performance in a catalytic asymmetric Mannich-type reaction, which can be conducted in a repeated batch system and in a continuous-flow platform. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus, E-mail: k.hellgardt@imperial.ac.uk

    2016-10-15

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350 °C and Residence Times (RT) ranging between 5 and 60 min The effect of reaction conditions on the NO{sub 3}{sup −} , PO{sub 4}{sup 3} {sup −}, SO{sub 4}{sup 2} {sup −}, Cl{sup −}, Na{sup +}, and K{sup +} ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH 10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275 °C/30 min and 350 °C/10 min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD. - Highlights: • HTL of algal biomass and nutrient reclamation • Microalgae HTL aqueous phase inorganics analysis • Recycle/re-use of aqueous phase for energy or cultivation • Substantial environmental benefit from HTL of aqueous phase • Reuse for cultivation more beneficial than Anaerobic Digestion.

  16. Subcritical hydrothermal liquefaction of barley straw in fresh water and recycled aqueous phase

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    This project focuses on the investigation of addition of aqueous phase in the production of biofuel from biomass through hydrothermal liquefaction (HTL) technology. Hydrothermal liquefaction is a wet thermal conversion process, which can convert all kinds of biomass to fuels. In this study, barley....... With the addition of recycling aqueous phase in HTL process, it is expected that the amount of the waste water and energy consumption can be reduced. The effect of water recirculation on product yield and properties was investigated in this study. The results showed that bio-oil yield was 34.85 wt% when the barley...

  17. Magnetic catalysis and inverse magnetic catalysis in QCD

    International Nuclear Information System (INIS)

    Mueller, N.

    2015-01-01

    We investigate the effects of strong magnetic fields on the QCD phase structure at vanishing density by solving the gluon and quark gap equations. The chiral crossover temperature as well as the chiral condensate is computed. For asymptotically large magnetic fields we find magnetic catalysis, while we find inverse magnetic catalysis for intermediate magnetic fields. Moreover, for large magnetic fields the chiral phase transition for massless quarks turns into a crossover. The underlying mechanisms are then investigated analytically within a few simplifications of the full numerical analysis. We find that a combination of gluon screening effects and the weakening of the strong coupling is responsible for the phenomenon of inverse catalysis seen in lattice studies. In turn, the magnetic catalysis at large magnetic field is already indicated by simple arguments based on dimensionality. (author)

  18. Enantioconvergent catalysis

    Directory of Open Access Journals (Sweden)

    Justin T. Mohr

    2016-09-01

    Full Text Available An enantioconvergent catalytic process has the potential to convert a racemic starting material to a single highly enantioenriched product with a maximum yield of 100%. Three mechanistically distinct approaches to effecting enantioconvergent catalysis are identified, and recent examples of each are highlighted. These processes are compared to related, non-enantioconvergent methods.

  19. Cu(II)-mediated atom transfer radical polymerization of methyl methacrylate via a strategy of thermo-regulated phase-separable catalysis in a liquid/liquid biphasic system: homogeneous catalysis, facile heterogeneous separation, and recycling.

    Science.gov (United States)

    Pan, Jinlong; Zhang, Bingjie; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-09-01

    A strategy of thermo-regulated phase-separable catalysis (TPSC) is applied to the Cu(II)-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in a p-xylene/PEG-200 biphasic system. Initiators for continuous activator regeneration ATRP (ICAR ATRP) are used to establish the TPSC-based ICAR ATRP system using water-soluble TPMA as a ligand, EBPA as an initiator, CuBr2 as a catalyst, and AIBN as a reducing agent. By heating to 70 °C, unlimited miscibility of both solvents is achieved and the polymerization can be carried out under homogeneous conditions; then on cooling to 25 °C, the mixture separates into two phases again. As a result, the catalyst complex remains in the PEG-200 phase while the obtained polymers stay in the p-xylene phase. The catalyst can therefore be removed from the resultant polymers by easily separating the two different layers and can be reused again. It is important that well-defined PMMA with a controlled molecular weight and narrow molecular weight distribution could be obtained using this TPSC-based ICAR ATRP system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Science.gov (United States)

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  1. Aromatic Chlorosulfonylation by Photoredox Catalysis.

    Science.gov (United States)

    Májek, Michal; Neumeier, Michael; Jacobi von Wangelin, Axel

    2017-01-10

    Visible-light photoredox catalysis enables the efficient synthesis of arenesulfonyl chlorides from anilines. The new protocol involves the convenient in situ preparation of arenediazonium salts (from anilines) and the reactive gases SO 2 and HCl (from aqueous SOCl 2 ). The photocatalytic chlorosulfonylation operates at mild conditions (room temperature, acetonitrile/water) with low catalyst loading. Various functional groups are tolerated (e.g., halides, azides, nitro groups, CF 3 , SF 5 , esters, heteroarenes). Theoretical and experimental studies support a photoredox-catalysis mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Roles of Mineralogical Phases in Aqueous Carbonation of Steelmaking Slag

    Directory of Open Access Journals (Sweden)

    Huining Zhang

    2016-05-01

    Full Text Available Mineralogical phases of steelmaking slags have significant influences on the carbonation of the slags. In this paper, the effects of temperature and reaction time on the conversion of calcium-related phases and the carbonation degree of a slag sample were studied. The experimental conditions were a liquid-to-solid ratio of 20 mL/g, a carbon dioxide flow rate of 1 L/min and a slag particle size of 38–75 μm. The results show that the optimum carbonation temperature and reaction time are 60 °C and 90 min, respectively, and calcite phase content is about 26.78% while the conversion rates of Ca3Al2O6, CaSiO3, Ca2SiO4 and free CaO are about 40%, 42.46%, 51% and 100%, respectively, and the carbon dioxide sequestration efficiency is about 170 g/kg slag.

  3. Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Department of Chemistry, Huaibei Coal Normal College, Anhui, Huaibei 235000 (China); Chen Shifu [Department of Chemistry, Huaibei Coal Normal College, Anhui, Huaibei 235000 (China)], E-mail: chshifu@hbcnc.edu.cn; Zhao Wei; Zhang Sujuan [Department of Chemistry, Huaibei Coal Normal College, Anhui, Huaibei 235000 (China)

    2009-05-15

    In this paper, the photocatalytic degradation of methamidophos, an organophosphorous pesticide, was investigated in aqueous solution by using TiO{sub 2} as a photocatalyst. The degradation was studied under different conditions such as the amount of the photocatalyst, illumination time, pH of the system, reaction temperature, initial concentration, electron acceptors, metal ions and presence of anions. The results showed that the photocatalytic degradation of methamidophos was strongly influenced by these parameters. The best conditions for the photocatalytic degradation of methamidophos were obtained. The optimum amount of the photocatalyst used is 12.0 g/L. The photodegradation efficiency of methamidophos increases with the increase of the illumination time. Alkaline media are favorable for the photocatalytic degradation of methamidophos. The degradation efficiency is enhanced by increasing reaction temperature, and the photodegradation efficiency decreases with the increase in the initial concentration of methamidophos. The photodegradation efficiency of methamidophos is accelerated by adding a small amount of H{sub 2}O{sub 2}, K{sub 2}S{sub 2}O{sub 8}, KBrO{sub 3}, Fe{sup 3+} or Cu{sup 2+}. There are no obvious effects on the reactions with the addition of a small amount of Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Co{sup 2+} and Ni{sup 2+} or adding trace amount of SO{sub 4}{sup 2-}, Cl{sup -}, Br{sup -}. The possible roles of the additives on the reactions and the possible mechanisms of effect were also discussed.

  4. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    NARCIS (Netherlands)

    Zielinska, K.

    2014-01-01

    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  5. Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2003-12-01

    Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.

  6. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Olcay, Hakan [University of Massachusetts, Amherst; Xu, Lijun [ORNL; Xu, Ye [ORNL; Huber, George [University of Massachusetts, Amherst

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  7. Correlation and Prediction of Thermal Properties and Phase Behaviour for a Class of Aqueous Electrolyte Systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter; Gani, Rafiqul

    1996-01-01

    An extended UNIQUAC model is used to describe phase behaviour (VLE, SLE) and thermal properties (heat of mixing, heat capacity) for aqueous solutions containing ions like (Na+, K+, H+) (Cl-, NO3-, SO42-, OH-, CO3-). A linear temperature dependence of the binary interaction parameters allows good...

  8. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  9. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.; Weckhuysen, B.M.

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  10. Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol.

    Science.gov (United States)

    Li, Mengxia; Li, Guangyi; Li, Ning; Wang, Aiqin; Dong, Wenjun; Wang, Xiaodong; Cong, Yu

    2014-02-11

    For the first time, Mo modified Rh/SiO2 was found to be an effective catalyst for the aqueous phase selective hydrogenation of levulinic acid to 1,4-pentanediol. Over such a catalyst, high levulinic acid conversion (100%) and 1,4-pentanediol yield (70%) can be achieved at low temperature (353 K).

  11. Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase

    NARCIS (Netherlands)

    Zhao, Yingnan; Baeza, J.A.; Koteswara Rao, N.; Calvo, L.; Gilarranz, M.A.; Li, Y.D.; Lefferts, Leonardus

    2014-01-01

    Pd colloids stabilized with polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been prepared, characterized with TEM, zeta potential measurements, CO chemisorption in aqueous phase, and ATR-IR spectroscopy using CO as a probe molecule, and finally tested for performance in nitrite

  12. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    Science.gov (United States)

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  13. Production of pectinases by Polyporus squamosus in aqueous two-phase system.

    Science.gov (United States)

    Antov, M G.; Pericin, D M.

    2001-03-08

    The ability of Polyporus squamosus to grow and produce pectinases in an aqueous two-phase medium composed of polyethylene glycol and crude dextran is reported. Fungal growth was restricted to the bottom phase leaving the top phase cell free. Amounts of produced biomass and endo and exo-pectinase activities were superior or equal to those obtained in homogeneous medium. The partition coefficient for the endo-pectinase was 1.52 followed by a top phase yield of 70.86%. Although the phase system composition favours partition of a greater part of exo-pectinase activity to the bottom phase (K(exo) was 0.6 and yield in top phase 48.56%) the partitioned activity in the top phase was equal to that produced in homogeneous cultivation.

  14. Olefins transformation catalysis by zirconium and tungsten complexes in organic and non-aqueous ionic media; Catalyse de transformation des olefines par les complexes du zirconium et du tungstene en milieux organique et ionique non aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Laurent-Gerot, P.

    1997-06-30

    Molten salts are suitable solvents for biphasic catalysis: melting butyl-1 methyl-3 imidazolium chloride and aluminium chloride gives a polar and aprotic ionic liquid which is not miscible with hydrocarbons but dissolves organometallic complexes. Two types of complexes have been tested in molten salts with ethyl-aluminium dichloride: zirconium complexes to synthesize light {alpha} olefins from ethene; mono-imido complexes of tungsten VI (Cl{sub 4}W = NAr) to dimerize ethene in but-1 ene and propene in dimethyl-2,3-but-1-ene. For both of these complexes, biphasic catalysis principle is always respected: the active species is present only in the ionic phase and not in the organic phase. The first complexes, biphasic principle is always respected: the active species is present only in the ionic phase and not in the organic phase. The first complexes oligomerize ethene in molten salts with low activity and the {alpha} olefins selectivity is weak. Mono-imido complexes of tungsten VI are proved to be equivalent to the systems composed with WCl{sub 6} and aniline, and they dimerize ethene in but-1 ene and propene in dimethyl-2,3-but-1 ene more efficiently in organic medium than in ionic liquid. The characterization of the active species of the system Cl{sub 4}W=NAr / EtAlCl{sub 2} shows that it is the corresponding mono-imido complex of tungsten 4. (author) 129 refs.

  15. Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae.

    Science.gov (United States)

    Shanmugam, Saravanan R; Adhikari, Sushil; Shakya, Rajdeep

    2017-04-01

    Removal of nutrients (phosphorus and nitrogen) as struvite from bio-oil aqueous phase generated via hydrothermal liquefaction of algae was evaluated in this study. Effect of process parameters such as pH, temperature and reaction time on struvite formation was studied. More than 99% of phosphorus and 40-100% ammonium nitrogen were removed under all experimental conditions. X-ray diffraction analysis confirmed the formation of struvite, and the struvite recovered from bio-oil aqueous phase can be used as a slow-release fertilizer. Biogas production from struvite recovered bio-oil aqueous phase showed 3.5 times higher CH 4 yield (182±39mL/g COD) as compared to non-struvite recovered aqueous phase. The results from this study indicate that both struvite and methane can be produced from bio-oil aqueous phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Catalysis studies

    International Nuclear Information System (INIS)

    Taylor, T.N.; Ellis, W.P.

    1977-11-01

    The New Research Initiatives Program (NRIP) project on catalysis in Los Alamos Scientific Laboratory (LASL) Group CMB-8 has made significant progress towards performing the first basic in situ experimental studies of heterogeneous catalysis on solid compound surfaces in a LEED-Auger system. To further understand the surface crystallography of a possible catalyst compound, LEED-Auger measurements were made on UO 2 (approximately 100) vicinal surfaces. These (approximately 100) vicinal surfaces were shown to decompose irreversibly into lower index facets, including prominent (100) facets, at temperatures below those needed for creation of lowest index faceting on (approximately 111) vicinal surfaces. LEED examination of fully faceted surfaces from both types of UO 2 vicinal cuts did not show evidence of cyclopropane or propene chemisorption. The existing LEED-Auger system was modified to allow catalytic reactions at approximately less than 10 -3 torr. A sample holder, specifically designed for catalysis measurements in the modified system, was tested while examining single crystals of CoO and Cr 2 O 3 . Extensive LEED-Auger measurements were made on CoO in vacuo and in the presence of light hydrocarbons and alcohols plus H 2 O, NO, and NH 3 . No chemisorptive behavior was observed except with H 2 O in the presence of the electron beam. Although only examined briefly, the Cr 2 O 3 was remarkable for the sharp LEED features obtained prior to any surface treatment in the vacuum system

  17. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile

    Science.gov (United States)

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M.; Freire, Mara G.; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2015-01-01

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol−1) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant – vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase. PMID:25729320

  18. Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis.

    Science.gov (United States)

    Xiang, Kaisong; Liu, Hui; Yang, Bentao; Zhang, Cong; Yang, Shu; Liu, Zhilou; Liu, Cao; Xie, Xiaofeng; Chai, Liyuan; Min, Xiaobo

    2016-04-01

    Fe(II)-EDTA, a typical chelated iron, is able to coordinate with nitric oxide (NO) which accelerates the rates and kinetics of the absorption of flue gas. However, Fe(II)-EDTA can be easily oxidized to Fe(III)-EDTA which is unable to absorb NO. Therefore, the regeneration of fresh Fe(II)-EDTA, which actually is the reduction of Fe(III)-EDTA to Fe(II)-EDTA, becomes a crucial step in the denitrification process. To enhance the reduction rate of Fe(III)-EDTA, selenium was introduced into the SO3 (2-)/Fe(III)-EDTA system as catalyst for the first time. By comparison, the reduction rate was enhanced by four times after adding selenium even at room temperature (25 °C). Encouragingly, elemental Se could precipitate out when SO3 (2-) was consumed up by oxidation to achieve self-separation. A catalysis mechanism was proposed with the aid of ultraviolet-visible (UV-Vis) spectroscopy, Tyndall scattering, horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR) spectroscopy, and X-ray diffraction (XRD). In the catalysis process, the interconversion between SeSO3 (2-) and nascent Se formed a catalysis circle for Fe(III)-EDTA reduction in SO3 (2-) circumstance.

  19. A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase.

    Science.gov (United States)

    Chen, Dong; Cui, Penglei; Cao, Hongbin; Yang, Jun

    2015-03-01

    A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichloromethane with an efficiency of >96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards. Copyright © 2015. Published by Elsevier B.V.

  20. Phase behavior of aqueous two-phase systems of cationic and anionic surfactants and their application to theanine extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junwei; Wang, Yan; Peng, Qijun [Jiangnan University, Wuxi (China)

    2013-06-15

    Phase behavior of aqueous two-phase systems (ATPS) containing cationic (SDS) and anionic (CTAB) surfactants and its application to theanine extraction was studied. Results indicated the ATPS could form under the certain SDS/CTAB molar ratio; there was a reasonable consistency between the conductivity and the formation region of ATPS, and the viscosity was higher in the formation region of ATPS. Additionally, the phase ratio increased with increase of CATB concentration, and the interfacial film between the top phase and the bottom phase was resilient. Moreover, the theanine extraction with ATPS was realized in the waste liquid of tea polyphenol production (WLTPP), and the partition coefficient of theanine decreased with increase of WLTPP concentration, whereas the extraction rate of theanine increased. The partition coefficient decreased with increasing SDS/CTAB molar ratio, and the extraction rate of theanine increased with increase of SDS/CTAB molar ratio.

  1. Oligomerization and phase transitions in aqueous solutions of native and truncated human beta B1-crystallin.

    Science.gov (United States)

    Annunziata, Onofrio; Pande, Ajay; Pande, Jayanti; Ogun, Olutayo; Lubsen, Nicolette H; Benedek, George B

    2005-02-01

    Human betaB1-crystallin is a major eye-lens protein that undergoes in vivo truncation at the N-terminus with aging. By studying native betaB1 and truncated betaB1DeltaN41, which mimics an age-related in vivo truncation, we have determined quantitatively the effect of truncation on the oligomerization and phase transition properties of betaB1 aqueous solutions. The oligomerization studies show that the energy of attraction between the betaB1DeltaN41 proteins is about 10% greater than that of the betaB1 proteins. We have found that betaB1DeltaN41 aqueous solutions undergo two distinct types of phase transitions. The first phase transition involves an initial formation of thin rodlike assemblies, which then evolve to form crystals. The induction time for the formation of rodlike assemblies is sensitive to oligomerization. The second phase transition can be described as liquid-liquid phase separation (LLPS) accompanied by gelation within the protein-rich phase. We refer to this process as heterogeneous gelation. These two phase transitions are not observed in the case of betaB1 aqueous solutions. However, upon the addition of poly(ethylene glycol) (PEG), we observe heterogeneous gelation also for betaB1. Our PEG experiments allow us to estimate the difference in phase separation temperatures between betaB1 and betaB1DeltaN41. This difference is consistent with the increase in energy of attraction found in our oligomerization studies. Our work suggests that truncation is a cataractogenic modification since it favors protein condensation and the consequent formation of light scattering elements, and highlights the importance of the N-terminus of betaB1 in maintaining lens transparency.

  2. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  3. Applied heterogeneous catalysis

    International Nuclear Information System (INIS)

    Le Page, A.J.F.

    1988-01-01

    This reference book explains the scientific principles of heterogeneous catalysis while also providing details on the methods used to develop commercially viable catalyst products. A section of the book presents reactor design engineering theory and practices for the profitable application of these catalysts in large-scale industrial processes. A description of the mechanisms and commercial applications of catalysis is followed by a review of catalytic reaction kinetics. There are five chapters on selecting catalyst agents, developing and preparing industrial catalysts, measuring catalyst properties, and analyzing the physico-chemical characteristics of solid catalyst particles. The final chapter reviews the elements of catalytic reactor design, with emphasis on flow regimes vs. reactor types, heat and mass transfer in reactor beds, single- and multi-phase flows, and the effects of thermodynamics and other catalyst properties on the process flow scheme

  4. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  5. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  6. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    International Nuclear Information System (INIS)

    Han, J.

    2013-01-01

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  7. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    Science.gov (United States)

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2

    International Nuclear Information System (INIS)

    Sharma, Suman; Singh, Partapbir; Raj, Mayil; Chadha, Bhupinder Singh; Saini, Harvinder Singh

    2009-01-01

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal γ-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, β-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  9. Quantification and speciation of volatile fatty acids in the aqueous phase.

    Science.gov (United States)

    Lee, Jechan; Kim, Jieun; Oh, Jeong-Ik; Lee, Sang-Ryong; Kwon, Eilhann E

    2017-11-01

    This study lays great emphasis on establishing a reliable analytical platform to quantify and specify volatile fatty acids (VFAs) in the aqueous phase by derivatizing VFAs into their corresponding alkyl esters via thermally-induced rapid esterification (only 10 s reaction time). To this end, reaction conditions for the thermally-induced rapid esterification are optimized. A volumetric ratio of 0.5 at 400 °C for VFA/methanol is identified as the optimal reaction conditions to give ∼90% volatile fatty acid methyl ester (VFAME) yield. To maintain a high yield of VFAMEs, this study suggests that dilution of the sample to an optimum concentration (∼500 ppm for each VFA) is required. Derivatization of VFAs into VFAMEs via the thermally-induced rapid esterification is more reliable to quantify and specify VFAs in the aqueous phase than conventional colorimetric method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ru decorated carbon nanotubes - a promising catalyst for reforming bio-based acetic acid in the aqueous phase

    NARCIS (Netherlands)

    de Vlieger, Dennis; Lefferts, Leonardus; Seshan, Kulathuiyer

    2014-01-01

    Catalytic reforming of biomass derived waste streams in the aqueous phase is a promising process for the production of sustainable hydrogen. Acetic acid will be a major component (up to 20 wt%) in many anticipated gasification feed streams (e.g. the aqueous fraction of pyrolysis oil). Conventional

  11. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  13. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System – Process Optimization and Intensification

    Directory of Open Access Journals (Sweden)

    Ivana Rukavina

    2011-01-01

    Full Text Available Polyphenols are one of the most numerous and widespread groups of compounds in the plant world. Nowadays, organic solvents such as methanol, ethanol, acetone, dimethylformamide, ethyl acetate and diethylether are mainly used for the extraction of polyphenols. These solvents require special process conditions and special care in the disposal of the used solvents. In this paper, the extraction of polyphenols from the model solution was performed using the aqueous two-phase system which contains 80.90 % water and represents low burden on the environment. The aqueous solution of gallic acid (GA was used as a model solution of polyphenols. The extraction was performed in the aqueous two-phase system containing PEG6000/H2O/(NH42SO4 in a macroextractor (V=10 mL and microextractor (V=14 ƒμL. The influence of the process parameters, the concentration of gallic acid, pH and composition of the aqueous two-phase system was investigated in order to maximize the partition coefficient. The method of multifactor experimental planning was used to optimize the extraction process and the results were statistically analysed using the evolutionary operation method (EVOP. Optimal operating conditions of the extraction process were pH=6.50, γGA=4.50 g/L, the mass fraction of polyethylene glycol (PEG wPEG=0.1037 g/g and the mass fraction of ammonium sulphate (AMS wAMS=0.0925 g/g. Under these conditions the maximal partition coefficient of K=5.54 and the extraction efficiency of E=89.11 % were achieved and successfully applied for total phenol extraction from white wine in the macro- and microextractor. Approximately the same partition coefficients and extraction efficiency were achieved in the microextractor within a 60-fold shorter residence time.

  14. Distribution of selected halogenated organic compounds among suspended particulate, colloid, and aqueous phases in the Mississippi River and major tributaries

    Science.gov (United States)

    Rostad, C.E.; Daniel, S.R.

    2007-01-01

    Suspended particulate, colloid, and aqueous phases were separated and analyzed to determine spatial variation of specific organic compound transport associated with each phase in a dynamic river system. Sixteen sites along the Mississippi River and its major tributaries were sampled at low-flow conditions to maximize the possibility of equilibrium. Across the solubility range studied, the proportion transported by each phase depended on the compound solubility, with more water-soluble compounds (dacthal, trifluralin) transported predominantly in the aqueous phase and less-water soluble compounds (polychlorinated biphenyls, chlordane-related compounds) transported predominantly in the particulate and colloid phases. ?? 2007 Springer Science+Business Media, LLC.

  15. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Science.gov (United States)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D. R.; Baltensperger, U.

    2016-02-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and -10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.

  16. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2016-02-01

    Full Text Available The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at the European Organization for Nuclear Research (CERN. Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid and on partially to fully neutralised (ammonium sulfate seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.

  17. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    International Nuclear Information System (INIS)

    He Yi; Vargas, Angelica; Kang, Youn-Jung

    2007-01-01

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H 3 PO 4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L -1 , repeatability of the extraction (R.S.D. -1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples

  18. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  19. Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature.

    Science.gov (United States)

    Pandey, Sandeep; Rakholiya, Kalpna D; Raval, Vikram H; Singh, Satya P

    2012-09-01

    A haloalkaliphilic bacterium, isolated from Coastal Gujarat (India) was identified as Oceanobacillus sp. (GQ162111) based on 16S rRNA gene sequence. The organism grew and secreted extra cellular protease in presence of various organic solvents. At 30% (v/v) concentration of hexane, heptane, isooctane, dodecane and decane, significant growth and protease production was evident. The alkaline protease was purified in a single step on phenyl sepharose 6 FF with 28% yield. The molecular mass as judged by SDS-PAGE was 30 kDa. The temperature optimum of protease was 50°C and the enzyme retained 70% activity in 10% (v/v) isooctane. Effect of salt and pH was investigated in combination to assess the effect of isooctane. In organic solvents, the enzyme was considerably active at pH 8-11, with optimum activity at pH 10. Salt at 2 M was optimum for activity and enzyme maintained significant stability up to 18 h even at 3 M salt concentration. Patters of growth, protease production, catalysis and stability of the enzyme are presented. The study resumes significance as limited information is available on the interaction of haloalkaliphilic bacteria and their enzymes with organic solvents. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    Science.gov (United States)

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  1. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  2. Polyethyleneglycol molecular mass and polydispersivity effect on protein partitioning in aqueous two-phase systems.

    Science.gov (United States)

    Picó, Guillermo; Romanini, Diana; Nerli, Bibiana; Farruggia, Beatriz

    2006-01-18

    The partitioning of model proteins (bovine serum albumin, ovalbumin, trypsin and lysozyme) was assayed in aqueous two-phase systems formed by a salt (potassium phosphate, sodium sulfate and ammonium sulfate) and a mixture of two polyethyleneglycols of different molecular mass. The ratio between the PEG masses in the mixtures was changed in order to obtain different polymer average molecular mass. The effect of polymer molecular mass and polydispersivity on the protein partition coefficient was studied. The relationship between the logarithm of the protein partition coefficient and the average molecular mass of the phase-forming polymer was found to depend on the polyethyleneglycol molecular mass, the salt type in the bottom phase and the molecular weight of the partitioned protein. The polymer polydispersivity proved to be a very useful tool to increase the separation between two proteins having similar isoelectrical point.

  3. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  4. Novel Displacement Agents for Aqueous 2-Phase Extraction Can Be Estimated Based on Hybrid Shortcut Calculations.

    Science.gov (United States)

    Kress, Christian; Sadowski, Gabriele; Brandenbusch, Christoph

    2016-10-01

    The purification of therapeutic proteins is a challenging task with immediate need for optimization. Besides other techniques, aqueous 2-phase extraction (ATPE) of proteins has been shown to be a promising alternative to cost-intensive state-of-the-art chromatographic protein purification. Most likely, to enable a selective extraction, protein partitioning has to be influenced using a displacement agent to isolate the target protein from the impurities. In this work, a new displacement agent (lithium bromide [LiBr]) allowing for the selective separation of the target protein IgG from human serum albumin (represents the impurity) within a citrate-polyethylene glycol (PEG) ATPS is presented. In order to characterize the displacement suitability of LiBr on IgG, the mutual influence of LiBr and the phase formers on the aqueous 2-phase system (ATPS) and partitioning is investigated. Using osmotic virial coefficients (B22 and B23) accessible by composition gradient multiangle light-scattering measurements, the precipitating effect of LiBr on both proteins and an estimation of both protein partition coefficients is estimated. The stabilizing effect of LiBr on both proteins was estimated based on B22 and experimentally validated within the citrate-PEG ATPS. Our approach contributes to an efficient implementation of ATPE within the downstream processing development of therapeutic proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP: potential atmospheric impacts

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2013-06-01

    Full Text Available The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS. Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW, where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  6. Aqueous phase oligomerization of methyl vinyl ketone through photooxidation - Part 1: Aging processes of oligomers

    Science.gov (United States)

    Renard, P.; Siekmann, F.; Salque, G.; Smaani, A.; Demelas, C.; Coulomb, B.; Vassalo, L.; Ravier, S.; Temime-Roussel, B.; Voisin, D.; Monod, A.

    2014-06-01

    Secondary organic aerosol (SOA) represents a substantial part of organic aerosol, which affects climate and human health. It is now accepted that one of the important pathways of SOA formation occurs via aqueous phase chemistry in the atmosphere. Recently, we have shown in a previous study (Renard et al., 2013) the mechanism of oligomerization of MVK (methyl vinyl ketone), and suggested that unsaturated water soluble organic compounds (UWSOC) might efficiently form SOA in wet aerosol particles, even for weakly soluble ones like MVK. The atmospheric relevance of these processes is explored by means of process model studies (in a companion paper). In the present study we investigate the aging of these aqueous phase MVK-oligomers (Part 1). We compared aqueous phase composition and SOA composition after nebulization, mainly by means of UPLC-ESI-MS and AMS, respectively. Both instruments match and show similar trend of oligomer formation and aging. The SMPS analysis performed on the nebulized solutions allow to quantify these SOA and to measure their mass yields. We have highlighted in the current study that MVK •OH-oxidation undergoes kinetic competition between functionalization and oligomerization. The SOA composition and its evolution highly depend on the precursor initial concentration. We determined the threshold of MVK concentration, i.e. 2 mM, from which oligomerization prevails over functionalization. Hence, at these concentrations, •OH-oxidation of MVK forms oligomers that are SV-OOA, with low O / C and high f43. Oligomers are then fragmented, via unidentified intermediates that have the properties of LV-OOA which then end into succinic, malonic and oxalic diacids. For lower initial MVK concentrations, the oligomerization is not the major process, and functionalization dominates, resulting in small carbonyls, dicarbonyls and mainly monoacids. The aging of these oligomers could be an explanation for the presence of a part of the diacids observed in aerosol.

  7. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    Science.gov (United States)

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Operando research in heterogeneous catalysis

    CERN Document Server

    Groot, Irene

    2017-01-01

    This book is devoted to the emerging field of techniques for visualizing atomic-scale properties of active catalysts under actual working conditions, i.e. high gas pressures and high temperatures. It explains how to understand these observations in terms of the surface structures and dynamics and their detailed interplay with the gas phase. This provides an important new link between fundamental surface physics and chemistry, and applied catalysis. The book explains the motivation and the necessity of operando studies, and positions these with respect to the more traditional low-pressure investigations on the one hand and the reality of industrial catalysis on the other. The last decade has witnessed a rapid development of new experimental and theoretical tools for operando studies of heterogeneous catalysis. The book has a strong emphasis on the new techniques and illustrates how the challenges introduced by the harsh, operando conditions are faced for each of these new tools. Therefore, one can also read th...

  9. Partitioning of metals between the aqueous phase and suspended insoluble material in fog droplets.

    Science.gov (United States)

    Mancinelli, Valeriana; Decesari, Stefano; Facchini, Maria Cristina; Fuzzi, Sandro; Mangani, Filippo

    2005-05-01

    This paper discusses the partitioning of metals (K, Na, Ca, Mg, Al, Cu, Fe, Pb and Zn) between the aqueous phase and the suspended insoluble material in fog samples collected in the Po Valley during two extensive fields campaigns. Metals represent on average 11% of the mass of suspended insoluble matter, while the main component is carbon (both organic carbon, OC = 35%, and black carbon, BC = 8%). The unaccounted suspended matter mass is very high, on average 46%, and is attributable to non metallic species, such as O and N and of Si. The principal metals in the insoluble suspended fraction are Fe and Al (2-5%), while the contributions of other metals (Na, Mg, Cu, Pb and Zn) are lower than 1%. Ca and K exhibited high blank values and could not be detected above blank detection limit threshold. The main components in the aqueous phase are NO3- (34%), WSOC (23%), SO4(2-) (18%) and NH4+ (19%), while trace metals and remaining cations and anions accounted for less than 1% of solute mass. The main dissolved trace metals in fog droplets are Zn, Al and Fe, while the main metallic cations are Na and Ca. Fe and Al are the only metals preferentially distributed in the suspended insoluble matter of fog droplets (partitioning ratio respectively 37% and 33%). All other metals are mostly dissolved in the aqueous phase (mean partitioning ratios of Mg, Pb, Zn, Cu and Na are 69%, 70%, 77%, 81% and 87%). These findings are in agreement with literature data on metal speciation in cloud and rain samples. The dependence of partitioning ratios on pH is investigated for the different metals, with only Al showing a clear partitioning ratio decrease with increasing pH. Conversely, the other metals show no dependence or a complex and highly variable behaviour. The partitioning ratio of iron (mean 37%) observed in the Po Valley fog samples is much higher than the water extractable iron in aerosol particles (typically 1-2 %): this fact can be explained by differences in the aerosol sources

  10. Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas

    2009-01-01

    The gas-phase oxidation of aqueous ethanol with dioxygen has been examined with a new nanoparticle V2O5/TiO2 catalyst. Product selectivity could to a large extent be controlled by small alterations of reaction parameters, allowing production of acetaldehyde at a selectivity higher than 90%, near...... quantitative conversion at 175-200 A degrees C. Furthermore, a selectivity above 80% for acetic acid could be achieved at low gas hourly space velocity at temperatures as low as 165 A degrees C....

  11. Structure and interaction in liquid-liquid phase transition of silica nanoparticles in aqueous electrolyte solution

    Science.gov (United States)

    Chinchalikar, A. J.; Aswal, V. K.; Kohlbrecher, J.; Wagh, A. G.

    2013-02-01

    Small-angle neutron scattering (SANS) measurements have been performed on charged silica nanoparticles undergoing liquid-liquid phase transition (LLPT) in aqueous electrolyte solution. We show that there is local crowding followed by clustering of particles on approaching LLPT. The local crowding is understood to be driven by the secondary minimum whereas clustering by the primary minimum of the DLVO potential. The local crowding has been characterized by the Baxter Sticky model of particles and clustering by the surface fractals. The role of nanoparticle to salt concentration in LLPT has been examined.

  12. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System.

    Directory of Open Access Journals (Sweden)

    Jongmin Kim

    Full Text Available We present a simple and rapid method to isolate extracellular vesicles (EVs by using a polyethylene glycol/dextran aqueous two-phase system (ATPS. This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs.

  13. Photoinduced Iron-Based Water-Induced Phase Separable Catalysis (WPSC) ICAR ATRP of Poly(ethylene glycol) Methyl Ether Methacrylate.

    Science.gov (United States)

    Wu, Jian; Zhang, Bingjie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-06-01

    Iron-mediated atom transfer radical polymerization (ATRP) has gained extensive attention because of the superiority of iron catalysts, such as low toxicity, abundant reserves, and good biocompatibility. Herein, a practical iron catalyst recycling system, photoinduced iron-based water-induced phase separable catalysis ATRP with initiators for continuous activator regeneration, at room temperature is developed for the first time. In this polymerization system, the polymerization is conducted in homogenous solvents consisting of p-xylene and ethanol, using commercially available 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride as the iron catalyst, ethyl 2-bromophenylacetate as the ATRP initiator, 2,4,6-trimethylbenzoyl diphenylphosphine oxide as the photoinitiator, and poly(ethylene glycol) methyl ether methacrylate as the model hydrophilic monomer. After polymerization, a certain amount of water is added to induce the phase separation so that the catalyst can be separated and recycled in p-xylene phase with very low residual metal complexes (polymers even after six times recycle experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  15. Tritium distribution ratios between the 30 % tributyl phosphate(TBP)-normal dodecane(nDD) organic phase and uranyl nitrate-nitric acid aqueous phase

    International Nuclear Information System (INIS)

    Fujine, Sachio; Uchiyama, Gunzou; Sugikawa, Susumu; Maeda, Mitsuru; Tsujino, Takeshi.

    1989-10-01

    Tritium distribution ratios between the organic and aqueous phases were measured for the system of 30 % tributyl phosphate(TBP)-normal dodecane(nDD)/uranyl nitrate-nitric acid water. It was confirmed that tritium is extracted by TBP into the organic phase in both chemical forms of tritiated water (HTO) and tritiated nitric acid (TNO 3 ). The value of tritium distribution ratio ranged from 0.002 to 0.005 for the conditions of 0-6 mol/L nitric acid, 0.5-800 mCi/L tritium in aqueous phase, and 0-125 g-U/L uranium in organic phase. Isotopic distribution coefficient of tritium between the organic and aqueous phases was observed to be about 0.95. (author)

  16. The distribution of Th(NO3)4, UO2(NO3)2 and HNO3 between an aqueous phase and an organic tributyl phosphate phase

    International Nuclear Information System (INIS)

    Nakashima, T.; Zimmer, E.

    1984-05-01

    The distribution of Th(NO 3 ) 4 , UO 2 (NO 3 ) 2 and HNO 3 between an aqueous phase and an organic phase, consisting of 30 Vol.% tributyl phosphate in dodecane, has been experimentally investigated. About 120 distribution data have been determined in the concentration ranges that can be seen in the THOREX process for reprocessing spent thorium bearing fuel. Based on the experimental data, two computer programs have been developed which make possible interpolations and, to some extent, extrapolations. With model 1, concentrations in the organic phase can be calculated if that in the aqueous phase are known. With model 2, concentrations in the aqueous phase can be calculated vice versa. Besides the description of the calculation models, a large body of calculated data can be found in this report. In a addition, a calculation mode is presented that makes possible the calculation of distribution data for very low thorium concentrations. (orig.) [de

  17. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  18. Combining Catalytic Microparticles with Droplets Formed by Phase Coexistence: Adsorption and Activity of Natural Clays at the Aqueous/Aqueous Interface.

    Science.gov (United States)

    Pir Cakmak, Fatma; Keating, Christine D

    2017-06-12

    Natural clay particles have been hypothesized as catalysts on the early Earth, potentially facilitating the formation of early organic (bio) molecules. Association of clay particles with droplets formed by liquid-liquid phase separation could provide a physical mechanism for compartmentalization of inorganic catalysts in primitive protocells. Here we explore the distribution of natural clay mineral particles in poly(ethylene glycol) (PEG)/dextran (Dx) aqueous two-phase systems (ATPS). We compared the three main types of natural clay: kaolinite, montmorillonite and illite, all of which are aluminosilicates of similar composition and surface charge. The three clay types differ in particle size, crystal structure, and their accumulation at the ATPS interface and ability to stabilize droplets against coalescence. Illite and kaolinite accumulated at the aqueous/aqueous interface, stabilizing droplets against coalescence but not preventing their eventual sedimentation due to the mass of adsorbed particles. The ability of each clay-containing ATPS to catalyze reaction of o-phenylenediamine with peroxide to form 2,3-diaminophenazone was evaluated. We observed modest rate increases for this reaction in the presence of clay-containing ATPS over clay in buffer alone, with illite outperforming the other clays. These findings are encouraging because they support the potential of combining catalytic mineral particles with aqueous microcompartments to form primitive microreactors.

  19. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.

    Science.gov (United States)

    Singh, P B; Sharma, S; Saini, H S; Chadha, B S

    2009-09-01

    To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos. A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0.01 g l(-1)). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0.2 g l(-1), was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0.01 g l(-1)) by ChlD strain. The best degradation efficiency was observed at 0.1 g l(-1) supplement of biosurfactant, as validated by GC and HPLC studies. The addition of biosurfactant at 0.1 g l(-1) resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation. This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.

  20. Effect of Pluronic F-127 on the photosensitizing activity of tetraphenylporphyrins in organic and aqueous phases

    Science.gov (United States)

    Savko, M. A.; Aksenova, N. A.; Akishina, A. K.; Khasanova, O. V.; Glagolev, N. N.; Rumyantseva, V. D.; Zhdanova, K. A.; Spokoinyi, A. L.; Solov'eva, A. B.

    2017-11-01

    The solubilization of hydrophobic porphyrin photosensitizers (PPSes) to obtain corresponding water-soluble forms is an important line of modern antimicrobial photodynamic therapy. It is shown that a triblock copolymer of ethylene and propylene oxides, Pluronic F-127, one of the most nontoxic and effective polymer surface active substances (SASes), can be used for the conversion of hydrophobic tetraphenylporphyrin (TPP) and monosubstituted and tetrasubstituted hydroxy, amino, and nitro TPPs into water-soluble forms. It is found that Pluronic has a substantially higher solubilizing affinity (defined as the minimum molar concentration of an SAS required for the complete migration of porphyrin with a specific molar concentration to the aqueous phase) toward monosubstituted TPPs than to corresponding tetrasubstituted porphyrins. It is shown that with Pluronic in the organic phase, the activity of tetraphenylporphyrin in a test reaction of the oxidation of anthracene is higher than that of its monosubstituted and tetrasubstituted derivatives. In an aqueous medium, the activity of solubilized mono derivatives of TPP is comparable to that of unsubstituted TPP and is higher than the activity of the corresponding tetra derivatives of TPP.

  1. Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution

    Directory of Open Access Journals (Sweden)

    Oelmeier Stefan A

    2012-08-01

    Full Text Available Abstract Background Molecular Dynamics (MD simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood. Results In this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity. Conclusions We were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG.

  2. Aqueous two-phase extraction as a platform in the biomanufacturing industry: economical and environmental sustainability.

    Science.gov (United States)

    Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2011-01-01

    The biotech industry is, nowadays, facing unparalleled challenges due to the enhanced demand for biotechnology-based human therapeutic products, such as monoclonal antibodies (mAbs). This has led companies to improve substantially their upstream processes, with the yield of monoclonals increasing to titers never seen before. The downstream processes have, however, been overlooked, leading to a production bottleneck. Although chromatography remains the workhorse of most purification processes, several limitations, such as low capacity, scale-related packing problems, low chemical and proteolytic stability and resins' high cost, have arisen. Aqueous two-phase extraction (ATPE) has been successfully revisited as a valuable alternative for the capture of antibodies. One of the important remaining questions for this technology to be adopted by the biotech industries is, now, how it compares to the currently established platforms in terms of costs and environmental impact. In this report, the economical and environmental sustainability of the aqueous two-phase extraction process is evaluated and compared to the currently established protein A affinity chromatography. Accordingly, the ATPE process was shown to be considerably advantageous in terms of process economics, especially when processing high titer cell culture supernatants. This alternative process is able to purify continuously the same amount of mAbs reducing the annual operating costs from 14.4 to 8.5 million (US$/kg) when cell culture supernatants with mAb titers higher than 2.5 g/L are processed. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Structure and property investigations of TDO in aqueous phase by density functional theory, UV absorption, and Raman spectroscopy.

    Science.gov (United States)

    Shao, Jianzhong; Liu, Xiaoyun; Chen, Pin; Wu, Qiuxia; Zheng, Xuming; Pei, Kemei

    2014-05-01

    Density functional theory, UV absorption, and Raman spectroscopy are used to investigate the structure and properties of TDO in aqueous solution. The equilibrium structures, UV absorption spectra, interaction energies, and Raman spectroscopy data of TDO, AIMSA, and 12 TDO or AIMSA clusters are calculated. Raman spectroscopy experiments are carried out by 488 and 208 nm laser excitation. The Raman spectra of TDO in solid and aqueous phases have been compared, and the most possible structure for TDO in aqueous phase was deduced from analysis of the DFT calculations for the examined models, the experimental UV absorption spectrum, and Raman spectra of TDO. The interaction energy results show that TDO's solubility in water is originated from the TDO-water cyclic oligomer. The calculated UV absorption and Raman spectra of the I2·2H2O-cyc cluster model agree with the experimental results of TDO in aqueous solution very well.

  4. Photochemical reactions in the tropospheric aqueous phase and on particulate matter.

    Science.gov (United States)

    Vione, Davide; Maurino, Valter; Minero, Claudio; Pelizzetti, Ezio; Harrison, Mark A J; Olariu, Romeo-Iulian; Arsene, Cecilia

    2006-05-01

    This paper is a tutorial review in the field of atmospheric chemistry. It describes some recent developments in tropospheric photochemistry in the aqueous phase and on particulate matter. The main focus is regarding the transformation processes that photochemical reactions induce on organic compounds. The relevant reactions can take place both on the surface of dispersed particles and within liquid droplets (e.g. cloud, fog, mist, dew). Direct and sensitised photolysis and the photogeneration of radical species are the main processes involved. Direct photolysis can be very important in the transformation of particle-adsorbed compounds. The significance of direct photolysis depends on the substrate under consideration and on the colour of the particle: dark carbonaceous material shields light, therefore protecting the adsorbed molecules from photodegradation, while a much lower protection is afforded for the light-shaded mineral fraction of particulate. Particulate matter is also rich in photosensitisers (e.g. quinones and aromatic carbonyls), partially derived from PAH photodegradation. These compounds can induce degradation of other molecules upon radiation absorption. Interestingly, substrates such as methoxyphenols, major constituents of wood-smoke aerosol, can also enhance the degradation of some sensitisers. Photosensitised processes in the tropospheric aqueous phase have been much less studied: it will be interesting to assess the photochemical properties of Humic-Like Substances (HULIS) that are major components of liquid droplets. The main photochemical sources of reactive radical species in aqueous solution and on particulate matter are hydrogen peroxide, nitrate, nitrite, and Fe(iii) compounds and oxides. The photogeneration of hydroxyl radicals can be important in polluted areas, while their transfer from the gas phase and dark generation are usually prevailing on an average continental scale. The reactions involving hydroxyl radicals can induce very

  5. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  6. 5-Hydroxymethylfurfural (5-HMF Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Directory of Open Access Journals (Sweden)

    Nadine Essayem

    2012-09-01

    Full Text Available 5-Hydroxymethylfurfural (5-HMF is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

  7. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    Science.gov (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-08

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  8. Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts

    International Nuclear Information System (INIS)

    Perez, Brenda; Malpiedi, Luciana Pellegrini; Tubío, Gisela; Nerli, Bibiana; Alcântara Pessôa Filho, Pedro de

    2013-01-01

    Highlights: ► Binodal data of systems (water + polyethyleneglycol + sodium) succinate are reported. ► Pitzer model describes the phase equilibrium of systems formed by polyethyleneglycol and biodegradable salts satisfactorily. ► This simple thermodynamic framework was able to predict the partitioning behaviour of model proteins acceptably well. - Abstract: Phase diagrams of sustainable aqueous two-phase systems (ATPSs) formed by polyethyleneglycols (PEGs) of different average molar masses (4000, 6000, and 8000) and sodium succinate are reported in this work. Partition coefficients (Kps) of seven model proteins: bovine serum albumin, catalase, beta-lactoglobulin, alpha-amylase, lysozyme, pepsin, urease and trypsin were experimentally determined in these systems and in ATPSs formed by the former PEGs and other biodegradable sodium salts: citrate and tartrate. An extension of Pitzer model comprising long and short-range term contributions to the excess Gibbs free energy was used to describe the (liquid + liquid) equilibrium. Comparison between experimental and calculated tie line data showed mean deviations always lower than 3%, thus indicating a good correlation. The partition coefficients were modeled by using the same thermodynamic approach. Predicted and experimental partition coefficients correlated quite successfully. Mean deviations were found to be lower than the experimental uncertainty for most of the assayed proteins.

  9. Dual affinity method for plasmid DNA purification in aqueous two-phase systems.

    Science.gov (United States)

    Barbosa, H S C; Hine, A V; Brocchini, S; Slater, N K H; Marcos, J C

    2010-02-26

    The DNA binding fusion protein, LacI-His6-GFP, together with the conjugate PEG-IDA-Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600-DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG-IDA-Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG-dextran system as a second extraction system, with 80-90% of pDNA partitioning to the bottom phase. This represents about 7.4 microg of pDNA extracted per 1 mL of pUC19 desalted lysate. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase.

    Science.gov (United States)

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Bush, Matthew F; Williams, Evan R

    2008-03-19

    In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 +/- 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry.

  11. Aqueous two-phase system purification for superoxide dismutase induced by menadione from Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakcıoğlu, Berna; Tongul, Burcu; Tarhan, Leman

    2017-03-01

    In the present work, the partitioning behavior of menadione-induced superoxide dismutase (SOD; EC 1.15.1.1), an antioxidant enzyme that has various applications in the medical and cosmetic industries, from the white rot fungus Phanerochaete chrysosporium has been characterized on different types of aqueous two-phase systems (ATPSs) (poly(ethylene glycol)/polypropylene glycol (PEG/PPG)-dextran, PEG-salt and PPG-salt). PEG-salt combinations were found most optimal systems for the purification of SOD. The best partition conditions were found using the PEG-3350 24% and K 2 HPO 4 5% (w/w) with pH 7.0 at 25 °C. The partition coefficient of total SOD activity and total protein concentration observed in this system were 0.17 and 6.65, respectively, with the recovery percentage as 78.90% in the bottom phase and 13.17% in the top phase. The highest purification fold for SOD from P. chrysosporium was found as 6.04 in the bottom phase of PEG 3350%24 - K 2 HPO 4 %5 (w/w) system with pH 7.0. SOD purified from P. chrysosporium was determined to be a homodimer in its native state with a molecular weight of 60  ± 4 kDa. Consequently, simple and only one step PEG-salt ATPS system was developed for SOD purification from P. chrysosporium.

  12. Advances in catalysis

    CERN Document Server

    Gates, Bruce C

    2012-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series in invaluable to chemical engineers, physical chemists, biochemists, researchers and industrial chemists working in the fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all as

  13. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B.

    Science.gov (United States)

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2008-08-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants produced by yeast strains of the genus Pseudozyma. In this study, the aqueous-phase behavior of a new monoacetyl MEL derivative, 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-d-mannopyranosyl)-d-erythritol (MEL-B), was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC). The present MEL-B was found to self-assemble into a lamellar (L(alpha)) phase over remarkably wide concentration and temperature ranges. According to SAXS measurement, the interlayer spacing (d) was estimated to be almost constant (about 4.7 nm) at the low MEL-B concentration (60 wt.%) region, the d-spacing gradually decreased to 3.1 nm with an increase in the MEL-B concentration. The thermal stability of the liquid crystalline phase was investigated by DSC measurement. The obtained L(alpha) phase was found to be stable up to 95 degrees C below a MEL-B concentration of 85 wt.%; then, the melting temperature of the liquid crystalline phase dramatically decreased with an increase in MEL-B concentration (above 85 wt.%). Furthermore, we found relatively large vesicles (1-5 microm) at the low MEL-B concentration using CLSM observation. The trapped volume of the obtained MEL-B vesicle was estimated to be about 0.42 microL/mumol by glucose dialysis method. These results suggest that the natural glycolipid biosurfactant, the newly found MEL-B, would be useful in various fields of applications as an L(alpha) phase- and/or vesicle-forming lipid.

  14. Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.

    Science.gov (United States)

    Požar, Martina; Perera, Aurélien

    2017-06-14

    We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.

  15. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    Science.gov (United States)

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon.

  16. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    Energy Technology Data Exchange (ETDEWEB)

    He Yi [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States)]. E-mail: yhe@jjay.cuny.edu; Vargas, Angelica [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States); Kang, Youn-Jung [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States)

    2007-04-25

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H{sub 3}PO{sub 4} drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 {mu}g L{sup -1}, repeatability of the extraction (R.S.D. < 5%, n = 6), and low detection limits (0.3 {mu}g L{sup -1} for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.

  17. Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Sebastian; Hintermeier, Peter H.; Olarte, Mariefel V.; Liu, Yue; Baráth, Eszter; Lercher, Johannes A.

    2017-08-01

    The hydronium ion normalized reaction rate in aqueous phase alkylation of phenol with ethanol on H-MFI zeolites increases with decreasing concentration of acid sites. Higher rates are caused by higher concentrations of phenol in the zeolite pores, as the concentration of hydronium ions generated by zeolite Brønsted acid sites decreases. Considering the different concentrations of reacting species it is shown that the intrinsic rate constant for alkylation is independent of the concentration of hydronium ions in the zeolite pores. Alkylation at the aromatic ring of phenol and of toluene as well as O-alkylation of phenol have the same activation energy, 104 ± 5 kJ/mol. This is energetic barrier to form the ethyl carbenium ion from ethanol associated to the hydronium ion. Thus, in both the reaction pathways the catalyst involves a carbenium ion, which forms a bond to a nucleophilic oxygen (ether formation) or carbon (alkylation).

  18. Synthesis of Cu-In-S/ZnS Quantum Dots in Aqueous Phase by Microwave Irradiation.

    Science.gov (United States)

    Kim, Dohyoung; Kim, Jongsung

    2018-02-01

    Recently various nanomaterials have been prepared using the microwave irradiation technology because of its advantages over conventional thermal decomposition methods such as the precise control of reaction temperature, lower energy consumption, and target-oriented uniform heating. In this study, water-soluble Cu-In-S/ZnS core/shell quantum dots (QDs) with average size in the range 3.5-3.7 nm were successfully synthesized in aqueous phase by microwave irradiation. L-glutathione and trisodium citrate dihydrate were used as a stabilizer between indium and copper ions. A strong photoluminescence (PL) emission peak was observed from the QDs prepared in weak acidic conditions. With longer reaction times and higher In/Cu ratios, we observed redshift in the PL spectra.

  19. Huaier Aqueous Extract Induces Hepatocellular Carcinoma Cells Arrest in S Phase via JNK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chengshuo Zhang

    2015-01-01

    Full Text Available Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression of β-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreased β-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management.

  20. Partitioning behavior of laccase from Lentinus polychrous Lev in aqueous two phase systems

    Directory of Open Access Journals (Sweden)

    Karnika Ratanapongleka

    2012-02-01

    Full Text Available In the present study, an aqueous two phase system (ATPS composed of polyethylene glycol (PEG and potassiumphosphate was employed to purify laccase produced by Lentinus polychrous. The assessments of system parameters such asmolecular weight of the PEG, PEG concentration, phosphate salt, system pH, and neutral salt (NaCl concentration on laccasepartitioning and purification were investigated. The enzyme preferentially partitioned in the top polymer-rich phase in alltested systems. Desirable conditions for partitioning were found in the system having polyethylene glycol of intermediatemolecular weight 4,000. This work revealed that the extraction efficiency was not much affected by PEG concentration. TheNaCl addition decreased greatly the partition coefficient of laccase. The optimal system was obtained at pH 7.0, containing12% w/w PEG 4,000 and 16% w/w potassium phosphate with enzyme partition coefficient of 88.30, purification factor of 3.01-fold, and 99.08% yield of enzyme activity in the top phase. Overall, the results obtained in this study revealed that ATPSscould be potentially useful technique for a first step purification of laccase from L. polychrous.

  1. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    Science.gov (United States)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum Salt concentrations and temperature affect partitioning behavior and must be precisely standardized. In some cases, it is more fortuitous to combine aqueous two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  2. Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming

    International Nuclear Information System (INIS)

    Remón, J.; Ruiz, J.; Oliva, M.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Aqueous phase reforming: a promising strategy for cheese whey valorisation. • In-depth understanding of the effect of the operating conditions on the process. • Process optimisation for the selective production of valuable gas and liquid products. • High P, T, lactose concentration and spatial time favour gas production. • High T, low spatial time and the use of diluted solutions maximise liquids production. - Abstract: Cheese effluent management has become an important issue owing to its high biochemical oxygen demand and chemical oxygen demand values. Given this scenario, this work addresses the valorisation of lactose (the largest organic constituent of this waste) by aqueous phase reforming, analysing the influence of the most important operating variables (temperature, pressure, lactose concentration and mass of catalyst/lactose mass flow rate ratio) as well as optimising the process for the production of either gaseous or liquid value-added chemicals. The carbon converted into gas, liquid and solid products varied as follows: 5–41%, 33–97% and 0–59%, respectively. The gas phase was made up of a mixture of H 2 (8–58 vol.%), CO 2 (33–85 vol.%), CO (0–15 vol.%) and CH 4 (0–14 vol.%). The liquid phase consisted of a mixture of aldehydes: 0–11%, carboxylic acids: 0–22%, monohydric alcohols: 0–23%, polyhydric-alcohols: 0–48%, C3-ketones: 4–100%, C4-ketones: 0–18%, cyclic-ketones: 0–15% and furans: 0–85%. H 2 production is favoured at high pressure, elevated temperature, employing a high amount of catalyst and a concentrated lactose solution. Liquid production is preferential using diluted lactose solutions. At high pressure, the production of C3-ketones is preferential using a high temperature and a low amount of catalyst, while a medium temperature and a high amount of catalyst favours the production of furans. The production of alcohols is preferential using medium temperature and pressure and a low amount of

  3. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: a kinetic study

    Science.gov (United States)

    Kroflič, Ana; Grgić, Irena

    2014-05-01

    It is well known that atmospheric aerosols play a crucial role in the Earth's climate and public health (Pöschl 2005). Despite a great effort invested in the studies of secondary organic aerosol (SOA) budget, composition, and its formation mechanisms, there is still a gap between field observations and atmospheric model predictions (Heald et al. 2005, Hallquist et al. 2009, and Lim et al. 2010). The insisting uncertainties surrounding SOA formation and aging thus gained an increasing interest in atmospheric aqueous phase chemistry; they call for more complex and time consuming studies at the environmentally relevant conditions allowing confident extrapolation to desired ambient conditions. In addition to the adverse health effects of atmospheric particulate matter (PM) as such, toxicity is also attributed to nitro-aromatic and other organic compounds which have already been detected in real aerosol samples (Traversi et al. 2009). Moreover, low-volatility aromatic derivatives are believed to form at least partly in the aerosol aqueous phase and not only in the gas phase from where they partition into water droplets (Ervens et al. 2011). Two nitro derivatives of biomass burning tracer guaiacol have recently been found in winter PM10 samples from the city of Ljubljana, Slovenia, and aqueous photonitration reaction was proposed as their possible production pathway (Kitanovski et al. 2012). In this study the kinetics of guaiacol nitration in aqueous solution was investigated in the presence of H2O2 and NO2¯ upon simulated solar irradiation (Xenon lamp, 300 W). During the experiment the DURAN® flask with the reaction mixture was held in the thermostated bath and thoroughly mixed. The reaction was monitored for 44 hours at different temperatures. Guaiacol and its main nitro-products (4-nitroguaiacol, 4-NG; 6-nitroguaiacol, 6-NG; and 4,6-dinitroguaiacol, 4,6-DNG) were quantified in every aliquot, taken from the reaction mixture, by use of high pressure liquid

  4. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    Science.gov (United States)

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  5. Using soluble polymers to enforce catalyst-phase-selective solubility and as antileaching agents to facilitate homogeneous catalysis.

    Science.gov (United States)

    Liang, Yannan; Harrell, Mary L; Bergbreiter, David E

    2014-07-28

    The enforced phase-selective solubility of polyisobutylene (PIB)-bound Rh(II) catalysts in biphasic heptane/acetonitrile mixtures can be used not only to recycle these catalysts but also to minimize bimolecular reactions with ethyl diazoacetate. When cyclopropanation and O-H insertion reactions are carried out with PIB-bound Rh(II) catalysts either with or without addition of an unfunctionalized hydrocarbon polymer cosolvent, dimer by-product formation is suppressed even without slow syringe pump addition of the ethyl diazoacetate. This suppression of by-product formation is shown to be due to increased phase segregation of the soluble polymer-bound catalyst and the ethyl diazoacetate reactant. These studies also reveal that added hydrocarbon polymer cosolvents can function as antileaching agents, decreasing the already small amount of a soluble polymer-bound species that leaches into a polar phase in a biphasic mixture during a liquid/liquid separation step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael

    2014-01-01

    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different experim...

  7. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek

    2010-01-01

    Nano-materials are important in many diverse areas, from basic research to various applications in electronics, biochemical sensors, catalysis and energy. They have emerged as sustainable alternatives to conventional materials, as robust high surface area heterogeneous catalysts and catalyst supports. The nano-sized particles increase the exposed surface area of the active component of the catalyst, thereby enhancing the contact between reactants and catalyst dramatically and mimicking the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect with greater potential than these three components in isolation. To illustrate the proof-of-concept of this "green and sustainable" approach, representative examples are discussed in this article. © 2010 The Royal Society of Chemistry.

  8. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine

    NARCIS (Netherlands)

    Rasrendra, C. B.; Girisuta, B.; van de Bovenkamp, H. H.; Winkelman, J. G. M.; Leijenhorst, E. J.; Venderbosch, R. H.; Windt, M.; Meier, D.; Heeres, H. J.

    2011-01-01

    The application of reactive extraction to isolate organic acids, particularly acetic acid, from the aqueous stream of phase splitted pyrolysis oil using a long chain aliphatic tertiary amine is reported. Acetic acid recovery was optimized by selecting the proper amine and diluent combination and

  9. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.

    2003-01-01

    The influence of shear flow on the phase separation of aqueous poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions was investigated by means of rheo-turbidity and rheo-small angle neutron scattering (rheo-SANS) and compared to the behavior of linear PNiPAM macromolecules. The rheological

  10. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  11. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    Science.gov (United States)

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  12. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata Seeds and Recycling of Phase Components

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2015-06-01

    Full Text Available Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w Triton X-100 and 20% (w/w xylitol, at 56.2% of tie line length (TLL, (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases and a crude load of 25% (w/w at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  13. Isoindolinones as Michael Donors under Phase Transfer Catalysis: Enantioselective Synthesis of Phthalimidines Containing a Tetrasubstituted Carbon Stereocenter

    Directory of Open Access Journals (Sweden)

    Francesco Scorzelli

    2015-05-01

    Full Text Available Readily available chiral ammonium salts derived from cinchona alkaloids have proven to be effective phase transfer catalysts in the asymmetric Michael reaction of 3-substituted isoindolinones. This protocol provides a convenient method for the construction of valuable asymmetric 3,3-disubstituted isoindolinones in high yields and  moderate to good enantioselectivity. Diastereoselectivity was also investigated in the construction of contiguous tertiary and quaternary stereocenters. The use of acrolein as Michael acceptor led to an interesting tricyclic derivative, a pyrroloisoindolinone analogue, via a tandem conjugated addition/cyclization reaction.

  14. Containment and recovery of a light non-aqueous phase liquid plume at a woodtreating facility

    International Nuclear Information System (INIS)

    Crouse, D.; Powell, G.; Hawthorn, S.; Weinstock, S.

    1997-01-01

    A woodtreating site in Montana used a formulation (product) of 5 percent pentachlorophenol and 95 percent diesel fuel as a carrier liquid to pressure treat lumber. Through years of operations approximately 378,500 liters of this light non-aqueous phase liquid (LNAPL) product spilled onto the ground and soaked into the groundwater. A plume of this LNAPL product flowed in a northerly direction toward a stream located approximately 410 meters from the pressure treatment building. A 271-meter long high density polyethylene (HDPE) containment cutoff barrier wall was installed 15 meters from the stream to capture, contain, and prevent the product from migrating off site. This barrier was extended to a depth of 3.7 meters below ground surface and allowed the groundwater to flow beneath it. Ten product recovery wells, each with a dual-phase pumping system, were installed within the plume, and a groundwater model was completed to indicate how the plume would be contained by generating a cone of influence at each recovery well. The model indicated that the recovery wells and cutoff barrier wall would contain the plume and prevent further migration. To date, nearly 3 1/2 year's later, approximately 106,000 liters of product have been recovered

  15. The behaviour of dense, non-aqueous phase liquid contaminants in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, B.H.

    1989-01-01

    Dense, non-aqueous phase liquids (DNAPLs) such as polychlorinated biphenyl oils, creosotes and chlorinated solvents represent a unique class of groundwater contaminants, with many being denser and less viscous than water, and only slightly soluble in water. The behavior of DNAPLs in naturally occurring sandy aquifers was examined with an emphasis on the influence of porous media heterogeneity. Extensive use is made of laboratory mesurements and numerical modelling to illustrate that the behavior of DNAPLs in heterogeneous porous media is governed by the spatial distribution of capillary properties. The degree of lateral spreading of DNAPLs on lenses of different permeability is found to be a function of fluid density, as well as interfacial tension between the fluids of concern and the source strength of DNAPL released. A two dimensional vertical section two phase flow model was developed using the finite difference technique. The numerical model was validated against a parallel plate laboratory experiment involving the infiltration of tetrachloroethylene into a heterogeneous sand pack, yielding excellent agreement between the experimental and numerical simulation results. Numerical simulations were performed in a statistically generated realization of the Borden aquifer to investigate the sensitivity of fluid properties and source strength on the migration of DNAPL in a field scale aquifer. Distribution of DNAPL was found to be extremely chaotic. 6 refs., 65 figs., 13 tabs.

  16. Reactions of important OVOCs with hydrogen peroxide and ozone in the tropospheric aqueous phase

    Science.gov (United States)

    Schöne, Luisa; Weller, Christian; Herrmann, Hartmut

    2013-04-01

    Besides research on the microphysics of cloud droplets and similar aqueous systems in the troposphere, the chemistry of volatile organic compounds (VOCs) from anthropogenic and biogenic sources cannot be neglected for the understanding of tropospheric processes such as the organic particle mass formation. Emissions of biogenic volatile organic compounds (BVOCs) can exceed those of VOCs from anthropogenic sources by a factor of 10[1]. Oxidation products of BVOCs like glyoxal, methylglyoxal, glycolate, glyoxylate and pyruvate, glycolaldehyde, and the unsaturated compounds methacrolein and methyl vinyl ketone are known precursors for less volatile organic substances found in secondary organic aerosols[2,3]. Yet, the main decomposition of these substances is believed to occur via radical reactions. However, Tilgner and Herrmann[2] showed evidence that the turnovers by non-radical reactions with H2O2 or ozone and some non-oxidative organic accretion reactions may even exceed those from the most reactive species in the lower troposphere, the hydroxyl radical OH. This work investigated the reactivities of the atmospheric relevant oxidation products including pyruvic acid and glyoxylic acid towards O3 and H2O2 in the aqueous phase. Furthermore, pH effects were studied by measuring the kinetics of both the protonated and deprotonated forms. The measurements were performed using a UV/VIS-spectrometer (conventional and in addition a Stopped Flow technique) and capillary electrophoresis. In some cases the results indicate higher turnovers of H2O2 and ozone reactions compared to interactions with atmospheric radicals. The experimental data obtained will be presented and their implications for atmospheric multiphase chemistry are discussed. [1] Guenther et al., 1995, Journal of Geophysical Research - Atmosphere, 100(D5), 8873-8892. [2] Tilgner and Herrmann, 2010, Atmospheric Environment, 44, 5415-5422. [3] van Pinxteren et al., 2005, Atmospheric Environment, 39, 4305-4320.

  17. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    International Nuclear Information System (INIS)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N.; Das, Sadananda; Pandey, Ashok K.; Kumar, Sangita D.; Reddy, A.V.R.

    2012-01-01

    Highlights: ► Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. ► Membranes offered high capacity and selectivity for fluoride in aqueous media. ► Quantitative uptake (80 ± 5%) of fluoride. ► Fast sorption kinetics. ► Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic–organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for ≈76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg −1 ), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  18. Refolding of laccase from Trametes versicolor using aqueous two phase systems: Effect of different additives.

    Science.gov (United States)

    Sánchez-Trasviña, Calef; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2017-07-21

    Protein refolding is a strategy used to obtain active forms of proteins from inclusion bodies. On its part, laccase is an enzyme with potential for different biotechnological applications but there are few reports regarding its refolding which in many cases is considered inefficient due to the poor obtained refolding yields. Aqueous Two-Phase Systems (ATPS) have been used for the refolding of proteins getting acceptable recovery percentages since PEG presents capacity to avoid protein aggregation. In this work, 48 PEG-phosphate ATPS were analyzed to study the impact of different parameters (i.e. tie line length (TLL), volume ratio (V R ) and PEG molecular weight) upon the recovery and refolding of laccase. Additionally, since laccase is a metalloprotein, the use of additives (individually and in mixture) was studied with the aim of favoring refolding. Results showed that laccase presents a high affinity for the PEG-rich phase obtaining recovery values of up to 90%. Such affinity increases with increasing TLL and decreases when PEG molecular weight and V R increase. In denatured state, this PEG-rich phase affinity decreases drastically. However, the use of additives such as l-cysteine, glutathione oxidized, cysteamine and Cu +2 was critical in improving refolding yield values up to 100%. The best conditions for the refolding of laccase were obtained using the PEG 400gmol -1 , TLL 45% w/w, V R 3 ATPS and a mixture of 2.5mM cysteamine with 1mM Cu +2 . To our knowledge, this is the first time that the use of additives and the behavior of the mixture of such additives to enhance refolding performance in ATPS is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  20. Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae

    Directory of Open Access Journals (Sweden)

    Amber Broch

    2013-12-01

    Full Text Available Microalgae have tremendous potential as a feedstock for production of liquid biofuels, particularly biodiesel fuel via transesterification of algal lipids. However, biodiesel production results in significant amounts of algal residues, or “lipid extracted algae” (LEA. Suitable utilization of the LEA residue will improve the economics of algal biodiesel. In the present study, we evaluate the hydrothermal carbonization (HTC of whole and lipid extracted algal (Spirulina maxima feedstocks in order to produce a solid biofuel (hydrochar and value-added co-products in the aqueous phase. HTC experiments were performed using a 2-L Parr reactor (batch type at 175–215 °C with a 30-min holding time. Solid, aqueous and gaseous products were analyzed using various laboratory methods to evaluate the mass and carbon balances, and investigate the existence of high value chemicals in the aqueous phase. The HTC method is effective in creating an energy dense, solid hydrochar from both whole algae and LEA at lower temperatures as compared to lignocellulosic feedstocks, and is effective at reducing the ash content in the resulting hydrochar. However, under the treatment temperatures investigated, less than 1% of the starting dry algae mass was recovered as an identified high-value chemical in the aqueous phase.

  1. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    Science.gov (United States)

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Catalysis seen in action

    NARCIS (Netherlands)

    Tromp, M.

    2015-01-01

    Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous

  3. Catalysis of Supramolecular Hydrogelation

    NARCIS (Netherlands)

    Trausel, F.; Versluis, F.; Maity, C.; Poolman, J.M.; Lovrak, M.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    ConspectusOne often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in

  4. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  5. Basalt Reactivity Variability with Reservoir Depth in Supercritical CO2 and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2011-04-01

    Long term storage of CO{sub 2} in geologic formations is currently considered the most attractive option to reduce greenhouse gas emissions while continuing to utilize fossil fuels for energy production. Injected CO{sub 2} is expected to reside as a buoyant water-saturated supercritical fluid in contact with reservoir rock, the caprock system, and related formation waters. As was reported for the first time at the GHGT-9 conference, experiments with basalts demonstrated surprisingly rapid carbonate mineral formation occurring with samples suspended in the scCO{sub 2} phase. Those experiments were limited to a few temperatures and CO{sub 2} pressures representing relatively shallow (1 km) reservoir depths. Because continental flood basalts can extend to depths of 5 km or more, in this paper we extend the earlier results across a pressure-temperature range representative of these greater depths. Different basalt samples, including well cuttings from the borehole used in a pilot-scale basalt sequestration project (Eastern Washington, U.S.) and core samples from the Central Atlantic Magmatic Province (CAMP), were exposed to aqueous solutions in equilibrium with scCO{sub 2} and water-rich scCO{sub 2} at six different pressures and temperatures for select periods of time (30 to 180 days). Conditions corresponding to a shallow injection of CO{sub 2} (7.4 MPa, 34 C) indicate limited reactivity with basalt; surface carbonate precipitates were not easily identified on post-reacted basalt grains. Basalts exposed under identical times appeared increasingly more reacted with simulated depths. Tests, conducted at higher pressures (12.0 MPa) and temperatures (55 C), reveal a wide variety of surface precipitates forming in both fluid phases. Under shallow conditions tiny clusters of aragonite needles began forming in the wet scCO{sub 2} fluid, whereas in the CO{sub 2} saturated water, cation substituted calcite developed thin radiating coatings. Although these types of coatings

  6. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Adam; Ball, Raymond; Boving, Thomas B.; Khan, Naima A.; Schaub, Tanner; Sudasinghe, Nilusha; Fernandez, Carlos A.; Carroll, Kenneth C.

    2017-01-01

    Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3treatment of groundwater contaminated with recalcitrant compounds.

  7. submitter Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    CERN Document Server

    Hoyle, C R; Järvinen, E; Saathoff, H; Dias, A; El Haddad, I; Gysel, M; Coburn, S C; Tröstl, J; Bernhammer, A -K; Bianchi, F; Breitenlechner, M; Corbin, J C; Craven, J; Donahue, N M; Duplissy, J; Ehrhart, S; Frege, C; Gordon, H; Höppel, N; Heinritzi, M; Kristensen, T B; Molteni, U; Nichman, L; Pinterich, T; Prévôt, A S H; Simon, M; Slowik, J G; Steiner, G; Tomé, A; Vogel, A L; Volkamer, R; Wagner, A C; Wagner, R; Wexler, A S; Williamson, C; Winkler, P M; Yan, C; Amorim, A; Dommen, J; Curtius, J; Gallagher, M W; Flagan, R C; Hansel, A; Kirkby, J; Kulmala, M; Möhler, O; Stratmann, F; Worsnop, D R; Baltensperger, U

    2016-01-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in ...

  8. Ultrasound-Assisted Aqueous Two-Phase System for Extraction and Enrichment of Zanthoxylum armatum Lignans

    Directory of Open Access Journals (Sweden)

    Tao Guo

    2015-08-01

    Full Text Available In the study, an aqueous two phase system (ATPS coupled with ultrasound was employed to extract lignans from Zanthoxylum armatum. Three standard lignans, namely (−-fargesin, sesamin and L-asarinin, were used as marker compounds, and extraction was optimized and projected by response surface methodology (RSM and artificial neural network (ANN. The optimal condition for ATPS with 20% n-propanol and 24% (NH42SO4 coupled with ultrasonic-assisted extraction including a solvent to solid ratio of 15:1, a temperature of 40 °C, and a treatment time of 55 min was obtained. Under the condition, the yield of (−-fargesin increased 15.12%, and the purities of (−-fargesin, sesamin and L-asarinin reached 2.222%, 1.066%, and 1.583%, with an increase of 44.38%, 25.70%, and 26.34% compared to those extracted with 95% ethanol, respectively. Coefficient of the determined (0.9855 and mean squared error (0.0018 of ANN model suggested good fitness and generalization of the ANN. Taken together, the results showed that ultrasonic-assisted ATPS can be a suitable method for extraction and enrichment of lignans from Z. armatum.

  9. Ultrasound-Assisted Aqueous Two-Phase System for Extraction and Enrichment of Zanthoxylum armatum Lignans.

    Science.gov (United States)

    Guo, Tao; Su, Dan; Huang, Yan; Wang, Ya; Li, Yong-Hui

    2015-08-20

    In the study, an aqueous two phase system (ATPS) coupled with ultrasound was employed to extract lignans from Zanthoxylum armatum. Three standard lignans, namely (-)-fargesin, sesamin and L-asarinin, were used as marker compounds, and extraction was optimized and projected by response surface methodology (RSM) and artificial neural network (ANN). The optimal condition for ATPS with 20% n-propanol and 24% (NH4)2SO4 coupled with ultrasonic-assisted extraction including a solvent to solid ratio of 15:1, a temperature of 40 °C, and a treatment time of 55 min was obtained. Under the condition, the yield of (-)-fargesin increased 15.12%, and the purities of (-)-fargesin, sesamin and L-asarinin reached 2.222%, 1.066%, and 1.583%, with an increase of 44.38%, 25.70%, and 26.34% compared to those extracted with 95% ethanol, respectively. Coefficient of the determined (0.9855) and mean squared error (0.0018) of ANN model suggested good fitness and generalization of the ANN. Taken together, the results showed that ultrasonic-assisted ATPS can be a suitable method for extraction and enrichment of lignans from Z. armatum.

  10. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.

    Science.gov (United States)

    Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang; Drexler, Hans-Joachim; Junge, Henrik; Gladiali, Serafino; Beller, Matthias

    2013-03-07

    Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices--and hence the use of methanol as a practical hydrogen carrier--feasible.

  11. Extraction and recovery of 2-butoxyethanol from aqueous phases containing high saline concentration

    Directory of Open Access Journals (Sweden)

    Katherine E. Manz

    2016-09-01

    Full Text Available Ethylene glycol monobutyl ether (EGBE, also known as 2-butoxyethanol (2-BE, has been identified as a contaminant in hydraulic fracturing fluids. In order to determine the presence of 2-BE in hydraulic fracturing chemical additives, a reliable method for recovering 2-BE from aqueous phases by liquid-liquid extraction combined with gas chromatography/mass spectrometry (GC/MS was established. The liquid-liquid extraction method was applied to samples matrices containing various amounts of salt. Using methylene chloride for liquid-liquid extraction in a sample to solvent ratio of 1:3, ≥99% 2-BE recovery may be achieved with less than 5% standard error. The limit of detection was determined to be 0.957 mg L−1 2-BE. Accuracy was determined to be 2.58% and precision was determined using the coefficient of variation, which was 3.5%. The method was used to recover 2-BE in a hydraulic fracturing chemical additive called Revert Flow and to quantify the weight percent of 2-BE in the chemical additive. Weight percent of two additional components of Revert Flow, D-limonene and 1-butoxy-2-propanol, were also determined. We also used the method to determine the abiotic of 2-BE in water, which was 5.55 days. The persistence of 2-BE in hydraulic fracturing fluid was also investigated and determined that 2-BE is more persistent in this environment.

  12. Removal of Pb2+ ions in aqueous phase by a sodic Montmorillonite

    Directory of Open Access Journals (Sweden)

    Zoubida Lounis

    2012-03-01

    Full Text Available The sorption of Pb2+ ions in aqueous phase was carried out using sodium bentonite. The influence of the temperature and the pH on the capacity of the sorption and the percentage of the uptake of Pb2+ ions by sodium montmorillonite were studied. The sorption data were analysed in terms of the Freundlich and Langmuir isotherm models and the data fit the Langmuir sorption isotherm model well. Whereas, the thermodynamic parameters( the heat of adsorption Δ H°, the entropy Δ S° and the free energy ΔG° showed that the sorption is a phenomenon of exchange cation between adsorbat /adsorbent The negative value of ΔG° indicates that the sorption of Pb2+ ions on Na-Mt is spontaneous. The positive value of entropy ΔS° means that the disorder is at the interface solid-solution. The negative value of the heat of sorption ΔH° means that the process of elimination of Pb2+ ions is exothermic. However, it appears that the affinity sorption of Pb+2 ions on our clay decreases with increasing the temperature as the sorption capacity

  13. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment.

    Science.gov (United States)

    Zhao, C; Mumford, K G; Kueper, B H

    2014-08-01

    In situ thermal treatment technologies, such as electrical resistance heating and thermal conductive heating, use subsurface temperature measurements in addition to the analysis of soil and groundwater samples to monitor remediation performance. One potential indication of non-aqueous phase liquid (NAPL) removal is an increase in temperature following observations of a co-boiling plateau, during which subsurface temperatures remain constant as NAPL and water co-boil. However, observed co-boiling temperatures can be affected by the composition of the NAPL and the proximity of the NAPL to the temperature measurement location. Results of laboratory heating experiments using single-component and multi-component NAPLs showed that local-scale temperature measurements can be mistakenly interpreted as an indication of the end of NAPL-water co-boiling, and that significant NAPL saturations (1% to 9%) remain despite observed increases in temperature. Furthermore, co-boiling of multi-component NAPL results in gradually increasing temperature, rather than a co-boiling plateau. Measurements of gas production can serve as a complementary metric for assessing NAPL removal by providing a larger-scale measurement integrated over multiple smaller-scale NAPL locations. Measurements of the composition of the NAPL condensate can provide ISTT operators with information regarding the progress of NAPL removal for multi-component sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Precious Metals Supported on Alumina and Their Application for Catalytic Aqueous Phase Reforming of Glycerol

    Directory of Open Access Journals (Sweden)

    Kiky Corneliasari Sembiring

    2015-11-01

    Full Text Available The high cost of Pt based catalyst for aqueous phase reforming (APR reaction makes it advantageous to develop less cost of other metals for the same reaction. APR is hydrogen production process from biomass-derived source at mild condition near 500 K and firstly reported by Dumesic and co-worker. The use of hydrogen as environmentally friendly energy carrier has been massively encouraged over the last year. When hydrogen is used in fuel cell for power generation, it produces a little or no pollutants. The aim of this study is to study the effect of some precious metal catalysts for APR process. Due to investigation of metal catalysts for APR process, four precious metals (Cu, Co, Zn, Ni supported on γ-Al2O3 with 20% feeding amount have been successfully prepared by impregnation method. Those precious metals were identified as promising catalysts for APR. The catalysts were characterized by N2 physisorption at 77 K, X-Ray Diffraction (XRD and Fourier Transform-Infra Red (FT-IR. The catalytic performance was investigated at 523 K and autogenous pressure in a batch reactor with glycerol concentration of 10%. The gaseous hydrogen product was observed over the prepared catalysts by GC. It was found that performance of catalysts to yield the hydrogen product was summarized as follow Cu/γ-Al2O3 > Co/γ-Al2O3 > Zn/γ-Al2O3 > Ni/γ-Al2O3.

  15. The effect of sulphates on partitioning of pectinases in aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Antov Mirjana G.

    2004-01-01

    Full Text Available The effect of various sulphate salts on the partitioning of endo-pectinase and exo-pectinase in aqueous two-phase systems, composed of polyethylene glycol and dextran, was studied. Presence of ammonium sulphate and sodium sulphate at concentration 15 mmol/l in the system polyethylene glycol 4000/crude dextran, at tie-line length 7.44%, increased partition coefficient of endo-pectinase 1.25 and 1.2 fold, respectively. Ammonium sulphate at 15 mmol/l and sodium sulphate at 5 mmol/l enhanced partition coefficient for exo-pectinase for about 60% in comparison to the system without salts. Addition of magnesium and sodium sulphate to a final concentration of 0.3 mmol/l in the system containing polyethylene glycol 6000/dextran 500 000, at tie-line length 6.26%, increased the partition coefficient of endo activity for 95% and 32%, respectively. Both salts at the same concentration increased partition coefficient of exo activity 1.5 and 3 times, respectively, in comparison to the system without salts.

  16. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  17. Selective transport of hydrocarbons in the unsaturated zone due to aqueous and vapor phase partitioning

    Science.gov (United States)

    Baehr, Arthur L.

    1987-01-01

    Long-term groundwater contamination can result from vapors and solutes emanating from organic liquids spilled in the unsaturated zone. The mathematical modeling analysis presented in this paper demonstrates for gasoline-range hydrocarbons, and other volatile organics commonly spilled, that diffusive transport in the unsaturated zone is a significant transport mechanism which can cause aqueous and vapor plumes to spread away from the immiscible liquid source, resulting in increasing groundwater contaminating potential. An analytical solution to a one-dimensional version of the transport model allows for the definition of a retardation coefficient which is dependent on phase-partitioning coefficients and moisture content. Significant differences in migration rates should be anticipated between hydrocarbons. A numerical solution was developed for a radially symmetric version of the model defining transport for a multiconstituent contaminant like gasoline. Differences in anticipated migration rates between aromatic and nonaromatic hydrocarbons was clearly demonstrated. A simulation based on the composition of an actual gasoline revealed that aromatic constituents, although constituting a fraction of the initial gasoline composition, completely defined the groundwater contaminating potential. This potential changes in time as constituents are selectively removed from the unsaturated zone. Further, the groundwater contaminating potential is quite sensitive to the ground surface boundary characterization.

  18. Molecular dynamics simulation of cyclodextrin aggregation and extraction of Anthracene from non-aqueous liquid phase

    International Nuclear Information System (INIS)

    Zhu, Xinzhe; Wu, Guozhong; Chen, Daoyi

    2016-01-01

    Cyclodextrin (CD) extraction is widely used for the remediation of polycyclic aromatic hydrocarbons (PAH) pollution, but it remains unclear about the influence of CD aggregation on the PAH transport from non-aqueous liquid phase to water. The atomistic adsorption and complexation of PAHs (32 anthracenes) by CD aggregates (48 β-cyclodextrins) were studied by molecular dynamics simulations at hundreds of nanoseconds time scale. Results indicated that high temperature promoted the βCD aggregation in bulk oil, which was not found in bulk water. Nevertheless, the fractions of anthracenes entrapped inside the βCDs cavity in both scenarios were significantly increased when temperature increased from 298 to 328 K. Free energy calculation for the sub-steps of CD extraction demonstrated that the anthracenes could be extracted when the βCDs arrived at the water-oil interface or after the βCDs entered the bulk oil. The former was kinetic-controlled while the latter was thermodynamic-limited process. Results also highlighted the formation of porous structures by CD aggregates in water, which was able to sequestrate PAH clusters with the size obviously larger than the cavity diameter of individual CD. This provided an opportunity for the extraction of recalcitrant PAHs with molecular size larger than anthracenes by cyclodextrins.

  19. From Natural Polysaccharides to Materials for Catalysis, Adsorption, and Remediation

    Science.gov (United States)

    Quignard, Françoise; di Renzo, Francesco; Guibal, Eric

    Polysaccharides display most of the properties needed for applications in catalysis, adsorption or remediation. Requisites common to these applications are appropriate surface functions to ensure substrate-material interactions, accessibility of the functional groups, and proper shaping for easy manipulation. Natural polysaccharides are well known as supports for enzymatic catalysts and gelling agents in aqueous phase, due to the high level of dispersion of hydrocolloids. However, they suffer from diffusional limitations in the dry state, due to the low surface area of the dried materials generally used, xerogels or lyophilized solids. This chapter deals with the proper methods to prepare dry materials which retain the dispersion of the polymer hydrogel, namely polysaccharide aerogels. The materials whose properties are described here are stable in most organic solvents and present numerous and diverse surface functionalities (like hydroxy, carboxy, or amino groups). Shaping and appropriate drying of gelling polysaccharides provide a new opportunity to obtain materials from one of the less energy-intensive sources of biomass. Their application in catalysis and adsorption could open substantial markets for products of seaweed harvesting and coproducts of the seafood industry.

  20. Extraction of amylase from fermentation broth in poly (Ethylene Glycol salt aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Raquel Pedrosa Bezerra

    2006-07-01

    Full Text Available Studies were carried out on the partition of amylase from Bacillus subtilis in a minimal medium at 37 ºC and 110 rpm. Enzyme recovery was carried out in aqueous two-phase system PEG-Phosphate salt were carried out. The best purification factor (5.4 was obtained in system PEG 1000 (16.7% w/w with potassium phosphate (14.8% w/w, at pH 6.0, resulting in a recovery of 45.2% activity enzymatic in the salt-rich phase.Enzimas amilolíticas têm sido amplamente investigadas com a finalidade de melhorar os processos industriais para a degradação do amido. Foi determinado que a extração da enzima em sistema bifásico aquosos é um método aplicável para separação e purificação de biomoléculas em misturas. Vários sistemas compostos de soluções aquosas de polietilenoglicol e fosfato foram avaliados. Estudos de produção em meio mínimo suplementado, à 37ºC, com uma velocidade de agitação de 110rpm e recuperação da amilase a partir do Bacillus subtilis em sistema bifásico aquoso PEG-fosfato foram avaliados. O melhor fator de purificação (5.4 foi obtido no sistema PEG 1000 (16.7% w/w com fosfato de potássio (14.8% w/w, a pH 6.0, resultando na recuperação da atividade enzimática de 45.2% na fase rica em sal.

  1. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    Science.gov (United States)

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  2. In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry's law equilibrium and aqueous phase photooxidation.

    Science.gov (United States)

    Poulain, Laurent; Katrib, Yasmine; Isikli, Estelle; Liu, Yao; Wortham, Henri; Mirabel, Philippe; Le Calvé, Stéphane; Monod, Anne

    2010-09-01

    Acetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown. In this work, we present its gas/aqueous phase transfer and its aqueous phase photooxidation. The uptake coefficient of acetone on water droplets was measured between 268 and 281K (γ=0.7 x 10(-2)-1.4 x 10(-2)), using the droplet train technique coupled to a mass spectrometer. The mass accommodation coefficient α (derived from γ) was found in the range (1.0-3.0±0.25) x 10(-2). Henry's law constant of acetone was directly measured between 283 and 298K using a dynamic equilibrium system (H((298K))=(29±5)Matm(-1)), with the Van't Hoff expression lnH(T)=(5100±1100)/T-(13.4±3.9). A recommended value of H was suggested according to comparison with literature. The OH-oxidation of acetone in the aqueous phase was carried out at 298K, under two different pH conditions: at pH=2, and under unbuffered conditions. In both cases, the formation of methylglyoxal, formaldehyde, hydroxyacetone, acetic acid/acetate and formic acid/formate was observed. The formation of small amounts of four hydroperoxides was also detected, and one of them was identified as peroxyacetic acid. A drastic effect of pH was observed on the yields of formaldehyde, one hydroperoxide, and, (to a lesser extent) acetic acid/acetate. Based on the experimental observations, a chemical mechanism of OH-oxidation of acetone in the aqueous phase was proposed and discussed. Atmospheric implications of these findings were finally discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Operando chemistry of catalyst surfaces during catalysis.

    Science.gov (United States)

    Dou, Jian; Sun, Zaicheng; Opalade, Adedamola A; Wang, Nan; Fu, Wensheng; Tao, Franklin Feng

    2017-04-03

    Chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of mechanism of a catalytic reaction performed on the catalyst in the gas or liquid phase. Due to the pressure- or molecular density-dependent entropy contribution of gas or liquid phase of the reactants and the potential formation of a catalyst surface during catalysis different from that observed in an ex situ condition, the characterization of the surface of a catalyst under reaction conditions and during catalysis can be significant and even necessary for understanding the catalytic mechanism at a molecular level. Electron-based analytical techniques are challenging for studying catalyst nanoparticles in the gas or liquid phase although they are necessary techniques to employ. Instrumentation and further development of these electron-based techniques have now made in situ/operando studies of catalysts possible. New insights into the chemistry and structure of catalyst nanoparticles have been uncovered over the last decades. Herein, the origin of the differences between ex situ and in situ/operando studies of catalysts, and the technical challenges faced as well as the corresponding instrumentation and innovations utilized for characterizing catalysts under reaction conditions and during catalysis, are discussed. The restructuring of catalyst surfaces driven by the pressure of reactant(s) around a catalyst, restructuring in reactant(s) driven by reaction temperature and restructuring during catalysis are also reviewed herein. The remaining challenges and possible solutions are briefly discussed.

  4. Microbial side-chain cleavage of phytosterols by mycobacteria in vegetable oil/aqueous two-phase system.

    Science.gov (United States)

    Xu, Yang-Guang; Guan, Yi-Xin; Wang, Hai-Qing; Yao, Shan-Jing

    2014-09-01

    Microbial side-chain cleavage of natural sterols to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) by Mycobacteria has received much attention in pharmaceutical industry, while low yield of the reaction owing to the strong hydrophobicity of sterols is a tough problem to be solved urgently. Eight kinds of vegetable oils, i.e., sunflower, peanut, corn, olive, linseed, walnut, grape seed, and rice oil, were used to construct oil/aqueous biphasic systems in the biotransformation of phytosterols by Mycobacterium sp. MB 3683 cells. The results indicated that vegetable oils are suitable for phytosterol biotransformation. Specially, the yield of AD carried out in sunflower biphasic system (phase ratio of 1:9, oil to aqueous) was greatly increased to 84.8 % with 10 g/L feeding concentration after 120-h transformation at 30 °C and 200 rpm. Distribution coefficients of AD in different oil/aqueous systems were also determined. Because vegetable oils are of low cost and because of their eco-friendly characters, there is a great potential for the application of oil/aqueous two-phase systems in bacteria whole cell biocatalysis.

  5. Extraction and separation of proteins by ionic liquid aqueous two-phase system.

    Science.gov (United States)

    Lin, Xiao; Wang, Yuzhi; Zeng, Qun; Ding, Xueqin; Chen, Jing

    2013-11-07

    A satisfactory protocol of protein extraction and separation has been established based on the ionic liquid aqueous two-phase system (IL-ATPS) for the purification of bioactive substances. Compared with the effects of eight different ionic liquids, 1-octyl-3-methylimidazolium bromide ([omim][Br]) was selected as the suitable ionic liquid. Based on the single-factor experiment, an initial serial investigative test was used to identify the optimal conditions of the extraction. Owing to their different isoelectric points, bovine serum albumin (BSA), hemoglobin (Hb) and lysozyme (Lys) were used to determine the effect of pH value on the protein extraction. Trypsin (Try) was used to confirm the protein activity. The linearity for analyzing BSA, Hb, Try and Lys was in the concentration range of 0.05-1.00 mg ml(-1), 0.025-1 mg ml(-1), 0.01-1.00 mg ml(-1) and 0.01-1.00 mg ml(-1), respectively, with a correlation coefficient of between 0.9985 and 0.9999. Limits of detection (LODs) were 16.47-7.02 μg ml(-1) and RSDs of inter-day stability were less than 2.9%. Repeatability and precision were respectively lower than 5.3% and 1.1%. Under the optimum conditions, the average recoveries of BSA, Hb, Try and Lys were 90.5%, 94.5%, 92.7% and 93.8% and the obtained RSDs were 1.19%, 1.23%, 1.34% and 1.04%, respectively. According to UV spectra, conductivity, dynamic light scattering (DLS), and transmission electron microscope (TEM) images, the cluster phenomenon originating from IL itself or combined with protein was evaluated. As the driving forces which are involved in the partitioning of protein between the IL-rich phase and the phosphate phase, the cluster phenomenon could, in principle, be applied to a variety of different samples and exhibited potential value.

  6. Hypoglycaemic activity of saponin fraction extracted from Momordica charantia in PEG/salt aqueous two-phase systems.

    Science.gov (United States)

    Han, Chuncho; Hui, Qiusha; Wang, Yingzi

    2008-01-01

    Momordica charantia (family, Cucurbitaceae), commonly known as karela or bitter melon (Japanese name 'Tsurureishi'), is used as a folk medicine in China, the Indian subcontinent and South America. In Chinese traditional medicine, the plant is usually used as a hypoglycaemic and anti-diabetic agent. The hypoglycaemic activity of saponin fraction (SF) extracted from M. charantia in PEG/salt aqueous two-phase systems was studied in this article. Alloxan-induced hyperglycaemic mice were used in the study. The blood glucose, insulin secretion, glycogen synthesis and the body weight of the mice were analysed. At the same time, the sugar tolerance of the normal mice was also determined. After the mice were administered (i.g.) with SF (500 mg kg(-1)), the blood glucose of alloxan-induced hyperglycaemic mice decreased (p charantia in an aqueous two-phase extraction system induced significant hypoglycaemic activity in hyperglycaemic and normal mice.

  7. Deterioration of Polyethylene Exposed to Chlorinated Species in Aqueous Phases : Test Methods, Antioxidants Consumption and Polymer Degradation

    OpenAIRE

    Yu, Wenbin

    2013-01-01

    This thesis presents a study of antioxidant depletion in water containing chlorinated species (water containing 10 ppm either Cl2 or ClO2, buffered to pH = 6.8), the degradation products in the aqueous phase, and polyethylene pipe degradation scenarios. A low molecular weight hydrocarbon analogue (squalane) was used instead of solid polyethylene as the host material for the antioxidants, and the depletion of antioxidants has been studied. The phenolic antioxidant Irganox 1010 was consumed ca....

  8. Surface and nanomolecular catalysis

    CERN Document Server

    Richards, Ryan

    2006-01-01

    Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalysis. While each chapter contains the necessary background and explanations to stand alone, the diverse collection of chapters shows how developments from various fields each contributed to our current understanding of nanomolecular catalysis as a whole. The

  9. Lewis-acid catalysis of carbon carbon bond forming reactions in water

    NARCIS (Netherlands)

    Engberts, JBFN; Feringa, BL; Keller, E; Otto, S

    1996-01-01

    In this article, we review the recent progress that has been made in the field of Lewis-acid catalysis of carbon carbon-bond-forming reactions in aqueous solution. Since water hampers the hard hard interactions between the catalyst and the reactant, it often complicates catalysis. However, once

  10. Photo-oxidation of Nitrophenols in the Aqueous Phase: Reaction Kinetics, Mechanistic Insights, and Evolution of Light Absorption

    Science.gov (United States)

    Hems, R.; Abbatt, J.

    2017-12-01

    Nitrophenols are a class of water soluble, light absorbing compounds which can make up a significant fraction of biomass burning brown carbon. The atmospheric lifetime and aging of these compounds can have important implications for their impact on climate through the aerosol direct effect. Recent studies have shown that brown carbon aerosols can be bleached of their colour by direct photolysis and photo-oxidation reactions on the timescale of hours to days. However, during aqueous phase photo-oxidation of nitrophenol compounds light absorption is sustained or enhanced, even after the parent nitrophenol molecule has been depleted. In this work, we use online aerosol chemical ionization mass spectrometry (aerosol-CIMS) to investigate the aqueous phase photo-oxidation mechanism and determine the second order rate constants for the reaction of OH radicals with three commonly detected nitrophenol compounds: nitrocatechol, nitroguaiacol, and dinitrophenol. These nitrophenol compounds are found to have aqueous phase lifetimes with respect to oxidation by the OH radical ranging between 5 - 11 hours. Our results indicate that functionalization of the parent nitrophenol molecule by addition of hydroxyl groups leads to the observed absorption enhancement. Further photo-oxidation forms breakdown products that no longer absorb significantly in the visible light range.

  11. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand

    Science.gov (United States)

    Govindarajan, Dhivakar; Deshpande, Abhijit P.; Raghunathan, Ravikrishna

    2018-02-01

    Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5 mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.

  12. Removal of Nitrate in the Aqueous Phase Using Granular Ferric Hydroxide

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-04-01

    Full Text Available Background In recent years, the nitrate concentration in surface water and especially in groundwater was increased significantly in many parts of Iran. Objectives The main objectives of this study were to evaluate the feasibility of using granular ferric hydroxide (GFH to remove nitrate from aqueous phase as well as to determine the removal efficiency at the optimal condition. Materials and Methods The present study was conducted on a bench scale experiment. The spectrophotometer DR5000 (wavelength 520 nm was used to determine the nitrate concentration. The effect of influencing parameters including pH at 5 levels (3.8 - 7.8, initial nitrate concentration at 4 levels (50 - 150 mg/L the amount of adsorbent dose (0.625, 1.25, 2.5, 3.75 g/50mL, the effects of interfering ions, such as sulfate ions at 4 levels (200 - 800 mg/L and chloride ions at 4 levels (200 - 800 mg/L, and contact time at 3 levels (30 - 90 minutes were studied. Results Based on our data, pH of 4.8, adsorbent dose of 3.75 g and contact time of 90 minutes is optimal for nitrate removal. Furthermore, the nitrate reduction rate was increased rapidly by the addition of the adsorbent and decreased by nitrate addition. The nitrate reduction rate was increased by increasing the contact time. The percent of nitrate reduction was significantly enhanced by decreasing the pH (from 7.8 to 8.4 and then reached a plateau with a relative slow equilibration. Moreover, adsorption efficiency was significantly decreased in the presence of interfering ions, such as sulfate and chloride ions. Conclusions In conclusion, GFH can be used as a reliable and appropriate method with high efficiency for the reduction of nitrate in many polluted water resources.

  13. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  14. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    Science.gov (United States)

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %).

  15. Research on Catalysis.

    Science.gov (United States)

    Bartholomew, Calvin H.; Hecker, William C.

    1984-01-01

    The objectives and philosophy of the Catalysis Laboratory at Brigham Young University are discussed. Also discusses recent and current research activities at the laboratory as well as educational opportunities, research facilities, and sources of research support. (JN)

  16. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  17. Hydrogen-bonding catalysis of sulfonium salts

    OpenAIRE

    Kaneko, Shiho; Kumatabara, Yusuke; Shimizu, Shoichi; Maruoka, Keiji; Shirakawa, Seiji

    2017-01-01

    Although quaternary ammonium and phosphonium salts are known as important catalysts in phase-transfer catalysis, the catalytic ability of tertiary sulfonium salts has not yet been well demonstrated. Herein, we demonstrate the catalytic ability of trialkylsulfonium salts as hydrogen-bonding catalysts on the basis of the characteristic properties of the acidic α hydrogen atoms on alkylsulfonium salts.

  18. Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions.

    Science.gov (United States)

    Li, Siyang; Du, Lin; Wei, Zhongming; Wang, Wenxing

    2017-02-15

    Atmospheric aerosol particles composed of a mixture of organic and inorganic compounds are common and constitute an important fraction of air pollutants. In this study, the activities of common atmospheric inorganic ions (Ag + , Zn 2+ , Fe 3+ , Fe 2+ , Ca 2+ and Al 3+ ) and fatty acid molecules (stearic acid and arachidic acid) at air-aqueous interface were investigated by Langmuir methods and infrared reflection-absorption spectroscopy (IRRAS). In the presence of different inorganic ions, surface pressure-area isotherms of the Langmuir films showed compressed or expanded characteristics. IRRAS spectra confirmed that the existence of inorganic ions in the fatty acid monolayer changes the surface properties of aqueous-phase aerosols. Formation of different coordination types of carboxylates at the air-water interface alters the dissolution and partitioning behavior, which has significant influence of Raoult effect on nucleating cloud droplets. Our work displays the relationship between structure and surface properties for aqueous-phase aerosols and implies an efficient method for further understanding of their formation mechanism and potential atmospheric implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    International Nuclear Information System (INIS)

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-01-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH 4 within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles

  20. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoda, Numan, E-mail: nhoda@akdeniz.edu.tr [Department of Chemistry, Faculty of Sciences, Akdeniz University, 07058 Antalya (Turkey); Budama, Leyla; Çakır, Burçin Acar; Topel, Önder [Department of Chemistry, Faculty of Sciences, Akdeniz University, 07058 Antalya (Turkey); Ozisik, Rahmi [Department of Materials Science and Engineering and Renssleaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2013-09-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH{sub 4} within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles.

  1. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  2. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  3. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    Science.gov (United States)

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of conditioned carbon with iron nanoparticles for the arsenic removal in aqueous phase

    International Nuclear Information System (INIS)

    Flores C, D. O.

    2012-01-01

    Using pineapple husks conditioned with carboxymethylcellulose, hexamine and ferric nitrate, a carbonaceous material was obtained with nanoparticles of Fe (C Fe), which was characterized and tested for arsenic removal in the aqueous phase. The microscopic study showed spheres 4 microns and filaments 100 nm wide, so as iron particles whose diameter decreases to an average of 38.81 nm, when pyrolysis time was increased to 180 min. their distribution in the carbonaceous matrix is homogeneous. According to energy dispersive X-ray spectroscopy, C Fe contains C (82.29%), O (7.23%), K (0.68%), Ca (3.77%) and Fe (6.25%) and its diffraction pattern shows the characteristic peak of Fe (0), which is not observed in the coal without iron. By neutron activation analysis were quantified Al, Br, Ce, Co, Cr, Cs, Eu, Hf, K, Mg, Mn, Na, Rb, Sb, Sc and Zn, they can be involved in the process of sorption of As (v) forming surface active sites. For C Fe and C B characterized by Fourier transform infrared spectrometry, groups C-H, C=O, C=C, -Nh, NH 2 , isocyanate and isonitrile were found, the last two were formed by the present hexamine. X-ray photoelectron spectroscopy showed energy states of C 1 and O 1 in pineapple shell washed, shell conditioned with iron, C Fe at different times and the pyrolysis coal without iron (C B). The material C Fe 180 presented a specific area of 167 m 2 /g and 7.12 ± 1 sites/nm 2 isoelectric point while pH i = 11.1 C B is 98.80 m 2 /g specific area and 1.5 ± 1 sites/nm 2 and pH i = 10.6, being favorable to the sorption process. The highest removal of As(v) for both materials was at ph = 2, fitting the kinetic data to pseudo-second order model. The isotherms as a function of concentration were adjusted to Freundlich model indicating multilayer chemisorption at specific sites of a heterogeneous medium. Characterization by scanning electron microscopy after the sample sorption Fe nanoparticles remain in the carbonaceous matrix being not affected by the

  5. Extraction of americium of different oxidation states in two-phase aqueous system based on polyethylene glycol

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Americium extraction in different oxidation states in two-phase aqueous system based on polyethylene glycol is investigated. Conditions for quantitative extraction of americium (3) and americium (5) from ammonium sulfate solutions within pH=3-5 interval in the presence of arsenazo 3 are found. Composition of the produced americium complexes with reagent is determined; americium (3) interacts with arsenazo 3 in ammonium sulfate solutions with the formation of MeR and Me 2 R composition complexes. Absorption spectrum characteristics of americium (3) and- (5) complexes with arsenazo 3 in ammonium sulfate solutions and extracts based polyethylene glycol aqueous solutions are given. Molar extinction coefficients of americium complexes with arsenazo (3) in these solutions are determined

  6. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    Science.gov (United States)

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  7. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids

    Science.gov (United States)

    Zhong, X.; Galvez, M. E.

    2017-12-01

    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  8. Enhancing the lateral-flow immunoassay for detection of proteins using an aqueous two-phase micellar system.

    Science.gov (United States)

    Mashayekhi, Foad; Le, Alexander M; Nafisi, Parsa M; Wu, Benjamin M; Kamei, Daniel T

    2012-10-01

    The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step. In this study, a novel approach was used in the context of an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 to concentrate a model protein, namely transferrin, prior to LFA. Proteins have been shown to partition, or distribute, fairly evenly between the two phases of an aqueous two-phase system, which in turn results in their limited concentration in one of the two phases. Therefore, larger colloidal gold particles decorated with antibodies for transferrin were used in the concentration step to bind to transferrin and aid its partitioning into the top, micelle-poor phase. By manipulating the volume ratio of the two coexisting micellar phases and combining the concentration step with LFA, the transferrin detection limit of LFA was improved by tenfold from 0.5 to 0.05 μg/mL in a predictive manner. In addition to enhancing the sensitivity of LFA, this universal concentration method could also be used to improve other detection assays.

  9. NMR investigations of temperature-induced phase transition in aqueous polymer solutions

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří

    2011-01-01

    Roč. 305, č. 1 (2011), s. 18-25 ISSN 1022-1360 R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Keywords : aqueous polymer solutions * cooperative effects * NMR Subject RIV: CD - Macromolecular Chemistry

  10. Catalyst-Free and Highly Selective N,N-Diallylation of Anilines in Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Zhengyin Du

    2013-01-01

    Full Text Available A highly selective diallylation reaction of anilines with allyl bromide was achieved in aqueous alcohol solution in the presence of potassium carbonate and without the use of any catalyst. The reaction tolerates a wide range of functionalities, and various tertiary amines were obtained in the yield of up to 99% with complete conversion of anilines.

  11. Aqueous phase reforming of ethylene glycol - Role of intermediates in catalyst performance

    NARCIS (Netherlands)

    de Vlieger, Dennis; Mojet, Barbara; Lefferts, Leonardus; Seshan, Kulathuiyer

    2012-01-01

    Liquid product formation during the aqueous catalytic reforming of ethylene glycol (EG) was studied up to 450 °C and 250 bar pressure. Methanol, ethanol, and acetic acid were the main liquid by-products during EG reforming in the presence of alumina-supported Pt and Pt–Ni catalysts. The effect of

  12. Phase separation in aqueous polymer solutions as studied by NMR methods

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří

    2005-01-01

    Roč. 222, - (2005), s. 1-13 ISSN 1022-1360. [International Conference on Polymer-Solvent Complexes and Intercalates /5./. Lorient, 11.07.2004-13.07.2004] R&D Projects: GA AV ČR(CZ) IAA4050209 Keywords : aqueous polymer solutions * ionized copolymers * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.913, year: 2005

  13. Enhancement of Lipase Enzyme Activity in Non-Aqueous Media through a Rapid Three Phase Partitioning and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2008-01-01

    Full Text Available Three phase partitioning is fast developing as a novel bio-separation strategy with a wide range of applications including enzyme stability and enhancement of its catalytic activity. pH tuning of enzyme is now well known for use in non-aqueous systems. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. With optimal condition of ammonium sulphate and t-butanol, the protein appeared as an interfacial precipitate between upper t-butanol and lower aqueous phases. In this study we report the results on the lipase which has been subjected to pH tuning and TPP, which clearly indicate the remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. Hence it is shown that microwave irradiation can be used in conjunction with other strategies (like pH tuning and TPP for enhancing initial reaction rates.

  14. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  15. Determination of heavy polycyclic aromatic hydrocarbons by non-aqueous reversed phase liquid chromatography: Application and limitation in refining streams.

    Science.gov (United States)

    Panda, Saroj K; Muller, Hendrik; Al-Qunaysi, Thunayyan A; Koseoglu, Omer R

    2018-01-19

    The heavy polycyclic aromatic hydrocarbons (HPAHs) cause detrimental effects to hydrocracker operations by deactivating the catalysts and depositing in the downstream of the reactor/ exchangers. Therefore, it is essential to continuously monitor the accumulation of HPAHs in a hydrocracker unit. To accurately measure the concentration of HPAHs, the development of a fast and reliable analytical method is inevitable. In this work, an analytical method based on non-aqueous reversed phase chromatography in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was developed. As a first step, five different types of stationary phases were evaluated for the separation of HPAHs in non-aqueous mode and the best suited phase was further used for the fractionation of HPAHs in a fractionator bottom sample obtained from a refinery hydrocracker unit. The eight major fractions or peaks obtained from the separation were further characterized by UV spectroscopy and FT-ICR MS and the compounds in the fractions were tentatively confirmed as benzoperylene, coronene, methylcoronene, naphthenocoronene, benzocoronene, dibenzoperylene, naphthocoronene and ovalene. The developed liquid chromatography method can be easily adapted in a refinery laboratory for the quantitation of HPAHs in hydrocracking products. The method was further tested to check the interference of sulfur aromatics and/or large alkylated aromatic hydrocarbons on the determination of HPAHs in hydrocracking products. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aqueous Two-Phase Systems: A New Approach for the Determination of Brilliant Blue FCF in Water and Food Samples

    Directory of Open Access Journals (Sweden)

    Sabah Shiri

    2013-01-01

    Full Text Available A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of brilliant blue FCF in water and food samples by an aqueous two-phase system (ATPS. In this method, adequate amount of polyethylene glycol/ sodium carbonate (PEG-4000/Na2CO3 was added to aqueous solution for formation of a homogeneous solution. To the mixture solution, suitable amount of Na2CO3 was added, the mixture solution was shaken until the salt was dissolved, and then it was separated into two clear phases easily and rapidly. The target analyte in the water sample was extracted into the polyethylene glycol phase. After extraction, measuring the absorbance at 634 nm was done. The effects of different parameters such as polyethylene glycol (type and concentration, pH, salt (type and amount, centrifuge time, and temperature on the ATPS of dye was investigated and optimum conditions were established. Linear calibration curves were obtained in the range of 0.25–750 ng/mL for brilliant blue FCF under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb was 0.12 ng/mL. The relative standard deviation (RSD for 400 ng/mL was 3.14%. The method was successfully applied to the determination of brilliant blue FCF in spiked samples with satisfactory results. The relative recovery was between 96.0 and 102.2%.

  17. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Scott [Univ of KY, dept of chemical and materials engineering; lynch, Andrew [Univ of KY, dept of chemical and materials engineering; Bachas, Leonidas [Univ of KY, Dept of Chemistry; hampson, Steve [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Ormsbee, Lindelle [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Bhattacharyya, Dibakar [Univ of KY, dept of chemical and materials engineering

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  18. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Directory of Open Access Journals (Sweden)

    M. M. Chim

    2017-12-01

    Full Text Available Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4 droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5 hydroxyl functionalization product (C5H8O5 and a C4 fragmentation product (C4H6O3. These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from

  19. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Science.gov (United States)

    Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.; Berkemeier, Thomas; Shiraiwa, Manabu; Zuend, Andreas; Nin Chan, Man

    2017-12-01

    Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5) hydroxyl functionalization product (C5H8O5) and a C4 fragmentation product (C4H6O3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon-carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the

  20. Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jorge A. Delgado

    2017-03-01

    Full Text Available A series of small and well defined cobalt nanoparticles were synthesized by the chemical reduction of cobalt salts in water using NaBH4 as a reducing agent and using various polymeric stabilizers. The obtained nanocatalysts of similar mean diameters (ca. 2.6 nm were fully characterized and tested in the aqueous phase Fischer-Tropsch Synthesis (AFTS. Interestingly, the nature and structure of the stabilizers used during the synthesis of the CoNPs affected the reduction degree of cobalt and the B-doping of these NPs and consequently, influenced the performance of these nanocatalysts in AFTS.

  1. Liquid-Liquid Equilibria of Aqueous Two-phase Systems Containing Polyethylene Glycol 4000 and Two Different Salts of Ammonium

    OpenAIRE

    G. Khayati; A. Daghbandan, H. Gilvari and N. Pheyz-Sani

    2011-01-01

    The aim of this study was to survey on phase diagrams and Liquid-Liquid Equilibrium (LLE) data of the aqueous PEG4000 - (NH4)2HPO4 and PEG4000 - (NH4)2SO4 systems experimentally at 298.15 K. The salting-out effect was also discussed on the basis of the Gibbs free energy of hydration of ions. The experimental binodal data were satisfactorily correlated with the Merchuk equation. Tie line compositions were correlated using the Othmer-Tobias and Bancroft equations, and the parameters have also r...

  2. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    Science.gov (United States)

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  3. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  4. Catalysis seen in action.

    Science.gov (United States)

    Tromp, Moniek

    2015-03-06

    Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous catalysis are given, including new technique developments. A relevant homogeneous catalyst, used in the industrially important selective oligomerization of ethene, is taken as a worked-out example. Emphasis is placed on time-resolved operando X-ray absorption spectroscopy with outlooks to novel high energy resolution and emission techniques. All experiments described have been or can be done at the Diamond Light Source Ltd (Didcot, UK). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Preface: Catalysis Today

    DEFF Research Database (Denmark)

    Li, Yongdan

    2016-01-01

    This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science and Techn......This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science...... and Technology in Sustainable Energy and Environment, held in Tianjin, China during October8–10, 2014. This biennial symposium offers an international forum for discussing and sharing the cutting-edge researches and the most recent breakthroughs in energy and environmental technologies based on catalysis...

  6. Catalysis induced by radiations

    International Nuclear Information System (INIS)

    Jimenez B, J.; Gonzalez J, J. C.

    2010-01-01

    In Mexico is generated a great quantity of residuals considered as dangerous, for its capacity of corrosion, reactivity, toxicity to the environment, inflammability and biological-infectious potential. It is important to mention that the toxic compounds cannot be discharged to the sewerage systems and much less to the receiving bodies of water. The usual treatment that receives the dangerous residuals is the incineration and the bordering. The incineration is an efficient form of treating the residuals, but it can be dioxins source and benzofurans, being the phenol and chloro phenol the precursors of these compounds. At the present time the radiolytic degradation of organic compounds has been broadly studied, especially the 4-chloro phenol and of same form the photo catalysis of organic compounds. However the combination of both processes, called radio catalysis is barely reported. In this work the results of the experiments realized for to degrade the 4-chloro phenol by means of radio catalysis are reported. (Author)

  7. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  8. Temperature-induced phase transition in aqueous solutions of poly(N-isopropylacrylamide)-based block copolymer

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Dybal, Jiří

    2016-01-01

    Roč. 369, č. 1 (2016), s. 92-96 ISSN 1022-1360. [International IUPAC Conference on Polymer-Solvent Complexes and Intercalates /11./ - POLYSOLVAT-11. Kolkata, 27.01.2016-30.01.2016] R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : aqueous solutions * block copolymers * micelles Subject RIV: CD - Macromolecular Chemistry

  9. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xueqin; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-01

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared

  10. Selective extraction of metal ions from aqueous phase to ionic liquids: a novel thermodynamic approach to separations.

    Science.gov (United States)

    Janssen, Camiel H C; Sánchez, Antonio; Kobrak, Mark N

    2014-11-10

    The selective extraction of metals from aqueous mixtures has generally relied on the use of selective ionophores. We present an alternative strategy that exploits a recently developed approach to extraction into an ionic liquid phase, and show that a high degree of control over selectivity can be obtained by tuning the relative concentrations of extraction agents. A thermodynamic model for the approach is presented, and an experimental separation of strontium and potassium ions is performed. It is shown that tuning the concentrations of the species involved can shift the ratio of potassium to strontium in the ionic liquid phase from 4:1 to 3:4. This extraction is performed under mild conditions with relatively common reagents. The result is a proof-of-concept for a novel separations scheme that could have great importance in a wide range of technological applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Temperature-induced phase separation and hydration in poly(N-vinylcaprolactam) aqueous solutions: a study by NMR and IR spectroscopy, SAXS, and quantum-chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Dybal, Jiří; Starovoytova, Larisa; Zhigunov, Alexander; Sedláková, Zdeňka

    2012-01-01

    Roč. 8, č. 22 (2012), s. 6110-6119 ISSN 1744-683X R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : phase separation * coil-globule phase transition * aqueous solution Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.909, year: 2012

  12. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  13. ZrMn Oxides for Aqueous-Phase Ketonization of Acetic Acid: Effect of Crystal and Porosity.

    Science.gov (United States)

    Wu, Kejing; Yang, Mingde; Hu, Husheng; Liang, Junmei; Wu, Yulong

    2018-03-01

    Aqueous-phase ketonization of bio-based acetic acid is important to improve the conversion efficiency of biomass resources. In this study, ZrMn mixed oxides (ZrMnO x ) with high aqueous-phase ketonization activity are synthetized through a carbonization/oxidation method (COM) and solvothermal method (STM). The results show that ZrMnO x prepared by COM possesses tetragonal ZrO 2 , and hausmannite Mn 3 O 4 is observed only at a high oxidation temperature of 750 °C. Low-temperature and long oxidation results in decreased crystallinity and crystallite size, which is related to highly dispersed Mn n+ species. The catalysts with improved acid sites possess high ketonization activity. Surface areas and pore size of ZrMnO x synthetized by STM are controlled by the solvents for thermal treatment. Compared with water as solvent, ethanol increases the surface area and pore size, resulting in high ketonization activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Catalysis in VOC Abatement

    Czech Academy of Sciences Publication Activity Database

    Ojala, S.; Pitkäaho, S.; Laitinen, T.; Koivikko, N.N.; Brahmi, R.; Gaálová, Jana; Matějová, Lenka; Kucherov, A.; Päivärinta, S.; Hirschmann, Ch.

    2011-01-01

    Roč. 54, 16-18 (2011), s. 1224-1256 ISSN 1022-5528. [Nordic Symposium on Catalysis /14./. Marienlyst, Helsingør, 29.08.2010-31.08.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : voc emissions * voc regulation * effects of VOC's Subject RIV: CC - Organic Chemistry Impact factor: 2.624, year: 2011

  16. Pollution Control by Catalysis

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1998-01-01

    The report summarises the results of two years of collaboration supported by INTAS between Department of Chemistry,DTU,DK , IUSTI,Universite de Provence,FR, ICE/HT University 6of Patras,GR, and Boreskov Institute of Catalysis,RU.The project has been concerned with mechanistic studies of deNOx and...

  17. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  18. Entropy-enthalpy Compensation of Biomolecular Systems in Aqueous Phase: a Dry Perspective.

    Science.gov (United States)

    Movileanu, Liviu; Schiff, Eric A

    2013-01-01

    We survey thermodynamic measurements on processes involving biological macromolecules in aqueous solution, which illustrate well the ubiquitous phenomenon of entropy-enthalpy compensation. The processes include protein folding/unfolding and ligand binding/unbinding, with compensation temperatures varying by about 50 K around an average near 293 K. We show that incorporating both near-exact entropy-enthalpy compensation (due to solvent relaxation) and multi-excitation entropy (from vibrational quanta) leads to a compensation temperature in water of about 230 K. We illustrate a general procedure for subtracting solvent and environment-related terms to determine the bare Gibbs free energy changes of chemical processes.

  19. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Iskra, G.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil Engineering; Szecsody, J.E.; Zachara, J.M.; Streile, G.P. [Pacific Northwest Lab., Richland, WA (United States)

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  20. Redefinition of working aqueous two-phase systems: a generic description for prediction of the effective phase chemical composition for process control and biorecovery.

    Science.gov (United States)

    Selvakumar, Pitchaivelu; Ling, Tau Chuan; Walker, Simon; Lyddiatt, Andrew

    2010-07-01

    Aqueous two-phase systems (ATPS) have been widely adopted for the combined purpose of solid liquid separation, and recovery and purification of bioproducts such as proteins, viruses and organelles from biological feedstocks and fermentation broth. However, in spite of potential advantages over other techniques applied to concentrated biological feedstocks, ATPS have been applied at process scale only by a few industries and research establishments. ATPS are sensitive to loading with modest to extreme quantities of biological feedstock due to the contribution of that material to phase formation in combination with the conventional phase-forming chemicals. This causes problem associated with the definition and manipulation of loaded working systems, which may be addresses as in the present study with the aid of distribution analysis of radiolabel led analytes (DARA) in representative process samples. The present study focussed on establishing a generic description for characterising ATPS loaded with biological feedstocks and the redefinition of the biological feedstock loaded system composition in terms of phase forming chemical equivalents. This evaluation will be useful to achieve ATPS process implementation where phase recycle/reuse is adopted without compromise to process operations and consistent protein recovery performance. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Solid-liquid Phase Equilibria of the Aqueous Systems Containing Lithium, Magnesium and Borate Ions

    Science.gov (United States)

    Song, Yun; Zhao, Dong; Du, Xuemin; Wang, Shiqiang; Guo, Yafei; Deng, Tianlong

    2017-12-01

    It is well known that the phase chemistry is of great importance in the fields of chemistry, chemical engineering, and the separation and purification of minerals from brine. To effectively employ the resources containing lithium, magnesium and borate, the study on phase equilibrium is essential to the comprehensive utilization of the Salt Lake resources. In this paper, progresses on phase equilibria of salt-water systems containing lithium, magnesium and borate were presented.

  2. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive...

  3. Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications

    Science.gov (United States)

    Zhang, Haijie; Chen, Shilu; Zhong, Jie; Zhang, Shaowen; Zhang, Yunhong; Zhang, Xiuhui; Li, Zesheng; Zeng, Xiao Cheng

    2018-03-01

    Sulfate is one of the most important components in the aerosol due to its key role in air pollution and global climate change. Recent work has suggested that reactive nitrogen chemistry in aqueous water can explain the missing source of sulfate in the aqueous water. Herein, we have mapped out the energy profile of the oxidization process of SO2 leading from NO2 and two feasible three-step mechanisms have been proposed. For the oxidation of HOSO2- and HSO3- by the dissolved NO2 in weakly acidic and neutral aerosol (pH ≤ 7), the main contribution to the missing sulfate production comes from the oxidation of HOSO2-. The whole process is a self-sustaining process. For the oxidation of SO32- in alkaline aerosol (pH > 7), the third step - decomposition step of H2O or hydrolysis of SO3 step which are two parallel processes are the rate-limiting steps. The present results are of avail to better understand the missing source of sulfate in the aerosol and hence may lead to better science-based solutions for resolving the severe haze problems in China.

  4. Development of an in vitro system combining aqueous and lipid phases as a tool to understand gastric nitrosation.

    Science.gov (United States)

    Combet, Emilie; Preston, Tom; McColl, Kenneth E L

    2010-03-15

    Nitrite has long been considered a potential pre-carcinogen for gastric cancer. Acidification of salivary nitrite, derived from dietary nitrate, produces nitrosative species such as NOSCN, NO(+) and N(2)O(3), which can form potentially carcinogenic N-nitroso compounds. Ascorbic acid inhibits nitrosation by converting the nitrosative species into nitric oxide (NO). However, NO diffuses rapidly to adjacent lipids, where it reacts with oxygen to reform nitrosative species. Nitrosation has been studied in vitro in aqueous systems and less frequently in organic systems; however, there is a need to investigate acid-catalysed nitrosation in a system combining aqueous and lipid environments, hence providing a physiologically relevant model. Here, we describe a two-phase system, which can be used as a tool to understand acid-catalysed nitrosation. Using gas chromatography/ion trap tandem mass spectrometry, we investigated the nitrosation of secondary amines as a function of the lipid phase composition and reaction mixing. An increased interface surface area was a driver for nitrosation, while incorporation of unsaturated fatty acids affected morpholine and piperidine nitrosation differently. Linoleic acid methyl esters did not affect morpholine nitrosation and only had a limited effect on N-nitrosopiperidine formation, while incorporation of free linoleic acid to the lipid phase significantly reduced N-nitrosopiperidine formation, but increased N-nitrosomorpholine formation at low levels. The mechanisms driving these effects are thought to involve amine partitioning, polarity and unsaturated fatty acids acting as scavengers of nitrosating species, findings relevant to the nitrosative chemistry occurring in the stomach, where the gastric acid meets a range of dietary fats which are emulsified during digestion. Copyright 2010 John Wiley & Sons, Ltd.

  5. Separation of active laccases from Pleurotus sapidus culture supernatant using aqueous two-phase systems in centrifugal partition chromatography.

    Science.gov (United States)

    Schwienheer, C; Prinz, A; Zeiner, T; Merz, J

    2015-10-01

    For the production of bio active compounds, e.g., active enzymes or antibodies, a conserved purification process with a minimum loss of active compounds is necessary. In centrifugal partition chromatography (CPC), the separation effect is based on the different distribution of the components to be separated between two immiscible liquid phases. Thereby, one liquid phase is kept stationary in chambers by a centrifugal field and the mobile phase is pumped through via connecting ducts. Aqueous two phase systems (ATPS) are known to provide benign conditions for biochemical products and seem to be promising when used in CPC for purification tasks. However, it is not known if active biochemical compounds can "survive" the conditions in a CPC where strong shear forces can occur due to the two-phasic flow under centrifugal forces. Therefore, this aspect has been faced within this study by the separation of active laccases from a fermentation broth of Pleurotus sapidus. After selecting a suitable ATPS and operating conditions, the activity yield was calculated and the preservation of the active enzymes could be observed. Therefore, CPC could be shown as potentially suitable for the purification of bio-active compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of storage cell wall polysaccharides from Brazilian legume seeds and the formation of aqueous two-phase systems.

    Science.gov (United States)

    Franco, T T; Rodrigues, N R; Serra, G E; Panegassi, V R; Buckeridge, M S

    1996-05-17

    Cell wall storage polysaccharides from Brazilian legume seeds of Dimorphandra mollis, Schizolobium parahybum (galactomannans), Copaifera langsdorffii, Hymenaea courbaril (xyloglucans) and the galactan from cotyledons of the Mediterranean species Lupinus angustifolius were extracted and their apparent molecular masses were determined by high-performance size exclusion chromatography analysis. They were, to a large degree, polydisperse, showing molecular masses that varied from 100,000 to 2,000,000. Polyethylene glycol (PEG, 1500, 4000, 6000 and 8000), sodium citrate and dextran (73,000, 60,000-90,000, 505,000 and 2,000,000) were used for investigating phase formation with the seed polysaccharides. Galactomannans and xyloglucans demonstrated phase formation with sodium citrate concentrations lower than 30%, as well as dextrans and polyethylene glycol, and formed gels in the presence of high concentrations of sodium citrate (above 30%). Galactan did not promote phase formation with any of the reagents used. On the basis of the results obtained, the possibility of using legume seed polysaccharides for the partitioning and purification of polysaccharide enzymes in aqueous two-phase systems is suggested.

  7. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF).

    Science.gov (United States)

    Li, Xuan; Kim, Tae Hyun; Nghiem, Nhuan P

    2010-08-01

    An integrated bioconversion process was developed to convert corn stover derived pentose and hexose to ethanol effectively. In this study, corn stover was pretreated by soaking in aqueous ammonia (SAA), which retained glucan ( approximately 100%) and xylan (>80%) in the solids. The pretreated carbohydrates-rich corn stover was converted to ethanol via two-phase simultaneous saccharification and fermentation (TPSSF). This single-reactor process employed sequential simultaneous saccharification and fermentation (SSF), i.e. pentose conversion using recombinant Escherichia coli KO11 in the first phase, followed by hexose conversion with Saccharomyces cerevisiae D5A in the second phase. In the first phase, 88% of xylan digestibility was achieved through the synergistic action of xylanase and endo-glucanase with minimal glucan hydrolysis (10.5%). Overall, the TPSSF using 12-h SAA-treated corn stover resulted in the highest ethanol concentration (22.3g/L), which was equivalent to 84% of the theoretical ethanol yield based on the total carbohydrates (glucan+xylan) in the untreated corn stover. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Correlations for the partition behavior of proteins in aqueous two-phase systems

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Andrews, B.A.; Asenjo, J.A.

    1996-01-01

    with 3% w/w NaCl was used for alpha-amylase. The concentration of the protein in each of the phases affected its partition behavior. The pattern for the individual proteins was dependent on their physicochemical properties. In the top phase, maximum protein concentration was determined mainly by a steric...

  9. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas. Phase I. Final Topical Report

    International Nuclear Information System (INIS)

    Constantz, Brent; Seeker, Randy; Devenney, Martin

    2010-01-01

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO 2 to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM(trademark) was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  10. High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    Y. D. Sosa

    2010-01-01

    Full Text Available Silver nanoparticles were precipitated at 70°C in a reverse microemulsion containing a high concentration of 0.5 M silver nitrate aqueous solution, toluene as organic phase, and a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, w/w. Nanoparticles were characterized by X-ray diffraction, atomic absorption spectroscopy, and high-resolution transmission electron microscopy. In spite of the high-water/surfactant molar ratio and concentration of silver nitrate solution used in this study, characterizations demonstrated that nanoparticles were silver crystals (purity >99% with 8.6–8.8 nm in average diameter and 2.9–4.7 nm in standard deviation. It is proposed that slow dosing rate of aqueous solution of precipitating agent and the small molecular volume of toluene attenuated both particle aggregation and polydispersity widening. Experimental yield of silver nanoparticles obtained in this study was much higher than theoretical yields calculated from available data in the literature on preparation of silver nanoparticles in reverse microemulsions.

  11. Solid phase extraction of uranium and thorium on octadecyl bonded silica modified with Cyanex 302 from aqueous solutions

    International Nuclear Information System (INIS)

    Nilchi, A.; Shariati Dehaghan, T.; Rasouli Garmarodi, S.

    2013-01-01

    A simple and reliable method for rapid extraction and determination of uranium and thorium using octadecyl-bonded silica modified with Cyanex 302 is presented. Extraction efficiency and the influence of various parameters such as aqueous phase pH, flow rate of sample solution and amount of extractant has been investigated. The study showed that the extraction of uranium and thorium increase with increasing pH value and was found to be quantitative at pH 6; and the retention of ions was not affected significantly by the flow rate of sample solution. The extraction percent were found to be 89.55 and 86.27 % for uranium and thorium, respectively. The maximal capacity of the cartridges modified by 30 mg of Cyanex 302 was found to be 20 mg of uranium and thorium. The method was successfully applied to the extraction and determination of uranium and thorium in aqueous solutions. The percentage recovery of uranium and thorium in a number of natural as well as seawater samples of Iran were also investigated and found to be in the range of 85-95%. (author)

  12. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    Science.gov (United States)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  13. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.

    Science.gov (United States)

    Zhang, Minmin; Jang, Chang-Hyun

    2015-08-01

    The lipid peroxidation process has attracted much attention because of the growing evidence of its involvement in the pathogenesis of age-related diseases. Herein, we report a simple, label-free method to study the oxidation of phospholipids by the Fenton reaction at the interface between an aqueous phase and immiscible liquid crystals (LCs). The different images produced by the orientation of 4-cyano-4'-pentylbiphenyl (5CB) corresponded to the presence or absence of oxidized 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The oxidation effects of the Fenton reaction on DOPG were evaluated by monitoring the orientational response of liquid crystals upon contact with the oxidized DOPG solutions. DOPG was oxidized into chain-changed products containing hydroxy, carbonyl, or aldehyde groups, resulting in the rearrangement of the phospholipid layer. This induced the orientational transition of LCs from homeotropic to planar states; therefore, a dark to bright optical shift was observed. This shift was due to the Fenton reaction preventing DOPG to induce the orientational alignment of LCs at the aqueous/LC interface. We also used an ultraviolet spectrophotometer to confirm the effects of oxidation on phospholipids by the Fenton reaction. Using this simple method, a new approach for investigating phospholipid oxidation was established with high resolution and easy accessibility. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.

  15. A Novel Aqueous Micellar Two-Phase System Composed of Surfactant and Sorbitol for Purification of Pectinase Enzyme from Psidium guajava and Recycling Phase Components

    Science.gov (United States)

    Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051

  16. Synthesis of nc-UO{sub 2} by controlled precipitation in aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Jovani-Abril, R., E-mail: raqueljovaniabril@gmail.com [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O.Box 2340, D-76125 Karlsruhe (Germany); Gibilaro, M. [Laboratoire de Génie Chimique (LGC), Université de Toulouse, UMR CNRS 5503, 31062 Toulouse cedex 9 (France); Janßen, A.; Eloirdi, R.; Somers, J.; Spino, J.; Malmbeck, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O.Box 2340, D-76125 Karlsruhe (Germany)

    2016-08-15

    Nanocrystalline UO{sub 2} has been produced through controlled precipitation from an electrolytically reduced U(IV) solution. The reduction process of U(VI) to U(IV) was investigated by cyclic voltammetry in combination with absorption spectrophotometry. Precipitation was achieved by controlled alkalinisation following closely the solubility line of U(IV) in aqueous media. The highest starting concentration used was 0.5 M uranylnitrate which yielded, with the equipment used, around 10 g material pro batch. The produced nc-UO{sub 2} was characterised by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and exhibited the typical UO{sub 2+x} fcc fluorite structure with an average crystallite size of 3.9 nm.

  17. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  18. Removal of diethyl phthalate from aqueous phase using magnetic poly(EGDMA-VP) beads.

    Science.gov (United States)

    Özer, Elif Tümay; Osman, Bilgen; Kara, Ali; Beşirli, Necati; Gücer, Seref; Sözeri, Hüseyin

    2012-08-30

    The barium hexaferrite (BaFe(12)O(19)) containing magnetic poly(ethylene glycol dimethacrylate-vinyl pyridine), (mag-poly(EGDMA-VP)) beads (average diameter=53-212 μm) were synthesized and characterized. Their use as an adsorbent in the removal of diethyl phthalate (DEP) from an aqueous solution was investigated. The mag-poly(EGDMA-VP) beads were prepared by copolymerizing of 4-vinyl pyridine (VP) with ethylene glycol dimethacrylate (EGDMA). The mag-poly(EGDMA-VP) beads were characterized by N(2) adsorption/desorption isotherms (BET), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), elemental analysis, scanning electron microscope (SEM) and swelling studies. At a fixed solid/solution ratio, the various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. The maximum DEP adsorption capacity of the mag-poly(EGDMA-VP) beads was determined as 98.9 mg/g at pH 3.0, 25°C. All the isotherm data can be fitted with both the Langmuir and the Dubinin-Radushkevich isotherm models. The pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The thermodynamic parameters obtained indicated the exothermic nature of the adsorption. The DEP adsorption capacity did not change after 10 batch successive reactions, demonstrating the usefulness of the magnetic beads in applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    Science.gov (United States)

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-07

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides

  20. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    Directory of Open Access Journals (Sweden)

    L. Yu

    2016-04-01

    Full Text Available Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C∗ and hydroxyl radical (•OH. Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC are monitored using an online aerosol mass spectrometer (AMS. Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to  ∼  2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule and fragmentation (i.e., breaking of covalent bonds become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗ of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C

  1. Optimization of aqueous enzymatic oil extraction from kernel of oil palm (elaeis guineensis) using three phase partitioning and microwave

    International Nuclear Information System (INIS)

    Saifuddin, N.

    2006-01-01

    The use of microwave irradiation as a pretreatment before aqueous enzymatic oil extraction from oil palm kernel was found to be useful. The microwave irradiation for 10 min -assisted extraction was found to be a simpler and more effective alternative to the solvent extraction methods for the productions of palm kernel oil. Further enhancement was achieved when the microwave irradiated slurries were treated with a commercial enzyme preparation of proteases, followed by three phase partitioning. This resulted in 93% (w/w) oil yields form the palm kernel. The efficiency of the present technique is comparable to solvent extraction with an added advantage of being less time consuming and using t-butanol which is a safer solvent as compared to n-hexane used in conventional oil extraction process. The technique also tries to reduce the amount of enzyme used and hence reduces the overall cost. (author)

  2. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Aqueous-Phase Catalytic Chemical Reduction of p-Nitrophenol Employing Soluble Gold Nanoparticles with Different Shapes

    Directory of Open Access Journals (Sweden)

    Francyelle Moura de Oliveira

    2016-12-01

    Full Text Available Gold nanoparticles with different shapes were prepared and used as catalysts in the reduction of p-nitrophenol (PNP in the aqueous phase and in the presence of sodium borohydride (NaBH4. Parameters such as the reaction temperature, substrate/NaBH4 molar ratio, and substrate/gold molar ratio were tested and evaluated. In this paper, we compare the catalytic reactivities of gold nanorods (AuNRs and gold nanospheres (AuNSs, both synthesized by the seed-mediated method in the presence of cetyltrimethyl ammonium bromide (CTAB. Physical-chemical parameters such as the apparent rate constant (kapp and activation energy (Ea of the reactions were obtained for both systems. We observed that the catalytic system based on AuNRs is the most active. These colloidal dispersions were investigated and fully characterized by ultraviolet-visible absorption spectroscopy (UV–Vis and transmission electron microscopy (TEM.

  4. Stereochemical control of nonamphiphilic lyotropic liquid crystals: chiral nematic phase of assemblies separated by six nanometers of aqueous solvents.

    Science.gov (United States)

    Yang, Sijie; Wang, Bing; Cui, Dawei; Kerwood, Deborah; Wilkens, Stephan; Han, Junjie; Luk, Yan-Yeung

    2013-06-13

    Unlike conventional thermotropic and lyotropic liquid crystals, nonamphiphilic lyotropic liquid crystals consist of hydrated assemblies of nonamphiphilic molecules that are aligned with a separation of about 6 nm between assemblies in an aqueous environment. This separation raises the question of how chirality, either from chiral mesogens or chiral dopants, would impact the phase as the assemblies that need to interact with each other are about 6 nm apart. Here, we report the synthesis of three stereoisomers of disodium chromonyl carboxylate, 5'DSCG-diviol, and the correlation between the molecular structure, bulk assembly, and liquid crystal formation. We observed that the chiral isomers (enantiomers 5'DSCG-(R,R)-diviol and 5'DSCG-(S,S)-diviol) formed liquid crystals while the achiral isomer 5'DSCG-meso-diviol did not. Circular dichroism indicated a chiral conformation with bisignate cotton effect. The nuclear Overhauser effect in proton NMR spectroscopy revealed conformations that are responsible for liquid crystal formation. Cryogenic transmission electron microscopy showed that chiral 5'DSCG-diviols form assemblies with crossings. Interestingly, only planar alignment of the chiral nematic phase was observed in liquid crystal cells with thin spacers. The homeotropic alignment that permitted a fingerprint texture was obtained only when the thickness of the liquid crystal cell was increase to above ~500 μm. These studies suggest that hydrated assemblies of chiral 5'DSCG-diviol can interact with each other across a 6 nm separation in an aqueous environment by having a twist angle of about 0.22° throughout the sample between the neighboring assemblies.

  5. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  6. Catalysis and biocatalysis program

    Science.gov (United States)

    Ingham, J. D.

    1993-01-01

    This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.

  7. Study of surface activity of piroxicam at the interface of palm oil esters and various aqueous phases.

    Science.gov (United States)

    Abdulkarim, Muthanna Fawzy; Abdullah, Ghassan Zuhair; Chitneni, Mallikarjun; Yam, Mun Fei; Mahdi, Elrashid Saleh; Salman, Ibrahim Muhammad; Ameer, Omar Ziad; Sattar, Munavvar Abdul; Basri, Mahiran; Noor, Azmin Mohd

    2012-04-01

    The surface activity of some non-steroidal anti-inflammatory agents like ibuprofen was investigated extensively. This fact has attracted the researchers to extend this behavior to other agents like piroxicam. Piroxicam molecules are expected to orient at the interface of oil and aqueous phase. The aim of this study was, firstly, to assess the surface and interfacial tension behaviour of newly synthesised palm oil esters and various pH phosphate buffers. Furthermore, the surface and interfacial tension activity of piroxicam was studied. All the measurements of surface and interfacial tension were made using the tensiometer. The study revealed that piroxicam has no effect on surface tension values of all pH phosphate buffers and palm oil esters. Similarly, various concentrations of piroxicam did not affect the interfacial tensions between the oil phase and the buffer phases. Accordingly, the interfacial tension values of all mixtures of oil and phosphate buffers were considerably high which indicates the immiscibility. It could be concluded that piroxicam has no surface activity. Additionally, there is no surface pressure activity of piroxicam at the interface of plam oil esters and phosphate buffers in the presence of Tweens and Spans.

  8. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    Science.gov (United States)

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Isolation of a Aspergillus niger lipase from a solid culture medium with aqueous two-phase systems.

    Science.gov (United States)

    Marini, Analía; Imelio, Natalia; Picó, Guillermo; Romanini, Diana; Farruggia, Beatriz

    2011-07-15

    The aim of this work is to find the best conditions to isolate lipase from a solid culture medium of Aspergillus niger NRRL3 strains using aqueous two-phase systems formed with polyethylene glycol and potassium phosphate or polyethylene glycol and sodium citrate. We studied the partitioning of a commercial lyophilizate from A. niger. Also, the lipase enzymatic activity was studied in all the phases of the systems and the results indicate that citrate anion increases lipase activity. An analysis by fluorescence spectroscopy of the interaction between lipase and the bottom and top phases of the systems shows that the protein tryptophan-environments are modified by the presence of PEG and salts. Separation of the enzyme from the rest of the proteins that make up the lyophilized was achieved with good yield and separation factor by ATPS formed by PEG 1000/Pi at pH 7, PEG 2000/Ci at pH 5.2 and PEG 4000/Ci at pH 5.2. The above mentioned systems were used in order to isolate extracellular lipase from a strain of A. niger in submerged culture and solid culture. The best system for solid culture, with high purification factor (30.50), is the PEG 4000/Ci at pH 5.2. The enzyme was produced in a solid culture medium whose production is simple and recovered in a phase poor in polymer, bottom phase. An additional advantage is that the citrate produces less pollution than the phosphate. This methodology could be used as a first step for the isolation of the extracellular lipase from A. niger. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Thermal conductivity and phase-change properties of aqueous alumina nanofluid

    International Nuclear Information System (INIS)

    Teng, Tun-Ping

    2013-01-01

    Highlights: ► The alumina nanofluid with chitosan was produced by two-step synthesis method. ► The k and phase-change properties of alumina nanofluid were examined. ► Adding Al 2 O 3 nanoparticles into water indeed improves the k. ► Adding the chitosan decreases the thermal conductivity of alumina nanofluid. ► The T cp and h c are 53.4% and 97.8% of those in DW with the optimal combination. - Abstract: This study uses thermal conductivity and differential scanning calorimeter experiments to explore the thermal conductivity and phase-change properties of alumina (Al 2 O 3 )–water nanofluid produced using a two-step synthesis method. Deionized water (DW) is used as a control group, and the Al 2 O 3 –water nanofluid uses chitosan as a dispersant. Nanoparticle morphology and materials were confirmed using transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. The results show that adding Al 2 O 3 nanoparticles to DW improves DW thermal conductivity, but adding chitosan reduces the thermal conductivity of Al 2 O 3 –water nanofluid. Adding the nanoparticles to DW affects the phase-change peak temperature and phase change heat. The optimal combination is 0.1 wt.% chitosan and 0.5 wt.% Al 2 O 3 nanoparticles; the charging phase-change peak temperature and latent heat are 53.4% and 97.8% of those in DW, respectively

  11. Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution

    International Nuclear Information System (INIS)

    Na Liu; Yanfei Wang; Chuhua He

    2016-01-01

    A simple and reliable method for solid phase extraction of thorium using tetraphenylimidodiphosphinate is presented. The solid phase extraction process was optimized at equilibrium time 3 h, pH = 4.5, initial concentration 30 mg L -1 and extractant dosage 0.01 g with 98.95 % of removal efficiency and 29.68 mg g -1 of adsorption capacity. The interfering ions experiments indicated that it had almost no effect on thorium adsorption. Kinetics data follow the pseudo-first-order model and equilibrium data agreed with the Langmuir isotherm model very well. FT-IR analysis indicated that imino group and phosphoryl acted as the significant roles in the solid phase extraction process. (author)

  12. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.

    Science.gov (United States)

    Davis, B M; Istok, J D; Semprini, L

    2002-09-01

    Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment

  13. Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514

    Directory of Open Access Journals (Sweden)

    Sreethar Swaathy

    2014-12-01

    Full Text Available The present study emphasizes the biosurfactant mediated anthracene degradation by a marine alkaliphile Bacillus licheniformis (MTCC 5514. The isolate, MTCC 5514 degraded >95% of 300 ppm anthracene in an aqueous medium within 22 days and the degradation percentage reduced significantly when the concentration of anthracene increased to above 500 ppm. Naphthalene, naphthalene 2-methyl, phthalic acid and benzene acetic acid are the products of degradation identified based on thin layer chromatography, high performance liquid chromatography, gas chromatography and mass analyses. It has been observed that the degradation is initiated by the biosurfactant of the isolate for solubilization through micellation and then the alkali pH and intra/extra cellular degradative enzymes accomplish the degradation process. Encoding of genes responsible for biosurfactant production (licA3 as well as catabolic reactions (C23O made with suitable primers designed. The study concludes in situ production of biosurfactant mediates the degradation of anthracene by B. licheniformis.

  14. Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase.

    Science.gov (United States)

    Sinha, Tanur; Ahmaruzzaman, M

    2015-12-01

    The present work reports the utilization of a common household waste material (fish scales of Labeo rohita) for the synthesis of copper nanoparticles. The method so developed was found to be green, environment-friendly, and economic. The fish scale extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates, and solvents. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of nanoparticles have also been presented. The synthesized copper nanoparticles formed were predominantly spherical in nature with an average size of nanoparticles in the range of 25-37 nm. The copper nanoparticles showed characteristic Bragg's reflection planes of fcc which was supported by both selected area electron diffraction and X-ray diffraction pattern and showed surface plasmon resonance at 580 nm. Moreover, the energy dispersive spectroscopy pattern also revealed the presence of only elemental copper in the copper nanoparticles. The prepared nanoparticles were used for the remediation of a carcinogenic and noxious textile dye, Methylene blue, from aqueous solution. Approximately, 96 % degradation of Methylene blue dye was observed within 135 min using copper nanoparticles. The probable mechanism for the degradation of the dye has been presented, and the degraded intermediates have been identified using the liquid chromatography-mass spectroscopy technique. The high efficiency of nanoparticles as photocatalysts has opened a promising application for the removal of hazardous dye from industrial effluents contributing indirectly to environmental cleanup process.

  15. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

    Science.gov (United States)

    Liu, Jiewei; Chen, Lianfen; Cui, Hao; Zhang, Jianyong; Zhang, Li; Su, Cheng-Yong

    2014-08-21

    This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.

  16. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.; Thibault, S.; Town, R.M.

    2012-01-01

    The dynamic sorption of an organic compound by nanoparticles (NPs) is analyzed by solid-phase microextraction (SPME) for the example case of the pharmaceutical diclofenac in dispersions of impermeable (silica, SiO(2)) and permeable (bovine serum albumin, BSA) NPs. It is shown that only the

  17. Catalyst screening for the hydrothermal gasification of aqueous phase of bio-oil

    NARCIS (Netherlands)

    Chakinala, A.G.; Chinthaginjala, J.K.; Seshan, Kulathuiyer; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2012-01-01

    The catalytic gasification in supercritical water of the water soluble fraction of bio-oil, either obtained directly by phase-separated pyrolysis-oil from ligno-cellulosic biomass or by hydrotreatment of that oil, is reported in this study. Several heterogeneous metal catalysts Pt, Pd, Ru, Rh, and

  18. Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2017-09-01

    Full Text Available A fast and efficient method based on a polyethylene glycol (PEG 600/(NH42SO4 aqueous two-phase system for extracting lectin from Zihua snap-bean (Phaseolus vulgaris seeds was established. According to a Box–Behnken design (BBD, involving four factors at three levels each subjected to analysis of variance (ANOVA and response surface analysis, the protein recovery and the purification factor of lectin in the top phase were used as the response values of the variance analysis to acquire the multivariate quadratic regression model. SDS–PAGE electrophoresis and the hemagglutination test were used to detect the distribution of lectin in the aqueous two-phase system (ATPS. The obtained data indicated that lectin was preferentially partitioned into the PEG-rich phase, and the ATPS, composed of 15% (NH42SO4 (w/w, 18% PEG 600 (w/w, 0.4 g/5 g NaCl and 1 mL crude extract, showed good selectivity for lectin when the pH value was 7.5. Under the optimal conditions, most of the lectin was assigned to the top phase in the ATPS, and the hemagglutination activity of the purified lectin in the top phase was 3.08 times that of the crude extract. Consequently, the PEG 600/(NH42SO4 aqueous two-phase system was an effective method for separating and enriching lectin directly from the crude extract of Zihua snap-bean seeds.

  19. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    Science.gov (United States)

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  20. Combination of size selective binding ability of 18-crown-6 dissolved in aqueous phase and extractive properties of an amic acid; toward enhancement of rare earths separation

    International Nuclear Information System (INIS)

    Safarbali, Reyhaneh; Yaftian, Mohammad Reza; Ghorbanloo, Massomeh; Zamani, Abbasali

    2016-01-01

    The separation of La(III), Eu(III) and Er(III) ions by an amic acid, N,N-dioctyldiglycolamic acid (HL), dissolved in carbon tetrachloride has been improved in the presence of 18-crown-6 (18C6) in aqueous phase as a selective masking agent. The interaction between the studied metal ions and 18C6 resulted a shift in the extraction curve of the studied metal ions versus pH toward higher pH region. The displacement of the extraction curves was more pronounced for lanthanum ions and was varied as La(III) > Eu(III) > Er(III). This order of complexing ability of 18C6 toward the studied ions was attributed to the size adaptation of the ions and that of the crown ether cavity. The stability constants of the lanthanide-crown ether complexes in aqueous phase were evaluated. The influence of temperature on the extraction of studied metal ions from aqueous phase in the absence and the presence of 18C6 was tested in the range 298-308 K. This investigation allowed evaluating the thermodynamic parameters associated with the extraction process and those of the complexation of cations by 18C6 in the aqueous phase.

  1. Characterisation of UV-cured acrylate networks by means of hydrolysis followed by aqueous size-exclusion combined with reversed-phase chromatography

    NARCIS (Netherlands)

    Peters, R.; Litvinov, V. M.; Steeman, P.; Dias, A. A.; Mengerink, Y.; van Benthem, R.; de Koster, C. G.; van der Wal, S. J.; Schoenmakers, P.

    2007-01-01

    UV-cured networks prepared from mixtures of di-functional (polyethylene-glycol di-acrylate) and mono-functional (2-ethylhexyl acrylate) acrylates were analysed after hydrolysis, by aqueous size-exclusion chromatography coupled to on-line reversed-phase liquid-chromatography. The mean network density

  2. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  3. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    International Nuclear Information System (INIS)

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-01-01

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  4. Modelling mass transfer during venting/soil vapour extraction: Non-aqueous phase liquid/gas mass transfer coefficient estimation

    Science.gov (United States)

    Esrael, D.; Kacem, M.; Benadda, B.

    2017-07-01

    We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.

  5. A method of estimating multicomponent nonaqueous-phase liquid mass in porous media using aqueous concentration ratios.

    Science.gov (United States)

    Devlint, J F; Barbaro, J R

    2001-11-01

    A simple dissolution model based on Raoult's Law was used to derive a log-linear equation for the estimation of multicomponent nonaqueous-phase liquid (NAPL) mass in porous media. The analysis, referred to here as the ratio mass estimation (RME) method, requires aqueous concentration ratios for two components of the NAPL mixture as well as their pure phase liquid solubilities. Application of the equation using data from a previously reported column experiment, in which 1.22 g of a benzene/toluene NAPL were flushed with water, yielded an estimate of 1.2 g of NAPL. In addition, data from two in situ field column experiments of gasoline dissolution were examined. In those experiments, three ratio pairs, benzene/toluene, ethylbenzene/toluene, and ethylbenzene/benzene, were considered from each cell, and the initial NAPL masses were estimated to be between 39 and 42 kg NAPL, within 30% of the true NAPL masses of 54 kg in each cell. Finally, data from the flushing of a controlled release of chlorinated solvents (chloroform, trichloroethene, and tetrachloroethene) inside a sheet pile cell were examined, and the initial NAPL mass was estimated to within 15% of the true value. The RME analysis is based on several simplifying assumptions and should be used with caution. However, this work shows it to be potentially useful under conditions that might be encountered at sites. The analysis is simple and based on data that are often collected routinely.

  6. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Andre O. [Instituto Nacional de Tecnologia/MCT, Laboratorio de Catalise, Av. Venezuela 82/507, Rio de Janeiro/RJ 22081-312 (Brazil); Instituto Militar de Engenharia, Praca General Tiburcio, 80 Praia Vermelha, Rio de Janeiro/RJ 22290-270 (Brazil); Rodrigues, Michelly T.; Zimmaro, Adriana; Fraga, Marco A. [Instituto Nacional de Tecnologia/MCT, Laboratorio de Catalise, Av. Venezuela 82/507, Rio de Janeiro/RJ 22081-312 (Brazil); Borges, Luiz E.P. [Instituto Militar de Engenharia, Praca General Tiburcio, 80 Praia Vermelha, Rio de Janeiro/RJ 22290-270 (Brazil)

    2011-02-15

    Aqueous-phase reforming of oxygenated hydrocarbons for hydrogen production presents several advantages as feed molecules can be easily found in a wide range of biomass, there is no need for its vaporization and the process allows thorough exploitation of the environmental benefits of using hydrogen as an energy carrier. The use of glycerol in particular is motivated due to its availability as a consequence of increasing biodiesel production worldwide. In this contribution, the performance of Pt-based catalysts supported on different oxides (Al{sub 2}O{sub 3}, ZrO{sub 2}, MgO and CeO{sub 2}) is studied on glycerol reforming. All catalysts led to a hydrogen-rich gas phase. However, a good potential activity with high production of hydrogen and low concentration of undesired hydrocarbons was accomplished over the catalysts supported on MgO and ZrO{sub 2}. The high electron donating character of such oxides indicates the influence of the nature of the support in catalytic performance for glycerol reforming. (author)

  7. An efficient aqueous two phase systems using dual inorganic electrolytes to separate 1,3-propanediol from the fermented broth.

    Science.gov (United States)

    Vivek, Narisetty; Pandey, Ashok; Binod, Parameswaran

    2018-04-01

    An aqueous two phase extraction using K 2 CO 3 :K 2 HPO 4 /Isoproponal was investigated for the recovery of 1,3-propanediol from the fermented broth. Initially, the concentration of K 2 CO 3 on phase formation, the partition co-efficient and recovery of 1,3-PDO was evaluated with a optimum salt concentration of 60%. Later the partition co-efficient was improved using dual inorganic salts, K 2 CO 3 and K 2 HPO 4 with an optimum concentration of 45% and 15% respectively. Using Central Composite Design, pH and temperature on partition and recovery of 1,3-PDO was evaluated. With the optimized physical conditions and inorganic salts concentration, ATPS extraction was carried out in synthetic solution as well as fermented broth resulting in maximum 1,3-PDO partition co-efficient value of 42.46 and 56.93 and recovery yield of 97.69 and 98.27% respectively. A fair partition was observed with organic acids and 1,3-PDO, with removal of lactic acid and acetic acid up to 93.29 and 90.42% respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design

    Directory of Open Access Journals (Sweden)

    Francine Silva Antelo

    2015-02-01

    Full Text Available C-phycocyanin from Spirulina platensis was purified in aqueous two-phase systems (ATPS of polyethylene glycol (PEG/potassium phosphate, varying the molar mass of the PEG. Results using a full factorial design showed that an increase in the concentration of salt and decrease in the concentration of PEG caused an increment in the purification factor for all the ATPS studied. Optimization of the conditions of the purification was studied using a central composite rotatable design for each molar mass of PEG. The ATPS composed of 7% (w/w PEG 1500 or 4% (w/w PEG 8000 (g/gmol and 23 or 22.5% (w/w of phosphate resulted a purification factor of 1.6-fold for C-phycocyanin, with total and 57% recovery, respectively. Process conditions were optimized for the purification factor for the system with PEG 1500. The ATPS with 4% (w/w PEG 4000 or 4% (w/w PEG 6000 and 21% (w/w phosphate resulted purification factors of 2.1 and 2.2-fold, recovering 100% and 73.5%, respectively of C-phycocyanin in the top phase.

  9. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    Science.gov (United States)

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  10. Hybrid Nanocomposite Films Comprising Dispersed VO2Nanocrystals: A Scalable Aqueous-Phase Route to Thermochromic Fenestration.

    Science.gov (United States)

    Fleer, Nathan A; Pelcher, Kate E; Zou, Jian; Nieto, Kelly; Douglas, Lacey D; Sellers, Diane G; Banerjee, Sarbajit

    2017-11-08

    Buildings consume an inordinate amount of energy, accounting for 30-40% of worldwide energy consumption. A major portion of solar radiation is transmitted directly to building interiors through windows, skylights, and glazed doors where the resulting solar heat gain necessitates increased use of air conditioning. Current technologies aimed at addressing this problem suffer from major drawbacks, including a reduction in the transmission of visible light, thereby resulting in increased use of artificial lighting. Since currently used coatings are temperature-invariant in terms of their solar heat gain modulation, they are unable to offset cold-weather heating costs that would otherwise have resulted from solar heat gain. There is considerable interest in the development of plastic fenestration elements that can dynamically modulate solar heat gain based on the external climate and are retrofittable onto existing structures. The metal-insulator transition of VO 2 is accompanied by a pronounced modulation of near-infrared transmittance as a function of temperature and can potentially be harnessed for this purpose. Here, we demonstrate that a nanocomposite thin film embedded with well dispersed sub-100-nm diameter VO 2 nanocrystals exhibits a combination of high visible light transmittance, effective near-infrared suppression, and onset of NIR modulation at wavelengths <800 nm. In our approach, hydrothermally grown VO 2 nanocrystals with <100 nm diameters are dispersed within a methacrylic acid/ethyl acrylate copolymer after either (i) grafting of silanes to constitute an amorphous SiO 2 shell or (ii) surface functionalization with perfluorinated silanes and the use of a perfluorooctanesulfonate surfactant. Homogeneous and high optical quality thin films are cast from aqueous dispersions of the pH-sensitive nanocomposites onto glass. An entirely aqueous-phase process for preparation of nanocrystals and their effective dispersion within polymeric nanocomposites allows

  11. Phase equilibrium of (CO2 + 1-aminopropyl-3-methylimidazolium bromide + water) electrolyte system and effects of aqueous medium on CO2 solubility: Experiment and modeling

    International Nuclear Information System (INIS)

    Chen, Ying; Guo, Kaihua; Bi, Yin; Zhou, Lan

    2017-01-01

    Highlights: • Phase and chemical equilibrium data for (CO 2 + [APMIm]Br + H 2 O) electrolyte system. • A modified eNRTL model for CO 2 solubility in the amino-based IL aqueous solution. • Effects of aqueous medium on both chemical and physical dissolution of CO 2 . • The correlative coefficient, R s ∗ , for the Henry’s constant of the solution. • New parameters for the segments interaction and the chemical equilibrium constants. - Abstract: New experimental data for solubility of carbon dioxide (CO 2 ) in the aqueous solution of 1-aminopropyl-3-methylimidazolium bromide ([APMIm]Br) with four different water mass fractions (0.559, 0.645, 0.765 and 0.858) at T = (278.15–348.15) K with an interval of T = 10 K and p = (0.1237–6.9143) MPa were presented. The electrolyte nonrandom two-liquid (eNRTL) model was modified to be applicable for an ionic liquid (IL) aqueous solution system, by introducing an idle factor β to illustrate the association effect of IL molecules. A solution Henry’s constant for CO 2 solubility in the IL aqueous solution was defined by introducing a correlative coefficient R s ∗ . The vapor-liquid phase equilibrium of the [APMIm]Br-H 2 O-CO 2 ternary system was successfully calculated with the modified eNRTL model. The chemical and physical mechanisms for the ionized CO 2 formation and the molecular CO 2 dissolved in the solution were identified. The effects of aqueous medium on both chemical and physical dissolution of CO 2 in the [APMIm]Br aqueous solution were studied, and a considerable enhancement of the solubility of CO 2 with increase of the water content in the solution was observed.

  12. The extraction of Zn(II in aqueous PEG (1550 – (NH42SO4 two-phase system using Cl– ions as extracting agent

    Directory of Open Access Journals (Sweden)

    DUMITRU BULGARIU

    2007-03-01

    Full Text Available The extraction of Zn(II in an aqueous PEG (1550 – (NH42SO4 two-phase system as a function of several experimental parameters was studied. PEG-based aqueous two-phase systems are composed of two immiscible phases: a polymer-rich phase and a salt-rich phase, which can be used for extraction experiments. In the absence of a suitable extracting agent, for the system consisting of a mixture of equal volumes of 40 mass% PEG and 40 mass% (NH42SO4 aqueous solutions, Zn(II remained predominantly in the salt-rich phase. Variation of the pH of the salt stock solution did not change very much the extraction efficiency. By adding chloride ions, an enhancement of the Zn(II extraction was observed. The Zn(II extraction efficiency in presence of Cl- depends on the acidity of the salt stock solution and on the concentration of chloride ions added into the system.

  13. Metallic nanosystems in catalysis

    International Nuclear Information System (INIS)

    Bukhtiyarov, Valerii I; Slin'ko, Mikhail G

    2001-01-01

    The reactivities of metallic nanosystems in catalytic processes are considered. The activities of nanoparticles in catalysis are due to their unique microstructures, electronic properties and high specific surfaces of the active centres. The problems of increasing the selectivities of catalytic processes are discussed using several nanosystems as examples. The mutual effects of components of bimetallic nanoparticles are discussed. The prospects for theoretical and experimental investigations into catalytic nanosystems and the construction of industrial catalysts based on them are evaluated. The bibliography includes 207 references.

  14. Concepts in Heterogeneous Catalysis

    Science.gov (United States)

    1974-06-01

    Cordew, (;, Paw anW C, T. H. Stoddart , J. Am, Chem. Soc,, 3 6272 (1960). 919R. L. Burwell, G, L. Hailer, K. C, Taylor. and J. F. Read, Advances in...1969). Burwell, R. L., A. B. Littlewood, M. Cordew, G. Pass, and C. T. H. Stoddart , J. Am, Chem. Soc., 82 (1960). Burwell, R, L. and C. J. Loner, Proc... Hannah , Ed., ACS Monograph 140, chapter 14, Reinhold, New York 1959. Moro.oka, Y., Y. Morikawa, and A. Osaki, J. Catalysis, 7 (1967). Moro.oka, Y. and A

  15. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms.

    Science.gov (United States)

    Bentley, Fiona K; Melis, Anastasios

    2012-01-01

    Photosynthesis for the generation of fuels and chemicals from cyanobacteria and microalgae offers the promise of a single host organism acting both as photocatalyst and processor, performing sunlight absorption and utilization, as well as CO(2) assimilation and conversion into product. However, there is a need to develop methods for generating, sequestering, and trapping such bio-products in an efficient and cost-effective manner that is suitable for industrial scale-up and exploitation. A sealed gaseous/aqueous two-phase photobioreactor was designed and applied for the photosynthetic generation of volatile isoprene (C(5)H(8)) hydrocarbons, which operates on the principle of spontaneous diffusion of CO(2) from the gaseous headspace into the microalgal or cyanobacterial-containing aqueous phase, followed by photosynthetic CO(2) assimilation and isoprene production by the transgenic microorganisms. Volatile isoprene hydrocarbons were emitted from the aqueous phase and were sequestered into the gaseous headspace. Periodic replacement (flushing) of the isoprene (C(5)H(8)) and oxygen (O(2)) content of the gaseous headspace with CO(2) allowed for the simultaneous harvesting of the photoproducts and replenishment of the CO(2) supply in the gaseous headspace. Reduction in practice of the gaseous/aqueous two-phase photobioreactor is offered in this work with a fed-batch and a semi-continuous culturing system using Synechocystis sp. PCC 6803 heterologously expressing the Pueraria montana (kudzu) isoprene synthase (IspS) gene. Constitutive isoprene production was observed over 192 h of experimentation, coupled with cyanobacterial biomass accumulation. The diffusion-based process in gaseous/aqueous two-phase photobioreactors has the potential to be applied to other high-value photosynthetically derived volatile molecules, emanating from a variety of photosynthetic microorganisms. Copyright © 2011 Wiley Periodicals, Inc.

  16. Radical mechanisms of methyl vinyl ketone oligomerization through aqueous phase OH-oxidation: on the paradoxical role of dissolved molecular oxygen

    Directory of Open Access Journals (Sweden)

    P. Renard

    2013-07-01

    Full Text Available It is now accepted that one of the important pathways of secondary organic aerosol (SOA formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. Methyl vinyl ketone (MVK was chosen in the present study as it is an α,β-unsaturated carbonyl that can undergo radical oligomerization in the aerosol aqueous phase. We present here experiments on the aqueous phase OH-oxidation of MVK, performed under various conditions. Using NMR and UV absorption spectroscopy, high and ultra-high resolution mass spectrometry, we show that the fast formation of oligomers up to 1800 Da is due to radical oligomerization of MVK, and 13 series of oligomers (out of a total of 26 series are identified. The influence of atmospherically relevant parameters such as temperature, initial concentrations of MVK and dissolved oxygen are presented and discussed. In agreement with the experimental observations, we propose a chemical mechanism of OH-oxidation of MVK in the aqueous phase that proceeds via radical oligomerization of MVK on the olefin part of the molecule. This mechanism highlights in our experiments the paradoxical role of dissolved O2: while it inhibits oligomerization reactions, it contributes to produce oligomerization initiator radicals, which rapidly consume O2, thus leading to the dominance of oligomerization reactions after several minutes of reaction. These processes, together with the large range of initial concentrations investigated show the fundamental role that radical oligomerization processes likely play in polluted fogs and atmospheric aerosol.

  17. Comparative study of hollow-fiber liquid-phase micro-extraction and an aqueous two-phase system for determination of phytohormones in soil.

    Science.gov (United States)

    Dong, She Ying; Yang, Zhen; Zhang, Penghui H; Hu, Qing; Huang, Ting Lin

    2012-06-01

    Two methods, hollow-fiber liquid-phase micro-extraction (HF-LPME) and an aqueous two-phase system (ATPS), have been systematically optimized and compared for extraction and determination of phytohormones in soil by high-performance liquid chromatography (HPLC). The effects on extraction of conditions including solvent type and volume, extraction time, temperature, and amount of salt were evaluated. It was shown that ATPS was superior to HF-LPME for determination of paclobutrazol and uniconazole under the optimum conditions. The limits of detection (LODs) of ATPS were 0.002 μg g(-1) for uniconazole and 0.01 μg g(-1) for paclobutrazol, whereas LODs of HF-LPME were 0.005 μg g(-1) and 0.03 μg g(-1), respectively. Relative standard deviations (RSDs, n=5) and recovery were in the range 1.7-5.3 % and 86-102 %, respectively, for ATPS and 6.7-7.9 % and 40-60 % for HF-LPME. In addition, the advantages of ATPS were shorter extraction time, suitable for simultaneous pretreatment of batches of samples, and higher extraction capacity. ATPS was therefore applied to the determination of paclobutrazol and uniconazole in real soil samples. Uniconazole was detected in all the samples analyzed whereas paclobutrazol was not found.

  18. Comparison of iso-eluotropic mobile phases at different temperatures for the separation of triacylglycerols in Non-Aqueous Reversed Phase Liquid Chromatography.

    Science.gov (United States)

    Hmida, Dorra; Abderrabba, Manef; Tchapla, Alain; Héron, Sylvie; Moussa, Fathi

    2015-05-15

    Triacylglycerols (TAGs) are a large class of neutral lipids that naturally occur in both plant and animal oils and fats. Their analyses in Non-Aqueous Reversed Phase Liquid Chromatography (NARP) require a mixture of weak solvent (mostly acetonitrile) and strong solvent. In the present work, we have established eluotropic solvent strength scale of several binary mobile phases on C18 bonded silica at different temperatures (acetonitrile/methylene chloride, acetonitrile/acetone, acetonitrile/ethyl acetate, acetonitrile/propan-2-ol, and acetonitrile/butan-1-ol at 25°C, 43°C, 63°C and 85°C); it is based on the methylene selectivity and the use of homologous series. We show that this scale is well suited to the TAGs analysis. The analysis of nine seed oils (Aleurites fordii, Calophyllum inophyllum, Glycina max, Olea europea, Orbignya olifeira, Pinus koraiensis, Pistacia lentiscus, Punica granatum and Ribes nigrum) in iso-eluotropic conditions leads to propose unambiguously the couple MeCN/BuOH at 25°C as the best system to separate TAGs. The use of butanol, as strong solvent, provides very good TAGs congeners separations and avoids the use of chlorinated solvents which gave to this day the best separations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  20. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  1. The role of a detailed aqueous phase source release model in the LANL Area G performance assessment

    International Nuclear Information System (INIS)

    Vold, E.L.; Hollis, D.; Longmire, P.; Springer, E.; Birdsell, K.; Shuman, R.

    1996-01-01

    The Performance Assessment for the LANL Low-Level Radioactive Waste (LLRW) Disposal Facility, Area G, is on-going. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase aqueous transport from the waste package volumes. Inventory is sorted into four release form categories and screened in a comparison of leachate concentrations to the drinking water limit. Percolation through the disposal unit is prescribed in an independent surface water balance model incorporating site rainfall statistics. Waste package types and the disposal unit matrix have independently specified solubility limits and solid-liquid phase partition coefficients, or Kd values. Analytic solutions for inventory limited release of each nuclide in each of the four different waste package release forms are computed. Isotopic contributions are summed over elements to limit the waste package liquid phase concentrations to the elemental solubility limits. Time dependent releases from the waste packages for each nuclide which may be inventory or solubility limited are specified as model output which is provided as the source term to the unsaturated transport model. The waste package efflux is distributed over the 2-D unsaturated zone model grid points corresponding to the cross-sections for 5 representative disposal units within the mesa top. Results show the Area G release is dominated by the inventory in the rapid release waste form (Kd = 0), which percolates from the waste packages over 5--100 years and from the disposal unit over 50--1,000 years. Nuclides in waste package categories with larger Kd values are released proportionately slower. U and Th are the main nuclides of concern released as solubility limited nuclides from the historical inventory at Area G

  2. Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior.

    Science.gov (United States)

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-02-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. In this study, we succeeded in the preparation of a novel MEL homolog having no acetyl groups, namely MEL-D. MEL-D was synthesized by lipase-catalyzed hydrolysis of acetyl groups from a known MEL, and identified as 4-O-[2',3'-di-O-alka(e)noyl-β-d-mannopyranosyl]-(2R,3S)-erythritol. The obtained MEL-D showed a higher critical aggregation concentration (CAC=1.2 × 10(-5)M) and hydrophilicity compared to known MELs, retaining an excellent surface tension lowering activity (the surface tension at the CAC was 24.5mN/m). In addition, we estimated the binary phase diagram of the MEL-D-water system based on a combination of visual inspection, polarized optical microscopy, and SAXS measurement. From these results, MEL-D was found to self-assemble into a lamellar (L(α)) structure over all ranges of concentration. Meanwhile, the one-phase L(α) region of MEL-D was extended wider than those of known MELs. MEL-D might keep more water between the polar layers in accordance with the extension of the interlayer spacing (d). These results suggest that the newly obtained MEL-D would facilitate the application of MELs in various fields as a lamellar-forming glycolipid with higher hydrate ability. 2010 Elsevier Ltd. All rights reserved.

  3. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  4. The catalysis of hydrazines

    Science.gov (United States)

    Tanatar, S.

    1987-01-01

    Hydrazine sulfate in a hot aqueous solution can be catalyzed in the direction of 3 N2H4 = 4 NH3 + N2. Free hydrazine in a hot aqueous solution dissociates in the presence of platinum in the following direction: 2 N2H4 = 2 NH3 + N2 + H2. In the presence of sodium hydroxide, the catalytic dissociation of hydrazine takes a third direction: 3 N2H4 = 2 NH3 + 2 N3 + 3 H2.

  5. Effects of HCl and HNO3 on the oxidation of toluene to benzaldehyde by H2O2 over TS-1 modified with Al in aqueous phase

    Directory of Open Access Journals (Sweden)

    Paricha Pongjirawat

    2014-09-01

    Full Text Available This research studies effects of HCl and HNO3 in aqueous solution on the oxidation reaction between toluene and hydrogen peroxide to benzaldehyde over titanium silicalite-1 catalyst modified with Al. The reaction was carried out at reaction temperature 120°C in a pressurized autoclave reactor. The research found that the addition of HCl and HNO3 not only increases the concentration of toluene in the aqueous phase but also increases the formation of benzaldehyde as main product in the reaction.

  6. The UNIFAC-NRF activity coefficient model based on group contribution for partitioning of proteins in aqueous two phase (polymer + salt) systems

    Energy Technology Data Exchange (ETDEWEB)

    Haghtalab, Ali [Department of Chemical Engineering, Tarbiat Modarres University, P.O. Box: 14115-175, Tehran (Iran, Islamic Republic of)]. E-mail: haghtala@modares.ac.ir; Mokhtarani, Babak [Department of Chemical Engineering, Tarbiat Modarres University, P.O. Box: 14115-175, Tehran (Iran, Islamic Republic of)

    2005-03-01

    The group contribution model, UNIFAC-NRF, was applied for correlation of partition coefficient of proteins. This model was already developed for aqueous two phase of (polymer + salt) systems. The protein molecules were divided into some patches assumed to have interaction with the other species in aqueous (polymer + salt) systems. The binary interaction parameters were used for prediction of protein partitioning in aqueous two phase systems. These parameters were obtained by correlating the binary electrolyte solution and ternary aqueous two phase systems. The results of UNIFAC-NRF model are in a very good agreement with the experimental data for partitioning of lysozyme in both (PEG + K{sub 2}HPO{sub 4} + water) and (PEG + Na{sub 2}SO{sub 4} + water) systems at different pHs. The comparison of the results, which were obtained by both UNIFAC-NRF and the VERS models, shows that the present group contribution model can correlate the partitioning of protein in ATPS better than the VERS model.

  7. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions

    International Nuclear Information System (INIS)

    Li Liang; Qian Huifeng; Fang Nenghu; Ren Jicun

    2006-01-01

    In this paper, we systematically investigated the aqueous synthesis conditions of CdTe nanocrystals (QDs), and found that the pH value and the concentrations of precursors significantly affected the photoluminescence quantum yield (QY) of CdTe QDs. When the concentration of precursors (Cd) was 1.25 mM, and the pH of Cd precursors solution was about 8.0, CdTe QDs with high QY up to 40-67% were successfully prepared in aqueous phase. Moreover, these high luminescent QDs showed excellent stabilities in aqueous phases, and their luminescence was nearly independent of the pH of the colloid solution. The XPS and XRD characterizations implied that the high luminescence of the QDs synthesized at lower pH was possibly attributed to the formation of the thicker shell (cadmium-3-mercaptopropionic acid complexes) on particles surface, which not only decreased the traps on QDs surface, but also acted as a steric barrier to control the kinetics of QDs growth and led to the formation of a better surface structure. Our modification of conventional aqueous synthesis dramatically improved the QY of the prepared CdTe QDs, and it will become an attractive alternative to the synthesis of QDs in organic phase

  8. Removal of uranium(VI) from the aqueous phase by iron(II) minerals in presence of bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Regenspurg, Simona, E-mail: regens@gfz-potsdam.de [Industrial Ecology, Royal Institute of Technology (KTH), SE 10044 Stockholm (Sweden); Schild, Dieter; Schaefer, Thorsten; Huber, Florian [Institut fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Germany); Malmstroem, Maria E. [Industrial Ecology, Royal Institute of Technology (KTH), SE 10044 Stockholm (Sweden)

    2009-09-15

    Uranium(VI) mobility in groundwater is strongly affected by sorption of mobile U(VI) species (e.g. uranyl, UO{sub 2}{sup 2+}) to mineral surfaces, precipitation of U(VI) compounds, such as schoepite (UO{sub 2}){sub 4}O(OH){sub 6}.6H{sub 2}O), and by reduction to U(IV), forming sparingly soluble phases (uraninite; UO{sub 2}). The latter pathway, in particular, would be very efficient for long-term immobilization of U. In nature, Fe(II) is an important reducing agent for U(VI) because it frequently occurs either dissolved in natural waters, sorbed to matrix minerals, or structurally bound in many minerals. Redox reactions between U(VI) and Fe(II) depend not only on the availability of Fe(II) in the environment, but also on the chemical conditions in the aqueous solution. Under natural groundwater condition U(VI) forms complexes with many anionic ligands, which strongly affect its speciation. Carbonate, in particular, is known to form stable complexes with U, raising the question, if U(VI), when complexed by carbonate, can be reduced to UO{sub 2}. The goal of this study was to find out if Fe(II) when structurally bound in a mineral (as magnetite, Fe{sub 3}O{sub 4}) or sorbed to a mineral surface (as corundum, Al{sub 2}O{sub 3}) can reduce U(VI) to U(IV) in the presence of HCO{sub 3}{sup -}. Batch experiments were conducted under anaerobic conditions to observe U removal from the aqueous phase by the two minerals depending on HCO{sub 3}{sup -} addition (1 mM), U concentration (0.01-30 {mu}M) and pH value (6-10). Immediately after the experiments, the mineral surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) to obtain information on the redox state of U bound to the solid surfaces. XPS results gave evidence that U(VI) can be reduced both by magnetite and by corundum amended with Fe(II). In the presence of HCO{sub 3}{sup -} the amount of reduced U on the mineral surfaces increased compared to carbonate-free solutions. This can be explained by the formation

  9. Hierarchical architectures TiO{sub 2}: Pollen-inducted synthesis, remarkable crystalline-phase stability, tunable size, and reused photo-catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Lingling; Gao, Lishuang [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China); Yang, Xiaohui [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Shijiazhuang University, Shijiazhuang 050801 (China); Song, Xiuqin, E-mail: xiuqinsong@gmail.com [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The synthetic method is much milder and simpler than that of conventional methods. Black-Right-Pointing-Pointer The obtained hierarchical TiO{sub 2} shows three interesting hierarchical morphology. Black-Right-Pointing-Pointer The products have tunable crystal phase structures. Black-Right-Pointing-Pointer The pure phase of anatase can be retained after being annealed at 900 Degree-Sign C. Black-Right-Pointing-Pointer The product exhibits higher and reused photo-catalytic activity. - Abstract: TiO{sub 2} with hierarchical architectures, tunable crystalline phase and thermal stability is successfully fabricated on a large scale through a facile hydrolysis process of TiCl{sub 4} combining with inducing of pollen. The structure of the as-prepared TiO{sub 2} is characterized by X-ray diffraction, Raman spectroscopy, infrared spectra, and scanning electron microscopy. The experimental results indicate that different phases (anatase, rutile or mixed crystallite) of TiO{sub 2} can be synthesized by controlling the experimental conditions. The pure phase of rutile or anatase can be obtained at 100 Degree-Sign C, while the pure phase of anatase can be retained after being annealed at 900 Degree-Sign C. The hierarchical structures TiO{sub 2} are constitute through self-assembly of nanoparticles or nanorods TiO{sub 2}, which exhibit high and reused photo-catalytic properties for degradation of methylene blue.

  10. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.

    Science.gov (United States)

    Gao, Lei; Nishikata, Takashi; Kojima, Keisuke; Chikama, Katsumi; Nagashima, Hideo

    2013-12-01

    Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water- and organo-dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4-nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4-nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo-dispersible gold nanoparticles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pd-Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase.

    Science.gov (United States)

    Molina, C B; Calvo, L; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2009-12-15

    Catalysts based on pillared clays with Pd-Al were synthesized from a commercial bentonite and tested for catalytic hydrodechlorination (HDC) using 4-chlorophenol (4-CPhOH) as target compound and formic acid as hydrogen source. Stable Pd-Al pillared clays, with a strong fixation of the active phase to the solid support were obtained since no Pd was detected in the reaction media. The incorporation of Pd to the pillared clay structure yielded catalysts with high activity in the reaction studied reaching a complete removal of the 4-CPhOH under mild conditions of temperature (50-70 degrees C). Phenol was not the only reaction product formed, since a more hydrogenated product such as cyclohexanone was detected in the effluent, which indicates additional hydrogenation of phenol. The influence of the method of introduction of Pd in the pillared clay (ion-exchange or impregnation) and Pd concentration in the catalytic activity were studied as well as other important operating variables such as reaction temperature, catalyst concentration, 4-CPhOH initial concentration and formic acid to 4-CPhOH molar ratio. The catalysts prepared suffered deactivation after three consecutive runs, probably due to carboneous deposits formation since no appreciable Pd leaching was observed.

  12. On the “possible” synergism of the different phases of TiO 2 in photo-catalysis for hydrogen production

    KAUST Repository

    Wahab, A.K.

    2017-05-19

    The effect of TiO2 phase composition on the photocatalytic hydrogen production of water/ethanol (95/5 volume ratio) has been studied in order to understand the structural effect (and associated electronic properties) on the reaction within the so called “synergistic effect” concept. Within the investigated series of 1wt.% Pt/TiO2 with initial particle dimension of ca. 15nm the highest hydrogen production rate per unit area was observed for catalysts composed of 80% anatase, 18% rutile and 2% brookite. The associated particle sizes for this catalyst were 44, 82 and 33nm for the three phases, respectively. XRD patterns analyzed by the Rietveld method as well as X-ray absorption near-edge spectra (XANES) of the Ti K-edge mapped the phase transformation from anatase/brookite to rutile where it appears that the brookite phase is initially transformed to anatase phase. XRD patterns and Raman shift were found to be more sensitive to subtle changes in phase composition when compared to UV-vis absorbance or XANES of the Ti K-edge. The photocatalytic reaction for the complete series was conducted in identical condition and with excess photon flux in order to extract accurate reaction rates. In addition to the observed multi-phase effects on the reaction rate, other parameters extracted from the Rietveld refinement of the X-ray diffraction patterns were found to be useful. In particular, at the narrow window where the reaction rate was found to be maximum, the c-dimension of the anatase phase had values in the range 9.510–9.515Å. These c-dimension values are between those observed for nanoparticles with less than 20nm in size and those for larger particles with a size above 50nm. Results from this work indicate that the synergism between anatase and rutile on the photocatalytic reaction for hydrogen production, often attributed to increase the charge carrier life time, may be linked to the lattice expansion of the anatase phase which in turn would affect its electronic

  13. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO4 material phase transformations in direct methanol synthesis from methane

    Science.gov (United States)

    Dasireddy, Venkata D. B. C.; Khan, Faiza B.; Hanzel, Darko; Bharuth-Ram, Krish; Likozar, Blaž

    2017-11-01

    The effect of the FePO4 material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O2, H2O and N2O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO4 (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe2P2O7, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  14. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO{sub 4} material phase transformations in direct methanol synthesis from methane

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@ki.si [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia); Khan, Faiza B. [Energy Technology (South Africa); Hanzel, Darko [Jozef Stefan Institute (Slovenia); Bharuth-Ram, Krish [Durban University of Technology, Physics Department (South Africa); Likozar, Blaž [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia)

    2017-11-15

    The effect of the FePO{sub 4} material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O{sub 2}, H{sub 2}O and N{sub 2}O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO{sub 4} (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe{sub 2}P{sub 2}O{sub 7}, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  15. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  16. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition.

    Science.gov (United States)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-15

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ>0 the anions remain accumulated, but for σ<0 the cations are attracted to the wall with increasing |σ|. Furthermore, the electric potential drop Ψ(σ) is nonmonotonic when the solvent interaction parameter χ(T) exceeds a critical value χ_{c} determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ. In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  17. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  18. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  19. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  20. Effects of gamma radiation on phase behaviour and critical micelle concentration of Triton X-100 aqueous solutions

    International Nuclear Information System (INIS)

    Valdes Diaz, G.; Rodriguez-Calvo, S.; Perez-Gramatges, A.; Rapado-Paneque, M.; Fernandez-Lima, F. A.; Ponciano, C. R.; Silveira, E. F. . E-mail. apgram@instec.cu

    2007-01-01

    Ionising radiation used for sterilisation can have an effect on the physico-chemical properties of pharmaceutically relevant excipient systems, affecting therefore the stability of the formulation. The effect of gamma irradiation on the phase behaviour (cloud point - CP) and critical micelle concentration (CMC) of aqueous solutions of Triton X-100, used as a model nonionic surfactant, is investigated in this paper. Micellar solutions irradiated with ?-rays in a dose range between 0 and 70 kGy, including the sterilisation range of pharmaceutical preparations, were analysed using mass spectrometry. Results show a slight shift in molecular mass distribution of ethoxylated surfactant, which indicates degradation of polyethoxylated chains by water radical attacks. This fact, combined with the formation of cross-linked species, is considered to be responsible for the decrease observed in CP and CMC values of micellar solutions at all absorbed doses. There is no spectroscopic evidence of radiation damage to aromatic ring or hydrocarbon tail of surfactant. Models based on Flory-Huggins theory were employed to estimate CP from changes in mass distribution and to obtain cross-linking fractions. (Author)

  1. Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Axel Schmidt

    2017-12-01

    Full Text Available Substantial improvements have been made to cell culturing processes (e.g., higher product titer in recent years by raising cell densities and optimizing cultivation time. However, this has been accompanied by an increase in product-related impurities and therefore greater challenges in subsequent clarification and capture operations. Considering the paradigm shift towards the design of continuously operating dedicated plants at smaller scales—with or without disposable technology—for treating smaller patient populations due to new indications or personalized medicine approaches, the rising need for new, innovative strategies for both clarification and capture technology becomes evident. Aqueous two-phase extraction (ATPE is now considered to be a feasible unit operation, e.g., for the capture of monoclonal antibodies or recombinant proteins. However, most of the published work so far investigates the applicability of ATPE in antibody-manufacturing processes at the lab-scale and for the most part, only during the capture step. This work shows the integration of ATPE as a combined harvest and capture step into a downstream process. Additionally, a model is applied that allows early prediction of settler dimensions with high prediction accuracy. Finally, a reliable process development concept, which guides through the necessary steps, starting from the definition of the separation task to the final stages of integration and scale-up, is presented.

  2. Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

    2006-09-14

    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

  3. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    Energy Technology Data Exchange (ETDEWEB)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.; Shi, Hui; Gutierrez, Oliver Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-11-01

    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. The activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.

  4. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds.

    Science.gov (United States)

    Wang, Chen; Lei, Ying Duan; Wania, Frank

    2016-12-06

    Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na 2 SO 4 , NH 4 Cl, and NH 4 NO 3 was measured and compared with existing data for NaCl and (NH 4 ) 2 SO 4 . Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na 2 SO 4 > (NH) 2 SO 4 > NaCl > NH 4 Cl > NH 4 NO 3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO 4 2- > Cl - > NO 3 - and of cations: Na + > NH 4 + . The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.

  5. Mechanism and performance for adsorption of 2-chlorophenol onto zeolite with surfactant by one-step process from aqueous phase.

    Science.gov (United States)

    Peng, Sha; Tang, Zheng; Jiang, Wei; Wu, Di; Hong, Song; Xing, Baoshan

    2017-03-01

    To decrease the power, material, and time consumption in wastewater treatment, a one-step process was performed to remove 2-chlorophenol (2-CP) from aqueous phase using zeolite and cetyltrimethylammonium bromide (CTAB). Compared with the traditional two-step process, the one-step process used in this study achieved almost eight times higher 2-CP adsorption capacity within a shorter time and maintained high removal efficiencies (around 65%) in reuse tests, thus becoming an efficient and economically acceptable alternative process. For the one-step process, the kinetic data fitted well with a nonlinear pseudo-second-order model, and the isotherm data fitted well with the Dubinin-Astakhov (DA) model. The uptake of 2-CP was highly dependent on pH, increasing in the pH range of 3-6. The enhanced 2-CP removal in a one-step adsorption process can be explained by the larger amount of surfactant loading (≥0.056mmol/g), as determined from the total organic carbon (TOC) and zeta potential. Due to the formation of a loose CTAB bilayer, the hydrophobic partition and the interaction with the positively charged "head" of CTAB bilayers were decisive for the enhancement of pollutant adsorption. Therefore, organic pollutants could be removed from water alongside the synthesis of hydrophobic zeolite in a one-step process, which is a promising technology for the in-situ treatment of organic wastewater. Copyright © 2016. Published by Elsevier B.V.

  6. Determination of butyltin species in natural waters using aqueous phase ethylation and off-line room temperature trapping

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, Karl C.; Apte, Simon C.; Hales, Leigh T

    2003-01-27

    Monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) were determined in natural water samples by aqueous phase ethylation with sodium tetraethylborate (STEB), room temperature trapping of the resulting volatile derivatives on Tenax TA[reg], followed by gas chromatography-quartz furnace atomic absorption spectrometry (GC-QFAAS). Recoveries of butyltin spikes from natural water samples were 90-109% at concentrations of {approx}100 ng Sn/l. The method precision at {approx}100 ng Sn/l was {<=}6% RSD for butyltins spiked into natural waters. The detection limits for 1 l water samples were <1 ng Sn/l for all butyltin species. Sample throughput of the method is high (greater than three samples per hour) due to the two-stage nature of the procedure, which allows derivatisation/trapping and GC-QFAAS quantitation to be performed separately. Off-line trapping is also advantageous as it extends the life of the GC column and quartz furnace to at least 12 months due to minimisation of carry-over of co-purged material.

  7. Field study of using naturally occurring radon to assess the dense non-aqueous phase liquid distribution in saturated zone.

    Science.gov (United States)

    Chen, Yao-Tsung; Tung, Tien-Hsing; Wang, Lung-Chang; Lu, Chih-Jen

    2014-02-01

    The concept of radon deficiency such as the ratios of radon concentrations to the maximum measured value of a sample batch was employed as the survey methodology for this study to investigate contamination sources in an industrial zone that was suspected of causing subsurface dense non-aqueous phase liquid (DNAPL) contamination. The results showed that radon concentrations in certain wells were significantly lower than that in uncontaminated regions. Radon concentrations in groundwater are influenced by the in situ bioremediation of vegetable oil, which causes abnormal reductions of the radon in groundwater because radon partitions into vegetable oil and results in more variable for the radon deficit method to showing the impacts of remediation. Six contaminated regions were identified by integrating radon concentration ratios (divided into low (L), middle (M), and high (H) levels) and DNAPL concentrations (divided into low (L) and high (H) levels). Contaminated regions in the LH, MH, and HH categories are located in the vicinity of the contamination source, and those in the HL category are located far from the source zone. The ML and LL categories indicate the involvement of unknown factors, and that additional analyses are required to uncover the facts that affect radon and DNAPL concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Thermodynamic modeling of phases equilibrium in aqueous systems to recover potassium chloride from natural brines

    Directory of Open Access Journals (Sweden)

    Ruberlan Gomes da Silva

    2017-01-01

    Full Text Available Chemical fertilizers, such as potassium chloride, ammonium nitrate and other chemical products like sodium hydroxide and soda ash are produced from electrolyte solutions or brines with a high content of soluble salts. Some of these products are manufactured by fractional crystallization, when several salts are separated as solid phases with high purity (>90%. Due to the large global demand for potassium fertilizers, a good knowledge about the compositions of salts and brines is helpful to design an effective process. A thermodynamic model based on Pitzer and Harvie's model was used to predict the composition of crystallized salts after water removal by forced evaporation and cooling from multicomponent solutions or brines. Initially, the salts’ solubilities in binary systems (NaCl–H2O, KCl–H2O and MgCl2–H2O and ternary system (KCl–MgCl2–H2O were calculated at 20 °C and compared with literature data. Next, the model was compared to our experimental data on the quinary system NaCl–KCl–MgCl2–CaCl2–H2O system at 20 °C. The Pitzer and Harvie's model represented well both the binary and ternary systems. Besides, for the quinary system the fit was good for brine densities up to 1350 kg/m3. The models were used to estimate the chemical composition of the solutions and salts produced by fractional crystallization and in association with material balance to respond to issues related to the production rates in a solar pond containing several salts dissolved, for instance, NaCl, KCl, MgCl2 and CaCl2.

  9. Practical Engineering Aspects of Catalysis in Microreactors

    Czech Academy of Sciences Publication Activity Database

    Křišťál, Jiří; Stavárek, Petr; Vajglová, Zuzana; Vondráčková, Magdalena; Pavlorková, Jana; Jiřičný, Vladimír

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9357-9371 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * homogeneous catalysis * photo catalysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  10. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations

    International Nuclear Information System (INIS)

    Vilcocq, L.; Cabiac, A.; Guillon, E.; Especel, C.; Duprez, D.

    2013-01-01

    Decreasing oil supplies and increasing energy demand provide incentives to find alternative fuels. First, the valorisation of edible crops for ethanol and bio-diesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic biomass as a source of renewable carbon (second generation biofuels). Whereas the cellulosic ethanol production is in progress, a new way consisting of the transformation of ex-lignocellulose sugars and polyols towards light hydrocarbons by heterogeneous catalysis in aqueous phase has been recently described. This process is performed under mild conditions (T < 300 deg. C and P < 50 bar). It requires on one hand hydrogen formation by catalytic reforming of carbohydrates in aqueous phase and on the other hand, the dehydration/hydrogenation of polyols leading to alkanes by selective C-O bond cleavages. The challenge here is to conceive multifunctional catalytic systems that are stable, active and selective under the reaction conditions. The aim of this article is to present the involved reactions, the catalytic systems described in literature for that kind of transformation and examples of industrial applications. (authors)

  11. Catalysis of deuterium transfer between liquid chloroform and water by anion-exchange resins

    International Nuclear Information System (INIS)

    Symons, E.A.; Bonnett, J.D.

    1985-01-01

    Anion-exchange resins in the hydroxide form have been successfully utilized for catalysis of deuterium transfer between water and liquid chloroform under stirred three-phase slurry conditions. In-solution rate constants for CDCl 3 /H 2 O exchange obtained at 15-35 0 C with liquid chloroform and 0.10 mol/liter NaOH solution under stirred conditions are in good agreement with literature data measured in the absence of bulk chloroform. At 25 0 C the resins tested, Rexyn 201(OH) and Ionac ASB-1P(OH), are ∼25x more effective per mole of - OH present than NaOH when they are used as whole beads. A further improvement is observed if the beads are crushed, but the latter state would be less suitable for commercial-scale application. The solubility of chloroform in the aqueous phase under isotope-exchange conditions was required to calculate the in-solution rate constants for exchange. A method was developed to obtain chloroform solubilities in 0.10 mol/liter NaOH solution and aqueous resin slurries; equilibrated solution samples were treated with 1 mol/liter NaOH to hydrolyze the dissolved CHCl 3 to chloride ion, which was then analyzed by specific ion electrode. 25 references, 2 figures, 1 table

  12. Tungsten-Based Mesoporous Silicates W-MMM-E as Heterogeneous Catalysts for Liquid-Phase Oxidations with Aqueous H2O2

    Directory of Open Access Journals (Sweden)

    Nataliya Maksimchuk

    2018-02-01

    Full Text Available Mesoporous tungsten-silicates, W-MMM-E, have been prepared following evaporation-induced self-assembly methodology and characterized by elemental analysis, XRD, N2 adsorption, STEM-HAADF (high angle annular dark field in scanning-TEM mode, DRS UV-vis, and Raman techniques. DRS UV-vis showed the presence of two types of tungsten oxo-species in W-MMM-E samples: isolated tetrahedrally and oligomeric octahedrally coordinated ones, with the ratio depending on the content of tungsten in the catalyst. Materials with lower W loading have a higher contribution from isolated species, regardless of the preparation method. W-MMM-E catalyzes selectively oxidize of a range of alkenes and organic sulfides, including bulky terpene or thianthrene molecules, using green aqueous H2O2. The selectivity of corresponding epoxides reached 85–99% in up to 80% alkene conversions, while sulfoxides formed with 84–90% selectivity in almost complete sulfide conversions and a 90–100% H2O2 utilization efficiency. The true heterogeneity of catalysis over W-MMM-E was proved by hot filtration tests. Leaching of inactive W species depended on the reaction conditions and initial W loading in the catalyst. After optimization of the catalyst system, it did not exceed 20 ppm and 3 ppm for epoxidation and sulfoxidation reactions, respectively. Elaborated catalysts could be easily retrieved by filtration and reused several times with maintenance of the catalytic behavior.

  13. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    Science.gov (United States)

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    Science.gov (United States)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  15. Simulations of chemical catalysis

    Science.gov (United States)

    Smith, Gregory K.

    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a

  16. Asymmetric trienamine catalysis: new opportunities in amine catalysis.

    Science.gov (United States)

    Kumar, Indresh; Ramaraju, Panduga; Mir, Nisar A

    2013-02-07

    Amine catalysis, through HOMO-activating enamine and LUMO-activating iminium-ion formation, is receiving increasing attention among other organocatalytic strategies, for the activation of unmodified carbonyl compounds. Particularly, the HOMO-raising activation concept has been applied to the greatest number of asymmetric transformations through enamine, dienamine, and SOMO-activation strategies. Recently, trienamine catalysis, an extension of amine catalysis, has emerged as a powerful tool for synthetic chemists with a novel activation strategy for polyenals/polyenones. In this review article, we discuss the initial developments of trienamine catalysis for highly asymmetric Diels-Alder reactions with different dienophiles and emerging opportunities for other types of cycloadditions and cascade reactions.

  17. Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of (methanol + MgCl2) and (ethylene glycol + MgCl2) aqueous solutions

    International Nuclear Information System (INIS)

    Sami, Nagham Amer; Das, Kousik; Sangwai, Jitendra S.; Balasubramanian, N.

    2013-01-01

    Highlights: • Hydrate dissociation conditions for CH 4 and CO 2 in the presence of pure water/inhibitor aqueous solution are reported. • The inhibitors include: methanol + MgCl 2 and ethylene glycol + MgCl 2 . • An isochoric pressure-search method was used in all the experimental data measurements. • The aqueous solutions shift the equilibrium data to high pressure/low temperature. • The aqueous solutions containing methanol has more inhibition effect than ethylene glycol. -- Abstract: In this work, the experimental data for the equilibrium conditions of methane and carbon dioxide clathrate hydrates in the presence of (0.1 mass fraction methanol + 0.03, 0.1 mass fraction MgCl 2 ) and (0.1, 0.2 mass fraction ethylene glycol + 0.1 mass fraction MgCl 2 ) aqueous solutions at different temperature and pressure range 263.74 to 280.54 K and 0.98 to 8.02 MPa, respectively and for various concentrations of inhibitors are reported, which is not available in open literature. The equilibrium pressure–temperature curves were generated using an isochoric pressure-search method. The experimental results of methane and carbon dioxide clathrate hydrates in the presence of pure water and the above mentioned aqueous inhibitor solutions are compared with some selected experimental data from the literature in the presence of pure water, single glycol, alcohol or salt aqueous solutions to validate the experimental result and to show the inhibition effects of the aqueous solutions used in this work. The results show that the phase equilibrium of the quaternary system (H 2 O + ethylene glycol/methanol + CH 4 /CO 2 + MgCl 2 ) is shifted to higher pressures/lower temperatures compared to the phase equilibrium of pure CH 4 /CO 2 due to the inhibition effect. Also, it has been observed that the quaternary system containing methanol has a more inhibition effect than the quaternary system containing ethylene glycol at the same mass fraction of the inhibitor in the aqueous solution

  18. Sonication effect on the reaction of 4-bromo-1-methylbenzene with sodium sulfide in liquid-liquid multi-site phase-transfer catalysis condition - kinetic study.

    Science.gov (United States)

    Abimannan, Pachaiyappan; Selvaraj, Varathan; Rajendran, Venugopal

    2015-03-01

    The synthesis of di-p-tolylsulfane from the reaction of 4-bromo-1-methylbenzene (BMB) with sodium sulfide was carried out using a multi-site phase-transfer catalyst (MPTC) viz., 1,4-dihexyl-1,4-diazoniabicyclo[2.2.2]octanium dibromide and ultrasonic irradiation in a liquid-liquid reaction condition. The overall reaction rate is greatly enhanced when catalyzed by multi-site phase-transfer catalyst (MPTC) combined with sonication (40 kHz, 300 W) in a batch reactor than catalyzed by MPTC without sonication. Effects on the reaction due to various operating conditions, such as agitation speed, different ultrasound frequencies, different phase-transfer catalysts, different organic solvents, the amount of MPTC, temperature, amount of sodium sulfide, effect of sodium hydroxide, volume of n-hexane and the concentration of 4-bromo-1-methylbenzene. The reaction obeys a pseudo first-order rate law and a suitable mechanism was proposed based on the experimental observation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. DNA-based hybrid catalysis.

    Science.gov (United States)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Survey Course in Catalysis.

    Science.gov (United States)

    Skaates, J. M.

    1982-01-01

    Describes a 10-week survey course in catalysis for chemical engineering and chemistry students designed to show how modern chemistry and chemical engineering interact in the ongoing development of industrial catalysts. Includes course outline and instructional strategies. (Author/JN)

  1. Microextraction in a tetrabutylammonium bromide/ammonium sulfate aqueous two-phase system and electrohydrodynamic generation of a micro-droplet.

    Science.gov (United States)

    Song, Young Soo; Choi, Young Hoon; Kim, Do Hyun

    2007-08-31

    Microextraction of methyl orange in the aqueous two-phase system (ATPS) formed by dissolving tetrabutylammonium bromide (TBAB) and ammonium sulfate (AS) is reported. Methyl orange was transported from the AS-rich phase to TBAB-rich phase across the interface of the two immiscible phases. The electrohydrodynamic effect on the shape of the interface of two immiscible flows was also observed by applying dc voltage at the T-junction of the microchannel and the generation of a droplet of AS-rich phase was observed when the potential difference between positive and negative electrodes exceeds a threshold voltage. The minimum voltage necessary for the droplet generation depends on pH due to the degree of dissociation and charge accumulation.

  2. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    OpenAIRE

    Jing Guo; Keming Fang; Hanjie Guo; Yiwa Luo; Shengchao Duan; Xiao Shi; Wensheng Yang

    2018-01-01

    The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to deter...

  3. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    International Nuclear Information System (INIS)

    Manohara, G.V.; Vishnu Kamath, P.; Milius, Wolfgang

    2012-01-01

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueous exfoliation into 2–5 nm-thick tactoids with a radial dimension of 0.2–0.5 μm. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration–dehydration of Ni/Al–CH 3 COO LDH. Highlights: ► Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. ► Intercalated acetate ion shows reversible hydration with variation in humidity. ► An ordered interstratified phase was observed during hydration/dehydration cycle. ► A solution type equilibrium is observed between hydration–dehydration phases. ► These LDHs undergo facile aqueous exfoliation.

  4. Extraction of metal ions in aqueous polyethylene glycol-inorganic salt two-phase systems in the presence of inorganic extractants: correlation between extraction behaviour and stability constants of extracted species.

    Science.gov (United States)

    Bulgariu, Laura; Bulgariu, Dumitru

    2008-07-04

    The use of aqueous polyethylene glycol-inorganic salt two-phase systems for the extraction of metal ions has a great potential due to their durability, non-toxicity and relative low cost. The aqueous phases can be easily separated by centrifugation, and the operation is possible in a range of experimental conditions. The experimental results have shown that for a given aqueous two-phase system, the extraction behaviour of metal ions in presence of inorganic extractants is mainly dependent on the stability of extracted species. In this paper we review our results obtained at metal ion extraction using inorganic extractants and discuss three major types of extraction behaviours.

  5. Editorial: Nanoscience makes catalysis greener

    KAUST Repository

    Polshettiwar, Vivek

    2012-01-09

    Green chemistry by nanocatalysis: Catalysis is a strategic field of science because it involves new ways of meeting energy and sustainability challenges. The concept of green chemistry, which makes the science of catalysis even more creative, has become an integral part of sustainability. This special issue is at the interface of green chemistry and nanocatalysis, and features excellent background articles as well as the latest research results. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...

  7. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  8. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    International Nuclear Information System (INIS)

    Korte, N.E.; Hall, S.C.; Baker, J.L.

    1995-01-01

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments

  9. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media.

    Science.gov (United States)

    Jiang, Hui; Li, Jiansheng; Jiang, Mingyue; Lu, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-12

    The present work reports preparation of ordered mesoporous carbon (OMC) film supported on a graphite fiber as a new type of solid-phase microextraction (SPME) fiber for determination of benzene series from aqueous media. The strategy for the supported OMC film preparation was combined dip-coating technology with solvent evaporation-induced self-assembly (EISA) approach. A graphite fiber was immersed in an ethanol solution containing phenolic resin and Pluronic triblock copolymer. Upon solvent evaporation and subsequent pyrolysis under 700 °C, the phenolic resin and the surfactant self-assembled on the surface of the graphite fiber to form smooth OMC film. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen isothermal adsorption results indicate that the resultant OMC film possesses well-ordered two dimensional hexagonal mesostructure with pore diameters of 4.5 nm and BET surfaces of 630 m(2)/g. Scanning electron microscopy (SEM) studies show the supported OMC film with thickness at 8.5 μm is continuous and defect-free. The SPME efficiency of the OMC fiber was evaluated by analysis of five benzene series (benzene, toluene, ethylbenzene, p-xylene and m-xylene) from water samples by gas chromatography-flame ionization detection (GC-FID). The analysis results indicate that the prepared OMC fiber has wide linear ranges (0.5-500 μg/L), low detection limits (0.01-0.05 μg/L) and good repeatabilities (4.0-5.8% for one fiber, 2.9-8.7% for fiber-to-fiber). Compared with commercial counterparts, the OMC fiber exhibits improved extraction efficiency for benzene series and PAHs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength.

    Science.gov (United States)

    Delay, Markus; Dolt, Tamara; Woellhaf, Annette; Sembritzki, Reinhard; Frimmel, Fritz H

    2011-07-08

    The rapid development of nanotechnology and the related production and application of nanosized materials such as engineered nanoparticles (ENP) inevitably lead to the emission of these products into environmental systems. So far, little is known about the occurrence and the behaviour of ENP in environmental aquatic systems. In this contribution, the influence of natural organic matter (NOM) and ionic strength on the stability and the interactions of silver nanoparticles (n-Ag) in aqueous suspensions was investigated using UV-vis spectroscopy and asymmetrical flow field-flow fractionation (AF⁴) coupled with UV-vis detection and mass spectrometry (ICP-MS). n-Ag particles were synthesized by chemical reduction of AgNO₃ with NaBH₄ in the liquid phase at different NOM concentrations. It could be observed that the destabilization effect of increasing ionic strength on n-Ag suspensions was significantly decreased in the presence of NOM, leading to a more stable n-Ag particle suspension. The results indicate that this behaviour is due to the adsorption of NOM molecules onto the surface of n-Ag particles ("coating") and the resulting steric stabilization of the particle suspension. The application of AF⁴ coupled with highly sensitive detectors turned out to be a powerful method to follow the aggregation of n-Ag particle suspensions at different physical-chemical conditions and to get meaningful information on their chemical composition and particle size distributions. The method described will also open the door to obtain reliable data on the occurrence and the behaviour of other ENP in environmental aquatic systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Molecular ingredients of heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described

  12. Molecular ingredients of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

  13. Liquid-liquid transfer phenomena studies coupled with redox reactions: back-extraction of nitrous acid in the presence of scavengers in aqueous phase

    International Nuclear Information System (INIS)

    K'zerho, R.

    1998-01-01

    This work deals with the investigation of redox reaction contribution to the kinetics of liquid-liquid transfer, in relation with PUREX reprocessing of spent nuclear fuel. The chemical system chosen concerns the tripping of nitrous acid from tributylphosphate organic phase into a nitric acid aqueous solution containing an 'anti-nitrous' component, namely hydrazinium nitrate. According to the abundant literature, a major attention is devoted to the very important role of interfacial phenomena on the kinetics of solvent extraction with tributylphosphate. Although, a suitable experimental technique is chosen, using a constant interfacial area cell of the ARMOLLEX-type. Furthermore, the effects of the hydrodynamical and the physico-chemical parameters on the extraction rate led to the identification of the extraction regime nature: diffusional, then chemical limitation. When no 'anti-nitrous' component is used, the diffusional resistance is found to be mainly located in the aqueous diffusion layer. The presence of hydrazinium nitrate into the aqueous solution has an overall accelerating effect on the rate of extraction, related to both a complete suppression of the aqueous diffusional resistance, and a very significant enhancement of the interfacial transfer of the nitrous acid, as a function of hydrazinium concentration. If the first effect could be expected because of the well known fast redox reaction in aqueous phase, the second phenomenon represents a quite original and new result which has never been explored before, to the best of our knowledge. A reaction mechanism is postulated and validated, taking into account the reactive effect of hydrazinium on the interfacial step. In order to support the drawn general patterns, different complementary studies were attempted. When hydroxyl-ammonium nitrate is used, a surprising interfacial transfer blockage is observed, pointing out the extreme performance and specificity of the common hydrazinium component. (author)

  14. Alkylation of hydrothiophosphoryl compounds in conditions of interphase catalysis

    International Nuclear Information System (INIS)

    Aladzheva, I.M.; Odinets, I.L.; Petrovskij, P.V.; Mastryukova, T.A.; Kabachkin, M.I.

    1993-01-01

    A method of interphase catalysis permitted to develop a common method for synthesis of compounds with thiophosphoryl group. The effect of nature of hydrothiophosphoryl compound, alkylating agent, two-phase system and reaction conditions on alkylation product yields was investigated in detail

  15. Dissolved organic carbon (DOC and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2013-05-01

    Full Text Available Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC in the aqueous phase reach concentrations on the order of ~ 10 mgC L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes and (ii the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids. We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada and in fog water in a more polluted area (Davis, CA. Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤ 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions in the aqueous phase of clouds or fogs, respectively, comprises 2–~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC increases by an order of magnitude from 7 × 103 M atm−1 to 7 × 104 M atm−1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are

  16. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Geography Science, Nantong University, Nantong 226001 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Mingyue; Lu, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-08-12

    The present work reports preparation of ordered mesoporous carbon (OMC) film supported on a graphite fiber as a new type of solid-phase microextraction (SPME) fiber for determination of benzene series from aqueous media. The strategy for the supported OMC film preparation was combined dip-coating technology with solvent evaporation-induced self-assembly (EISA) approach. A graphite fiber was immersed in an ethanol solution containing phenolic resin and Pluronic triblock copolymer. Upon solvent evaporation and subsequent pyrolysis under 700 °C, the phenolic resin and the surfactant self-assembled on the surface of the graphite fiber to form smooth OMC film. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen isothermal adsorption results indicate that the resultant OMC film possesses well-ordered two dimensional hexagonal mesostructure with pore diameters of 4.5 nm and BET surfaces of 630 m{sup 2}/g. Scanning electron microscopy (SEM) studies show the supported OMC film with thickness at 8.5 μm is continuous and defect-free. The SPME efficiency of the OMC fiber was evaluated by analysis of five benzene series (benzene, toluene, ethylbenzene, p-xylene and m-xylene) from water samples by gas chromatography-flame ionization detection (GC-FID). The analysis results indicate that the prepared OMC fiber has wide linear ranges (0.5–500 μg/L), low detection limits (0.01–0.05 μg/L) and good repeatabilities (4.0–5.8% for one fiber, 2.9–8.7% for fiber-to-fiber). Compared with commercial counterparts, the OMC fiber exhibits improved extraction efficiency for benzene series and PAHs. - Highlights: • Ordered mesoporous carbon film supported on graphite fiber was first reported as solid-phase microextraction coating. • The strategy for the film preparation was combined dip-coating technology with evaporation-induced self-assembly approach. • The obtained fiber showed enhanced thermal stability and organic solvents resistance. • The

  17. Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor

    NARCIS (Netherlands)

    Werlen, C.; Jaspers, M.C.M.; Meer, J.R. van der

    2004-01-01

    Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low

  18. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    Science.gov (United States)

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  20. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts

    Science.gov (United States)

    Mao, Hui; Yu, Hong; Chen, Jing; Liao, Xuepin

    2013-01-01

    In the field of catalysis, it is highly desired to develop novel catalysts that combine the advantages of both homogeneous and heterogeneous catalysts. Here we disclose that the use of plant pholyphenol as amphiphilic large molecule ligand/stabilizer allows for the preparation of noble metal complex and noble metal nanoparticle catalysts. These catalysts are found to be highly selective and active in aqueous-organic biphasic catalysis of cinnamaldehyde and quinoline, and can be reused at least 3 times without significant loss of activity. Moreover, the catalytic activity and reusability of the catalysts can be rationally controlled by simply adjusting the content of polyphenols in the catalysts. Our strategy may be extended to design a wide range of aqueous-organic biphasic catalysis system. PMID:23863916

  1. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts.

    Science.gov (United States)

    Mao, Hui; Yu, Hong; Chen, Jing; Liao, Xuepin

    2013-01-01

    In the field of catalysis, it is highly desired to develop novel catalysts that combine the advantages of both homogeneous and heterogeneous catalysts. Here we disclose that the use of plant polyphenol as amphiphilic large molecule ligand/stabilizer allows for the preparation of noble metal complex and noble metal nanoparticle catalysts. These catalysts are found to be highly selective and active in aqueous-organic biphasic catalysis of cinnamaldehyde and quinoline, and can be reused at least 3 times without significant loss of activity. Moreover, the catalytic activity and reusability of the catalysts can be rationally controlled by simply adjusting the content of polyphenols in the catalysts. Our strategy may be extended to design a wide range of aqueous-organic biphasic catalysis system.

  2. Affinity partitioning of a Cellulomonas fimi beta-mannanase with a mannan-binding module in galactomannan/starch aqueous two-phase system.

    Science.gov (United States)

    Antov, Mirjana; Anderson, Lars; Andersson, Alexandra; Tjerneld, Folke; Stålbrand, Henrik

    2006-08-04

    A new approach in affinity separations was studied by partitioning of Cellulomonas fimi beta-mannanase (EC 3.2.1.78) containing a mannan-binding module in galactomannan/hydroxypropyl starch aqueous two-phase system. Comparison was made with a truncated version of C. fimi beta-mannanase which lacked the mannan-binding module. Results showed that affinity partitioning of the beta-mannanase was achieved due to biospecificity of the mannan-binding module towards the top phase containing galactomannan. Experiments were conducted at pH 8 to prevent enzyme degradation of the phase containing galactomannan. Removal of the top phase polymer was accomplished by beta-mannanase degradation allowed by shifting to the optimal pH 6. In the combination with the genetic fusion of any given protein to the mannan-binding module, the results envision a general procedure for primary affinity recovery of such fusion proteins.

  3. Application of colloidal chemistry in aqueous phase to the preparation of supported metallic catalysts: particles size and aggregation control; Application de la chimie colloidale en phase aqueuse a la preparation de catalyseurs metalliques supportes: controle de la taille et de l`etat d`agregation des particules

    Energy Technology Data Exchange (ETDEWEB)

    Pages, T.

    1998-09-16

    This work is an application of colloidal chemistry in aqueous phase on supported metal catalyst preparation. The objective is the control of particle size and aggregation. The preparation of the materials was achieved in two steps: - the synthesis of PdO hydrosols was obtained by two ways: neutralisation of the solution containing metallic salt by adding alkaline solution or by thermo-hydrolysis; the sols were then deposited on carriers (Al{sub 2}O{sub 3}, SIO{sub 2}). The use of partial charge model allowed us to determine the complexes that were able to generate PdO. The preparation of PdO from Pd(H{sub 2}O){sub 4}{sup 2+} was studied and a mechanism of oxide formation was elaborated. The neutralisation of Pd(H{sub 2}O){sub 4}{sup 2+} obtained by adding alkaline solution led to particles with an average size of 1.8 nm and a narrow particle size distribution. Only the thermo-hydrolysis of Pd(H{sub 2}O){sub 4}{sup 2+} led to particles which size is higher than 3.0 nm. In the last case, particle size is controlled by the precursor concentration (Pd(H{sub 2}O){sub 2}(OH){sub 2}) generated in the medium. We have demonstrated that particle aggregation in the sol depends on the Ph and the way of preparation. It can be controlled by adding complexing anions (Cl{sup -}, NO{sub 2}{sup -}). Concerning the deposition of sols on carriers, it led to isolated or aggregated particles according to experimental conditions. Particle size was not modified during the deposition. Moreover, in our experimental conditions, reduction of particles did not modify particle size and aggregation. An application of this original way of preparation on catalysis allowed us to demonstrate the interest of controlling particle size and aggregation. (author) 186 refs.

  4. From cation to oxide: hydroxylation and condensation of aqueous complexes

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al 3+ ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  5. Preparation of starch-sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity

    Science.gov (United States)

    Graft copolymers of waxy maize starch and sodium lignosulfonate (SLS) were prepared by Trametes Versicolor laccase catalysis in aqueous solution. Amount of SLS grafted based on phenol analysis was 0.5% and 1.0% in the absence and presence of 1-hydroxybenzotriazole (HBT), respectively. Starch-SLS gra...

  6. Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    María Guadalupe Pineda

    2014-07-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  7. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  8. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Golabiazar, Roonak; Shekaari, Hemayat

    2010-01-01

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) and tri-sodium citrate (Na 3 Cit) are taken. The apparent molar volume of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have negative values. The effects of temperature and the addition of Na 3 Cit and [C 4 mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na 3 Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces

  9. Removal of non aqueous phase liquid liquid (NAPL) from a loam soil monitored by time domain reflectometry (TDR) technique

    Science.gov (United States)

    comegna, alessandro; coppola, Antonio; dragonetti, giovanna; ajeel, ali; saeed, ali; sommella, angelo

    2016-04-01

    Non-aqueous phase liquids (NAPLs) are compounds with low or no solubility with water. These compounds, due to the several human activities, can be accidentally introduced in the soil system and thus constitute a serious geo-environmental problem, given the toxicity level and the high mobility. The remediation of contaminated soil sites requires knowledge of the contaminant distribution in the soil profile and groundwater. Methods commonly used to characterize contaminated sites are coring, soil sampling and the installation of monitoring wells for the collection of groundwater samples. The main objective of the present research is to explore the potential application of time domain reflectometry (TDR) technique in order to evaluate the effect of contaminant removal in a loam soil, initially contaminated with NAPL and then flushed with different washing solutions. The experimental setup consist of: i) a Techtronix cable tester; ii) a three-wire TDR probe with wave guides 14.5 cm long inserted vertically into the soil samples; iii) a testing cell of 8 cm in diameter and 15 cm high; iv) a peristaltic pump for upward injection of washing solution. In laboratory, soil samples were oven dried at 105°C and passed through a 2 mm sieve. Known quantities of soil and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed in order to obtain soil samples with different degrees of contamination. Once a soil sample was prepared, it was repacked into a plastic cylinder and then placed into the testing cell. An upward injection of washing solution was supplied to the contaminated sample with a rate q=1.5 cm3/min, which corresponds to a darcian velocity v=6.0 cm/h. The out coming fluid, from the soil column was collected, then the washing solution and oil was separated. Finally both the amount of oil that was remediated and the dielectric permittivity (measured via TDR) of the contaminated soil sample were recorded. Data collected were employed to implement a

  10. Determination of bisphenol-type contaminants from food packaging materials in aqueous foods by solid-phase microextraction-high-performance liquid chromatography.

    Science.gov (United States)

    Nerín, C; Philo, M R; Salafranca, J; Castle, L

    2002-07-19

    A fast screening method consisting of off-line solid-phase microextraction coupled to HPLC and fluorescence detection, suitable for the analysis of several bisphenol derivatives and their degradation products in aqueous solution, has been developed. Detection limits of 0.7 ng ml(-1) for 2,2-bis[4-(glycidyloxy)phenyl]propane, 0.9 ng ml(-1) for bisphenol A bis(3-chloro-2-hydroxypropyl)ether, 1.1 ng ml(-1) for 2,2-bis(4-hydroxyphenyl)propane and 2.4 ng ml(-1) for bisphenol F diglycidyl ether have been achieved working in the linear range 10-500 ng ml(-1). The good analytical features achieved make the proposed method an interesting option for the direct determination of these compounds in aqueous canned food such as peas, tuna, olives, maize, artichokes or palm hearts. Both the optimization process and the results, including the analysis of real samples, are given and discussed.

  11. Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Bossola, Filippo; Pereira-Hernández, Xavier Isidro; Evangelisti, Claudio; Wang, Yong; Dal Santo, Vladimiro

    2017-05-01

    The catalytic performances in steam reforming (SR) and aqueous phase reforming (APR) of glycerol of a bimetallic Pt-Mn catalyst supported on activated carbon are investigated and correlated with the surface properties of the catalyst. Under SR conditions, Mn showed a significant promoting effect over Pt/C, both in terms of hydrogen production rate and conversion, with a higher selectivity toward the glycerol dehydration products. Upon addition of Mn the amount of strong Lewis acid sites increased, promoting the dehydration of glycerol and favoring the CAO over CAC cleavage at expenses of hydrogen selectivity. Conversely, under APR conditions, a slightly higher hydrogen selectivity and only minimal enhancement in hydrogen production were found, while the products selectivity was comparable to Pt/C. Most of Mn leached into the aqueous media, but the remaining (<5% of the fresh parent sample) might be alloyed with Pt and promote the CO desorption from neighbor Pt sites.

  12. Exploration of Binding Interactions of Cu(2+) with d-Penicillamine and its O- and Se- Analogues in Both Gas and Aqueous Phases: A Theoretical Approach.

    Science.gov (United States)

    Ash, Tamalika; Debnath, Tanay; Banu, Tahamida; Das, Abhijit K

    2016-04-14

    We have theoretically explored the entire binding phenomena of d-penicillamine and its O- and Se-analogues with Cu(2+) in both gas and aqueous phases. At first, a brief conformational analysis has been performed via -XH and -COOH rotations to investigate such conformers that are suitable for binding in both bidentate as well as tridentate fashions. The stability of each bidentate and tridentate complex is determined on the basis of relative energy (ΔE) and gas phase metal ion affinity (MIA) along with the bonding analysis by using atoms in molecule theory. The effect of conformational change on the stability of the complexes is also examined thoroughly. By analyzing the MIA values, we have shown that the side chain substitution makes an impact on the binding process. To delve into the binding phenomena in aqueous phase, we have introduced both the first and second hydration sphere models. In first hydration sphere model, to realize the precise effect of water molecules we have considered stable octahedral hexa-aqua copper complex, [Cu(H2O)6](+2) and accordingly substituted water molecules depending on the bidentate or tridentate nature of the chelating agents. The influence of bulk water molecules on the energetics and geometries of the first hydrated sphere complexes have also been investigated by employing second hydration sphere model assuming physiological pH through the implementation of implicit COSMO and polarizable continuum models, respectively. In the second hydration sphere model, the zwitterionic structures of the amino acids and their side chain deprotonated forms are also included to study the binding phenomena with Cu(2+). The complete work furnishes both the binding properties and the energetics of the copper-artificial amino acid complexes in both gas and aqueous phases that will reflect a realistic overview of the entire binding phenomena.

  13. New selective ligands for caesium. Application to Cs+/Na+ separation by nano-filtration-complexation in aqueous phase

    International Nuclear Information System (INIS)

    Pellet-Rostaing, S.; Chitry, F.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Separating traces of caesium from aqueous medium containing high sodium concentration is a harsh problem because caesium and sodium have a similar behaviour in aqueous medium. The aim of our study was to select a highly caesium-selective ligand in a nano-filtration-complexation process in order to achieve Cs + /Na + separation. This process involve a nano-filtration step combined with a preliminary complexation step. Caesium complexes are retained by the nano-filtration membrane whereas free sodium cations pass through it. We tried to find a relation between the ligands structure and their activity towards caesium-complexation. Among the synthesized receptors, Tetra-hydroxylated bis-crown-6 calix[4]arene was found to be the more caesium-selective ligand (S=β(Cs + )/β(Na+)=6600). Combined with a nano-filtration process, this ligand helped reaching 90% caesium retention in a highly concentrated aqueous medium ([NaNO 3 ] = 3 mol/L). (authors)

  14. Separation of curcuminoids using ionic liquid based aqueous two-phase system coupled with in situ dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Shu, Yang; Gao, Mingcen; Wang, Xueying; Song, Rusheng; Lu, Jun; Chen, Xuwei

    2016-01-01

    An aqueous two-phase extraction system (ATPS) combined with an in situ dispersive liquid-liquid microextraction (DLLME) method using imidazolium ionic liquids (ILs) for the separation of curcuminoids is developed. The influence of structure of IL, the type of metathesis reagents, and the back extraction agents on the extraction efficiency is investigated. 2.0mg of curcuminoids are extracted by an IL ATPS composed of 0.4g 1,3-diethylimidazolium iodine (EeimI), 0.6g potassium hydrogen phosphate, 1.0g water. Then the bis[(trifluoromethyl)sulfonyl]imide lithium (LiNTf2) aqueous solution is added to the EeimI-rich phase of the ATPS. The water-immiscible ionic liquids, 1,3-diethylimidazole bis[(trifluoromethyl)sulfonyl]imide (EeimNTf2), forms by the metathesis reaction. The in situ DLLME is triggered simultaneously and further purifies the curcuminoids. 92% of EeimI transforms into EeimNTf2 and thus the Eeim(+) cation is used for twice in this method. Finally, 0.1mol/L NaOH aqueous solution is used as the back extraction reagent. The curcuminoids precipitate is achieved with 93% of recovery when the aqueous solution is adjusted to pH 3.0. This ATPS-DLLME method is successfully applied to the separation of curcuminoids from Curcuma Longa (0.96±0.02% of extraction yield, a purity of >51% with respect to the total dry mass of the product). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Shape-controlled nanostructures in heterogeneous catalysis.

    Science.gov (United States)

    Zaera, Francisco

    2013-10-01

    Nanotechnologies have provided new methods for the preparation of nanomaterials with well-defined sizes and shapes, and many of those procedures have been recently implemented for applications in heterogeneous catalysis. The control of nanoparticle shape in particular offers the promise of a better definition of catalytic activity and selectivity through the optimization of the structure of the catalytic active site. This extension of new nanoparticle synthetic procedures to catalysis is in its early stages, but has shown some promising leads already. Here, we survey the major issues associated with this nanotechnology-catalysis synergy. First, we discuss new possibilities associated with distinguishing between the effects originating from nanoparticle size versus those originating from nanoparticle shape. Next, we survey the information available to date on the use of well-shaped metal and non-metal nanoparticles as active phases to control the surface atom ensembles that define the catalytic site in different catalytic applications. We follow with a brief review of the use of well-defined porous materials for the control of the shape of the space around that catalytic site. A specific example is provided to illustrate how new selective catalysts based on shape-defined nanoparticles can be designed from first principles by using fundamental mechanistic information on the reaction of interest obtained from surface-science experiments and quantum-mechanics calculations. Finally, we conclude with some thoughts on the state of the field in terms of the advances already made, the future potentials, and the possible limitations to be overcome. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stress Controlled Catalysis via Engineered Nanostructures

    Science.gov (United States)

    2016-03-02

    fields on catalysis : “Stress Controlled Catalysis via Engineered Nanostructures.” For this effort a workshop was organized and held at Brown... Catalysis via Engineered Nanostructures" The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued...Support for current award "Stress Controlled Catalysis via Engineered Nanostructures" Report Title This is the final report of the ARO project of

  17. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  18. Photoredox Catalysis in Organic Chemistry

    Science.gov (United States)

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  19. Confinement-induced phase behavior and adsorption regulation of ionic surfactants in the aqueous film between charged solids

    NARCIS (Netherlands)

    Lokar, W.J.; Koopal, L.K.; Leermakers, F.A.M.; Ducker, W.A.

    2004-01-01

    The adsorption of an ionic surfactants in the aqueous film between charged solids was calculated using self-consistent field theory for adsorption and association. It was shown that a change in the separation between the solids leads to a change in interaction energy, which leads to a change in both

  20. AQUEOUS AND VAPOR PHASE MERCURY SORPTION BY INORGANIC OXIDE MATERIALS FUNCTIONALIZED WITH THIOLS AND POLY-THIOLS

    Science.gov (United States)

    The objective of the study is the development of sorbents where the sorption sites are highly accessible for the capture of mercury from aqueous and vapor streams. Only a small fraction of the equilibrium capacity is utilized for a sorbent in applications involving short residenc...

  1. Small-Angle Neutron Scattering Study of Shear-Induced Phase Separation in Aqueous Poly(N-isopropylacrylamide) Solutions

    NARCIS (Netherlands)

    Stieger, M.A.; Lindner, P.; Richtering, W.

    2004-01-01

    The influence of shear flow on the structure of concentrated aqueous poly(N-isopropylacrylamide) solutions near the lower critical solution temperature was investigated by means of small-angle neutron scattering. Two samples, both in the semi-dilute regime above the overlap concentration, were

  2. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  3. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  4. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  5. DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Boersma, Arnold J.; Megens, Rik P.; Feringa, Ben L.; Roelfes, Gerard

    2010-01-01

    The unique chiral structure of DNA has been a source of inspiration for the development of a new class of bio-inspired catalysts. The novel concept of DNA-based asymmetric catalysis, which was introduced only five years ago, has been applied successfully in a variety of catalytic enantioselective

  6. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Transition Metal Complexes and Catalysis. Balaji R Jagirdar. General Article Volume 4 Issue 9 ... Author Affiliations. Balaji R Jagirdar1. Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  7. Molecular Mechanism of Heterogeneous Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 6. Molecular Mechanism of Heterogeneous Catalysis - The 2007 Nobel Prize in Chemistry. R S Swathi K L Sebastian. General Article Volume 13 Issue 6 June 2008 pp 548-560 ...

  8. Isolation of adenine salts in the gas phase from a liquid beam of aqueous solutions by IR laser irradiation

    Science.gov (United States)

    Kohno, J.-Y.; Mafuné, F.; Kondow, T.

    2002-09-01

    A continuous liquid flow in a vacuum (a liquid beam) of an aqueous solution of adenine salt containing hydrochloric acid or sodium hydroxide was irradiated with an intense pulsed IR laser at 3 μm, which is resonant to a vibrational mode related to the OH stretch vibration of H2O. Neutral species isolated into the vacuum were ionized by a pulsed UV laser at 270 nm, and the product ions were mass-analyzed by a time-of-flight mass spectrometer. It is found that AH2^{2+}{\\cdot}2Cl^- and [ A iH] ^{i-}{\\cdot} iNa^+ (i=1 3) are isolated in the vacuum from the aqueous acidic and alkaline solutions, respectively, under irradiation of the IR laser, and undergo four-photon ionization involving decomposition and proton transfer of the intermediate species under irradiation of the UV laser.

  9. Applied homogeneous catalysis; Angewandte homogene Katalyse

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Arno [Dortmund Univ. (Germany). Lehrstuhl fuer Technische Chemie A

    2008-07-01

    In the book under consideration, all persons which are interested in the homogeneous transition metal catalysis and their application in the chemical technology find a practice-orientated and didactically skilled worked-up introduction. This book is addressed to students in the training and also to practicians in occupation. Apart from the chemical fundamentals concerning to the homogeneous catalysis, also fundamentals of process engineering as well as homogeneous catalytic reactions are described. Typical homogeneous catalyzed reactions are hydroformylation, carbonylation, oligomerization and polymerization, metathesis, hydrogenations as well as oxidation reactions. Additionally, new trends in the homogeneous catalysis are described such as tandem reactions, combinatorial chemistry, high throughput catalyst testing, green solvents, activation of paraffines, activation of nitrogen, efficient ligands, nano-catalysis, homogeneous catalysis with regenerating raw materials, process development belong to electrical catalysis / sono-catalysis / photocatalysis / microwave irradiation / maximum pressure.

  10. The synthesis of surface-glycosylated porous monolithic column via aqueous two-phase graft copolymerization and its application in capillary-liquid chromatography.

    Science.gov (United States)

    Xiong, Xiyue; He, Haiqin; Shu, Yan; Li, Yuxin; Yang, Zihui; Chen, Yingzhuang; Ma, Ming; Chen, Bo

    2016-12-01

    A facile, flexible process was developed for the preparation of surface-glycosylated porous monolithic columns via aqueous two-phase graft copolymerization of polyethylene glycol diacrylate (PEGDA) and water-soluble dextran (dextran sulfate). The formation of poly(PEGDA) porous skeletons and surface glycosylation were achieved via a one-step process without pre-modification of the dextran. The synthesis conditions were thoroughly optimized. The optimal monolithic column exhibited a large dry state surface area (greater than 400m 2 /g), and it was evaluated as a hydrophilic liquid chromatography (HILIC) stationary phase. A typical HILIC mechanism was observed at high organic solvent content (≥65% acetonitrile). In addition, the resulting monolithic column demonstrated the potential use in analysis of complex biological sample and enviroment water. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mass spectrometric elucidation of triacylglycerol content of Brevoortia tyrannus (menhaden) oil using non-aqueous reversed-phase liquid chromatography under ultra high pressure conditions.

    Science.gov (United States)

    Dugo, Paola; Beccaria, Marco; Fawzy, Nermeen; Donato, Paola; Cacciola, Francesco; Mondello, Luigi

    2012-10-12

    A non-aqueous reversed phase high performance liquid chromatography method was developed, and optimized for triacylglycerol analysis in a Brevoortia tyrannus (menhaden) oil sample. Four columns were serially coupled to tackle such a task, for a total length of 60 cm of shell-packed stationary phase, and operated under ultra high pressure conditions. As detection, positive-ion atmospheric pressure chemical ionization mass spectrometry was used to attain identification of the analyzed sample components. A number of 137 triacylglycerols containing up to 19 fatty acids, with 14-22 carbon atom alkyl chain length and 0-6 double bonds, were positively identified in the complex lipidic sample. This is the first work that reports an extensive characterization of the triacylglycerol fraction of menhaden oil. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Extraction of ascorbate oxidase from Cucurbita maxima by continuous process in perforated rotating disc contactor using aqueous two-phase systems.

    Science.gov (United States)

    Porto, T S; Marques, P P; Porto, C S; Moreira, K A; Lima-Filho, J L; Converti, A; Pessoa, A; Porto, A L F

    2010-02-01

    The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

  13. Determination of Sudan I-IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Yu, Wei; Liu, Zhongling; Li, Qiang; Zhang, Hanqi; Yu, Yong

    2015-04-15

    Ionic liquid/anionic surfactant aqueous two-phase system was developed and applied for the extraction of Sudan I-IV. High-performance liquid chromatography was applied to the determination of the analytes. The aqueous two-phase system (ATPS) was formed in the present of C4[MIM]BF4, sodium dodecyl benzene sulphonate and (NH4)2SO4. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of sodium dodecyl benzene sulphonate, ionic strength, pH value of system, extraction time and temperature were investigated. The limits of detection for Sudan I, II, III and IV were 5.45, 4.66, 3.68, 4.20 μg kg(-1), respectively. When the present method was applied to the analysis of candy samples, the recoveries of the analytes ranged from 82.3% to 112.1% and relative standard deviations were lower than 7.41%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    Science.gov (United States)

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei

    2013-05-21

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis of highly luminescent core-shell UCNCs in the "aqueous" phase under mild conditions using innocuous reagents. A microwave-assisted approach allowed for layer-by-layer epitaxial growth of a hydrophilic NaGdF4 shell on NaYF4:Yb, Er cores. During this process, surface defects of the nanocrystals could be gradually passivated by the homogeneous shell deposition, resulting in obvious enhancement in the overall upconversion emission efficiency. In addition, the up-down conversion dual-mode luminescent NaYF4:Yb, Er@NaGdF4:Ce, Ln (Eu, Tb, Sm, Dy) nanocrystals were also synthesized to further validate the successful formation of the core-shell structure. More significantly, based on their superior solubility and stability in water solution, high upconversion efficiency and Gd-doped predominant X-ray absorption, the as-prepared NaYF4:Yb, Er@NaGdF4 core-shell UCNCs exhibited high contrast in in vitro cell imaging and in vivo X-ray computed tomography (CT) imaging, demonstrating great potential as multiplexed luminescent biolabels and CT contrast agents.

  16. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  17. Properties of hydrodynamic J-type countercurrent chromatography for protein separation using aqueous two-phase systems: With special reference to constructing conical columns.

    Science.gov (United States)

    Ding, Jianjian; Li, Shifei; Zhao, Yuqing; Guan, Yue Hugh; Deng, Li; Deng, Qiuyun

    2017-05-26

    Protein separation using hydrodynamic countercurrent chromatography (CCC), where low backpressure is inherent, is more challenging, more time consuming and more costly when compared with separating small molecules. The most hopeful approach is to rationally design suitable columns for already commercialized J-type CCC machinery. By comparing 3 column geometries (3D helix, 2D spiral and 3D cone), we firstly constructed the mechanical model tailored to the conical column on J-type CCC using aqueous two-phase system (ATPS) on protein separation. Aimed at mechanistically understanding hydrodynamic CCC, we then developed a semi-quantitative model to account for contributions of both hydrodynamic and hydrostatic forces to stationary phase retention, and have subsequently compared the modelling outcomes with experimental results. We practiced a methodology to delineate both phase mixing and stationary phase retention before committing to physically constructing CCC columns. Following theoretical analyses, we finally constructed conical columns for J-type CCC. Using model proteins (myoglobin and lysozyme) and with 2 ATPSs containing PEG1000 and phosphate, sound protein separation has been achieved (resolution reaches 1.5-2.0 and stationary phase retention also exceeds 40%) for the selected ATPSs and under a varied level of sample volumes and loadings. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular catalysis science: Perspective on unifying the fields of catalysis.

    Science.gov (United States)

    Ye, Rong; Hurlburt, Tyler J; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2016-05-10

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.

  19. Novel Catalysis by Gold: A Modern Alchemy

    Science.gov (United States)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  20. Chemical catalysis in biodiesel production (I): enzymatic catalysis processes

    International Nuclear Information System (INIS)

    Jachmarian, I.; Dobroyan, M.; Veira, J.; Vieitez, I.; Mottini, M.; Segura, N.; Grompone, M.

    2009-01-01

    There are some well known advantages related with the substitution of chemical catalysis by enzymatic catalysis processes.Some commercial immobilized lipases are useful for the catalysis of bio diesel reaction, which permits the achievement of high conversions and the recovery of high purity products, like a high quality glycerine. The main disadvantage of this alternative method is related with the last inactivation of the enzyme (by both the effect of the alcohol and the absorption of glycerol on catalyst surface), which added to the high cost of the catalyst, produces an unfavourable economical balance of the entire process. In the work the efficiency of two commercial immobilized lipases (Lipozyme TL IM y Novozyme 435 NNovozymes-Dinamarca) in the catalysis of the continuous transesterification of sunflower oil with different alcohols was studied. The intersolubility of the different mixturesinvolving reactans (S oil/alkyl esters/alcohol) and products (P mixtures with a higher content of 1% of glycerol,while for ethanol homogeneous mixtures were obtained at 12% of glycerol (44.44 12).Using and ethanolic substrate at the proportion S=19:75:6 and Lipozyme TL IM, it was possible to achieve a 98% of convertion to the corresponding biodiesel.When Novozymes 435 catalyzed the process it was possible to increase the oil concentration in the substrateaccording to proportion S=35:30:35, and a 78% conversion was obtained. The productivity shown by the firt enzyme was 70mg biodiesel g enzime-1, hora-1 while with the second one the productivity increased to 230. Results suggested that the convenient adjustement of substrate composition with the addition of biodiesel to reactants offers an efficient method for maximizing the enzyme productivity, hence improving the profitability of the enzymatic catalyzed process. (author)

  1. Chemistry of Fluorinated Carbon Acids: Synthesis, Physicochemical Properties, and Catalysis.

    Science.gov (United States)

    Yanai, Hikaru

    2015-01-01

    The bis[(trifluoromethyl)sulfonyl]methyl (Tf2CH; Tf=SO2CF3) group is known to be one of the strongest carbon acid functionalities. The acidity of such carbon acids in the gas phase is stronger than that of sulfuric acid. Our recent investigations have demonstrated that this type of carbon acids work as novel acid catalysts. In this paper, recent achievements in carbon acid chemistry by our research group, including synthesis, physicochemical properties, and catalysis, are summarized.

  2. Electric Fields and Enzyme Catalysis.

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2017-06-20

    What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.

  3. Catalysis in the Primordial World

    Directory of Open Access Journals (Sweden)

    Nenad Raos

    2017-11-01

    Full Text Available Catalysis provides orderly prebiotic synthesis and eventually its evolution into autocatalytic (self-reproduction systems. Research on homogeneous catalysis is concerned mostly with random peptide synthesis and the chances to produce catalytic peptide oligomers. Synthesis of ribose via formose reaction was found to be catalysed by B(OH4−, presumably released by weathering of borate minerals. Oxide and clay mineral surfaces provide catalytic sites for the synthesis of oligopeptides and oligonucleotides. Chemoautotrophic or iron-sulphur-world theory assumes that the first (pioneer organisms developed by catalytic processes on (Fe/NiS particles formed near/close hydrothermal vents. The review provides an overlay of possible catalytic reactions in prebiotic environment, discussing their selectivity (regioselectivity, stereoselectivity as well as geological availability of catalytic minerals and geochemical conditions enabling catalytic reactions on early Earth.

  4. Magnetic catalysis in nuclear matter

    Science.gov (United States)

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2014-12-01

    A strong magnetic field enhances the chiral condensate at low temperatures. This so-called magnetic catalysis thus seeks to increase the vacuum mass of nucleons. We employ two relativistic field-theoretical models for nuclear matter, the Walecka model and an extended linear sigma model, to discuss the resulting effect on the transition between vacuum and nuclear matter at zero temperature. In both models we find that the creation of nuclear matter in a sufficiently strong magnetic field becomes energetically more costly due to the heaviness of magnetized nucleons, even though it is also found that nuclear matter is more strongly bound in a magnetic field. Our results are potentially important for dense nuclear matter in compact stars, especially since previous studies in the astrophysical context have always ignored the contribution of the magnetized Dirac sea and thus the effect of magnetic catalysis.

  5. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems.

    Science.gov (United States)

    Gurpilhares, Daniela B; Pessoa, Adalberto; Roberto, Inês C

    2015-07-01

    Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol(-1), TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol(-1), TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol(-1), TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol(-1), TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07-0.05, NADP(+) K M 0.02-1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells.

  6. The influence of molecular weight of polyethylene glycol on separation and purification of pectinases from Penicillium cyclopium in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Prodanović Jelena M.

    2008-01-01

    Full Text Available In this study the possibility of the partitioning and purification of pectinases from Penicillium cyclopium by their partitioning in polymer/polymer and polymer/salt aqueous two-phase systems was investigated. In the system with 10% (w/w polyethylene glycol 1500/5% (w/w dextran 500 000/85% (w/w crude enzyme, the highest values for partitioning parameters were achieved - the partition coefficient was 2.11, followed by the top phase yield of 85.68% and purification factor 1.28 for the endo-pectinase activity. The partition coefficient, yield in the top phase and purification factor for the exo-pectinase activity in the same system were 1.89, 84.28% and 3.82, respectively. In the system with 10% (w/w polyethylene glycol 6000/15% (w/w (NH42SO4/75% (w/w crude enzyme purification factor 37.85 for exo-pectinase, and 19.52 for endo-pectinase in the bottom phase were obtained.

  7. Asymmetric Ion-Pairing Catalysis

    Science.gov (United States)

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  8. Extremely efficient catalysis of carbon-carbon bond formation using "click" dendrimer-stabilized palladium nanoparticles.

    Science.gov (United States)

    Astruc, Didier; Ornelas, Cátia; Diallo, Abdou K; Ruiz, Jaime

    2010-07-20

    This article is an account of the work carried out in the authors' laboratory illustrating the usefulness of dendrimer design for nanoparticle palladium catalysis. The "click" synthesis of dendrimers constructed generation by generation by 1-->3 C connectivity, introduces 1,2,3-triazolyl ligands insides the dendrimers at each generation. Complexation of the ligands by Pd(II) followed by reduction to Pd(0) forms dendrimer-stabilized Pd nanoparticles (PdNPs) that are extremely reactive in the catalysis of olefin hydrogenation and C-C bond coupling reactions. The stabilization can be outer-dendritic for the small zeroth-generation dendrimer or intra-dendritic for the larger first- and second-generation dendrimers. The example of the Miyaura-Suzuki reaction that can be catalyzed by down to 1 ppm of PdNPs with a "homeopathic" mechanism (the less, the better) is illustrated here, including catalysis in aqueous solvents.

  9. Stability of Naturally Relevant Ternary Phases in the Cu–Sn–S system in Contact with an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Andrea Giaccherini

    2016-07-01

    Full Text Available A relevant research effort is devoted to the synthesis and characterization of phases belonging to the ternary system Cu–Sn–S, mainly for their possible applications in semiconductor technology. Among all ternary phases, kuramite, Cu3SnS4, mohite, Cu2SnS3, and Cu4Sn7S16 have attracted the highest interest. Numerous studies were carried out claiming for the description of new phases in the ternary compositional field. In this study, we revise the existing literature on this ternary system, with a special focus on the phases stable in a temperature range at 25 °C. The only two ternary phases observed in nature are mohite and kuramite. Their occurrence is described as very rare. A numerical modelling of the stable solid phases in contact with a water solution was underwent to define stability relationships of the relevant phases of the system. The numerical modelling of the Eh-pH diagrams was carried out through the phreeqc software with the lnll.dat thermodynamic database. Owing to the complexity of this task, the subsystems Cu–O–H, Sn–O–H, Cu–S–O–H and Sn–S–O–H were firstly considered. The first Pourbaix diagram for the two naturally relevant ternary phases is then proposed.

  10. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  11. Using an aqueous two-phase polymer-salt system to rapidly concentrate viruses for improving the detection limit of the lateral-flow immunoassay.

    Science.gov (United States)

    Jue, Erik; Yamanishi, Cameron D; Chiu, Ricky Y T; Wu, Benjamin M; Kamei, Daniel T

    2014-12-01

    The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  12. Nanometallic chemistry: deciphering nanoparticle catalysis from the perspective of organometallic chemistry and homogeneous catalysis.

    Science.gov (United States)

    Yan, Ning; Yuan, Yuan; Dyson, Paul J

    2013-10-07

    Nanoparticle (NP) catalysis is traditionally viewed as a sub-section of heterogeneous catalysis. However, certain properties of NP catalysts, especially NPs dispersed in solvents, indicate that there could be benefits from viewing them from the perspective of homogeneous catalysis. By applying the fundamental approaches and concepts routinely used in homogeneous catalysis to NP catalysts it should be possible to rationally design new nanocatalysts with superior properties to those currently in use.

  13. Cosmic strings and baryon decay catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)

    1989-09-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.

  14. Rapid magnetic solid-phase extraction of Congo Red and Basic Red 2 from aqueous solution by ZIF-8@CoFe2 O4 hybrid composites.

    Science.gov (United States)

    Xu, Yan; Jin, Jingjie; Li, Xianliang; Han, Yide; Meng, Hao; Wu, Junbiao; Zhang, Xia

    2016-09-01

    Core-shell metal-organic framework materials have attracted considerable attention mainly due to their enhanced or new physicochemical properties compared with their single-component counterparts. In this work, a core-shell heterostructure of CoFe2 O4 -Zeolitic Imidazolate Framework-8 (ZIF-8@CoFe2 O4 ) is successfully fabricated and used as an solid-phase extraction adsorbent to efficiently extract Congo Red and Basic Red 2 dyes from contaminated aqueous solution. Vibrating sample magnetometry indicates that the saturated magnetization of ZIF-8@CoFe2 O4 is 3.3 emu/g, which is large enough for magnetic separation. The obtained hybrid magnetic metal-organic framework based material ZIF-8@CoFe2 O4 can remove the investigated dyes very fast within 1 min of the contact time. The adsorbent ZIF-8@CoFe2 O4 also shows a good reusability. After regeneration, the adsorbent can still exhibit high removal efficiency (∼97%) toward Congo Red for five cycles of desorption-adsorption. This work reveals the great potential of core-shell ZIF-8@CoFe2 O4 sorbents for the fast separation and preconcentration of organic pollutants in aqueous solution before high-performance liquid chromatography analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Trace-level mercury ion (Hg2+) analysis in aqueous sample based on solid-phase extraction followed by microfluidic immunoassay.

    Science.gov (United States)

    Date, Yasumoto; Aota, Arata; Terakado, Shingo; Sasaki, Kazuhiro; Matsumoto, Norio; Watanabe, Yoshitomo; Matsue, Tomokazu; Ohmura, Naoya

    2013-01-02

    Mercury is considered the most important heavy-metal pollutant, because of the likelihood of bioaccumulation and toxicity. Monitoring widespread ionic mercury (Hg(2+)) contamination requires high-throughput and cost-effective methods to screen large numbers of environmental samples. In this study, we developed a simple and sensitive analysis for Hg(2+) in environmental aqueous samples by combining a microfluidic immunoassay and solid-phase extraction (SPE). Using a microfluidic platform, an ultrasensitive Hg(2+) immunoassay, which yields results within only 10 min and with a lower detection limit (LOD) of 0.13 μg/L, was developed. To allow application of the developed immunoassay to actual environmental aqueous samples, we developed an ion-exchange resin (IER)-based SPE for selective Hg(2+) extraction from an ion mixture. When using optimized SPE conditions, followed by the microfluidic immunoassay, the LOD of the assay was 0.83 μg/L, which satisfied the guideline values for drinking water suggested by the United States Environmental Protection Agency (USEPA) (2 μg/L; total mercury), and the World Health Organisation (WHO) (6 μg/L; inorganic mercury). Actual water samples, including tap water, mineral water, and river water, which had been spiked with trace levels of Hg(2+), were well-analyzed by SPE, followed by microfluidic Hg(2+) immunoassay, and the results agreed with those obtained from reduction vaporizing-atomic adsorption spectroscopy.

  16. Partition of proteins in aqueous two-phase systems based on Cashew-nut tree gum and poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Leonie Asfora Sarubbo

    2004-09-01

    Full Text Available The partitioning of two proteins, bovine serum albumin (BSA and trypsin was studied in an aqueous poly(ethylene glycol(PEG- Cashew-nut tree gum system. The phase diagram was provided for Cashew-nut tree gum and PEG molecular weight of 1500 at two different temperatures. The influence of several parameters including concentrations of polymers, pH, salt addition and temperature on the partitioning of these proteins were investigated.. The results of this research demonstrated the importance of the protein characteristics for partitioning in aqueous biphasic system.A partição de duas proteínas, albumina de soro bovino (BSA e tripsina foi estudada no sistema bifásico aquoso Polietileno glicol(PEG - Goma do cajueiro. O diagrama de fases foi estabelecido para a Goma do Cajueiro e para PEG de peso molecular 1500 em duas diferentes temperaturas. A influência de vários parâmetros na partição destas proteínas, incluindo concentração dos polímeros, pH, adição de sal e temperatura foi investigada. Os resultados desta pesquisa demonstraram a importância das características da proteína na partição em sistemas bifásicos aquosos.

  17. Organic solvent modifier and temperature effects in non-aqueous size-exclusion chromatography on reversed-phase columns.

    Science.gov (United States)

    Caltabiano, Anna M; Foley, Joe P; Striegel, André M

    2018-01-05

    Common reversed-phase columns (C 18 , C 4 , phenyl, and cyano) offer inert surfaces suitable for the analysis of polymers by size-exclusion chromatography (SEC). The effect of tetrahydrofuran (THF) solvent and the mixtures of THF with a variety of common solvents used in high performance liquid chromatography (acetonitrile, methanol, dimethylformamide, 2-propanol, ethanol, acetone and chloroform) on reversed-phase stationary phase characteristics relevant to size exclusion were studied. The effect of solvent on the elution of polystyrene (PS) and poly(methyl methacrylate) (PMMA) and the effect of column temperature (within a relatively narrow range corresponding to typical chromatographic conditions, i.e., 10°C-60°C) on the SEC partition coefficients K SEC of PS and PMMA polymers, were also investigated. The bonded phases show remarkable differences in size separations when binary mixtures of THF with other solvents are used as the mobile phase. The solvent impact can be two-fold: (i) change of the polymeric coil size, and possible shape, and (ii) change of the stationary phase pore volume. If the effect of this impact is properly moderated, then the greatest benefit of optimized solute resolution can be achieved. Additionally, this work provides an insight on solvent-stationary phase interactions and their effects on column pore volume. The only effect of temperature observed in our studies was a decreased elution volume of the polymers with increasing temperature. SEC partition coefficients were temperature-independent in the range of 10°C-60°C and therefore, over this temperature range elution of PS and PMMA polymers is by near-ideal SEC on reversed-phase columns. Non-ideal SEC appears to occur for high molar mass PMMA polymers on a cyano column when alcohols are used as mobile phase modifiers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  19. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  20. Solvent extraction of some fission products using tetracycline as a complexing agent : dependence on the ph of the aqueous phase and on the nature of some inorganic anions

    International Nuclear Information System (INIS)

    Cunha, I.I.L.; Nastasi, M.J.C.

    1982-10-01

    The behavior of tetracycline as a complexing agent in solvent extraction studies is presented. The extraction curves for the fission products 90 Sr, 140 Ba, 99 Mo, sup(99m)Tc, 95 Zr, 95 Nb, 103 Ru and also for U have been determined for the extraction system tetracycline-benzyl alcohol. The extraction dependence on the pH of the aqueous phase as well as on the kind of electrolyte present was examined. As a practical application, the possiblity of using the tetracycline-benzyl alcohol system for separation of the fission products present in a mixture of them, as well as for the separation of uranium from those elements, was tested. (Author) [pt

  1. Extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester in the presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki

    1993-01-01

    The extraction equilibria of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (commercial name, PC-88A, henceforth abbreviated as HR) dissolved in n-heptane were measured at 303 K. It was found that rare earth metals are extracted with the dimer of the extractant, (HR) 2 , as follows. M aq 3+ + 3(HR) 2 org MR 3 · 3HR org + 3H aq + The extraction equilibrium constants of metals were obtained and compared with the extraction equilibrium constants obtained by di(2-ethylhexyl)phosphoric acid (henceforth DZEHPA). Furthermore, the extraction equilibria of rare earth metals with PC-88A in the presence of diethylenetriaminepentaacetic acid (henceforth DTPA) in an aqueous phase were also measured to discuss the effect of DTPA on the extraction of rare earth metals. 13 refs., 8 figs., 2 tabs

  2. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.

    /pairing is presented and interfaced with industry standard models. The module involves extensive consideration of non-ideality by including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead......There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics (Batstone et al., 2012). Indeed, future modelling needs, such as a plant-wide phosphorus (P) description...... cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can...

  3. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly

    2015-01-01

    standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs......There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major...... at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling...

  4. Application of biowaste (waste generated in biodiesel plant as an adsorbent for the removal of hazardous bye - methylene blue - from aqueous phase

    Directory of Open Access Journals (Sweden)

    R. Gottipati

    2010-06-01

    Full Text Available Solid waste (SW from a biodiesel plant has been successfully used for the removal of the hazardous cationic water soluble dye - methylene blue (MB - from an aqueous phase. Batch adsorption studies were carried out by monitoring the pH, amount of adsorbent, initial dye concentration and contact time. Attempts have also been made to monitor the adsorption process through Langmuir, Freundlich, Temkin and D-R adsorption isotherm models. Relevant thermodynamic parameters were calculated and it was found that the adsorption process was exothermic and feasible at low temperatures. The nature and randomness of the adsorption process was determined by calculating the thermodynamic parameters such as Gibbs free energy (∆Gº, change in entropy (∆Sº and heat of adsorption (∆Hº. The kinetics of the adsorption indicates that the process is pseudo-second-order and also reveals the involvement of bulk diffusion and intraparticle diffusion mechanisms.

  5. Measurement of underground contamination of non-aqueous phase liquids (NAPLs) on the basis of the radon concentration in ground level air

    International Nuclear Information System (INIS)

    Schubert, M.

    2001-01-01

    It was investigated whether measurements of radon concentrations in ground level air are a suitable method of detecting sub-surface soil contamination with non-aqueous phase liquids (NAPLs). The working postulation was that, due to the very high solubility of radon in NAPLs, and the resulting accumulation of radon in NAPLs, radon exhalation to the ground level air in the proximity of such NAPL contamination should be locally reduced, thus indicating contamination of sub-surface soils with NAPLs. The research work reported was to verify the working theory by way of experiments, and to finally develop a reliable detection method for NAPL contaminations. The investigations comprised theoretical studies, laboratory experiments, experiments in defined soil columns, and extensive field studies [de

  6. Biodegradation of azaarenes and creosote in aqueous and organic liquid phase immobilized cell bioreactors by bacteria isolated from creosote contaminated soil

    International Nuclear Information System (INIS)

    Rothenburger, S.J.

    1992-01-01

    The biodegradation of azaarenes and coal-tar creosote was studied using aerobic bacteria isolated from creosote contaminated soil as inocula in batch cultures and in immobilized cell bioreactors. Biodegradation of quinoline, isoquinoline, and 6-methylquinoline by pure and mixed cultures yielded mono-hydroxylated metabolites as the primary products of azaarene metabolism. All azaarene degrading cultures could degrade quinoline, suggesting a common metabolic pathway based on quinoline metabolism. Mixed cultures attacking creosote degraded 2- and 3-ring polyaromatic hydrocarbons and heterocycles, but were unable to degrade 4- and 5-ring PAH. The degradation rate and loading capacity for quinoline was greatly enhanced in the bioreactors in comparison to batch cultures. The rates of isoquinoline, 6-methylquinoline degrading strain of Pseudomonas putida successfully removed 6-methylquinoline from solution in decane in a water-limited, non-aqueous liquid phase immobilized cell bioreactor. These experiments demonstrate the ability of environmental organisms to biodegrade several biologically active compounds under conditions suitable for bioremediation applications

  7. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method. PMID:25538857

  8. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ou Sha

    2014-01-01

    Full Text Available We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs with high performance liquid chromatography (HPLC, for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  9. Determination of sunset yellow and tartrazine in food samples by combining ionic liquid-based aqueous two-phase system with high performance liquid chromatography.

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01-50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  10. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    Science.gov (United States)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric

  11. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology.

    Science.gov (United States)

    Xu, Yan-Yang; Qiu, Yang; Ren, Hui; Ju, Dong-Hu; Jia, Hong-Lei

    2017-03-16

    Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol-water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30-0.35 g mL -1 ), ethanol-water ratio (0.6-0.8), ultrasonic time (40-60 min), and ultrasonic power (175-225 W) were further optimized by implementing Box-Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL -1 , ethanol-water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL -1 , ethanol-water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g -1 , respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.

  12. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    Science.gov (United States)

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  13. Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO{sub 2} catalysts: Role of Pt and product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fuying [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Gu, Quan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi’an 710062 (China); Niu, Yu [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); School of Chemical Engineering, Fuzhou University, Fuzhou 350116 (China); Wang, Renzhang [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Tong, Yuecong; Zhu, Shuying; Zhang, Hualei [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Wang, Xuxu [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China)

    2017-01-01

    Highlights: • Photocatalytic EG reforming generates many hydrocarbons besides H{sub 2}, CO{sub 2} and CO. • Pt loading greatly improves the photocatalytic activity of TiO{sub 2} for EG reforming. • Half amount of the produced H{sub 2} over Pt/TiO{sub 2} originates from EG reforming. - Abstract: Pt nanoparticles were loaded on anatase TiO{sub 2} by the photodeposition method to investigate their photocatalytic activity for H{sub 2} evolution in an aqueous solution containing a certain amount of ethylene glycol (EG) as the sacrificial agent. The surface properties and chemical states of the Pt/TiO{sub 2} sample were characterized by X-ray powder diffraction analysis, Brunauer–Emmett–Teller surface area analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and electrochemical resistance. The aqueous-phase photocatalytic EG reforming using Pt/TiO{sub 2} and anatase TiO{sub 2} generated not only H{sub 2} and CO{sub 2}, but also CO, CH{sub 4}, C{sub 2}H{sub 6}, and C{sub 2}H{sub 4}. Moreover, the amount of formate and acetate complexes in the solution increased gradually. The EG adsorption and gas-phase intermediates during photocatalytic reaction processes were investigated by the in situ FTIR spectrum. Finally, the photocatalytic EG reforming reaction mechanism was elucidated. This helped to better understand the role of a sacrificial agent in a photocatalytic hydrogen production.

  14. Cd(II extraction in PEG (1550–(NH42SO4 aqueous two-phase systems using halide extractants

    Directory of Open Access Journals (Sweden)

    LAURA BULGARIU

    2008-03-01

    Full Text Available The extraction of Cd(II was studied in an aqueous PEG–(NH42SO4 two-phase system, formed from a water-soluble polymer (poly(ethylene glycol, PEG and an inorganic salt ((NH42SO4, in the presence of halide ions. In the absence of a suitable extracting agent, Cd(II remains predominantly in the salt-rich phase of the extraction system. By addition of halide ions as extractants, Cd(II is extracted into the PEG-rich phase due to the formation of cadmium halide species. The efficiency of the extractants increased in the order: Cl– < Br– < I–. From the distribution coefficients determined as a function of the concentration of the halide ions, the compositions of the extracted species were assumed and the “conditional” extractions constants calculated. The experimental results indicate that the extractability of Cd(II in such extraction systems depends on the type of Cd(II halide species (which is mainly determined by the acidity of salt stock solution and of their stability.

  15. Nonequilibrium hollow-fiber liquid-phase microextraction with in situ derivatization for the measurement of triclosan in aqueous samples by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhao, Ru-Song; Yuan, Jin-Peng; Li, Hai-Fang; Wang, Xu; Jiang, Ting; Lin, Jin-Ming

    2007-04-01

    Hollow-fiber liquid-phase microextraction (HF-LPME), a relatively new sample preparation technique, has attracted much interest in the field of environmental analysis. In the current study, a novel method based on hollow-fiber liquid-phase microextraction with in situ derivatization and gas chromatography-mass spectrometry for the measurement of triclosan in aqueous samples is described. Hollow-fiber liquid-phase microextraction conditions such as the type of extraction solvent, the stirring rate, the volume of derivatizing reagent, and the extraction time were investigated. When the conditions had been optimized, the linear range was found to be 0.05-100 microg l(-1) for triclosan, and the limit of detection to be 0.02 microg l(-1). Tap water and surface water samples collected from our laboratory and Wohushan reservoir, respectively, were successfully analyzed using the proposed method. The recoveries from the spiked water samples were 83.6 and 114.1%, respectively; and the relative standard deviation (RSD) at the 1.0 microg l(-1) level was 6.9%.

  16. Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T. R.

    2004-03-05

    There is considerable impetus for identification of aqueous OM catalysts as water is the ultimate ''green'' solvent. In collaboration with researchers at Ames Lab, we investigated effective fragment and Monte Carlo techniques for aqueous-phase hydroformylation (HyF). The Rh of the HyF catalyst is weakly aquated, in contrast to the hydride of the Rh-H bond. As the insertion of the olefin C=C into Rh-H determines the linear-to-branched aldehyde ratio, it is reasonable to infer that solvent plays an important role in regiochemistry. Studies on aqueous-phase organometallic catalysis were complemented in studies of the gas-phase reaction. A Rh-carbonyl-phosphine catalyst was investigated. Two of the most important implications of this research include (a) pseudorotation among five-coordinate intermediates is significant in HyF, and (b) CO insertion is the rate-determining step. The latter is in contrast to experimental deductions, highlighting the need for more accurate modeling. To this end, we undertook studies of (a) experimentally relevant PR{sub 3} co-ligands (PMe{sub 3}, PPh{sub 3}, P(p-PhSO{sub 3{sup -}}){sub 3}, etc.), and (b) HyF of propene. For the propylene research, simulations indicated that the linear: branched aldehyde ratio (linear is more desirable) is determined by thermodynamic discrimination of two distinct pathways. Other projects include a theory-experiment study of C-H activation by early transition metal systems, which establishes that weakly-bound adducts play a key role in activity selectivity. By extension, more selective catalysts for functionalization of methane (major component of natural gas) will require better understanding of these adducts, which are greatly affected by steric interactions with the ligands. In the de novo design of Tc complexes, we constructed (and are now testing) a coupled quantum mechanics-molecular mechanics protocol. Initial research shows it to be capable of accurately predicting structure

  17. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    Science.gov (United States)

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  18. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  19. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  20. Study of Fluoride Affinity by Zirconium Impregnated Walnut Shell Carbon in Aqueous Phase: Kinetic and Isotherm Evaluation

    Directory of Open Access Journals (Sweden)

    M. Rajan

    2013-01-01

    Full Text Available This paper examines the kinetics of fluoride removal from water by the adsorbent zirconium-impregnated walnut-shell carbon (ZIWSC, exploring the mechanisms involved. The dependence of the adsorption of fluoride on the pH of the solution has been studied to achieve the optimum pH value and a better understanding of the adsorption mechanism. The presence of bicarbonate ions in aqueous solution was found to affect the fluoride removal indicating that these anions compete with the sorption of fluoride on adsorbents. The kinetic profile has been modeled using pseudo-first-order model, pseudo-second-order model, and intraparticle diffusion model. The kinetic sorption profiles offered excellent fit with pseudo-second-order model. Adsorption isotherms have been modeled by Langmuir, Freundlich, and Temkin equations, and their constants were determined. The equilibrium adsorption data were fitted reasonably well for Freundlich isotherm model. XRD and SEM patterns of the ZIWSC were recorded to get better insight into the mechanism of adsorption process.

  1. A mechanistic study on Decontamination of Methyl Orange Dyes from Aqueous Phase by Mesoporous Pulp Waste and Polyaniline.

    Science.gov (United States)

    Li, Donglin; Yang, Yonggang; Li, Chaozheng; Liu, Yufang

    2017-04-01

    The dispersion-corrected density functional theory (DFT-D3) is used to investigate the mechanism of mesoporous pulp waste (MPW) and polyaniline (PANI) adsorptive removal methyl orange (MO) dye from their aqueous solutions. The results are absolutely reliable because of the sufficiently accurate method although such big systems are studied. It is demonstrated that hydrogen bond and Van Der Waals interactions play a significant role in MO adsorption by MPW and PANI. For MO adsorption by MPW, hydrogen bond and Van Der Waals interactions are both weakened in S 1 state. In contrast, hydrogen bond and Van Der Waals interactions between PANI and MO are both enhanced in S 1 state. The thermodynamic parameters such as enthalpy and free energy change reveal that the MO adsorption by MPW and PANI are spontaneous and exothermic. The adsorption of MO on MPW is less favorable in S 1 state and the adsorption of MO on PANI is more favorable in S 1 state. Therefore, the photoexcitation should be controlled during the MO adsorption by MPW and applied for MO adsorption by PANI. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Optimization of the Parameters Affecting the Fenton Process for Decolorization of Reactive Red 198 (RR-198 from the Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2015-10-01

    Full Text Available Background: Recently, there has been a great concern about the consumption of dyes because of their toxicity, mutagenicity, carcinogenicity, and persistence in the aquatic environment. Reactive dyes are widely used in textile industry. Advanced oxidation processes are one of the cost-effective methods for the removal of these dyes. The main aims of this study were determining the feasibility of using Fenton process in removing Reactive Red 198 (RR-198 dye from aqueous solution and determining the optimal conditions. Methods: This is a cross-sectional study conducted at a laboratory scale. A total of 69 samples were considered and the effect of pH, Fe (II concentration, H2O2 concentration, initial dye concentration and reaction time were investigated. Results: According to the results, a maximum removal efficiency of 92% was obtained at pH of 3 and the reaction time of 90 min; also, the concentration of Fe (II, H2O2, initial dye concentration were 100 mg/L, 50 mg/L, and 100 mg/L, respectively. The results revealed that by increasing the concentration of Fe (II, H2O2 and initial dye, the removal efficiency was increased. Conclusions: The results showed that Fenton process could be used as a cost-effective method for removing RR-198 dye from textile wastewater efficiently.

  3. Homogeneous catalysis by transition metals

    International Nuclear Information System (INIS)

    Masters, K.

    1983-01-01

    Fundamentals of homogeneous catalysis by metal complex aAe presented in the monograph along with the mechanisms of practically all types of catalytic reactions proceeding in the presence of transition metal complexes. In particular, considered are: catalytic cycles for olefin hydrogenation in the presence of Ru(2) complex; for alkene epoxidation catalyzed by Mo(6); for alkene metathesis reaction catalyzed by Ta and W compounds. Catalytic systems on the basis of Zr, Mo, W, Ru complexes being in the stage of development of the processes of nitrogen fixation reductive oligomerization alkene activation are described. Bibliography contains more than 400 references

  4. Fundamental concepts in heterogeneous catalysis

    CERN Document Server

    Norskov, Jens K; Abild-Pedersen, Frank; Bligaard, Thomas

    2014-01-01

    This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts.   Features include:First comprehensive description of modern theory of heterogeneous catalysisBasis for understanding and designing experiments in the field   Allows reader to understand catalyst design principlesIntroduction to important elements of energy transformation technologyTest driven at Stanford University over several semesters

  5. Cellulose conversion under heterogeneous catalysis.

    Science.gov (United States)

    Dhepe, Paresh L; Fukuoka, Atsushi

    2008-01-01

    In view of current problems such as global warming, high oil prices, food crisis, stricter environmental laws, and other geopolitical scenarios surrounding the use of fossil feedstocks and edible resources, the efficient conversion of cellulose, a non-food biomass, into energy, fuels, and chemicals has received much attention. The application of heterogeneous catalysis could allow researchers to develop environmentally benign processes that lead to selective formation of value-added products from cellulose under relatively mild conditions. This Minireview gives insight into the importance of biomass utilization, the current status of cellulose conversion, and further transformation of the primary products obtained.

  6. NMR study on polymer-solvent interactions during temperature-induced phase separation in aqueous polymer solutions

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Hanyková, L.

    2007-01-01

    Roč. 251, č. 1 (2007), s. 72-80 ISSN 1022-1360. [International Conference on Polymer-Solvent Complexes and Intercalates /6./. Manchester, 29.08.2006-01.09.2006] Institutional research plan: CEZ:AV0Z40500505 Keywords : hydration * NMR * phase separation Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.913, year: 2005

  7. Thermotropic phase transition in aqueous polymer solutions and gels as studied by .sup.1./sup.H NMR methods

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Hanyková, L.; Starovoytova, L.; Ilavský, Michal

    2002-01-01

    Roč. 2, č. 3 (2002), s. 36-43 ISSN 1335-8243 R&D Projects: GA AV ČR IAA4050209 Grant - others:GA UK(XC) 164/2001B Institutional research plan: CEZ:AV0Z4050913 Keywords : thermotropic phase transition * collapse * D 2 O solutions and gels Subject RIV: CD - Macromolecular Chemistry

  8. Application of a charge coupled device Raman microscope imaging system for quantitative analysis of aqueous surfactant phases

    International Nuclear Information System (INIS)

    Millichope, A.J.

    2000-04-01

    Tile development of the molecular optical laser examiner Raman microprobe during the 70's has provided the ability to acquire analytical quality Raman spectra with spatial resolution of the order of one micron. In recent years, with the introduction of charge coupled device detectors and holographic filters, this technology has become efficient enough to allow spectral mapping experiments to be possible. The main aim of this project was to modify the Jobin Yvon/Spex confocal Raman spectrometer to provide line imaging capabilities and use this feature to provide a rapid means of producing a phase composition diagram of a surface active agent with water. The surfactants chosen for phase behavior were polyoxyethylenes C 12 H 25 (OCH 2 CH 2 ) x OH [C 12 EO 8 ] and C 12 H 25 (OCH 2 CH 2 ) 6 OH [C 12 EO 6 ]. Each solid surfactant was placed at one end in a 0.4 mm pathlength borosilicate cell and water introduced at the other end. The different phases and boundaries were allowed to develop, in the cell by means of the diffuse interfacial transport method at different temperatures. These were then examined by line imaging and their corresponding composition determined using a series of external ethoxylate standards. The resulting phase boundaries were found to be comparable with those obtained using alternative methods, however the time taken to obtain them was considerably reduced. (author)

  9. A new procedure for synthesis of -aminophosphonates by aqueous ...

    Indian Academy of Sciences (India)

    ESMAEIL MOHAMMADIYAN

    2017-11-20

    Nov 20, 2017 ... bCatalysis and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science ... Abstract. Aqueous formic acid (37%) as a green organocatalyst was used to synthesis of α-aminophosphonates in one-pot ...... J, Keppler B K and Reedijk J 1999 Calcium Ions Do. Accelerate the ...

  10. Homogeneous and heterogeneous catalysis production and ...

    African Journals Online (AJOL)

    While the homogeneous catalysis route produced higher biodiesel yields, the heterogeneous catalyst method produced biodiesel of lower ester content. The fuel properties of biodiesels and blends were analysed quantitati-vely, and the biodiesel produced by homogeneous catalysis compared favourably with conventional ...

  11. catalysis of chemical processes: particular teaching aspects

    African Journals Online (AJOL)

    IICBA01

    of catalysis is included in the majority of textbooks covering, in particular, general chemistry, industrial processes and technologies, biochemistry and biotechnology[7-16]. Catalysis understood as an acceleration of a chemical reaction in approaching the equilibrium state is extremely important at the stage of obtaining the ...

  12. DOE Laboratory Catalysis Research Symposium - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  13. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Nouri, Loubna; Hamdaoui, Oualid; Chiha, Mahdi

    2008-01-01

    The efficiency of eucalyptus bark as a low cost sorbent for removing cadmium ions from aqueous solution has been investigated in batch mode. The equilibrium data could be well described by the Langmuir isotherm but a worse fit was obtained by the Freundlich model. The five linearized forms of the Langmuir equation as well as the non-linear curve fitting analysis method were discussed. Results show that the non-linear method may be a better way to obtain the Langmuir parameters. Maximum cadmium uptake obtained at a temperature of 20 deg. C was 14.53 mg g -1 . The influence of temperature on the sorption isotherms of cadmium has been also studied. The monolayer sorption capacity increased from 14.53 to 16.47 when the temperature was raised from 20 to 50 deg. C. The ΔG o values were negative, which indicates that the sorption was spontaneous in nature. The effect of experimental parameters such as contact time, cadmium initial concentration, sorbent dose, temperature, solution initial pH, agitation speed, and ionic strength on the sorption kinetics of cadmium was investigated. Pseudo-second-order model was evaluated using the six linear forms as well as the non-linear curve fitting analysis method. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model using the non-linear method. The pseudo-second-order model parameters were function of the initial concentration, the sorbent dose, the solution pH, the agitation speed, the temperature, and the ionic strength

  14. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.

    Science.gov (United States)

    Tsao, Yu-Chi; Rej, Sourav; Chiu, Chun-Ya; Huang, Michael H

    2014-01-08

    In this study, rhombic dodecahedral gold nanocrystals were used as cores for the generation of Au-Ag core-shell nanocrystals with cubic, truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. Gold nanocrystals were added to an aqueous mixture of cetyltrimethylammonium chloride (CTAC) surfactant, AgNO3, ascorbic acid, and NaOH to form the core-shell nanocrystals. The nanocrystals are highly uniform in size and shape, and can readily self-assemble into ordered packing structures on substrates. Results from observation of solution color changes and variation in the reaction temperature suggest octahedra are produced at a higher growth rate, while slower growth favors cube formation. The major localized surface plasmon resonance (LSPR) band positions for these nanocrystals are red-shifted compared to those for pristine silver particles with similar dimensions due to the LSPR effect from the gold cores. By increasing the concentrations of reagents, Au-Ag core-shell cubes and octahedra with tunable sizes were obtained. Au-Ag cubes with body diagonals of 130, 144, and 161 nm and octahedra with body diagonals of 113, 126, and 143 nm have been prepared, allowing the investigation of size effect on their optical properties. Au-Ag octahedra with thinner Ag shells (12-16.5 nm) exhibit a blue-shifted major LSPR band relative to the LSPR band at 538 nm for the gold cores. For Au-Ag octahedra and cubes with thicker shells (22.5-37 nm), the major LSPR band is progressively red-shifted from that of the gold cores with increasing shell thickness and particle size. The Au-Ag octahedra show higher catalytic activity than cubes toward reduction of 2-amino-5-nitrophenol by NaBH4 at 30 °C, but both particle shapes display significantly enhanced catalytic efficiency at 40 °C.

  15. Retention of ionisable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase.

    Science.gov (United States)

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2004-12-03

    The most commonly used mobile phases in reversed-phase high-performance liquid chromatography (RP-HPLC) are hydro-organic mixtures of an aqueous buffer and an organic modifier. The addition of this organic solvent to buffered aqueous solutions involves a variation of the buffer properties (pH and buffer capacity). In this paper, the pH variation is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-citrate, and ammonium-ammonia buffers. The proposed equations allow pH estimation of acetonitrile-water buffered mobile phases up to 60% (v/v) of organic modifier and initial aqueous buffer concentrations between 0.001 and 0.1 mol L(-1), from the initial aqueous pH. The estimated pH variation of the mobile phase and the pKa variation of the analytes allow us to predict the degree of ionisation of the analytes and from this and analyte hydrophobicities, to interpret the relative retention and separation of analyte mixtures.

  16. International Conference on Partitioning in Aqueous Two-Phase Systems: Advances in Separation in Biochenistry, Cell Biology and Biotechnology (7th) Held in New Orleans, Louisiana on 2-7 June 1991.

    Science.gov (United States)

    1991-06-27

    Indianapolis, IN 46223 and D. James Morrd, Department of Medicinal Chemistry and Pharmacognosy , Purdue University, West Lafayette, IN 47907 Endosomes were...AQUEOUS TWO- PHASE PARTITIONING AND PREPARATIVE FREE-FLOW ELECTROPHORESIS D. James Morrd, Department of Medicinal Chemistry and Pharmacognosy , Purdue

  17. Separation and direct detection of long chain fatty acids and their methylesters by the non-aqueous reversed phase HPLC and Silver Ion Chromotography, combined with CO laser pumped thermal lens spectrometry

    NARCIS (Netherlands)

    Bicanic, D.D.; Mocnik, G.; Franko, M.; Niederlander, H.A.G.; Bovenkamp, van de P.; Cozijnsen, J.L.; Klift, van der E.J.C.

    2006-01-01

    The potential of the CO laser pumped dual beam thermal lens spectrometer (TLS) used as the detector of infrared (IR) absorbance in non-aqueous reversed-phase high pressure liquid chromatography (NARP-HPLC) and argentation chromatography (Ag-HPLC-TLS) has been investigated. The linoleic acid C18:2

  18. Characterization of fatty acid and triacylglycerol composition in animal fats using silver-ion and non-aqueous reversed-phase high-performance liquid chromatography/mass spectrometry and gas chromatography/flame ionization detection

    Czech Academy of Sciences Publication Activity Database

    Lísa, M.; Netušilová, K.; Franěk, L.; Dvořáková, H.; Vrkoslav, Vladimír; Holčapek, M.

    2011-01-01

    Roč. 1218, č. 42 (2011), s. 7499-7510 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : silver-ion HPLC * non-aqueous reversed-phase HPLC * triacylglycerol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.531, year: 2011

  19. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Directory of Open Access Journals (Sweden)

    E. A. Marais

    2016-02-01

    Full Text Available Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA, but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS and ground-based (SOAS observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx  ≡  NO + NO2 over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2 react significantly with both NO (high-NOx pathway and HO2 (low-NOx pathway, leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA and formaldehyde (a product of isoprene oxidation. Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA from the low-NOx pathway and glyoxal (28 % from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation, but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume. The US Environmental Protection Agency (EPA projects 2013–2025 decreases in

  20. A Designer Fluid for Aluminum Phase Change Devices, Vol. 1 of 3: General Inorganic Aqueous Solution (IAS) Chemistry

    Science.gov (United States)

    2016-11-17

    thermo-syphon: (a) before charge, (b) sealed by cold welder, (c) protected by J-B weld adhesive...out in wicked phase change heat transfer devices. Wen [18] used nanoparticle suspensions to successfully increase the boiling heat transfer...heat fluxes. He found that the critical axial and radial heat fluxes of the Qu tube were much larger than found for off the shelf similar size heat