WorldWideScience

Sample records for aqueous oleic acid

  1. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension

    CERN Document Server

    Peterlin, Primoz; Kogej, Ksenija; Svetina, Sasa; Walde, Peter

    2009-01-01

    The interaction of two types of vesicle systems was investigated: micrometer-sized, giant unilamellar vesicles (GUVs) formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and submicrometer-sized, large unilamellar vesicles (LUVs) formed from oleic acid and oleate, both in a buffered aqueous solution (pH=8.8). Individual POPC GUVs were transferred with a micropipette into a suspension of oleic acid/oleate LUVs, and the shape changes of the GUVs were monitored using optical microscopy. The behavior of POPC GUVs upon transfer into a 0.8 mM suspension of oleic acid, in which oleic acid/oleate forms vesicular bilayer structures, was qualitatively different from the behavior upon transfer into a 0.3 mM suspension of oleic acid/oleate, in which oleic acid/oleate is predominantly present in the form of monomers and possibly non-vesicular aggregates. In both cases, changes in vesicle morphology were observed within tens of seconds after the transfer. Vesicle initially started to evaginate. In 60% of the...

  2. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    Directory of Open Access Journals (Sweden)

    Cristina Lavinia Nistor

    2016-01-01

    Full Text Available The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA. The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS and scanning electron microscopy (SEM measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  3. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    OpenAIRE

    Cristina Lavinia Nistor; Raluca Ianchis; Marius Ghiurea; Cristian-Andi Nicolae; Catalin-Ilie Spataru; Daniela Cristina Culita; Jeanina Pandele Cusu; Victor Fruth; Florin Oancea; Dan Donescu

    2016-01-01

    The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium ...

  4. Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite

    International Nuclear Information System (INIS)

    The use of a polymeric sorbent material embedded with oleic acid coated magnetic particles as selective sorbents for the removal of U(VI) ions from industrial waste effluents was studied. In the presence of other competing ions [Th(IV) and Ni(II)], U(VI) was preferentially adsorbed. Inclusion of nano-magnetic particles in the polymer matrix aided the separation of the sorbents from aqueous solutions by application of external magnetic field. High recoveries indicated that the sorbent is suitable for application in contaminated water. (author)

  5. Concentration Yield of Biopetrol from Oleic Acid

    Directory of Open Access Journals (Sweden)

    S.N. Hassan

    2009-01-01

    Full Text Available Biopetrol is defined as fuel which has the same characteristics with commercial petrol in terms of its molecular formula. The current petrol disaster and the valuable oleic acid loss by disposal to environment are the problematic reasons that the biopetrol should be synthesized from oleic acid. The objective of this study is to find the concentration of biopetrol (dominated by isooctane from oleic acid in palm oil waste. Catalytic cracking process is used to synthesize isooctane from oleic acid, using zeolite as catalyst. Oleic acid is naturally in liquid form, so oleic acid is directly heated until achieving isooctane’s boiling point of 98°C to form new arrangements of carbon compounds including isooctane. Various masses of catalyst are used, which are 1, 5, 10 and 20 g. After the cracking process is completed, the samples from oleic acid’s distillates were collected. The desired isooctane obtained is around 0.04-2.15% in the distilled oleic acid, with the presence of hexane as dilution solvent. After applying back calculation to obtain actual isooctane concentrations in both distillates with comparison to the pure isooctane, the highest concentration of the desired isooctane in oleic acid distillate is 7.886% for 20 g zeolite.

  6. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14CO2. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14CO2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  7. Adsorption of oleic acid at sillimanite/water interface.

    Science.gov (United States)

    Kumar, T V Vijaya; Prabhakar, S; Raju, G Bhaskar

    2002-03-15

    The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system. PMID:16290466

  8. Toxicity of oleic acid anilide in rats.

    Science.gov (United States)

    Khan, M F; Kaphalia, B S; Palafox, A; Jerrells, T R; Ansari, G A

    1991-11-01

    In the present investigation, we have studied the toxic potential of oleic acid anilide (OAA) and heated oleic acid anilide (HOAA) in relation to the toxic oil syndrome (TOS). Male Sprague-Dawley rats were given 250 mg/kg of OAA or HOAA in mineral oil by gavage, on alternate days for 2 weeks (total 7 doses). The control rats received an equal volume of mineral oil only. The animals were sacrificed at days 1, 7, and 28 following the last dose. Ratio of organ-to-body weight showed increases in spleen and kidney of HOAA and OAA treated rats, respectively, at day 1 while this ratio for liver in HOAA treated group showed a decrease at day 1. Among blood parameters, white blood cells increased in HOAA treated group at day 1 and in both OAA and HOAA groups at day 28. Mean corpuscular hemoglobin (MCH) and mean cell volume (MCV) also showed increases in the HOAA treated rats at days 7 and 28. Serum lactate dehydrogenase (LDH) decreased in both OAA and HOAA treated rats at day 1, while at day 7 the decrease was confined only to the HOAA group. Serum glutamic oxalacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities also decreased at most of the time points. Liver mitochondrial ATPase activity decreased in the HOAA group at day 7 and in the OAA group at day 28. Among serum immunoglobulins, IgA levels increased throughout the study but the changes were more pronounced in HOAA treated rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1759851

  9. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Directory of Open Access Journals (Sweden)

    Guo Chen

    2015-04-01

    Full Text Available The cellulose sulfate (CS is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w. The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w CS, 0.3% (w/w glycerol and 0.3% (w/w OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  10. Capillary electrophoresis of some free fatty acids using partially aqueous electrolyte systems and indirect UV detection. Application to the analysis of oleic and linoleic acids in peanut breeding lines

    Science.gov (United States)

    This study has shown for the first time the suitability of CE with a partially aqueous electrolyte system for the analysis of free fatty acids (FFA's) in small portions of single peanut seeds. The partially aqueous electrolyte system consisted of 40 mM Tris, 2.5 mM adenosine-5'-monophosphate (AMP) ...

  11. Increased isoprostane levels in oleic acid-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  12. Oleic acid-embedded nanoliposome as a selective tumoricidal agent.

    Science.gov (United States)

    Jung, Sujin; Lee, Sangah; Lee, Hyejin; Yoon, Jaejin; Lee, E K

    2016-10-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cell), a molecular complex of human α-lactalbumin and oleic acid, is known to have selective cytotoxic activity against certain types of tumors. This cytotoxicity is known to stem from water-insoluble oleic acid. In this study, we manufactured an alternative complex using liposome as an oleic acid delivery vesicle. We named this nanolipoplex LIMLET (LIposome Made LEthal to Tumor cell). The LIMLET vesicle contained approximately 90,200 oleic acid molecules inserted into its lipophilic phospholipid bilayer and had a nominal mean diameter of 127nm. Using a WST-1 assay, its cytotoxicity against two cancer cell lines, MDA-MB-231 (human breast cancer) and A549 (human lung cancer), were tested. The results were compared with that of a normal cell line, Vero (from monkey kidney). We found that (1) LIMLET showed distinctive cytotoxicity against A549 and MDA-MB-231 cells, whereas bare liposomes (containing no oleic acid) had no toxicity, even at high concentrations, and (2) LIMLET demonstrated selective, concentration-dependent toxicity against the cancer cells: the LD50 values of MDA-MB-231 and A549 cells were 1.3 and 2.2nM LIMLET, respectively, whereas the LD50 of Vero was 5.7nM. The strength of the tumoricidal effect appeared to stem from the number of oleic acid molecules present. Our result suggests that LIMLET, like HAMLET, is an interesting nanolipoplex that can potentially be developed into tumor treatments. PMID:27424089

  13. α-Lactalbumin:Oleic Acid Complex Spontaneously Delivers Oleic Acid to Artificial and Erythrocyte Membranes.

    Science.gov (United States)

    Wen, Hanzhen; Strømland, Øyvind; Halskau, Øyvind

    2015-09-25

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity. PMID:26297199

  14. Effects of oleic acid on pulmonary capillary leak and thromboxanes

    International Nuclear Information System (INIS)

    The role of arachidonic acid metabolites in oleic acid-induced lung injury in anesthetized dogs was investigated. Oleic acid was administered as a bolus injection into the pulmonary artery after either indomethacin (10 mg/kg iv) or vehicle. Measurements of hemodynamic parameters, mean systemic (MAP), pulmonary capillary wedge, and pulmonary artery pressures (PAP), cardiac output, arterial blood gases, extravascular lung waters (EVLW) by thermaldye double indicator dilution techniques and plasma immunoreactive thromboxane B2 (iTxB2), by radioimmunoassay were obtained at zero time (baseline) and 20 min following each oleic acid injection. A new noninvasive technique was employed to measure pulmonary capillary protein leak by the scintigraphic analysis of intravenously administered technetium-99m radiolabeled human serum albumin (99mTc -HSA) in the cardiac and lung regions. Oleic acid injection caused a significant dose related fall in MAP, arterial pO2, and cardiac output, and increases in EVLW and plasma iTxB2 in the vehicle pretreated animals, while mean PAP remained unchanged. In contrast, in the indomethacin pretreated dogs, MAP, EVLW, cardiac output, and plasma iTxB2 levels did not change from baseline values and there was an increase in mean PAP. Pulmonary vascular resistance was significantly elevated in both groups

  15. Photo stabilizing Efficiency of PVC Based On Epoxidized Oleic Acid

    International Nuclear Information System (INIS)

    The photo stabilization of poly (vinyl chloride) (PVC) films by epoxidized oleic acid compounds was investigated. The PVC films containing concentration of complexes 0.5 % by weight were produced by the casting method from tetrahydrofuran (THF) solvent. The photo stabilization activities of these compounds were determined by monitoring the carbonyl, polyene and hydroxyl indices with irradiation time. The changes in viscosity average molecular weight of PVC with irradiation time were also tracked (using THF as a solvent). The quantum yield of the chain scission (Φcs) of these complexes in PVC films was evaluated and found to range between 4.98x10-8 and 8.72x10-8. According to the experimental results obtained, mechanisms were suggested depending on the structure of the additive (oleic acid). (author)

  16. Fabrication and tribological behavior of superhydrophobic zinc surface based on oleic acid

    International Nuclear Information System (INIS)

    A zinc substrate was firstly immersed in an aqueous solution of N, N-dimethylformamide (DMF) solution and then chemically modified with oleic acid to generate a superhydrophobic surface. The morphological features, chemical composition and superhydrophobicity of the resultant superhydrophobic surface were analyzed by means of scanning electron microscopy, Fourier transform infrared microscopy and water contact angle (WCA) measurements, respectively, and the tribological behavior of films was evaluated by sliding the superhydrophobic films against a steel ball under 0.5 N normal load using a reciprocating ball-on-plate tribo-tester. It was found that the as-obtained superhydrophobic surface on the roughened (oxidized) zinc substrate had a WCA as high as 155°, and effectively reduced friction and largely increased antiwear life, due to the combined beneficial effects of nanotexturing of DMF treatment and nanolubrication of self-assembled oleic acid overcoat.

  17. Facile method to synthesize oleic acid-capped magnetite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We described a simple one-step process for the synthesis of oleic acid-capped magnetite nanoparticles using the dimethyl sulfoxide(DMSO) to oxidize the precursor Fe~(2+) at 140℃.By adjusting the alkalinity of the reaction system,magnetite nanoparticles with two sizes of 4 and 7 nm could be easily achieved.And the magnetite nanoparticles coated by oleate were well-monodispersed in organic solvent.

  18. Regional pulmonary distribution of iodine-125-labeled oleic acid. Its relationship to the pattern of oleic acid edema and pulmonary blood flow

    International Nuclear Information System (INIS)

    Oleic acid infusion in dogs produces a patchy, predominantly peripheral lesion on CT scans. This study correlates the pattern of oleic acid injury with the distribution of infused oleic acid and pulmonary blood flow. Radiolabeled oleic acid (I-125, 0.05 ml/kg) and radiolabeled 15-micron microspheres (Co-57) were infused into the right atria of 11 dogs. Oleic acid was given after the microspheres in six dogs and before microspheres in five dogs. Ten minutes after infusion, the lungs were removed. Four transverse slices (0.5 cm thick) of the lower lobes were taken from each dog and cubed. Samples were grouped into three regions of the transverse slice: outer, middle, and inner concentric rings. In both groups, I-125 (oleic acid) activity was greater in the outer than the middle and inner concentric layers (P less than 0.001). When Cobalt-57 microspheres were given before oleic acid, Cobalt-57 activity was marginally lower in the outer layer compared with the middle and inner layers. However, when oleic acid was given first, microsphere activity in the outer layer was significantly lower (P less than 0.001) than the middle layer. Thus, oleic acid was preferentially distributed to the peripheral regions of the lung, similar to the regions of injury on CT. This distribution did not correspond to the pattern of pulmonary blood flow as indicated by the microspheres. Immediately after oleic acid infusion, pulmonary blood flow to the periphery was reduced, reflecting a response to the predominantly peripheral injury by oleic acid

  19. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  20. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors.

    Science.gov (United States)

    Liu, Xiahui; Ma, Dongmei; Tang, Hao; Tan, Liang; Xie, Qingji; Zhang, Youyu; Ma, Ming; Yao, Shouzhuo

    2014-06-11

    Functionalized graphene has good potential in biomedical applications. To address a better and multiplex design of graphene-based gene vectors, the graphene-oleate-polyamidoamine (PAMAM) dendrimer hybrids were synthesized by the oleic acid adsorption and covalent linkage of PAMAM dendrimers. The micromorphology, electrical charge property, and amount of free amine groups of the graphene-oleate-PAMAM hybrids were characterized, and the peripheral functional groups were identified. The PAMAM dendrimers could be tethered onto graphene surface in high density. The graphene-oleate-PAMAM hybrids exhibit relatively good dispersity and stability in aqueous solutions. To evaluate the potential application of the hybrids in gene delivery vectors, cytotoxicity to HeLa and MG-63 cells and gene (plasmid DNA of enhanced green fluorescent protein) transfection capacity of the hybrids were investigated in detail. The graphene-oleate-PAMAM hybrids show mammalian cell type- and dose-dependent in vitro cytotoxicity. Under the optimal condition, the hybrids possess good biocompatibility and gene transfection capacity. The surface modification of graphene with oleic acid and PAMAM improves the gene transfection efficiency 13 times in contrast to the ultrasonicated graphene. Moreover, the hybrids show better transfection efficiency than the graphene oxide-PAMAM without the oleic acid modification. PMID:24836601

  1. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Reda Elkacmi

    2016-01-01

    Full Text Available The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country’s climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  2. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S. [Pillai’s Institute of Information Technology, Engineering, Media Studies and Research, Dr. K. M. Vasudevan Pillai’s Campus, New Panvel, 410 206 (India)

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  3. Aminosilane/oleic acid vesicles as model membranes of protocells.

    Science.gov (United States)

    Douliez, Jean-Paul; Zhendre, Vanessa; Grélard, Axelle; Dufourc, Erick J

    2014-12-16

    Oleic acid vesicles represent good models of membrane protocells that could have existed in prebiotic times. Here, we report the formation, growth polymorphism, and dynamics of oleic acid spherical vesicles (1-10 μm), stable elongated vesicles (>50 μm length; 1-3 μm diameter), and chains of vesicles (pearl necklaces, >50 μm length; 1-3 μm diameter) in the presence of aminopropyl triethoxysilane and guanidine hydrochloride. These vesicles exhibit a remarkable behavior with temperature: spherical vesicles only are observed when keeping the sample at 4 °C for 2 h, and self-aggregated spherical vesicles occur upon freezing/unfreezing (-20/20 °C) samples. Rather homogeneous elongated vesicles are reformed upon heating samples at 80 °C. The phenomenon is reversible through cycles of freezing/heating or cooling/heating of the same sample. Deuterium NMR evidences a chain packing rigidity similar to that of phospholipid bilayers in cellular biomembranes. We expect these bilayered vesicles to be surrounded by a layer of aminosilane oligomers, offering a variant model for membrane protocells. PMID:25420203

  4. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    International Nuclear Information System (INIS)

    Magnetic nano particles of Fe3O4 coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe2+ and Fe3+ ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe3O4 having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe3O4 particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe3O4 particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm

  5. Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II : oleic acid toxicity and biodegradability

    OpenAIRE

    Alves, M.M.; Vieira, J. A. Mota; Pereira, R. M. Álvares; M. A. PEREIRA; Mota, M.

    2001-01-01

    Oleic acid toxicity and biodegradability were followed during long-term operation of two similar anaerobic fixed-bed units. When treating an oleate based effluent, the sludge from the bioreactor that was acclimated with lipids during the first operation period, showed a higher tolerance to oleic acid toxicity (IC50=137 mg/l) compared with the sludge fed with a non-fat substrate (IC50=80 mg/l). This sludge showed also the highest biodegradation capacity of oleic acid, achieving max...

  6. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  7. Comparison of Different Heterogeneous Catalysts for the Estolide Synthesis from Oleic Acid

    International Nuclear Information System (INIS)

    In this work, different catalysts, namely various loading of perchloric acid on various supports; HClO4/ silica (SiO2), HClO4/ silica gel (SG) and HClO4/ alumina (Al2O3) were tested for the direct addition reaction of oleic acid (OA) to form estolide compound. The reactions were carried out under vacuum (2 mBar) for 10 hours at 70 degree Celsius under solvent less conditions. LC-MS ToF of reaction products results showed chromatographic peaks for the presence of two new estolide compounds, oleic-oleic mono estolide acid (m/z 563.51, as [M-H]-), and oleic-oleic di estolide acid (m/z 845.77 [MH]-). The optimum loading of HClO4 for every support are 15 wt.% HClO4/ SiO2 (SiO215), 10 wt.% HClO4/ SG (SG10) and 35 wt.% HClO4/ Al2O3 (Al35). The SG10 turned out to be the best catalyst , achieving a final conversion of 97.5 % with 79.8 % selectivity to oleic-oleic mono estolide acid and 17.7 % selectivity to oleic-oleic diestolide acid. The activity and selectivity of the SG10 have been investigated and compared with homogeneous HClO4. The optimum catalysts for every support were characterized by various techniques. (author)

  8. Oxidation of carcinogenic polycylic hydrocarbons in the oleic acid under the effect of ionizing radiation

    International Nuclear Information System (INIS)

    The destruction of cancerogenic polycyclic hydrocarbons in oleic acid as a function of its oxidation degree was studied. Ionizing radiation was used as a factor initiating autooxidation. The effect of antioxidants on the cancerogens destruction was investigated. A correlation between the cancerogen destruction value and the oxidation rate of oleic acid was obtained. A mechanism of antioxidants action was discussed

  9. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Esterification of oleic acid with ethanol was investigated in the presence of sulfonated cation exchange resin. • We studied kinetic model of the esterification of oleic acid with ethanol according to experimental data. • The proposed kinetic model can well predict oleic acid conversion. - Abstract: This paper investigated the effects of ethanol to oleic acid molar ratio, reaction temperature, catalyst loading, water content and catalyst recycling on sulfonated cation exchange resin in a stirred batch reactor under atmospheric pressure. When the esterification was carried out with an ethanol to oleic acid (42.4 g) molar ratio of 9:1, reflux of ethanol at 82 °C, 20 g of catalyst and 8 h of reaction time, the oleic acid conversion rate reached approximately 93%. A pseudo-homogeneous kinetic model for describing the esterification of oleic acid with ethanol by the sulfonated cation exchange resin was developed on the basis of laboratorial results. The kinetic model can well predict the oleic acid conversion

  10. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding

    International Nuclear Information System (INIS)

    High oleic acid content rapeseed breeding has great significance, because high oleic acid oil is a healthy and nutritious oil, which is of a long shelflife and also propitious to producing biodiesel fuel. The high oleic acid content breeding materials of rapeseed (B. napus) were obtained by 80-100 kR ~(60)Co gamma ray ionizing radiation treatment of dry seeds and continuous selection. The results showed that the oleic acid contents of M (2), M (3) and M (4) progenies increased by different grades. Moreover, the oleic acid content of M (5) progeny increased greatly. The oleic acid contents were higher than 70% in the most of the plants and the highest one reached 93.5 %. The base G was transited by base A in fad (2) gene at the 270 site of high oleic acid mutation (M(6) 04-855). The location is at the beta folding area and conservative area of this protein. Base mutation at sites 1 044 and 1 062 also led to produce a stop condon. These changes in structure led to loss the function of fad (2). According to molecular mechanism of gene mutation, no matter what transvertion or transition happens, several replications are needed. That is to say several generations are needed. That was also the reason why high oleic acid content mutation occurred in later generations

  11. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... “Food Chemicals Codex.” 3d Ed. (1981), pp. 207-208, which is incorporated by reference, except that... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172.862 Section 172.862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  12. Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system.

    Science.gov (United States)

    Kalhapure, Rahul S; Akamanchi, Krishnacharya G

    2012-04-01

    There is increasing demand for lipids owing to their use in formulating lipid based drug delivery systems of poorly soluble drugs. The present work discusses the synthesis, characterization of oleic acid based heterolipid and its use as oil in the development of self-microemulsifying drug delivery system (SMEDDS) for parenteral delivery. Synthesis was carried out by Michael addition of tert-butyl acrylate to 3-amino-1-propanol to obtain di-tert-butyl aminopropanol derivative. Reaction of this di-tert-butyl aminopropanol derivative with oleoyl chloride using p-dimethylaminopyridine as a coupling agent gave the desired heterolipid. It was characterized by (1)H NMR, (13)C NMR and MS to confirm the structure. It did not exhibit any measurable cytotoxicity, even up to 80μg/ml concentration. Application in parenteral drug delivery was explored using furosemide (FUR), a BCS class IV drug, as a model. FUR showed three times greater solubility in the heterolipid as compared to oleic acid. SMEDDSs were developed using heterolipid as oily phase, Solutol HS 15(®) as surfactant and ethanol as a co-surfactant. Developed SMEDDS could form spontaneous microemulsion on addition to various aqueous phases with mean globule size <70nm without any phase separation or drug precipitation even after 24h, and exhibited negligible hemolytic potential. PMID:22266534

  13. Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite

    Science.gov (United States)

    Bu, Yong-jie; Liu, Run-qing; Sun, Wei; Hu, Yue-hua

    2015-05-01

    Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interfacial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10°C) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dispersion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and -COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface of rhodochrosite, thereby improving the flotation performance of the collector.

  14. Biosynthesis of a defensive insect alkaloid: epilachnene from oleic acid and serine.

    OpenAIRE

    Attygalle, A.B.; Blankespoor, C L; Eisner, T; Meinwald, J.

    1994-01-01

    The biosynthesis of the azamacrolide epilachnene by the coccinellid beetle Epilachna varivestis has been studied with 2H-labeled oleic acid, 2H-labeled L-serine, and 13C,15N-labeled L-serine. The incorporation of these precursors into epilachnene defines the origin of the alkaloid's entire carbon/nitrogen skeleton. GC/MS and GC/IR studies of alkaloid produced by Epilachna fed with deuteriated oleic acid show that oleic acid loses four carbon atoms from its carboxyl end during the biosynthesis...

  15. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    Science.gov (United States)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  16. Chloramine-T as labelling agent for oleic acid and olive oil

    International Nuclear Information System (INIS)

    Olive oil and its main constituent, oleic acid, have been labelled with 125I using chloramine-T (CAT) as an oxidizing agent. The maximum yields of labelling in different organic solvents were found to vary between 10 to 50% for oleic acid. The values for olive oil were 70% of those of oleic acid. The labelled compounds were stable in organic solvents except acetone where they start to decompose after 20 minutes of starting the experiments. The low yields could be attributed partly to a possible labelling of CAT or to the reaction of CAT with labelled compounds or their precursors. (author)

  17. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-07-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which no additional water is taken up. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  18. Continuous Catalyst-Free Esterification of Oleic Acid in Compressed Ethanol

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Araujo Abdala

    2014-01-01

    Full Text Available The esterification of oleic acid in a continuous catalyst-free process using compressed ethanol was investigated in the present study. Experiments were performed in a tubular reactor and variables investigated were temperature, pressure, and oleic acid to ethanol molar ratio for different residence time. Results demonstrated that temperature, in the range of 473 K to 573 K, and pressure had a positive effect on fatty acid ethyl esters (FAEE production. In the experimental range investigated, high conversions can be obtained at low ethanol concentrations in the reaction medium and it was observed that oleic acid to ethanol molar ratios greater than 1 : 6 show no significant increase in conversion. Nonnegligible reaction conversions (>90% were achieved at 573 K, 20 MPa, oleic acid to ethanol molar ratio of 1 : 6, and 20 minutes of residence time.

  19. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence

    Institute of Scientific and Technical Information of China (English)

    Maghdu Nainamohamed Abubacker; Palaniyappan Kamala Devi

    2014-01-01

    Objective: To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Methods: Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. Results: The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. Conclusions: The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations.

  20. Lewis Acidic Ionic Liquids As New Addition Catalyst For Oleic Acid To Monoestolide Synthesis

    Directory of Open Access Journals (Sweden)

    Nadia Farhana Adnan

    2011-09-01

    Full Text Available Estolide compound has a large potential in many industrial applications such as biodegradable lubricants and in cosmetic formulation. In this study, monoestolide can be prepared by addition reaction of oleic acid under vacuum-reflux and solvent free condition for 10 hours at 85 °C in the presence of solid zinc chloride anhydrous (ZnCl2, choline chloride (ChCl and ionic liquids (IL ChCl-ZnCl2, ChCl-FeCl3, ChCl-SnCl2, ChCl-CuCl2 as homogenous acid catalysts. These reactions were compared with common homogenous catalyst namely sulfuric acid (H2SO4. The FTIR analysis show that addition reaction using the above catalysts showed the presence of three new peaks at 1732 cm-1 for C=O ester, 967.0 cm-1 for trans-CH=CH and 1176 cm-1 for C-O-C which confirmed the existence of monoestolide. The LC-MS results showed peak for the present of new monoestolides at retention time (tR 12.3 min corresponding to m/z 563.48. Among the IL, ChCl-ZnCl2 surprisingly exhibited higher activity which is 98 % acid oleic conversion and 80 % selective for the synthesis of monoestolides. As a result, this IL gave two potential functions as a solvent as well as a green catalyst for monoestolide synthesis from oleic acid.

  1. Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability.

    Science.gov (United States)

    Alves, M M; Vieira, J A; Pereira, R M; Pereira, M A; Mota, M

    2001-01-01

    Oleic acid toxicity and biodegradability were followed during long-term operation of two similar anaerobic fixed-bed units. When treating an oleate based effluent, the sludge from the bioreactor that was acclimated with lipids during the first operation period, showed a higher tolerance to oleic acid toxicity (IC50 = 137 mg/l) compared with the sludge fed with a non-fat substrate (IC50 = 80 mg/l). This sludge showed also the highest biodegradation capacity of oleic acid, achieving maximum methane production rates between 33 and 46 mlCH4(STP)/gVS.day and maximum percentages of methanization between 85 and 98% for the range of concentrations between 500 and 900 mg oleate/l. When oleate was the sole carbon source fed to both digesters, the biomass became encapsulated with organic matter, possibly oleate or an intermediate of its degradation, e.g. stearate that was degraded at a maximum rate of 99 mlCH4(STP)/gVS.day. This suggests the possibility of using adsorption-degradation cycles for the treatment of LCFA based effluents. Both tolerance to toxicity and biodegradability of oleic acid were improved by acclimatization with lipids or oleate below a threshold concentration. PMID:11257881

  2. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2010-10-01

    Full Text Available Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Generally, it is formed by transesterification reaction of triglycerides in the vegetable oil or animal fat with an alcohol. In this work, esterification reaction was carried out using oleic acid, methanol and sulphuric acid as a catalyst by reactive distillation method. In order to determine the best conditions for biodiesel production by reactive distillation, the experiments were carried out at different temperature (100 oC, 120 oC, 150 oC and 180 oC using methanol/oleic acid molar ratios (1:1, 5:1, 6:1, 7:1, 8:1, catalyst/ oleic acid molar ratios (0.5%wt, 1%wt, 1.5%wt and 2%wt and reaction times (15, 30, 45, 60, 75 and 90 minutes. Results at temperature 180 oC, methanol/ oleic acid molar ratio of 8:1, amount of catalyst 1% for 90 minute reaction time gives the highest conversion of oleic acid above 0.9571. Biodiesel product from oleic acid was analysed by ASTM (American Standard for Testing Material. The results show that the biodiesel produced has the quality required to be a diesel substitute. ©2010 BCREC UNDIP. All rights reserved(Received: 1st January 2010, Revised: 18th March 2010; Accepted: 18th March 2010[How to Cite: K. Kusmiyati, A. Sugiharto. (2010. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation. Bulletin of Chemical Reaction Engineering and Catalysis, 5(1: 1-6. doi:10.9767/bcrec.5.1.37.1-6][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.5.1.37.1-6

  3. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2010-10-01

    Full Text Available Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Generally, it is formed by transesterification reaction of triglycerides in the vegetable oil or animal fat with an alcohol. In this work, esterification reaction was carried out using oleic acid, methanol and sulphuric acid as a catalyst by reactive distillation method. In order to determine the best conditions for biodiesel production by reactive distillation, the experiments were carried out at different temperature (100 0C, 120 0C, 150 0C and 180 0C using methanol/oleic acid molar ratios (1:1, 5:1, 6:1, 7:1, 8:1, catalyst/ oleic acid molar ratios (0.5%wt, 1%wt, 1.5%wt and 2%wt and reaction times (15, 30, 45, 60, 75 and 90 minutes. Results at temperature 180 0C, methanol/ oleic acid molar ratio of 8:1, amount of catalyst 1% for 90 minute reaction time gives the highest conversion of oleic acid above 0.9571. Biodiesel product from oleic acid was analysed by ASTM (American Standard for Testing Material. The results show that the biodiesel produced has the quality required to be a diesel substitute. © 2010 BCREC UNDIP. All rights reserved. (Received: 1st January 2010, Revised: 18th March 2010; Accepted: 18th March 2010[How to Cite: K. Kusmiyati, A. Sugiharto. (2010. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation. Bulletin of Chemical Reaction Engineering and Catalysis, 5(1: 1-6. doi:10.9767/bcrec.5.1.7103.1-6][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.5.1.7103.1-6 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7103

  4. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Emily A Clementi

    Full Text Available HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize

  5. Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids

    OpenAIRE

    Honggen Zhang; Zhenyu Wang; Oscar Liu

    2015-01-01

    Oleic acid is a common pharmaceutical excipient that has been widely used in various dosage forms. Gas chromatography (GC) has often been used as the quantitation method for fatty acids normally requiring a derivatization step. The aim of this study was to develop a simple, robust, and derivatization-free GC method that is suitable for routine analysis of all the major components in oleic acid USP-NF (United States Pharmacopeia-National Formulary) material. A gas chromatography–flame ionizati...

  6. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  7. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature.

    Science.gov (United States)

    Limaye, Mukta V; Singh, Shashi B; Date, Sadgopal K; Kothari, Deepti; Reddy, V Raghavendra; Gupta, Ajay; Sathe, Vasant; Choudhary, Ram Jane; Kulkarni, Sulabha K

    2009-07-01

    High coercivity (9.47 kOe) has been obtained for oleic acid capped chemically synthesized CoFe(2)O(4) nanoparticles of crystallite size approximately 20 nm. X-ray diffraction analysis confirms the formation of spinel phase in these nanoparticles. Thermal annealing at various temperatures increases the particle size and ultimately shows bulk like properties at particle size approximately 56 nm. The nature of bonding of oleic acid with CoFe(2)O(4) nanoparticles and amount of oleic acid in the sample is determined by Fourier transform infrared spectroscopy and thermogrvimetric analysis, respectively. The Raman analysis suggests that the samples are under strain due to capping molecules. Cation distribution in the sample is studied using Mossbauer spectroscopy. Oleic acid concentration dependent studies show that the amount of capping molecules plays an important role in achieving such a high coercivity. On the basis of above observations, it has been proposed that very high coercivity (9.47 kOe) is the result of the magnetic anisotropy, strain, and disorder of the surface spins developed by covalently bonded oleic acid to the surface of CoFe(2)O(4) nanoparticles. PMID:19522478

  8. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen

    OpenAIRE

    Shah, Punit; Desai, Pinaki; Singh, Mandip

    2011-01-01

    The objective of present study was to evaluate the effect of oleic acid modified polymeric bilayered nanoparticles (NPS) on combined delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP) on the skin permeation. NPS were prepared using poly(lactic-co-glycolic acid) (PLGA) and chitosan. SP and KP were encapsulated in different layers alone or/and in combination (KP-NPS, SP-NPS and SP+KP-NPS). The surface of NPS was modified with oleic acid (OA) (`Nanoease' technology) us...

  9. The metabolism of tritiated oleic acid in the rat. A radiological protection study

    International Nuclear Information System (INIS)

    The metabolism of 3H-labelled oleic acid has been studied in the rat during 600 days. The results of urinary and fecal excretions, of the retention of the total and fixed activities in 25 tissues or organs and the cumulative activity from day 4 to 616 are discussed. Oleic acid is more widely spread than other labelled molecules studied previously both as regard excretion or retention. During the first 4 days one can grossly admit that half the activity is fixed to water and half is stored in the adipose tissues which it leaves quickly first, then more slowly with a half-life of 200 days about. For some ten tissues, the cumulative activity due to the fixed fraction exceeds the cumulative activity due to tritiated water obtained by metabolism of oleic acid

  10. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  11. Performace Test and Engine Emission on Acid Oleic Oxygenated as Additives Petrol

    OpenAIRE

    Irfan Wahyudi; Abdul Amir Hassan Kadhum; Yusoff Ali

    2010-01-01

    The objective of this study is to investigate the effect of oxygenated oleic acid additives in standard petrol on the engine performance and the exhaust emissions. The 4-stroke 1.5 litre engine was used on the engine test bed coupled to eddy current electric dynamometer which is also connected to CADET V12 control system and exhaust gas analyser IMR2000/2000P. The oxygenated oleic acid additives used for this experiment is fixed at 0.2% by volume due to limited quantity available. Two types...

  12. Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids

    Directory of Open Access Journals (Sweden)

    Honggen Zhang

    2015-08-01

    Full Text Available Oleic acid is a common pharmaceutical excipient that has been widely used in various dosage forms. Gas chromatography (GC has often been used as the quantitation method for fatty acids normally requiring a derivatization step. The aim of this study was to develop a simple, robust, and derivatization-free GC method that is suitable for routine analysis of all the major components in oleic acid USP-NF (United States Pharmacopeia-National Formulary material. A gas chromatography–flame ionization detection (GC–FID method was developed for direct quantitative analysis of oleic acid and related fatty acids in oleic acid USP-NF material. Fifteen fatty acids were separated using a DB-FFAP (nitroterephthalic acid modified polyethylene glycol capillary GC column (30 m×0.32 mm i.d. with a total run time of 20 min. The method was validated in terms of specificity, linearity, precision, accuracy, sensitivity, and robustness. The method can be routinely used for the purpose of oleic acid USP-NF material analysis.

  13. Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism.

    Science.gov (United States)

    Wei, Chenyu; Pohorille, Andrew

    2014-11-13

    Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.2-0.3 μs(-1). As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of ~4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed. PMID:25319959

  14. Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity

    International Nuclear Information System (INIS)

    The development of new and simple green chemical methods for synthesizing colloidal solutions of functional nanoparticles is desirable for environment-friendly applications. In the present work, we report a feasible method for synthesizing colloidal solutions of silver nanoparticles (Ag NPs) based on the modified Tollens technique. The Ag NPs were stabilized by using oleic acid as a surfactant and were produced for the first time by the reduction of silver ammonium complex [Ag(NH3)2]+(aq) by glucose with UV irradiation treatment. A stable and nearly monodisperse aqueous Ag NPs solution with average-sized particles (∼ 9-10 nm) was obtained. The Ag NPs exhibited high antibacterial activity against both Gram-negative Escherichia Coli (E. coli) and Gram-positive Staphylococcus aureus bacteria. Electron microscopic images and analyses provided further insights into the interaction and bactericidal mechanism of the Ag NPs. The proposed method of synthesis is an effective way to produce highly bactericidal colloidal solutions for medical, microbiological, and industrial applications.

  15. Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Le, Anh-Tuan, E-mail: tuanla-hast@mail.hut.edu.vn [Department of Nanoscience and Nanotechnology, Hanoi Advanced School of Science and Technology (HAST), Hanoi University of Technology, F Building, 40 Ta Quang Buu street, Hanoi (Viet Nam); Tam, Le Thi; Tam, Phuong Dinh; Huy, P.T [Department of Nanoscience and Nanotechnology, Hanoi Advanced School of Science and Technology (HAST), Hanoi University of Technology, F Building, 40 Ta Quang Buu street, Hanoi (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Van Hieu, Nguyen [International Training Institute of Materials Science (ITIMS), Hanoi University of Technology, No 1 Dai Co Viet, Hanoi (Viet Nam); Kudrinskiy, A A; Krutyakov, Yu A [Department of Chemistry, M V Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2010-07-20

    The development of new and simple green chemical methods for synthesizing colloidal solutions of functional nanoparticles is desirable for environment-friendly applications. In the present work, we report a feasible method for synthesizing colloidal solutions of silver nanoparticles (Ag NPs) based on the modified Tollens technique. The Ag NPs were stabilized by using oleic acid as a surfactant and were produced for the first time by the reduction of silver ammonium complex [Ag(NH{sub 3}){sub 2}]{sup +}{sub (aq)} by glucose with UV irradiation treatment. A stable and nearly monodisperse aqueous Ag NPs solution with average-sized particles ({approx} 9-10 nm) was obtained. The Ag NPs exhibited high antibacterial activity against both Gram-negative Escherichia Coli (E. coli) and Gram-positive Staphylococcus aureus bacteria. Electron microscopic images and analyses provided further insights into the interaction and bactericidal mechanism of the Ag NPs. The proposed method of synthesis is an effective way to produce highly bactericidal colloidal solutions for medical, microbiological, and industrial applications.

  16. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  17. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    OpenAIRE

    Tang Bing; Li; Yang Dachun; Ma Shuangtao; Yang Yongjian

    2011-01-01

    Abstract Background Elevated plasma free fatty acid (FFA) levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36) is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs) treated with oleic acid (OA). We found that OA induces lipid accum...

  18. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  19. Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum

    Directory of Open Access Journals (Sweden)

    Abinaya Gurunathan

    2016-01-01

    Full Text Available To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicumand to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti(dengue vector and Culex quinquefasciatus(filarial vector. Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase. Ecdysone 20-monooxygenase assay (radioimmuno assay was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm and C. quinquefasciatus (LC50/24 h - 12.5 ppm than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively. The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatusthan the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicummay be considered as a potent source of mosquito larvicidal property.

  20. Transmittance and dynamic properties of Fe3O4 ferrofluid emulsion in hexanes and oleic acid

    International Nuclear Information System (INIS)

    The optical transmission of Fe3O4 ferrofluid emulsions in either hexanes (C6H14) or oleic acid (C18H34O2) has been investigated as a function of concentration of Fe3O4 ferrofluid between 6 and 100 wt%, incident optical wavelengths between 450 and 750 nm and applied magnetic fields up to 325 Oe. The optical transmission increases with decreasing concentration of Fe3O4 ferrofluid emulsions from 50 to 6 wt% for samples in either hexanes or oleic acid. However, under an applied magnetic field, the optical transmission decreases for samples in hexanes, and increases for samples in oleic acid. This can be explained as being due to a different aggregation ability of the magnetic colloidal particles. In hexanes, the aggregation of magnetic particles tends to increase the area covered by the magnetic colloidal particles. In oleic acid, however, the aggregation of magnetic colloidal particles tends to form pattern of mazes and thus to reduce the area covered by the magnetic colloidal particles

  1. Use of capillary electrophoresis to determine oleic and linoleic acid content of peanut seed

    Science.gov (United States)

    A common consumer complaint regarding peanut products is one involving short shelf life and rapid rancidity. Peanut cultivars with elevated oleic acid content (and decreased linoleic content) have been shown to have an increased shelf life and thus have become largely preferred by peanut processors...

  2. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Madsen, Andreas N; Krogh-Hansen, Sandra;

    2014-01-01

    rats and mice were fed diets high (45 energy% fat) in either triacylglycerol or free fatty acids for 7-14 days, and jejunal NAE and N-acylphosphatidylethanolamine (NAPE) levels were determined by liquid-chromatography mass spectrometry. RESULTS: In rats, reduced levels of anorectic NAEs could...... mice respond to dietary fat (olive oil) by reducing levels of anorectic NAEs, and 3) whether dietary non-esterified oleic acid also can decrease levels of anorectic NAEs in mice. We are searching for the fat sensor in the intestine, which mediates the decreased levels of anorectic NAEs. METHODS: Male...... of anorectic NAEs in mice. CONCLUSIONS: These results suggest that the down-regulation of the jejunal level of anorectic NAEs by dietary fat is not restricted to rats, and that the fatty acid component oleic acid, in dietary olive oil may be sufficient to mediate this regulation. Thus, a fatty acid sensor may...

  3. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  4. Digestion and absorption of lipids and bile acids in sheep fed stearic acid, oleic acid, or tristearin

    International Nuclear Information System (INIS)

    Sheep were fed diets containing 7.5% added stearic acid, oleic acid, or tristearin for 21 days. In addition, 50 microCi/kg cerium-141 was included for the last 10 days on experimental diets as an unabsorbed reference substance. In the rumen dietary triglycerides were approximately 50% hydrolyzed, and hydrogenation resulted in saturation of the free fatty acid fraction. Some net synthesis of phospholipids, presumably microbial phospholipids, occurred in the rumen. In the intestine immediately distal to the pylorus, extensive secretion of bile acids, cholesterol, phospholipids, triglycerides, free fatty acids, and lipase occurred. This resulted in doubling of fatty acid fluxes through the duodenum. These endogenous secretions were reabsorbed rapidly however, with the major site of lipid and bile acid absorption in the region .6 to 4 m distal to the pylorus. Additional but less absorption occurred in the more distal segments of the small intestine. Overall absorption of stearic acid, oleic acid, and tristearin supplements was in the range 60 to 70%, and no differences were apparent between fats. Unsaturated fatty acids were over 90% absorbed as compared with 55 to 65% for saturated fatty acids. No significant effect of any of the supplements was observed on ruminal total volatile fatty acids, ratios of volatile fatty acids, or on overall cellulose or caloric digestion

  5. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid......-chain fatty acids from a single meal depends on the overall long-chain fatty acid composition of the habitual diet. This could have implications for enteral feeding for longer periods....

  6. Influence of Oleic Acid on Rumen Fermentation and Fatty Acid Formation In Vitro

    Science.gov (United States)

    Tang, Shaoxun; Guan, Leluo; He, Zhixiong; Guan, Yongjuan; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe; Kang, Jinhe; Wang, Min

    2016-01-01

    A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro. PMID:27299526

  7. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation

    OpenAIRE

    Kusmiyati Kusmiyati; Agung Sugiharto

    2010-01-01

    Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Generally, it is formed by transesterification reaction of triglycerides in the vegetable oil or animal fat with an alcohol. In this work, esterification reaction was carried out using oleic acid, methanol and sulphuric acid as a catalyst by reactive distillation method. In order to determine the best conditions for biodiesel production by reactive distillation, the experiments were carried out at di...

  8. Properties of radiation curable hyperbranched polyurethane acrylate from palm oil oleic acid

    International Nuclear Information System (INIS)

    Radiation curable hyperbranched urethane acrylate (HBPUA) from oleic acid of palm oil was synthesized aided by p-toluene sulfonic acid as a catalyst. This mixture was then used as the core (HBP-1) and reacted with palm oil oleic acid to form the hyperbranched polyol (HBP-2). HBPUA was prepared by reacting HBP-2 resin with diisocyanate and hydroxyl-containing acrylate monomer with the presence of 0.1-2 wt% dibutyltin dilaurate as a catalyst. The reaction was confirmed by several analytical data i.e. hydroxyl value (OHV), Fourier Transform infrared (FT IR) spectroscopy gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analyses. The HBPUA was easily curable when subjected to electron beam (EB) or ultraviolet (UV) radiation. (authors)

  9. Oleic Acid Based Polyesters of Trimethylolpropane and Pentaerythritol for Bio lubricant Application

    International Nuclear Information System (INIS)

    The production of polyesters based on oleic acid and trimethylolpropane (TMP) or pentaerythritol (PE) as potential bio lubricant were carried out. The esterification processes between oleic acid with TMP or PE were carried out using sulfuric acid as a catalyst. The esterification process produced high yield between 92 %-94 % w/w respectively. The formation of polyesters was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The polyesters were analyzed for basic lubrication physicochemical properties. The results showed that polyesters of both TMP and PE having high viscosity index between 200-309, good pour points ranging from -42 to -59 degree Celsius and high flash points of 280 - 300 degree Celsius respectively. The polyesters also showed good thermal oxidative stability with TGA onset temperatures above 180 degree Celsius. In general both products are plausible to be used as bio lubricant for industrial application. (author)

  10. Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Tiedan Chen

    2014-01-01

    Full Text Available Graphene oxide (GO nanosheets were prepared by modified Hummers and Offeman methods. Furthermore, oleic acid (OA capped graphene oxide (OACGO nanosheets were prepared and characterized by means of Fourier transform-infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. At the same time, the friction and wear properties of OA capped graphite powder (OACG, OACGO, and oleic acid capped precipitate of graphite (OACPG as additives in poly-alpha-olefin (PAO were compared using four-ball tester and SRV-1 reciprocating ball-on-disc friction and wear tester. By the addition of OACGO to PAO, the antiwear ability was improved and the friction coefficient was decreased. Also, the tribological mechanism of the GO was investigated.

  11. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. PMID:27474635

  12. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    OpenAIRE

    Abinaya Gurunathan; Jamuna Senguttuvan; S Paulsamy

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. Th...

  13. Design and evaluation of Lumefantrine – Oleic Acid Self Nanoemulsifying Ionic Complex for Enhanced Dissolution

    Directory of Open Access Journals (Sweden)

    Pradeep Vavia

    2013-03-01

    Full Text Available Background:Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs of lumefantrine (LF to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media.Methods:Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer.Results:LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA. Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm, shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%, no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release.Conclusion:Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs.

  14. A study into the self-cleaning surface properties-The photocatalytic decomposition of oleic acid

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Kalousek, Vít; Kolář, Michal; Jirkovský, Jaromír; Barták, P.

    2011-01-01

    Roč. 161, č. 1 (2011), s. 202-208. ISSN 0920-5861 R&D Projects: GA ČR GA104/08/0435; GA ČR GD203/08/H032; GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * mesoporous layers * oleic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.407, year: 2011

  15. A study of oleic acid oily base for the tropical delivery of dexamethasone microemulsion formulations

    OpenAIRE

    Bajpai M; Sharma P; Mittal A

    2009-01-01

    Dexamethasone Microemulsion systems composed of Water, oleic acid; Tween 80 and Isopropyl alcohol were investigated as potential drug delivery vehicles. Pseudo-ternary phase diagram was constructed at room temperature by titration, and the oil-to-surfactant/co-surfactant mass ratios (O/SC) that exhibit the maximum in the solubilization of water were found. Microemulsion formulations were evaluated for pseudo ternary phase study, Globule size, thermal stability, centrifugation stress testing, ...

  16. The kinetics of the solidification of highly supersaturated solutions of palmitic acid in oleic acid: a comparison between two models

    OpenAIRE

    RAMIRO RICO-MARTINEZ; JOSE ALBERTO GALLEGOS-INFANTE

    1999-01-01

    The crystallization of fatty acids is very important in industrial applications and biological systems. A comparison between theoretical models and experimental data helps in clarifying mechanistic aspects of these systems. In this contribution, we compare the performance of two models in fitting data from the crystallization of supersaturated solutions of palmitic acid in oleic acid. One of the models was developed by Avrami and the other is based on considering diffusion as limiting (the D-...

  17. Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation

    Institute of Scientific and Technical Information of China (English)

    Sifang Kong; Peipei Zhang; Xiufang Wen; Pihui Pi; Jiang Cheng; Zhuoru Yang; Jing Hai

    2008-01-01

    Oleic acid was used as surface modification agent to improve the hydrophobicity of magnetic strontium hexaferrite particles. The structure and properties of treated magnetic particles were characterized by scanning electronic microscopy (SEM), Fourier transform infrared spectra (FTIR), powder X-ray diffraction (XRD) and magnetic property measurement system (MPMS). The results show that oleic acid is chemically enwrapped on the surface of SrFe12O19 particles. Magnetic particles modified by oleic acid are highly dispersible and strongly responsive to magnetism but with slight decrease in saturated magnetization. The affinity between magnetic particles and monomers is improved by surface modification, resulting in increased particle incorporation in magnetic polymeric microspheres. The surface modification mechanism of magnetic particles by oleic acid is addressed in this work.

  18. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    Directory of Open Access Journals (Sweden)

    Marcio J. da Silva

    2008-09-01

    Full Text Available The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II chloride dihydrate (SnCl2·2H2O, an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl2 catalyst was shown to be as active as the mineral acid H2SO4. Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl2·2H2O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl2 was very close those reported for H2SO4.

  19. Enhancement of skin permeation of ibuprofen from ointments and gels by sesame oil, sunflower oil and oleic acid

    OpenAIRE

    Dinda S; Vijay Ratna J

    2006-01-01

    Several batches of paraffin ointments were prepared and ibuprofen was incorporated into them. Sesame oil, sunflower oil, and oleic acid in different concentrations were incorporated into different batches. Commercial ibuprofen gel was obtained and divided into several batches and different concentrations of sesame oil, sunflower oil, and oleic acid were incorporated into them. The in vitro drug release characteristics through hairless (88 mm) rat skin was carried out by using modified Inser...

  20. Effect of high dose steroids on oleic acid-induced lung injury in rabbits: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwa Yeon; Yoo, Seung Min [Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2006-02-15

    The purpose of this study is to evaluate the therapeutic efficacy, on the basis of CT findings, of high dose methyl prednisolone for treating acute lung injury that was induced by oleic acid injection. A total of 30 healthy rabbits (1.8-2.2 kg) were included in this study. Group I included 10 rabbits in which 0.2 mL oleic acid was injected through their ear veins. Group IIa included 10 rabbits in which 30 mg/kg methyl prednisolone and 0.2 mL oleic acid were intravenously injected at the same time. Group IIb included 5 rabbits in which 30 mg/kg methyl prednisolone was injected 6 hours prior to the 0.2 mL oleic acid intravenous injection. The other 5 rabbits (Group III) were injected intravenously with 30 mg/kg methyl prednisolone without the oleic acid. After that, 30 mg/kg methyl prednisolone per every 12 hours was injected in the non-sacrificed rabbits of Group II and Group III. Nonenhanced Chest CT scans were performed prior to the 30 minutes, 4 hours, 24 hours, 48 hours, and 72 hours after the intravenous injection of oleic acid or methyl prednisolone. We randomly sacrificed one rabbit of groups I, II and III 30 minutes, 4 hours, 24 hours, 48 hours and 72 hours after CT scanning. The distribution, extent, and pattern of the lesions on the CT scan were analyzed. The analyzed pattern of the lesions was ground glass attenuation, consolidation and interstitial thickening. Pathologic correlation was then done. The main CT findings of Group I were peripheral, wedge shaped, ill-defined ground glass attenuations and /or consolidations. The pathologic findings of Group I were interstitial or intraalveolar edema, intraalveolar hemorrhage and coagulation necrosis. Diffuse ground glass opacities with interstitial thickening were noted in 20% (n=2/10) of Group I and in 60% (n=9/15) of Group II at the 30 minute CT; however, there was no statistical difference between the two groups ({rho} = 0.09). Consolidations with air bronchogram were noted in 22.2% (2/9) of Group I and in

  1. Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids

    DEFF Research Database (Denmark)

    Subedi, S; Kawamoto, K; Jayarathna, L;

    2012-01-01

    -frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied....... Water repellency (WR) characteristics for hydrophobized sand samples with different HA contents and representing different coating methods (mixing in and solvent aided) were measured. Initial contact angles (αi) for OA-coated samples sharply increased with increasing HA content and reached peak values...

  2. Effects of oleic acid on the high threshold barium current in seabass Dicentrarchus labrax ventricular myocytes

    OpenAIRE

    Chatelier, Aurelien; Imbert, Nathalie; Zambonino, Jose-luis; McKenzie, David; Bois, P.

    2006-01-01

    The present study employed a patch clamp technique in isolated seabass ventricular myocytes to investigate the hypothesis that oleic acid (OA), a mono-unsaturated fatty acid, can exert direct effects upon whole-cell barium currents. Acute application of free OA caused a dose-dependent depression of the whole-cell barium current that was evoked by a voltage step to 0 mV from a holding potential of -80 mV. The derived 50% inhibitory concentration (IC50) was 12.49 +/- 0.27 mu mol l(-1). At a con...

  3. V2O5-Poly aniline Nano composite as Catalyst in Ozonization of Oleic Acid

    International Nuclear Information System (INIS)

    In this work, the synthesis of Azelaic acid (AA) from oleic acid cleavage is studied. The reaction is done by using V2O5- Poly aniline (pani) nano composite as catalyst in solvent free medium. Preparation of V2O5- pani nano composite as a catalyst is done via micelle solution by using cationic surfactant, cethyl trimethyl ammonium bromide (CTAB). Various loading percentages of V2O5 in Pani are considered and their differences in activity and selectivity are also evaluated. According to GC analysis, results showed that nano composite as catalyst is two times more selective to azelaic acid compare to bulk and nano V2O5. This nano composite has significant selectivity to azelaic acid rather than pelargonic acid , the by-product of oleic acid ozonolysis. For characterization TEM, FESEM, BET, XPS, TGA, XRD analysis are done .It is found that both yield and selectivity are increased when surface area, defects and specific active sites of catalyst are increased. (author)

  4. Tellurium-123m-labeled isosteres of palmitoleic and oleic acids show high myocardial uptake

    International Nuclear Information System (INIS)

    These studies were directed at determining if the telluro fatty acids prepared by the isosteric replacement of the Δ9-double bonds of oleic and palmitoleic acids with /sup 123m/Te would show heart uptake in rats. The isostere of palmitoleic acid, 9-tellurapentadecanoic acid(II), was prepared by basic hydrolysis of the product formed by the coupling of /sup 123m/Te-sodium hexyl tellurol with methyl-8-bromooctadecanoate. Similarly, the isostere of oleic acid, 9-telluraheptadecanoic acid(IV), was prepared by the same route beginning with the reaction of /sup 123m/Te-sodium octyl tellurol with methyl-8-bromooctadecanoate. Both /sup 123m/Te-(II) and /sup 123m/Te-(IV) showed remarkably high heart uptake in rats (2 to 3% dose/gm) ten minutes after intravenous administration, and the heart/blood ratios were high (20-30/1). Finally, the hearts of rats injected with /sup 123m/Te-(IV) have been clearly imaged with a rectilinear scanner

  5. Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acids☆

    Institute of Scientific and Technical Information of China (English)

    Honggen Zhang; Zhenyu Wang; Oscar Liu

    2015-01-01

    Oleic acid is a common pharmaceutical excipient that has been widely used in various dosage forms. Gas chromatography (GC) has often been used as the quantitation method for fatty acids normally requiring a derivatization step. The aim of this study was to develop a simple, robust, and derivatization-free GC method that is suitable for routine analysis of all the major components in oleic acid USP-NF (United States Pharmacopeia-National Formulary) material. A gas chromatography-flame ionization detection (GC-FID) method was developed for direct quantitative analysis of oleic acid and related fatty acids in oleic acid USP-NF material. Fifteen fatty acids were separated using a DB-FFAP (nitroterephthalic acid modified polyethylene glycol) capillary GC column (30 m × 0.32 mm i.d.) with a total run time of 20 min. The method was validated in terms of specificity, linearity, precision, accuracy, sensitivity, and robustness. The method can be routinely used for the purpose of oleic acid USP-NF material analysis.

  6. EFFECTS OF CRC SIMULACRUM MADE OF OLEIC ACID AND GLYCERIDE ON WET-END AND PAPER PROPERTIES OF NEWSPRONT

    Institute of Scientific and Technical Information of China (English)

    Guanglei Zhao; Beihai He; Liying Qian; Huanbin Liu

    2004-01-01

    Mechanical pulps are widely used in the production of newsprint, and resin is the main component of wood extractives in the pulp, which is harmful to both the wet-end and paper quality especially in newsprint paper mill. In the case of mill whitewater closure, the problems become more noticeable. In this work, the CRC (colloid resin component)simulacrum was made by individually dispersing the oleic acid and glyceride with mechanical method,and the effects on wet-end chemical characteristics and newsprint physical proprieties were discussed. It was found that some of the wet-end characteristics such as cationic demand, Zeta potential, and first pass retention were remarkably affected by the CRC simulacrum. The first pass retention decreased from 75.7% to 69.2% in the presence of oleic glyceride and from 81.7% to 78.4% in the presence of oleic acid in PEO/PFR retention system and from 78.6% to 75.4% (with oleic glyceride) and 74.3%to 70.1% (with oleic acid) in PEI/CPAM retention system. The CRC simulacrum of oleic acid and glyceride remarkably decrease the tensile strength and tear strength of newsprint hand sheets. The scattering coefficient of the hand sheets increased with the concentration of simulacrum.

  7. Oleic Acid and Octanoic Acid Sensing Capacity in Rainbow Trout Oncorhynchus mykiss Is Direct in Hypothalamus and Brockmann Bodies

    OpenAIRE

    Librán-Pérez, Marta; López-Patiño, Marcos A.; Míguez, Jesús M.; Soengas, José L.

    2013-01-01

    In a previous study, we provided evidence for the presence in hypothalamus and Brockmann bodies (BB) of rainbow trout Oncorhynchus mykiss of sensing systems responding to changes in levels of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). Since those effects could be attributed to an indirect effect, in the present study, we evaluated in vitro if hypothalamus and BB respond to changes in FA in a way similar to that observed in vivo. In a first set o...

  8. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate

    Directory of Open Access Journals (Sweden)

    Wanessa Ximenes Ribeiro

    2015-10-01

    Full Text Available Zein oleic acid films added with 1, 2 and 3 % (w/w of nanocarbonate and 30 % glycerol as plasticizer, were produced and evaluated according to their structure and functional properties. Structural characteristics were analyzed by optical and scanning electron microscopy (SEM. Water solubility and mechanical properties were determined according to ASTM methods. The increase of nanocarbonate concentration increased water solubility and influenced the color and mechanical properties. Optical and SEM of film samples added with nanocarbonate, shown low amount of pores and great fat globules size.

  9. Synthesis of CdSe quantum dots via paraffin liquid and oleic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper reported an efficient and rapid method to produce highly monodispersed CdSe quantum dots (QDs), in which the traditional tri10ylphosphine oxide (TOPO) was replaced by paraffin liquid as solvent and oleic acid as the reacting media. The experimental conditions and the properties of QDs had been studied in detail. The resulting samples were confirmed of uniform size distribution with transmission electronic microscopy (TEM), while UV-vis absorption and photoluminescence (PL) spectra clearly indicated that such synthesized QDs had good fluorescence properties.

  10. SANS study of concentration effect in magnetite/oleic acid/benzene ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V.; Avdeev, M. [Frank Laboratory of Neutron Physics, JINR, 141980 Moscow Region, Dubna (Russian Federation); Balasoiu, M. [Frank Laboratory of Neutron Physics, JINR, 141980 Moscow Region, Dubna (Russian Federation); Institute of Space Sciences, 76900 Bucharest (Romania); Rosta, L.; Toeroek, G. [Research Institute for Solid State Physics and Optics, KFKI, 1525 Budapest (Hungary); Vekas, L.; Bica, D. [Center of Fundamental and Advanced Technical Research, Timisoara Branch of RAS, Timisoara-1900 (Romania); Garamus, V. [GKSS Research Centre, 21502 Geesthacht (Germany); Kohlbrecher, J. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2002-07-01

    The effect of the colloidal particle concentration on the structure of the magnetite/C{sub 6}D{sub 6} ferrofluid stabilized by oleic acid is investigated by small-angle neutron scattering (SANS). A significant decrease in the thickness of the surfactant layer with increase in the magnetite concentration is observed. This points to the fact that the interparticle interaction increasing with the concentration presses the surfactant tails in the layer closer against the magnetite surface. The influence of magnetic scattering on the SANS curves is considered. (orig.)

  11. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    International Nuclear Information System (INIS)

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO2/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm2 light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  12. The effect of Gcmaf complexed with oleic acid on multiple myeloma cultures

    OpenAIRE

    Smith, R.J.; Ward, E.; J.J.V. Branca; Ruggiero, M; G.Morucci; S. Pacini

    2014-01-01

    Abstract: Deglycosylated vitamin D-binding protein-derived macrophage-activating factor (GcMAF) is known to be a strong immune stimulatory natural molecule. Data in literature demonstrate that GcMAF has a direct role in decreasing cell proliferation of different cancer cell lines. In this study we evaluate the direct effect of GcMAF complexed with oleic acid (OA-GcMAF) on human multiple myeloma cells (KMS-12- BM), as well as the effect on the same cell line of human macrophages (CRL9853) prev...

  13. SANS study of concentration effect in magnetite/oleic acid/benzene ferrofluid

    International Nuclear Information System (INIS)

    The effect of the colloidal particle concentration on the structure of the magnetite/C6D6 ferrofluid stabilized by oleic acid is investigated by small-angle neutron scattering (SANS). A significant decrease in the thickness of the surfactant layer with increase in the magnetite concentration is observed. This points to the fact that the interparticle interaction increasing with the concentration presses the surfactant tails in the layer closer against the magnetite surface. The influence of magnetic scattering on the SANS curves is considered. (orig.)

  14. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  15. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    International Nuclear Information System (INIS)

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  16. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Hamizah Ammarah; Salimon, Jumat [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  17. Aqueous extraction of oleic sunflower oil from whole plant by twin-screw extruder: feasibility study, influence of screw configuration and operating conditions

    OpenAIRE

    Evon, Philippe; Vandenbossche, Virginie; Pontalier, Pierre-Yves; Rigal, Luc

    2007-01-01

    Aqueous extraction process using water alone as medium is an alternative to the solvent oil extraction process from oilseeds. It enables simultaneous recovery of oil and protein. The implementation of a co-rotating twin-screw extruder allows the aqueous extraction of oleic sunflower oil from whole plant. Screw configuration, screw rotation speed and whole plant input flow rate affect directly the efficiency of liquid/solid separation. Wringing out the mixing is possible because of the natu...

  18. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    Science.gov (United States)

    Shete, P. B.; Patil, R. M.; Tiwale, B. M.; Pawar, S. H.

    2015-03-01

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core-shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs.

  19. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core–shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs. - Highlights: • Fe3O4 nanoparticles synthesized FeCl2 as the sole source by alkaline precipitation. • Hydrophilicity imparted to OA-Fe3O4 MNPs. • Improved heating induction ability. • Highly stabilized colloidal suspension. • Improved biocompatiblity

  20. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.

    Science.gov (United States)

    Mennella, Ilario; Savarese, Maria; Ferracane, Rosalia; Sacchi, Raffaele; Vitaglione, Paola

    2015-01-01

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans. PMID:25347552

  1. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Martíšková, Hana; Koudelka, A.; Ravekes, T.; Rudolph, T.K.; Klinke, A.; Rudolph, V.; Freeman, B.A.; Woodcock, S.R.; Kubala, Lukáš; Pekarová, Michaela

    2016-01-01

    Roč. 90, JAN 2016 (2016), s. 252-260. ISSN 0891-5849 R&D Projects: GA ČR(CZ) GP13-40824P Grant ostatní: GAAV(CZ) M200041208 Institutional support: RVO:68081707 Keywords : Nitro-fatty acids * Nitro-oleic acid * Macrophages Subject RIV: BO - Biophysics Impact factor: 5.736, year: 2014

  2. Effects of low potassium dextran glucose solution on oleic acid-induced acute lung injury in juvenile piglets

    Institute of Scientific and Technical Information of China (English)

    LING Feng; LIU Ying-long; LIU Ai-jun; WANG Dong; WANG Qiang

    2011-01-01

    Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.

  3. The kinetics of the solidification of highly supersaturated solutions of palmitic acid in oleic acid: a comparison between two models

    Directory of Open Access Journals (Sweden)

    RAMIRO RICO-MARTINEZ

    1999-08-01

    Full Text Available The crystallization of fatty acids is very important in industrial applications and biological systems. A comparison between theoretical models and experimental data helps in clarifying mechanistic aspects of these systems. In this contribution, we compare the performance of two models in fitting data from the crystallization of supersaturated solutions of palmitic acid in oleic acid. One of the models was developed by Avrami and the other is based on considering diffusion as limiting (the D-model. The D-model fitted the data better than the Avrami model in all cases. The D-model has a low value of the regression coefficient (r2, lower than 0.9 in only three cases. For these points, the thermodynamic force was smaller. Differences in the parameter n (an index of dimensionality were observed; these differences indicate that clusters were present previous to the crystallization process. Furthermore, there appears to be a difference in the mechanism of crystallization of pure solutions of palmitic acid and solutions with a small fraction of oleic acid. Thus, one is lead to the conclusion that the rate of crystallization of fatty acids at high concentrations is limited by diffusion.

  4. Phase equilibria of oleic, palmitic, stearic, linoleic and linolenic acids in supercritical CO2

    Directory of Open Access Journals (Sweden)

    P. L. Penedo

    2009-03-01

    Full Text Available The knowledge of the phase equilibrium is one of the most important factors to study the design of separation processes controlled by the equilibrium. Fatty acids are present in high concentration as by-products in vegetable oils but the equilibrium data involving these components is scarce. The objective of this work is the experimental determination of the liquid-vapor equilibrium of five binary different systems formed by carbon dioxide and palmitic acid (C16:0, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2 and linolenic acid (C18:3. The equilibrium experimental data was collected at 40, 60 and 80ºC at 60, 90 and 120 bar, at the extract and raffinate phases, using an experimental apparatus containing an extractor, a gas cylinder and pressure and temperature controllers. The data was modeled using the cubic equation of state of Peng-Robinson with the mixing rule of van der Waals with binary interaction parameters. The model was adequate to treat the experimental data at each temperature and at all the temperatures together. The best model that includes the van der Waals mixing rule with two parameters has maximum deviation of 17%. The distribution coefficients were also analyzed and it was concluded that the fractionation of the fatty acids is possible using supercritical carbon dioxide.

  5. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.;

    2015-01-01

    deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...... carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam....

  6. A study of oleic acid oily base for the tropical delivery of dexamethasone microemulsion formulations

    Directory of Open Access Journals (Sweden)

    Bajpai M

    2009-01-01

    Full Text Available Dexamethasone Microemulsion systems composed of Water, oleic acid; Tween 80 and Isopropyl alcohol were investigated as potential drug delivery vehicles. Pseudo-ternary phase diagram was constructed at room temperature by titration, and the oil-to-surfactant/co-surfactant mass ratios (O/SC that exhibit the maximum in the solubilization of water were found. Microemulsion formulations were evaluated for pseudo ternary phase study, Globule size, thermal stability, centrifugation stress testing, specific gravity, pH study, in vitro release on rat abdominal skin. The permeation data showed that microemulsion formulations increased dexamethasone flux 200-400 fold over the control, but permeability coefficients were decreased by 4 times. The superior transdermal flux of dexamethasone was due to 1000 fold improvement in solubilization of dexamethasone by microemulsions using lecithin. It can be concluded from the study that the dexamethasone microemulsions can be potentially used for improved topical drug delivery.

  7. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    Science.gov (United States)

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances. PMID:23987430

  8. Investigations of in vitro bioaccessibility from interesterified stearic and oleic acid-rich blends.

    Science.gov (United States)

    Thilakarathna, S H; Rogers, M; Lan, Y; Huynh, S; Marangoni, A G; Robinson, L E; Wright, A J

    2016-04-20

    Interesterification was previously found to impact stearic acid absorption in a randomized cross-over study, when human volunteers consumed a 70 : 30 wt% high-oleic sunflower and canola stearin blend (NIE) compared to the same blend which had undergone either chemical (CIE) or enzymatic (EIE) interesterification. In this research, in vitro lipid digestion, bioaccessibility, and changes in undigested lipid composition and melting behavior of these same test fats were investigated using the dynamic, multi-compartmental TIM-1 digestion model and compared with the previous human study. Overall, TIM-1 bioaccessibility was higher with interesterification (p digestion. TIM-1 bioaccessibility was linearly correlated (R(2) = 0.8640) with postprandial serum TAG concentration in the human study. Therefore, the in vitro digestion model offered predictive insights related to the impacts of lipid interesterificaton on absorption. PMID:26961726

  9. In vitro release and antibacterial activity of poly(oleic/linoleic acid dimer:sebacic acid)-gentamicin

    Institute of Scientific and Technical Information of China (English)

    YANGXiu-Fen; ZHOUZhi-Bin; 等

    2003-01-01

    AIM:To investigate whether poly(oleic/linoleic acid dimer:sebacic acid)-getamicin[Poly(OAD/LOAD:SA)-gentamicin]delivery system was useful to treat chronic osteomyelitis.METHODS:Drug delivery system consisted of gentamicin sufate dispersed in a copolymer containing oleic/linoleic acid dimer(OAD/LOAD)and sebacic acid(SA)in a 1:1 weight ration.The gentamicin releast from[Poly(OAD/LOAD:SA)-gentamicin]was tested in water 0.9% saline,and phosphate buffer 0.1mol/L,RESULTS:The gentamicin concentration peak was found on d2,then slowly decreased.considerable amout of gentamicin was still released on d 50.From d 2 o d 50,the gentamicin concentration in the releasing fluids was from 59 to 42128-fold and 1.8 to 1314-fold of the MIC for Staphylococcus aureus and Escherichia coli,respectively.Staphylococcus aureus and Escherichia coli were strongly inhibited by the releasing fluids for 50d.The gentamicin release and anti-bacterial activity in the three media were similar.only in 0.1mol/L phosphate buffer,from d 2 to 14 it was lower.CONCLUSION:Poly(OAD/LOAD:SA)-gentamicin was useful to treat chronic osteomyelitis.

  10. Constant-pH MD Simulations of an Oleic Acid Bilayer.

    Science.gov (United States)

    Vila-Viçosa, Diogo; Teixeira, Vitor H; Baptista, António M; Machuqueiro, Miguel

    2015-05-12

    Oleic acid is a simple molecule with an aliphatic chain and a carboxylic group whose ionization and, consequently, intermolecular interactions are strongly dependent on the solution pH. The titration curve of these molecules was already obtained using different experimental methods, which have shown the lipid bilayer assemblies to be stable between pH 7.0 and 9.0. In this work, we take advantage of our recent implementations of periodic boundary conditions in Poisson-Boltzmann calculations and ionic strength treatment in simulations of charged lipid bilayers, and we studied the ionization dependent behavior of an oleic acid bilayer using a new extension of the stochastic titration constant-pH MD method. With this new approach, we obtained titration curves that are in good agreement with the experimental data. Also, we were able to estimate the slope of the titration curve from charge fluctuations, which is an important test of thermodynamic consistency for the sampling in a constant-pH MD method. The simulations were performed for ionizations up to 50%, because an experimentally observed macroscopic transition to micelles occurs above this value. As previously seen for a binary mixture of a zwitterionic and an anionic lipid, we were able to reproduce experimental results with simulation boxes usually far from neutrality. This observation further supports the idea that a charged membrane strongly influences the ion distribution in its vicinity and that neutrality is achieved significantly far from the bilayer surface. The good results obtained with this extension of the stochastic titration constant-pH MD method strongly supports its usefulness to sample the coupling between configuration and protonation in these types of biophysical systems. This method stands now as a powerful tool to study more realistic lipid bilayers where pH can influence both the lipids and the solutes interacting with them. PMID:26574431

  11. Performace Test and Engine Emission on Acid Oleic Oxygenated as Additives Petrol

    Directory of Open Access Journals (Sweden)

    Irfan Wahyudi

    2010-10-01

    Full Text Available The objective of this study is to investigate the effect of oxygenated oleic acid additives in standard petrol on the engine performance and the exhaust emissions. The 4-stroke 1.5 litre engine was used on the engine test bed coupled to eddy current electric dynamometer which is also connected to CADET V12 control system and exhaust gas analyser IMR2000/2000P. The oxygenated oleic acid additives used for this experiment is fixed at 0.2% by volume due to limited quantity available. Two types of test were carried out first test is with variable speed and no loads and the second test is at constant speed of 1,400 rpm with variable loads. The experimental results showed that the brake power increased by 2%, torque by 2%, brake thermal efficiency by about 7% and specific fuel consumption decreased by about 10%. The exhaust emissions analysed are carbon monoxide, (CO, carbon dioxide (CO2 and oxides of nitrogen (NOx. The result by comparing the oxygenated petrol with the standard petrol indicated that CO gas emission depend on the engine speed which decreased with increasing speed up to 1,600 rpm and increased after that speed on test without load. The CO also decreased by about 28% on the test with loads. The emission of CO2 increased by 2.7% for tests with load and by 8% for tests without loads. The NOx emission decreased by 9% for test without load and about 7% for test with load. This study indicates that engine performance is improved by adding 0.2% oxygenated additives to standard petrol.

  12. Platinum-nickel catalyst: The effect of promoters in cis-oleic acid adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Universidad Nacional del Sur-IFISUR-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Martirena, M.; Ulacco, S. [Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Brizuela, G. [Universidad Nacional del Sur-IFISUR-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer C=O adsorption is more favored than C=C adsorption on the PtNi(1 1 1) surface. Black-Right-Pointing-Pointer The adsorption of the olefinic bond is strengthened by K, Mg, Co, B or Pd promoters. Black-Right-Pointing-Pointer The energy of the system and the C=C/surface distances decrease using promoters. Black-Right-Pointing-Pointer The molecule-surface interaction is favored by electron density exchange. Black-Right-Pointing-Pointer Co promoter shows better adsorption properties than K, Mg, B or Pd. - Abstract: The study of the cis-oleic acid adsorption, on clean and promoted (K, Mg, Co, B or Pd) PtNi(1 1 1) surface was performed by quatum chemical calculations. The oleic acid adsorption on PtNi(1 1 1) surface shows a weak molecule-surface interaction. No preferential site for C=C adsorption is computed and only the C=O adsorption is favored on the clean PtNi(1 1 1) surface. The adsorption properties of the PtNi(1 1 1) are improved by promoters. The stability of the system is increased and the C=C/surface distances are reduced when promoters are present. Among the considered promoters, Co has the best performance in terms of system stability. The lowest C p orbital substantially interacts with Pt and Co s, p and d orbitals. The change electron density of metal centers, enhance the C=C adsorption being the Pt-C interaction the more favored. After adsorption, the strength of the C=C, Pt-Pt and Pt-Co bonds decrease while a molecule-surface bond is formed.

  13. Comparison of dynamic and optical properties of Fe3O4 ferrofluid emulsion in water and oleic acid under magnetic field

    International Nuclear Information System (INIS)

    The Fe3O4 ferrofluid emulsions in both distilled water and oleic acid were prepared by using Fe3O4 ferrofluid (SMG018), the sodium dodecyl sulfate (SDS), and distilled water or oleic acid. The optical transmission of these emulsions has been investigated as a function of incident optical wavelengths between 450 and 750 nm and applied magnetic fields up to 141 Oe. The transmittance increases as the applied magnetic fields increase. This phenomenon is more manifest with shorter incident wavelength. The transmittance for samples in oleic acid is much higher than that of samples in distilled water. Under the same perpendicular applied magnetic field, the area covered by the droplets of the emulsions for samples in oleic acid is smaller than that of samples in distilled water. These phenomena can be explained due to the different aggregation abilitation of the ferrofluid emulsions in both distilled water and oleic acid

  14. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    Science.gov (United States)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  15. Characterization of Time-Dependent Contact Angles for Oleic Acid Mixed Sands with Different Particle Size Fractions

    DEFF Research Database (Denmark)

    Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko;

    2014-01-01

    A capillary barrier cover system (CBCS) is a low-cost solution for limiting water infiltration into solid waste landfills. Moreover, hydrophobized sublayer sand grains enhance the impermeable properties of the CBCS. In this study, we have assessed water repellency characteristics for oleic acid (OA...

  16. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action.

    Directory of Open Access Journals (Sweden)

    Mehboob Hoque

    Full Text Available A chance discovery of the tumoricidal action of a human milk fraction led to the characterization of the active component as oleic acid complex of the α-lactalbumin, which was given the acronym HAMLET. We report in this study that the oleic acid complex of bovine α-lactalbumin (BAMLET is hemolytic to human erythrocytes as well as to those derived from some other mammals. Indirect immunofluorescence analysis suggested binding of BAMLET to erythrocytes prior to induction of hemolysis. Free OA was hemolytic albeit at higher concentrations, while sodium oleate caused hemolysis at far lower concentrations. Amiloride and BaCl2 offered protection against BAMLET-induced hemolysis suggesting the involvement of a cation leak channel in the process. BAMLET coupled to CNBr-activated Sepharose was not only hemolytic but also tumoricidal to Jurkat and MCF-7 cells in culture. The Sepharose-linked preparation was however not toxic to non-cancerous peritoneal macrophages and primary adipocytes. The tumoricidal action was studied using the MTT-assay while apoptosis induction measured by the annexin V-propidium iodide assay. Repeated incubation of the immobilized BAMLET with erythrocytes depleted oleic acid and decreased the hemolytic activity of the complex. Incubation of MCF-7 and Jurkat cells with OA, soluble or immobilized BAMLET resulted in increase in the uptake of Lyso Tracker Red and Nile red by the cells. The data presented support the contention that oleic acid plays the key role, both in BAMLET-induced hemolysis and tumoricidal action.

  17. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    Science.gov (United States)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  18. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    Science.gov (United States)

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  19. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    International Nuclear Information System (INIS)

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  20. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    Energy Technology Data Exchange (ETDEWEB)

    Rogue, Alexandra [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France); Biologie Servier, Gidy (France); Anthérieu, Sébastien; Vluggens, Aurore [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France); Umbdenstock, Thierry [Technologie Servier, Orléans (France); Claude, Nancy [Institut de Recherches Servier, Courbevoie (France); Moureyre-Spire, Catherine de la; Weaver, Richard J. [Biologie Servier, Gidy (France); Guillouzo, André, E-mail: Andre.Guillouzo@univ-rennes1.fr [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France)

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  1. Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes

    International Nuclear Information System (INIS)

    Surface active compounds present in food possibly have the ability to enhance the absorption of water soluble toxic agents. Therefore, we investigated whether fatty acids such as oleic acid and docosahexaenoic acid (DHA), both commonly present in food, negatively affect the integrity of tight junctions (TJ) in the intestinal epithelium and thereby increase the absorption of poorly absorbed hydrophilic substances. Caco-2 cells, which are derived from human absorptive enterocytes, were grown on permeable filters for 20-25 days. Differentiated cell monolayers were apically exposed for 90 min to mannitol in emulsions of oleic acid (5, 15 or 30 mM) or DHA (5, 15 or 30 mM) in an experimental medium with or without Ca2+ and Mg2+. Absorption of 14C-mannitol increased and trans-epithelial electrical resistance (TEER) decreased in cell monolayers exposed to oleic acid and DHA, compared to controls. Cytotoxicity, measured as leakage of LDH, was higher in groups exposed to 30 mM oleic acid and all concentrations of DHA. Morphology of the cell monolayers was studied by using fluorescence microscopy. Exposure of cell monolayers to 5 mM DHA for 90 min resulted in a profound alteration of the cell-cell contacts as detected by staining the cells for β-catenin. Oleic acid (30 mM) treatment also induced dissolution of the cell-cell contacts but the effect was not as pronounced as with DHA. Cell monolayers were also exposed for 180 min to 250 nM cadmium (Cd) in emulsions of oleic acid (5 or 30 mM) or DHA (1 or 5 mM), in an experimental medium with Ca2+ and Mg2+. Retention of Cd in Caco-2 cells was higher after exposure to 5 mM oleic acid but lower after exposure to 30 mM oleic acid and DHA. Absorption of Cd through the monolayers increased after DHA exposure but not after exposure to oleic acid. Our results indicate that fatty acids may compromise the integrity of the intestinal epithelium and that certain lipids in food may enhance the paracellular absorption of poorly absorbed

  2. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Directory of Open Access Journals (Sweden)

    Tang Bing

    2011-04-01

    Full Text Available Abstract Background Elevated plasma free fatty acid (FFA levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36 is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs treated with oleic acid (OA. We found that OA induces lipid accumulation in SMCs in a dose dependent manner. Rat aortic SMCs treated for 48 hours with OA (250 μmol/L became foam cells based on morphological (Oil Red O staining and biochemical (5 times increase in cellular triglyceride criteria. Moreover, specific inhibition of CD36 by sulfo-N-succinimidyl oleate significantly attenuated OA induced lipid accumulation and foam cell formation. To confirm these results in vivo, we used ApoE-deficient mice fed with normal chow (NC, OA diet, NC plus lipolysis inhibitor acipimox or OA plus acipimox. OA-fed mice showed increased plasma FFA levels and enhanced atherosclerotic lesions in the aortic sinus compared to the NC group (both p 5 μm2 vs. OA plus acipimox: 2.60 ± 0.10 ×105 μm2, p p Conclusions These findings suggest that OA induces smooth muscle foam cell formation and enhances atherosclerotic lesions in part though CD36. Furthermore, these findings provide a novel model for the investigation of atherosclerosis.

  3. Participation of oleic acid in the formation of the aortic aneurysm in Marfan syndrome patients.

    Science.gov (United States)

    Soto, María Elena; Iturriaga Hernández, Alejandra Valeria; Guarner Lans, Verónica; Zuñiga-Muñoz, Alejandra; Aranda Fraustro, Alberto; Velázquez Espejel, Rodrigo; Pérez-Torres, Israel

    2016-03-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation and endothelial dysfunction that lead to early acute dissection and rupture of the aorta and sudden death. Alteration in fatty acid (FA) metabolism can stimulate nitric oxide (NO) overproduction which increases the activity of the inducible form of NO synthase (iNOS) that is involved in endothelial dysfunction. We evaluated the participation of FA in the formation of thoracic aneurysms in MFS and its relation to the iNOS. Oleic acid (OA), iNOS, citrulline, nitrates and nitrites, TGF-β1, TNF-α, monounsaturated FA and NO synthase activity were significantly increased (p<0.05) in tissue from the aortas of MFS. Saturated FA, eNOS and HDL were significantly decreased (p<0.05). Arachidonic acid, delta-9 desaturase tended to increase and histological examination showed an increase in cystic necrosis, elastic fibers and collagen in MFS. The increase in OA contributes to the altered pathway of iNOS, which favors endothelial dysfunction and formation of the aortic aneurysms in MFS. PMID:27163200

  4. In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation

    Directory of Open Access Journals (Sweden)

    Tae-Jin Oh

    2012-12-01

    Full Text Available Certain members of the cytochromes P450 superfamily metabolizepolyunsaturated long-chain fatty acids to several classesof oxygenated metabolites. An approach based on in silicoanalysis predicted that Streptomyces peucetius CYP107N3might be a fatty acid-metabolizing enzyme, showing highhomology with epoxidase enzymes. Homology modeling anddocking studies of CYP107N3 showed that oleic acid can fitdirectly into the active site pocket of the double bond of oleicacid within optimum distance of 4.6 Å from the Fe. In order toconfirm the epoxidation activity proposed by in silico analysis,a gene coding CYP107N3 was expressed in Escherichia coli.The purified CYP107N3 was shown to catalyze C9-C10epoxidation of oleic acid in vitro to 9,10-epoxy stearic acidconfirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.

  5. Additive Regulation of Adiponectin Expression by the Mediterranean Diet Olive Oil Components Oleic Acid and Hydroxytyrosol in Human Adipocytes

    OpenAIRE

    Egeria Scoditti; Marika Massaro; Maria Annunziata Carluccio; Mariangela Pellegrino; Martin Wabitsch; Nadia Calabriso; Carlo Storelli; Raffaele De Caterina

    2015-01-01

    Adiponectin, an adipocyte-derived insulin-sensitizing and anti-inflammatory hormone, is suppressed in obesity through mechanisms involving chronic inflammation and oxidative stress. Olive oil consumption is associated with beneficial cardiometabolic actions, with possible contributions from the antioxidant phenol hydroxytyrosol (HT) and the monounsaturated fatty acid oleic acid (OA, 18:1n-9 cis), both possessing anti-inflammatory and vasculo-protective properties. We determined the effects of...

  6. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L.) and Germinated Jatropha Seeds (Jatropha curcas L.) by Response Surface Methodology

    OpenAIRE

    Indro Prastowo; Chusnul Hidayat; Pramudji Hastuti

    2015-01-01

    Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE) was synthesized using germinated jatropha seeds (Jatropha curcas.L) and rice bran (Oryza sativa) as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the...

  7. Behaviour of oleic acid-depleted bovine alpha-lactalbumin made LEthal to tumor cells (BAMLET).

    Science.gov (United States)

    Hoque, Mehboob; Gupta, Jyoti; Rabbani, Gulam; Khan, Rizwan Hasan; Saleemuddin, M

    2016-05-24

    Oleic acid (OA) complexes of human alpha-lactalbumin (α-LA) and several other proteins are effective in the killing of a variety of tumor cells. While debate on whether the key component of the complexes is the OA or protein continues, studies probing the mechanism of action of the complexes at the tumor cell surface or in the cell interior assume the action of a molecule in the form of an undissociated complex. Recent evidence however suggests that OA complexes of protein are stripped of bound OA on interaction with artificial or natural membranes before entering the cell. Properties of BAMLET stripped of its OA by exposure to erythrocytes (ET-BAMLET) were investigated in the study. ET-BAMLET resembled α-LA in its inability to induce hemolysis of erythrocytes and behaviour in a gel filtration column. Spectroscopy techniques-fluorescence, far- and near UV CD as well as calorimetry and proteolysis however suggest the molecule to be different both from native α-LA and the apo form. Remarkably, unlike native α-LA and apo-α-LA, ET-BAMLET binds OA and turns hemolytic by simple mixing with the fatty acid around neutral pH. Since BAMLET/HAMLET incubated cells take up large amounts of OA, the study suggests the possibility of ET-BAMLET combining with OA and reforming the complex inside the cells. PMID:27109252

  8. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    Science.gov (United States)

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of GPR43 in bovine IM adipocytes. PMID:27285685

  9. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaoyun [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Huang, Qingxian [Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000 (China); Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Bai, Xianyong, E-mail: xybai2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  10. Study of the surface modification with oleic acid of nanosized HfO{sub 2} synthesized by the polymerized complex derived sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Gonzalez, R., E-mail: rramos.phd@gmail.com [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25250 (Mexico); Garcia-Cerda, L.A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25250 (Mexico); Quevedo-Lopez, M.A. [University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021 (United States)

    2012-06-01

    The synthesis of nanosized hafnium oxide by the polymerized complex derived sol-gel method is reported. The structural and morphological characterization of the HfO{sub 2} was carried out by X-ray diffraction and scanning electron microscopy. The surface of hafnium oxide nanoparticles was modified by capping with oleic acid. The nanoparticle surface area was measured by the gas adsorption technique in order to determine the minimal amount of oleic acid needed to obtain a uniform coverage of the hafnium oxide. The existence of organic layer can be confirmed by Fourier transform spectroscopy, solid state nuclear magnetic resonance spectroscopy, thermal gravimetric analysis and transmission electron microscopy. The FTIR and solid state NMR results reveal that oleic acid is chemisorbed as a carboxylate onto the HfO{sub 2} nanoparticle surface and confirm the formation of a monomolecular layer of oleic acid surrounding the HfO{sub 2}. The cover density of oleic acid on the HfO{sub 2} increases with the amount of oleic acid used to modify the nanoparticles and the surface properties of HfO{sub 2} nanoparticles modified with oleic acid change from hydrophilic to hydrophobic.

  11. Aqueous Photochemistry of Glyoxylic Acid.

    Science.gov (United States)

    Eugene, Alexis J; Xia, Sha-Sha; Guzman, Marcelo I

    2016-06-01

    Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging of photoproducts is studied by UV-visible and fluorescence spectroscopies to reveal that the optical properties are altered by the glyoxal produced. The optical properties display periodicity in the time domain of the UV-visible spectrum of chromophores with absorption enhancement (thermochromism) or loss (photobleaching) during nighttime and daytime cycles, respectively. During irradiation, excited state glyoxylic acid can undergo α-cleavage or participate in hydrogen abstractions. The use of (13)C nuclear magnetic resonance spectroscopy (NMR) analysis shows that glyoxal is an important intermediate produced during direct photolysis. Glyoxal quickly reaches a quasi-steady state as confirmed by UHPLC-MS analysis of its corresponding (E) and (Z) 2,4-dinitrophenylhydrazones. The homolytic cleavage of glyoxylic acid is proposed as a fundamental step for the production of glyoxal. Both carbon oxides, CO2(g) and CO(g) evolving to the gas-phase, are quantified by FTIR spectroscopy. Finally, formic acid, oxalic acid, and tartaric acid photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection and (1)H NMR spectroscopy. A reaction mechanism is proposed based on all experimental observations. PMID:27192089

  12. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    Science.gov (United States)

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production. PMID:23688666

  13. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Directory of Open Access Journals (Sweden)

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  14. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol

    Science.gov (United States)

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G.; Browse, John

    2015-01-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world’s most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  15. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release.

    Science.gov (United States)

    Zhao, Shuangni; Minh, Le Van; Li, Na; Garamus, Vasil M; Handge, Ulrich A; Liu, Jianwen; Zhang, Rongguang; Willumeit-Römer, Regine; Zou, Aihua

    2016-09-01

    The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment. PMID:27137808

  16. Computational study of cis-oleic acid adsorption on Ni(1 1 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica, IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Ulacco, S. [Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Brizuela, G.; Juan, A. [Departamento de Fisica, IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2012-05-15

    In the present work, the Atom Superposition and Electron Delocalization method has been applied in order to study the adsorption of cis-oleic acid on Ni(1 1 1) surface. This molecule presents two active functional groups, C=C (in the middle) and -COOH (at one end). Therefore, it is important to explore adsorption on the metal surface through the C=C bond in a geometry parallel to the surface and also in a vertical one with -COOH pointing at Ni atoms. Our results indicate that the parallel geometry is more stable than the vertical one and C=C bond adsorption dominates the process. Energetic results show a strong interaction with the metallic surface. Ni-Ni, C=C, and C-C bonds are weakened upon adsorption because of a bonding interaction between carbons and nickel surface. We found that Ni 5d{sub z}{sup 2} and 5d{sub yz} orbitals play an important role in the bonding between C p{sub x}, p{sub z} orbitals and surface, and the same happens with Ni 6p{sub x} and Ni 6p{sub z}. A small Ni-H interaction is also detected.

  17. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.

    Science.gov (United States)

    Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul

    2010-01-01

    The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively. PMID:20124754

  18. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  19. Computational study of cis-oleic acid adsorption on Ni(1 1 1) surface

    International Nuclear Information System (INIS)

    In the present work, the Atom Superposition and Electron Delocalization method has been applied in order to study the adsorption of cis-oleic acid on Ni(1 1 1) surface. This molecule presents two active functional groups, C=C (in the middle) and -COOH (at one end). Therefore, it is important to explore adsorption on the metal surface through the C=C bond in a geometry parallel to the surface and also in a vertical one with -COOH pointing at Ni atoms. Our results indicate that the parallel geometry is more stable than the vertical one and C=C bond adsorption dominates the process. Energetic results show a strong interaction with the metallic surface. Ni-Ni, C=C, and C-C bonds are weakened upon adsorption because of a bonding interaction between carbons and nickel surface. We found that Ni 5dz2 and 5dyz orbitals play an important role in the bonding between C px, pz orbitals and surface, and the same happens with Ni 6px and Ni 6pz. A small Ni-H interaction is also detected.

  20. Uptake of Cs and Sr radionuclides within oleic acid coated nanomagnetite-hematite composite

    Science.gov (United States)

    Mukhopadhyay, J.; Sengupta, Pranesh; Sen, D.; Mazumdar, S.; Tyagi, A. K.

    2015-12-01

    Nano-sized magnetic composite sorbent material like nanomagnetite - nanohematite has been synthesized for uptake of cesium and strontium ions from low level environmental effluents in effective decontamination from waste water. Synthesis of material was based on co-precipitation route and in situ coating of oleic acid on magnetite-hematite nanocomposite. Magnetic properties were studied for both the uncoated as prepared and coated nanocomposite materials. The magnetization curves showed no hysteresis or remnant magnetization. Both the materials exhibited super-paramagnetism. Saturation magnetization of the coated nanocomposite was found to be 30 emu/g whereas for as prepared nanocomposite it was 64 emu/g. Detailed characterizations of the materials was carried out by X ray diffraction and Transmission electron microscopic techniques and the grain sizes were found to vary between 10 and 15 nm range. Sorption experiments on cesium and strontium were carried out by batch mode equilibrium study. The uptake studies were performed by Atomic Absorption Spectroscopy for cesium ions and inductively coupled Plasma - Atomic Emission Spectroscopy for strontium ions. Size distributions of the particle were measure through Small Angle X ray Scattering (SAXS) experiment. Shifting in weak repulsive potential facilitates enhanced sorption for more period of time in stable condition in comparison of uncoated nanocomposite which forms larger aggregates.

  1. Enhancement of skin permeation of ibuprofen from ointments and gels by sesame oil, sunflower oil and oleic acid

    Directory of Open Access Journals (Sweden)

    Dinda S

    2006-01-01

    Full Text Available Several batches of paraffin ointments were prepared and ibuprofen was incorporated into them. Sesame oil, sunflower oil, and oleic acid in different concentrations were incorporated into different batches. Commercial ibuprofen gel was obtained and divided into several batches and different concentrations of sesame oil, sunflower oil, and oleic acid were incorporated into them. The in vitro drug release characteristics through hairless (88 mm rat skin was carried out by using modified Insertion cell designed in our laboratory. The cell was placed into a borosil beaker containing 50 ml of pH 7.4 phosphate buffer as the diffusion fluid. The beaker was placed over the magnetic stirrer, which was maintained at 37±0.5° to maintain the temperature of diffusion fluid. The released drug content at predetermined time interval was measured using U-V-double beam spectrophotometer at 272 nm. The drug release was raised with increase in oil concentration.

  2. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid.

    Science.gov (United States)

    Wang, Yang; Wang, Ding; Tan, Minghui; Jiang, Bo; Zheng, Jingtang; Tsubaki, Noritatsu; Wu, Mingbo

    2015-12-01

    SO3H-functionalized monodispersed hollow carbon/silica spheres (HS/C-SO3H) with primary mesopores were prepared with polystyrene as a template and p-toluenesulfonic acid (TsOH) as a carbon precursor and -SO3H source simultaneously. The physical and chemical properties of HS/C-SO3H were characterized by N2 adsorption, TEM, SEM, XPS, XRD, Raman spectrum, NH3-TPD, element analysis and acid-base titration techniques. As a solid acid catalyst, HS/C-SO3H shows excellent performance in the esterification of oleic acid with methanol, which is a crucial reaction in biodiesel production. The well-defined hollow architecture and enhanced active sites accessibility of HS/C-SO3H guarantee the highest catalytic performance compared with the catalysts prepared by activation of TsOH deposited on the ordered mesoporous silicas SBA-15 and MCM-41. At the optimized conditions, high conversion (96.9%) was achieved and no distinct activity drop was observed after 5 recycles. This synthesis strategy will provide a highly effective solid acid catalyst for green chemical processes. PMID:26588826

  3. Increased cardiac index due to terbutaline treatment aggravates capillary-alveolar macromolecular leakage in oleic acid lung injury in dogs

    OpenAIRE

    Briot, Raphael; Bayat, Sam; Anglade, Daniel; Martiel, Jean-Louis; Grimbert, Francis

    2009-01-01

    Introduction We assessed the in vivo effects of terbutaline, a beta2-agonist assumed to reduce microvascular permeability in acute lung injury. Methods We used a recently developed broncho-alveolar lavage (BAL) technique to repeatedly measure (every 15 min. for 4 hours) the time-course of capillary-alveolar leakage of a macromolecule (fluorescein-labeled dextran) in 19 oleic acid (OA) lung injured dogs. BAL was performed in a closed lung sampling site, using a bronchoscope fitted with an infl...

  4. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    International Nuclear Information System (INIS)

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown

  5. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  6. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.;

    2004-01-01

    cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after the...... oleic acid, MCT fat unfavorably affected lipid profiles in healthy young men by increasing plasma LDL cholesterol and triacylglycerol. No changes in the activities of phospholipid transfer protein and cholesterol ester transfer protein were evident....

  7. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    Science.gov (United States)

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants. PMID:25528221

  8. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    Science.gov (United States)

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  9. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth

    OpenAIRE

    Karimi, Ehsan; Jaafar, Hawa ZE; Ghasemzadeh, Ali; Ebrahimi, Mahdi

    2015-01-01

    Background The present study was conducted in order to evaluate the fatty acid profile, anti-oxidant and anti-bacterial activities from the microwave aqueous extract of the leaves of three different varieties of Labisia pumila Benth. Results The chemical analysis of the extract showed that fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic and α-linolenic) acid as the main components in three varieties of L. pumila leaves. Furthermore, the obtained results of the anti-oxidant reveal...

  10. Esterification of oleic acid for biodiesel production catalyzed by SnCl{sub 2}: a kinetic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, A. L.; Gonzaga Neves, S. C.; Silva, M. J. da [Departament of Chemistry, Federal University of Vicosa, Vicosa, Minas Gerais, 36570-000 (Brazil)

    2008-07-01

    The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs) is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H{sub 2}SO{sub 4} is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II) chloride dihydrate (SnCl{sub 2}{center_dot}2H{sub 2}O), an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl{sub 2} catalyst was shown to be as active as the mineral acid H{sub 2}SO{sub 4}. Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl{sub 2}{center_dot}2H{sub 2}O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl{sub 2} was very close to those reported for H{sub 2}SO{sub 4

  11. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.

  12. Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats

    Directory of Open Access Journals (Sweden)

    Takamatsu Kiyoharu

    2010-07-01

    Full Text Available Abstract Background Dietary 1(3-behenoyl-2,3(1-dioleoyl-rac-glycerol (BOO has been reported to inhibit pancreatic lipase activity in vitro and suppress postprandial hypertriacylglycerolemia in humans. In the present study, the anti-obesity activities of BOO and its inhibitory effects on lymphatic triacylglycerol (TAG absorption were investigated in rats. Methods In Experiment 1, rats were fed either BOO or soybean oil (SO diet for 6 weeks. In the BOO diet, 20% of SO was replaced with an experimental oil rich in BOO. In Experiments 2 and 3, rats cannulated in the thoracic duct were administered an emulsions containing trioleoylglycerol (OOO or an oil mixture (OOO:BOO, 9:1. Tri[1-14C]oleoylglycerol (14C-OOO was added to the emulsions administered in Experiment 3. Results No observable differences were detected in food intake or body weight gain between the BOO and SO groups in Experiment 1. Plasma and liver TAG concentrations and visceral fat weights were significantly lower in the BOO group than in the SO group. The apparent absorption rate of fat was significantly lower in the BOO group than in the SO group. In Experiment 2, the lymphatic recovery of oleic and behenic acids was significantly lower at 5 and 6 h after BOO administration than after OOO administration. In Experiment 3, the lymphatic recovery of 14C-OOO was significantly lower at 5 and 6 h after BOO administration than after OOO administration. Conclusions These results suggest that BOO prevents deposition of visceral fat and hepatic TAG by lowering and delaying intestinal absorption of TAG.

  13. Interaction of antitumor alpha-lactalbumin-oleic acid complexes with artificial and natural membranes.

    Science.gov (United States)

    Zherelova, Olga M; Kataev, Anatoly A; Grishchenko, Valery M; Knyazeva, Ekaterina L; Permyakov, Sergei E; Permyakov, Eugene A

    2009-06-01

    The specific complexes of human alpha-lactalbumin (alpha-LA) with oleic acid (OA), HAMLET and LA-OA-17 (OA-complexes), possess cytotoxic activity against tumor cells but the mechanism of their cell penetration remains unclear. To explore the molecular mechanisms underlying interaction of the OA-complexes with the cell membrane, their interactions with small unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles and electroexcitable plasma membrane of internodal native and perfused cells of the green alga Chara corallina have been studied. The fractionation (Sephadex G-200) of mixtures of the OA-complexes with the vesicles shows that OA-binding increases the affinity of alpha-LA to DPPC vesicles. Calcium association decreases protein affinity to the vesicles; the effect being less pronounced for LA-OA-17. The voltage clamp technique studies show that LA-OA-17, HAMLET, and their constituents produce different modifying effects on the plasmalemmal ionic channels of the Chara corallina cells. The irreversible binding of OA-complexes to the plasmalemma is accompanied by changes in the activation-inactivation kinetics of developing integral transmembrane currents, suppression of the Ca(2+) current and Ca(2+)-activated Cl(-) current, and by increase in the nonspecific K(+) leakage currents. The latter reflects development of nonselective permeability of the plasma membrane. The HAMLET-induced effects on the plasmalemmal currents are less pronounced and potentiated by LA-OA-17. The control experiments with OA and intact alpha-LA show their qualitatively different and much less pronounced effects on the transmembrane ionic currents. Thus, the modification of alpha-LA by OA results in an increase in the protein association with the model lipid bilayer and in drastic irreversible changes in permeability of several types of the plasmalemmal ionic channels. PMID:19588235

  14. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-01

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. PMID:24368211

  15. The impact of sodium aescinate on acute lung injury induced by oleic acid in rats.

    Science.gov (United States)

    Wei, Tian; Tong, Wang; Wen-ping, Sun; Xiao-hui, Deng; Qiang, Xue; Tian-shui, Li; Zhi-fang, Chen; Hong-fang, Jin; Li, Ni; Bin, Zhao; Jun-bao, Du; Bao-ming, Ge

    2011-12-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high rates of morbidity and mortality. Currently, several surfactant or anti-inflammatory drugs are under test as treatments for ALI. Sodium aescinate (SA) has been shown to exert anti-inflammatory and antiedematous effects. In the present work, the authors explored the effects of SA and the possible mechanisms of SA action in rats with ALI induced by oleic acid (OA) administration. Eight groups of rats received infusions of normal saline (NS) or OA. Rats exposed to OA were pretreated with 1 mg/kg of SA, or posttreated with SA at low (1 mg/kg), medium (2 mg/kg), or high (6 mg/kg) dose; a positive-control group received methylprednisolone. The pressure of oxygen in arterial blood (P(O(2))) levels, the pulmonary wet/dry weight (W/D) ratios, and indices of quantitative assessment (IQA) of histological lung injury were obtained 2 or 6 hours after OA injection (0.1 mL/kg, intravenously). The levels of superoxide dismutase (SOD), malondialdehyde (MDA), matrix metalloproteinase gelatinase B (MMP-9), and tissue inhibitor of metalloproteinase (TIMP-1) in both plasma and lung tissue were also determined. Both pre- and posttreatment with SA improved OA-induced pulmonary injury, increased P(O(2)) and SOD values, lowered IQA scores, and decreased the lung W/D ratio and MDA and MMP-9 levels in plasma and lung tissue. SA appeared to abrogate OA-induced ALI by modulating the levels of SOD, MDA, and MMP-9 in plasma and lung tissue. PMID:22087513

  16. Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering.

    Science.gov (United States)

    Cardoso, Guinea B C; Maniglio, Devid; Volpato, Fabio Z; Tondon, Abhishek; Migliaresi, Claudio; Kaunas, Roland R; Zavaglia, Cecilia A C

    2016-08-01

    Bone substitutes are required to repair osseous defects caused by a number of factors, such as traumas, degenerative diseases, and cancer. Autologous bone grafting is typically used to bridge bone defects, but suffers from chronic pain at the donor-site and limited availability of graft material. Tissue engineering approaches are being investigated as viable alternatives, which ideal scaffold should be biocompatible, biodegradable, and promote cellular interactions and tissue development, need to present proper mechanical and physical properties. In this study, poly(ε-caprolactone) (PCL), oleic acid (OA) and hydroxyapatite (HAp) were used to obtain films whose properties were investigated by contact angle, scanning electron microscopy, atomic force microscopy, tensile mechanical tests, and in vitro tests with U2OS human osteosarcoma cells by direct contact. Our results indicate that by using OA as surfactant/dispersant, it was possible to obtain a homogenous film with HAp. The PCL/OA/Hap sample had twice the roughness of the control (PCL) and a lower contact angle, indicating increased hydrophilicity of the film. Furthermore, mechanical testing showed that the addition of HAp decreased the load at yield point and tensile strength and increased tensile modulus, indicating a more brittle composition vs. PCL matrix. Preliminary cell culture experiments carried out with the films demonstrated that U2OS cells adhered and proliferated on all surfaces. The data demonstrate the improved dispersion of HAp using OA and the important consequences of this addition on the composite, unveiling the potentially of this composition for bone growth support. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1076-1082, 2016. PMID:26033969

  17. Understanding interactions of oleic acid with basic drugs in solid lipids on different biopharmaceutical levels

    Directory of Open Access Journals (Sweden)

    Zdravka Misic

    2014-06-01

    Full Text Available Recently, the impact of intestinal supersaturation on absorption of poorly water-soluble drugs has raised much interest among researchers. A focus has been mostly to study excipient effects on maintenance of drug supersaturation. The aim of the present study was to better understand the effects of drug-excipient interactions on the level of the anhydrous formulation, upon dispersion in simple buffer media and, in particular, regarding precipitation kinetics. A solid lipid-based formulation comprising PEG-32 stearate and oleic acid (OA (8:2 w/w was developed as a model. Loratadine (pKa = 4.33 and carvedilol (pKa = 8.74 were chosen as basic drugs. UV/FTIR spectroscopy and viscometry were used to characterize drug-OA molecular interactions in solution, while solid formulations were studied using x-ray diffraction, thermal analysis and van’t Hoff solubility-temperature plots. Precipitation kinetics of drug formulations was real-time monitored in phosphate buffer (pH = 6.5 by focused beam reflectance measurements. It was found that the addition of OA in the formulations resulted in substantial drug solubility increase. Although the drug-OA interactions appeared to be partially lost upon formulation dispersion, the extent of precipitation was markedly lowered compared to the formulations without OA. A Precipitation number (Pnc was introduced as a ratio of a relevant residence time of drug in the gastrointestinal tract (GIT to the induction time (the onset time of crystalline precipitation. Without OA, Pnc was already taking critical values (>1, while the anhydrous formulation was still below saturation for both model drugs. Interestingly, the addition of OA resulted in amorphous instead of crystalline precipitates, which is advantageous for drug re-dissolution and absorption. In conclusion, this study provides an improved understanding of OA and basic drug interactions on different levels of in vitro performance for more rational oral formulation

  18. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  19. Self-assembled nanostructures of fully hydrated monoelaidin-elaidic acid and monoelaidin-oleic acid systems.

    Science.gov (United States)

    Yaghmur, Anan; Sartori, Barbara; Rappolt, Michael

    2012-07-01

    In recent years, there has been a surge of interest in exploring the effect of trans-fatty acids (TFAs) on biological membrane properties. The research studies are motivated by an increasing body of evidence suggesting that the consumption of TFAs increases the risk of developing negative health effects such as coronary heart disease and cancer. The ultimate goal of studying the lipid-fatty acid interactions at the molecular level is to predict the biological role of fatty acids in cells. In this regard, it is interesting to elucidate the effect of loading TFAs and their counterpart cis-fatty acids (CFAs) on the physical properties of lipid model membranes. Here, the present study focuses on discussing the following: (1) the effect of mixing monoelaidin (ME, TFA-containing lipid) with its counterpart monoolein (MO, CFA-containing lipid) on modulating the fully hydrated self-assembled structure, and (2) the influence of solubilizing oleic acid (OA) and its trans counterpart elaidic acid (EA) on the fully hydrated ME system. The ME model membrane was selected due to its sensitivity to variations in lipid composition and temperature. Synchrotron small-angle X-ray scattering (SAXS) was applied for studying the temperature-dependent structural behavior of the fully hydrated ME/MO-based system prepared with an equal ME/MO weight ratio and also for characterizing the fully hydrated OA- and EA-loaded ME systems. Wide-angle X-ray (WAXS) experiments were also performed for characterizing the formed crystalline lamellar phases at ambient temperatures. The results demonstrate the significant influence of the partial replacement of ME by MO on the phase behavior. The addition of MO induces the lamellar-nonlamellar phase transitions at ambient temperatures and promotes the formation of the inverted type hexagonal (H(2)) phase above 72 °C. The fully hydrated ME/EA and ME/OA systems with their rich polymorphism exhibit an interesting temperature-dependent complex behavior. The

  20. Probing thermal stability of the β-lactoglobulin-oleic acid complex by fluorescence spectroscopy and molecular modeling

    Science.gov (United States)

    Simion (Ciuciu), Ana-Maria; Aprodu, Iuliana; Dumitrașcu, Loredana; Bahrim, Gabriela Elena; Alexe, Petru; Stănciuc, Nicoleta

    2015-09-01

    Bovine β-lactoglobulin is able to interact with different bioactive compounds, thus being an important candidate in the development of delivery systems with improved functionality. The heat induced changes in the β-lactoglobulin-oleic acid complex were examined by means of fluorescence spectroscopy and molecular modeling techniques. Fluorescence spectroscopy results indicated a rigid protein structure in the temperature range 25-70 °C, whereas at temperatures over 75 °C, the rearrangements of the polypeptide chains led to higher exposure of hydrophobic residues. The most significant increase of the accessible surface area with temperature increase was identified in case of Tyr99 and Tyr102. The phase diagram method indicated an all or none transition between two conformations. Due to conformational changes, no contact between Ile56 or Lys60 and the fatty acid could be identified at 85 °C, but new non-bonding interaction were established with Ile12 and Val15. The results obtained in this study provide important details about thermal induced changes in the conformation of β-lactoglobulin-oleic acid complex. Significant conformational changes were registered above 75 °C, suggesting the possibility of obtaining highly functional complexes between whey proteins and natural unsaturated fatty acids.

  1. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  2. CLINICAL EXPERIENCE OF CANCER IMMUNOTHERAPY INTEGRATED WITH OLEIC ACID COMPLEXED WITH DE-GLYCOSYLATED VITAMIN D BINDING PROTEIN

    OpenAIRE

    Emma Ward; Rodney Smith; Branca, Jacopo J. V.; David Noakes; Gabriele Morucci; Lynda Thyer

    2014-01-01

    Proteins highly represented in milk such as α-lactalbumin and lactoferrin bind Oleic Acid (OA) to form complexes with selective anti-tumor activity. A protein present in milk, colostrum and blood, vitamin D binding protein is the precursor of a potent Macrophage Activating Factor (GcMAF) and in analogy with other OA-protein complexes, we proposed that OA-GcMAF could demonstrate a greater immunotherapeutic activity than that of GcMAF alone. We describe a preliminary experience treating p...

  3. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  4. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    OpenAIRE

    Claudio Davet Gutiérrez-Lazos; Mauricio Ortega-López; Pérez-Guzmán, Manuel A; A. Mauricio Espinoza-Rivas; Francisco Solís-Pomar; Rebeca Ortega-Amaya; L. Gerardo Silva-Vidaurri; Virginia C. Castro-Peña; Eduardo Pérez-Tijerina

    2014-01-01

    This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis i...

  5. Continuous High Rate Anaerobic Treatment of Oleic Acid Based Wastewater is Possible after a Step Feeding Start-Up

    OpenAIRE

    Cavaleiro, A. J.; Salvador, A. F.; Alves, J.I.; Alves, M. M.

    2009-01-01

    Mineralization of a synthetic effluent containing 50% COD as oleic acid was achieved in a continuous anaerobic reactor at organic loading rates up to 21 kg COD m−3 day−1, HRT of 9 h, attaining 99% of COD removal efficiency and a methane yield higher than 70%. A maximum specific methane production rate of 1170 ± 170 mg COD-CH4 g VS−1 day−1 was measured during the reactor’s operation. A start-up strategy combining feeding phases and batch degradation phases was applied to promote the developmen...

  6. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Science.gov (United States)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Tsai, Tsung-Hua; Chen, Yang-Fang; Dong, Chen-Yuan

    2014-10-01

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  7. Optimization of narrow-band uvb with a 5% oleic acid cream in the treatment of psoriasis.

    Science.gov (United States)

    Martín-Ezquerra, G; Sánchez-Regaña, M; Umbert-Millet, P

    2007-03-01

    Oleic acid is a monounsaturated fatty acid with a known action of penetration enhancer which has been used for various purposes, such as a tanning increaser. Narrow-band ultraviolet B (UVB) is a also first-line treatment for psoriasis. The purpose of this study was to evaluate if the use of a 5% oleic acid emulsion previous to the phototherapy sessions was useful in reducing the total dosage necessary for whitening in patients with psoriasis. Forty-four patients were included, 24 received application of the emulsion before phototherapy and 20 received phototherapy with no emulsion. Patients received the UVB sessions just to achieve a reduction of 80% of the basal PASI. The total dose received and number of sessions were compared within the 2 groups. A reduction in these parameters (29.68 J/cm(2) vs. 18.16 J/cm(2); 24 vs. 19 sessions) was seen in the group that received application of the emulsion. However, this was not statistically significant. The fact that we did not achieve the statistical significance may be due to the small sample size. These results must be cautiously interpreted and confirmed with further studies. PMID:17373190

  8. Water dispersible oleic acid-coated Fe{sub 3}O{sub 4} nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Shete, P.B.; Patil, R.M.; Tiwale, B.M.; Pawar, S.H., E-mail: pawar_s_h@yahoo.com

    2015-03-01

    Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe{sub 3}O{sub 4} MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core–shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles synthesized FeCl{sub 2} as the sole source by alkaline precipitation. • Hydrophilicity imparted to OA-Fe{sub 3}O{sub 4} MNPs. • Improved heating induction ability. • Highly stabilized colloidal suspension. • Improved biocompatiblity.

  9. The serum 14C-triolein/3H-oleic acid assimilation test for differential diagnosis of maldigestion and malabsorption

    International Nuclear Information System (INIS)

    In 125 consecutive patients the measurement of serum radioactivities after simultaneous ingestion of 14C-triolein and 3H-oleic acid was investigated as a test of lipid assimilation. The sum of the 2-h and 4-h concentrations of 14C in serum (se(2+4)14C) was most useful as an index of lipid assimilation, and the 2-h serum 3H/14C ratio (se-3H/14C) reflected lipid digestion. Normal values were se(2+4)14C >= 1.0% of the dose ingested per litre serum and se-3H/14C14C correlated significantly with faecal fat (r = -0.56, P 7 g/day. False-negative values appeared mainly in the patients with moderate steatorrhoea and gastrointestinal anastomoses. Only one false-positive se(2+4)14C value was found. Se-3H/14C was abnormal in 24 of the 34 patients with maldigestion with two false-positive results. When the results of se(2+4)14C and se-3H/14C were combined, the predictive value of the test result '' normal lipid assimilation'' was 0.75, that of the test result ''maldigestion'' was 0.93 and that of ''malabsorption'' 0.71. It is concluded that the serum 14C-triolein/3H-oleic acid assimilation test is convenient and inexpensive and may be useful when quantitative faecal collections are not available

  10. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    Science.gov (United States)

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions. PMID:26652346

  11. (13)C NMR characterization of triacylglycerols of Moringa oleifera seed oil: an "oleic-vaccenic acid" oil.

    Science.gov (United States)

    Vlahov, Giovanna; Chepkwony, Paul Kiprono; Ndalut, Paul K

    2002-02-27

    The composition of acyl chains and their positions in the triacylglycerols of the oil extracted from seeds of Moringa oleifera were studied by (13)C NMR spectroscopy. The unsaturated chains of M. oleifera seed oil were found to comprise only mono-unsaturated fatty acids and, in particular, two omega-9 mono-unsaturated acids, (cis-9-octadecenoic (oleic acid) and cis-11-eicosenoic acids) and one omega-7 mono-unsaturated acid (cis-11-octadecenoic acid (vaccenic acid)). The mono-unsaturated fatty acids were detected as separated resonances in the spectral regions where the carbonyl and olefinic carbons resonate according to the 1,3- and 2-positions on the glycerol backbone. The unambiguous detection of vaccenic acid was also achieved through the resonance of the omega-3 carbon. The (13)C NMR methodology enabled the simultaneous detection of oleate, vaccenate, and eicosenoate chains according to their positions on the glycerol backbone (1,3- and 2-positions) through the carboxyl, olefinic, and methylene envelope carbons of the triacylglycerol acyl chains. PMID:11853466

  12. Uptake and incorporation of labelled oleic acid and glycerol by isolated and perfused liver of Wistar rats

    International Nuclear Information System (INIS)

    After perfusion by oleic acid (9-103H) and glycerol (1-14C) previously starved Wistar rats, the synthesis of hepatic triglycerides (TG) and phospholipids (PL) follows the two following different method: during the first minutes of perfusions, the most important method synthesis of TG and especially of PL is a de novo synthesis utilizing glycerol and the exogenous fatty acids (FA). The TG synthesized are 18 : 1 18 : 1 18 : 1 and 16 : 0 18 : 1 18 : 2 the PL synthesized are LP, AP and LPC; during perfusions of long duration (30, 60, 120 min.), the major method of synthesis of TG and PL is an active exchange of FA of the endogenous glycerolipids. The TG synthesized are 16 : 0 18 : 1 18 : 1 and 16 : 0 18 : 1 18 : 2 the PL synthesized are PE and PC

  13. Designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid: Efficient ‘antenna effect’ in aqueous medium

    International Nuclear Information System (INIS)

    We have designed a novel ternary system consisting of Tetracycline hydrochloride (TC), Eu(III) and unsaturated long chain fatty acid (Oleic acid, α-Linolenic acid) in aqueous buffer at physiological pH of 7.2. The systems exhibit highly efficient ‘antenna effect’ of Eu(III) compared to that observed in the binary system of TC and Eu(III) [Eu3TC]. Transients of Eu(III) emission in aqueous buffer and D2O buffer show that the number of water molecules, coordinated directly to the Eu(III) ion, decreases from 12 in Eu3TC to 2 in the ternary system using oleic acid. The micelle formed by the bent conformation of the unsaturated oleic acid provides a hydrophobic sheet on all sides of Eu3TC complex protecting Eu(III) from interacting with O–H oscillator. The simple biocompatible system could be used for imaging purpose, and biomedical assay. - Highlights: • A ternary system containing a ligand, oleic acid and Eu(III) has been developed. • The system exhibits enhanced ‘antenna effect’ in aqueous medium at pH=7.2. • This may help design a useful biosensor/imaging technique using Eu(III)

  14. Designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid: Efficient ‘antenna effect’ in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Swarna Kamal; Sanyal, Sagarika; Samanta, Sugata; Ghosh, Sanjib, E-mail: pchemsg@gmail.com

    2015-04-15

    We have designed a novel ternary system consisting of Tetracycline hydrochloride (TC), Eu(III) and unsaturated long chain fatty acid (Oleic acid, α-Linolenic acid) in aqueous buffer at physiological pH of 7.2. The systems exhibit highly efficient ‘antenna effect’ of Eu(III) compared to that observed in the binary system of TC and Eu(III) [Eu{sub 3}TC]. Transients of Eu(III) emission in aqueous buffer and D{sub 2}O buffer show that the number of water molecules, coordinated directly to the Eu(III) ion, decreases from 12 in Eu{sub 3}TC to 2 in the ternary system using oleic acid. The micelle formed by the bent conformation of the unsaturated oleic acid provides a hydrophobic sheet on all sides of Eu{sub 3}TC complex protecting Eu(III) from interacting with O–H oscillator. The simple biocompatible system could be used for imaging purpose, and biomedical assay. - Highlights: • A ternary system containing a ligand, oleic acid and Eu(III) has been developed. • The system exhibits enhanced ‘antenna effect’ in aqueous medium at pH=7.2. • This may help design a useful biosensor/imaging technique using Eu(III)

  15. Spin-dependent transport properties of oleic acid molecule self-assembled La0.7Sr0.3MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ► Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. ► Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. ► Non-linear I–V curve indicates a tunneling type transport properties. ► Tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting I–V curves. ► LFMR of LSMO/oleic acid molecules value reaches −18% with current of 0.1 μA at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La0.7Sr0.3MnO3 (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I–V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting the I–V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.

  16. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.

    Science.gov (United States)

    Stefan, Alessandra; Hochkoeppler, Alejandro; Ugolini, Luisa; Lazzeri, Luca; Conte, Emanuele

    2016-01-01

    The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. PMID:26518537

  17. Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Schütz CA

    2014-07-01

    Full Text Available Catherine A Schütz,1,* Davide Staedler,2,* Kieran Crosbie-Staunton,3 Dania Movia,4 Catherine Chapuis Bernasconi,1 Blanka Halamoda Kenzaoui,1 Adriele Prina-Mello,3,4 Lucienne Juillerat-Jeanneret11Centre Hospitalier Universitaire Vaudois (CHUV, UNIL, 2Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland; 3School of Medicine, 4CRANN, Trinity College Dublin, Dublin, Ireland*These authors contributed equally to this workAbstract: Therapeutic engineered nanoparticles (NPs, including ultrasmall superparamagnetic iron oxide (USPIO NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs, oleic-acid-stabilized USPIO NPs (OA-USPIO NPs, and free oleic acid (OA were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo2 cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo2 cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells

  18. Comparison of the CT and pathologic findings of pulmonary fat embolism induced by triolein and oleic acid in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Hye Won; Yoo, Seung Min; Lee, Hwa Yeon [Chung-Ang University Hopital, Chung-Ang University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2006-02-15

    The aim of this study was to evaluate the CT findings of pulmonary fat embolism syndrome that was induced by triolein and oleic acid, along with tis pathologic correlation. 16 rabbits were included in this study. The rabbits in group I (n=8) were embolized with 0.2 mL triolein and the rabbits of group II (n=8) were embolized with 0.2 mL oleic acid through ear veins. HRCT scans were done prior to embolization and at 0.5, 4, 24, 48 and 72 hours post-embolization. The pathologic correlation were determined at 0.5, 24, 48 and 72 hours. At 24 hours, one group I rabbit showed abnormal CT findings that were composed of several 2-3 mm nodules and multiple ill-defined peripheral ground glass opacities. The pathologic finding of this rabbit at 48 hours was mainly intraarveolar edema. All the group II rabbits (n=8/8) showed ill-defined bilateral and peripheral ground glass opacities with (n=6/8) or without consolidations (n=2/8) on the 0.5 hour CT. All the rabbits (n=7/7) showed that the new ground glass opacities and ground glass opacities noted on the 0.5 hour CT were changed into consolidation. The margins of the ground glass opacities and consolidations were more sharpened on the 24 hours CT. All 6 rabbits (n=6/6) showed consolidations without ground glass opacities and the margins of the consolidations were more sharpened on the 48 hours CT. There was no significant interval change on the 72 hours CT. The pathologic findings of ground glass opacities were interstitial edema or mild intraalveolar edema. The pathologic findings of consolidation were intraalveolar edema, hemorrhage and coagulation necrosis. The CT findings after fat embolization using triolein and oleic acid were ill-defined peripheral ground glass opacities with/without consolidations. These findings occurred in only one triolein group with the time lag, but these findings were immediately and extensively seen in all group II rabbits. These CT findings may be important for making a diagnosis of pulmonary

  19. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    International Nuclear Information System (INIS)

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  20. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  1. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    International Nuclear Information System (INIS)

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C18 and 23% i-C18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H2/min. The presence of i-C18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  2. Comparison of chemical characteristics of high oleic acid fraction of moringa oleifera oil with some vegetable oils

    International Nuclear Information System (INIS)

    Chemical characteristics of High oleic acid fraction (HOF) of Moringa oleifera oil (MOO) was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0 degree C. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1 degree C as compared to 10.2 degree C in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability. (author)

  3. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-01-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10−4 S cm−1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor. PMID:27265642

  4. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  5. The interaction of equine lysozyme:oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism

    DEFF Research Database (Denmark)

    Nielsen, Søren Bang; Wilhelm, Kristina; Vad, Brian;

    2010-01-01

    with oleic acids (ELOAs) were shown to possess tinctorial and morphological properties, similar to amyloidal aggregates, and to be cytotoxic. ELOA's interactions with phospholipid membranes appear to be central to its biological action, similar to human alpha-lactalbumin made lethal to tumor cells....... Here, we describe the interaction of ELOA with phospholipid membranes. Confocal scanning laser microscopy shows that ELOA, but not native EL, accumulates on the surface of giant unilamellar vesicles, without inducing significant membrane permeability. Quartz crystal microbalance with dissipation data...... indicated an essentially non-disruptive binding of ELOA to supported lipid bilayers, leading to formation of highly dissipative and "soft" lipid membrane; at higher concentrations of ELOA, the lipid membrane desorbs from the surface probably as bilayer sheets of vesicles. This membrane rearrangement...

  6. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjie; Zang, Chongguang, E-mail: zangchongguang@bit.edu.cn; Jiao, Qingjie

    2015-03-15

    The post-modified Mn–Zn ferrite was prepared by grafting oleic acid on the surface of Mn–Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz–1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite. - Highlights: • The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on its surface to inhibit aggregation. • The increasing in hydrophobicity and dispersion of modified coating improved compatibility between illers and polymer. • The modified fillers can decrease the friction COF of the composite coatings resulting in the enhanced resistance to wear. • The modified ferrite coatings are observed to exhibit better reflection loss compared with coatings with original ferrite.

  7. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    International Nuclear Information System (INIS)

    The post-modified Mn–Zn ferrite was prepared by grafting oleic acid on the surface of Mn–Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz–1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite. - Highlights: • The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on its surface to inhibit aggregation. • The increasing in hydrophobicity and dispersion of modified coating improved compatibility between illers and polymer. • The modified fillers can decrease the friction COF of the composite coatings resulting in the enhanced resistance to wear. • The modified ferrite coatings are observed to exhibit better reflection loss compared with coatings with original ferrite

  8. Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Highlights: ► Few layer graphene was obtained by liquid exfoliation in oleic acid (OLA). ► The concentration of exfoliated few layer graphene is as high as 1.3 mg/mL. ► OLA-assisted graphite (OLA-G) film has high catalytic activity. ► A power conversion efficiency of 3.56% can be gained by DSSCs with the counter electrode of OLA-G film. - Abstract: We have demonstrated a facile sonication method to exfoliate graphite into few layer graphene with a high concentration of 1.3 mg/mL in oleic acid (OLA). The exfoliations of natural graphite in oleylamine (OA) and trioctylphosphine (TOP) are investigated as a comparison. The few layer graphene dispersion in OLA and the graphite nanoparticles in OA are confirmed by transmission electron microscopy (TEM) observation. The exfoliated graphene dispersion in OLA (OLA-G) and graphite dispersion in OA (OA-G) are fabricated into a film on the FTO substrate by the doctor-blading method. The morphology and catalytic activity in the redox couple regeneration of all the graphite films are examined by field emission scanning electron microscopy and cyclic voltammograms. The OLA-G films on FTO glass with few layer graphene flakes shows better catalytic activity than the OA-G films. The energy conversion efficiency of the cell with the OLA-G film as counter electrode reached 3.56%, which is 70% of dye-sensitized solar cell (DSSC) with the sputtering-Pt counter electrode under the same experimental condition.

  9. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    Science.gov (United States)

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  10. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  11. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. PMID:25978353

  12. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    OpenAIRE

    Bloemen, Maarten; Brullot, Ward; Luong, Thien Tai; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-01-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane excha...

  13. Effects of oleic acid and olive oil on gastric emptying, gut hormone secretion and appetite in lean and overweight or obese males

    DEFF Research Database (Denmark)

    Damgaard, Morten; Graff, Jesper; Fuglsang, Stefan; Holst, Jens Juul; Rehfeld, Jens F.; Madsen, Jan Lysgård

    2013-01-01

    lean subjects, free fatty acid (FFA) promotes gut hormone release, delays gastric emptying, and reduces appetite and energy intake more than an isocaloric load of triglyceride (TG). In obesity, the gastrointestinal sensitivity to lipids may be reduced. Therefore, we compared the effects of the FF...... oleic acid and the TG olive oil on gut hormone secretion, gastric emptying, appetite, and energy intake in lean and overweight/obese subjects....

  14. Oleic acid, hydroxytyrosol and n-3 fatty acids collectively modulate colitis through reduction of oxidative stress and IL-8 synthesis; in vitro and in vivo studies.

    Science.gov (United States)

    Reddy, K Vijay Kumar; Naidu, K Akhilender

    2016-06-01

    Our recent study has demonstrated that medium chain triglycerides (MCT) and monounsaturated fatty acids potentiate the beneficial effects of fish oil on risk factors of cardiovascular disease. In the present study, we have investigated the influence of MCT or olive oil on the protective and mucosal healing ability of fish oil in ulcerative colitis using cell simulation and animal models. Caco-2 cells grown in medium chain fatty acids enriched medium has exaggerated t-butyl hydroperoxide induced cell damage, GSH depletion, and IL-1β induced IL-8 synthesis, compared to the cells grown in oleic acid & hydroxytyrosol (OT) enriched medium. Further, combined treatment of cells with eicosapentaenoic acid, docosahexaenoic acid, and OT has remarkably attenuated the cell damage, and IL-8 synthesis, compared to individual treatments. To evaluate the effect of these lipid formulations in vivo, adult Wistar rats were fed diet enriched with high amount of medium chain triglycerides (MCT), virgin olive oil, or their combination with fish oil. Colitis was induced in rats using dextran sulfate sodium (DSS) for 7days followed by 10-days of recovery period. Rats of MCT group exhibit severe disease activity, higher levels of inflammatory cytokines in the colon compared to the olive oil group. Furthermore, there was persistent body weight loss, loose stools, higher levels of inflammatory cytokines in the rats of MCT group, even after DSS was withdrawn from drinking water. Conversely, fish oil has remarkably attenuated the DSS induced alterations in both MCT and olive oil diet groups with significantly greater effect in the olive oil group. Thus, MCT increase the susceptibility to colitis through oxidative damage and IL-8 synthesis in intestinal epithelial cells. The beneficial effects of virgin olive oil could be partially attributed to hydroxytyrosol. Combined treatment of hydroxytyrosol, oleic acid and n-3 fatty acids exhibit huge therapeutic benefits in colitis. PMID:27016717

  15. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    OpenAIRE

    Marcio J. da Silva; Abiney L. Cardoso; Soraia Cristina Gonzaga Neves

    2008-01-01

    The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs) is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 i...

  16. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis.

    Science.gov (United States)

    Wiedemann, Sophie C C; Ristanović, Zoran; Whiting, Gareth T; Reddy Marthala, V R; Kärger, Jörg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths. PMID:26611940

  17. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin.

    Science.gov (United States)

    Larrucea, E; Arellano, A; Santoyo, S; Ygartua, P

    2001-09-01

    The influence of oleic acid (OA) on the in vitro percutaneous absorption of tenoxicam (TEN) and its combined effect with propylene glycol (PG) was studied using Franz-type diffusion cells. Furthermore, at defined concentrations of OA, complexes of the drug with cyclodextrins (MbetaCD and gammaCD) were added because their combined use may be an interesting approach to raise TEN flux. In addition, the amount of TEN retained in the skin after topical administration of several formulations was determined. It was found that OA content markedly increased TEN absorption when compared to the control gel; the highest drug flux was obtained by 15% of OA. The absorption rate of TEN increased in parallel with increasing OA concentration, due to the alteration of the stratum corneum caused by this enhancer. Moreover, the action of OA is likely to be strongly dependent on the vehicle used since drug penetration tended to increase with increasing PG content in the vehicle, especially at the high OA concentrations. Contrary to our expectations, addition of CD complexes did not produce a significant further enhancement. Skin pretreatment with OA, independently of the vehicle used to dissolve the fatty acid, dramatically improved TEN percutaneous penetration. The amount of TEN retained in the skin was related to the flux values obtained with each formulation. PMID:11522475

  18. NIR Spectroscopic Properties of Aqueous Acids Solutions

    Directory of Open Access Journals (Sweden)

    Mohd Zubir MatJafri

    2012-06-01

    Full Text Available Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R2 above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918–925 nm and 990–996 nm, while at 975 nm for water.

  19. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    Science.gov (United States)

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  20. Cyclopiazonic acid degradation by aqueous ozone

    OpenAIRE

    Silva, Otniel Freitas; Venâncio, Armando

    2011-01-01

    Ozone is a chemical agent with great potential to reduce mycotoxins, it was effective against to reduce some mycotoxins. In view of this it was aimed of this work study the Cyclopiazonic acid (CPA) degradation by aqueous ozone. The degradation of exogenously CPA introduced in mobile phase was confirmed by High performance liquid Chromatography (HPLC). In parallel it was tested the effect of sodium formate (SF), to evaluate the influence of this chemical to neutralize ...

  1. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.; Petersen, M.; Høy, Carl-Erik; Lund, Pia; Sandstrøm, B.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after the...... intervention periods. Results: Compared with the intake of high-oleic sunflower oil, MCT intake resulted in 11% higher plasma total cholesterol (P = 0.0005), 12% higher LDL cholesterol (P = 0.0001), 32% higher VLDL cholesterol (P = 0.080), a 12% higher ratio of LDL to HDL cholesterol (P = 0.002), 22% higher...

  2. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  3. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses.

    Science.gov (United States)

    Ambrozova, Gabriela; Martiskova, Hana; Koudelka, Adolf; Ravekes, Thorben; Rudolph, Tanja K; Klinke, Anna; Rudolph, Volker; Freeman, Bruce A; Woodcock, Steven R; Kubala, Lukas; Pekarova, Michaela

    2016-01-01

    Inflammation is an immune response triggered by microbial invasion and/or tissue injury. While acute inflammation is directed toward invading pathogens and injured cells, thus enabling tissue regeneration, chronic inflammation can lead to severe pathologies and tissue dysfunction. These processes are linked with macrophage polarization into specific inflammatory "M1-like" or regulatory "M2-like" subsets. Nitro-fatty acids (NO2-FAs), produced endogenously as byproducts of metabolism and oxidative inflammatory conditions, may be useful for treating diseases associated with dysregulated immune homeostasis. The goal of this study was to characterize the role of nitro-oleic acid (OA-NO2) in regulating the functional specialization of macrophages induced by bacterial lipopolysaccharide or interleukin-4, and to reveal specific signaling mechanisms which can account for OA-NO2-dependent modulation of inflammation and fibrotic responses. Our results show that OA-NO2 inhibits lipopolysaccharide-stimulated production of both pro-inflammatory and immunoregulatory cytokines (including transforming growth factor-β) and inhibits nitric oxide and superoxide anion production. OA-NO2 also decreases interleukin-4-induced macrophage responses by inhibiting arginase-I expression and transforming growth factor-β production. These effects are mediated via downregulation of signal transducers and activators of transcription, mitogen-activated protein kinase and nuclear factor-кB signaling responses. Finally, OA-NO2 inhibits fibrotic processes in an in vivo model of angiotensin II-induced myocardial fibrosis by attenuating expression of α-smooth muscle actin, systemic transforming growth factor-β levels and infiltration of both "M1-" and "M2-like" macrophage subsets into afflicted tissue. Overall, the electrophilic fatty acid derivative OA-NO2 modulates a broad range of "M1-" and "M2-like" macrophage functions and represents a potential therapeutic approach to target diseases

  4. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  5. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.

    Science.gov (United States)

    Temoçin, Zülfikar

    2013-01-01

    This study focuses on Candida rugosa lipase (CRL) immobilization by covalent attachment on poly(ethylene terephthalate)-grafted glycidyl methacrylate (PET-g-GMA) fiber. The immobilization yielded a protein loading of 2.38 mg g(-1) of PET-g-GMA fiber. The performances of the immobilized and free CRLs were evaluated with regard to hydrolysis of olive oil and esterification of oleic acid. The optimum activity pH of the CRL was changed by immobilization to neutral range. The maximum activity of the free and immobilized CRLs occurred at 40 and 45 °C respectively. The immobilized lipase retained 65% of its original activity at 50 °C for 2 h. It was found that the immobilized lipase stored at 4 °C retained 90% of its original activity after 35 days, whereas the free lipase stored at 4 °C retained 69% of its original activity after the same period. In the esterification experiments, the immobilized CRL could maintain a high activity at a water content range from 1.5 to 6% (v/v), while the activity of free CRL showed a clear dependence on water content and decreased rapidly at above 3% (v/v) water content. In addition, after five reuses, the esterification percent yield of the immobilized CRL slightly decreased from 29 to 27%. PMID:23574345

  6. The Effect of Chemical Structure on Pour Point, Oxidative Stability and Tribological Properties of Oleic Acid Triester Derivatives

    International Nuclear Information System (INIS)

    Due to the strict regulations imposed on non-biodegradable mineral oil-based lubricants, the development and applications of bio lubricants are increasing daily. Plant oils are being investigated as a potential source of environmentally favorable lubricants because of their biodegradability, renewability, viscosity-temperature relationship, low volatility and excellent lubrication performance. However, the use of plant oils has some restriction, the most critical being oxidative stability and low-temperature problems. This paper presents systematic modifications to improve the physicochemical and tribological properties of plant oil derivatives. The results showed that among the oleic acid-based triester compounds, 2-ethylhexyl 9-(myristoxy)-10-(heptanoyloxy)octadecanoate (9) had the lowest pour point (-47.19 degree Celsius) while 2-ethylhexyl 9-(caprooxy)-10-(heptanoyloxy)octadecanoate (5) had the highest onset temperature (103.10 degree Celsius). Overall, the data indicate that the bio lubricant base stocks based on this chemical modification offer great potential for the development of industrial products application. (author)

  7. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles were synthesized solvothermally using oleylamine and oleic acid as surfactants, and the surface composition was determined by X-ray photoelectron spectroscopy (XPS) as a function of temperature, from the as-synthesized nanoparticles to those annealed under vacuum at 883K. XPS of the as-synthesized nanoparticles was consistent with a surface composition of stoichiometric Fe3O4 capped with a mixture of monodentate carboxylate and chemisorbed amine, although the surface was enriched in carboxylate over that present in the synthesis reaction concentration. The method of synthesis and capping surfactants effectively protect the nanoparticle surface from detectable hydroxylation. The capped nanoparticle is stable for 24 h at 373K, and the capping agents persist to 523K, at which point the oleylamine decomposes to desorb nitrogen and deposit aliphatic carbon from the capping tail. The carboxylate decomposes over a wider range and at 883K some carboxylate remains on the surface. The iron oxide nanoparticle undergoes substantial reduction as the aliphatic capping tail decomposes. While the as-introduced nanoparticle is essentially Fe3O4, reduction to FeO, Fe and Fe3C occurs sequentially as the nanoparticle is heated to higher temperatures.

  8. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    Directory of Open Access Journals (Sweden)

    Claudio Davet Gutiérrez-Lazos

    2014-06-01

    Full Text Available This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size. Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent. The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.

  9. Physiological study on CT image analysis of acute pulmonary edema by oleic acid and its application to diagnosis of drowning

    International Nuclear Information System (INIS)

    Recently, various investigations are carried out about the relationship between the pathophysiological changes and the images of the destructive extent in acute lung injury. In present paper, we examined, in progression time, the pathophysiological and histological changes basing upon pulmonary edema model made by administration of oleic acid to beagle dogs, and simultaneously took images of the lung by employing high-resolution X-ray CT and analyzed them. In pathophysiological and histological investigation, VA/Q heterogeneity and lung water volume increased, and decrease of PO2 in arterial blood was observed, and also filling of the alveoli with exudate, edema of the alveolar interstitium, congestion of the alveoli were observed histologically. In image analysis, the findings, that is enough to reflect the pathophysiological and histological changes, were obtained from mean CT value and the distribution of CT value histogram. Moreover, the same examination as in acute pulmonary edema model was carried out in drowning model with seawater. Consequently, it became evident that presuming of pathophysiological changes in drowning was possible from results of X-ray CT image analysis. The results described above seem to indicate that X-ray CT image analysis in acute lung injury can use as an index of the damage degree, and also is available for elucidation of the pathophysiological changes. (author)

  10. Oleic acid derivative of polyethylenimine-functionalized proliposomes for enhancing oral bioavailability of extract of Ginkgo biloba.

    Science.gov (United States)

    Zheng, Bin; Yang, Shuang; Fan, Chunyu; Bi, Ye; Du, Lin; Zhao, Lingzhi; Lee, Robert J; Teng, Lesheng; Teng, Lirong; Xie, Jing

    2016-05-01

    The present systematic study focused to investigate the oleic acid derivative of branched polyethylenimine (bPEI-OA)-functionalized proliposomes for improving the oral delivery of extract of Ginkgo biloba (GbE). The GbE proliposomes were prepared by a spray drying method at varying ratios of egg yolk phosphatidylcholine and cholesterol, and the optimized formulation was tailored with bPEI-OA to obtain bPEI-OA-functionalized proliposomes. The formulations were characterized for particle size, zeta potential, and entrapment efficiency. The release of GbE from proliposomes exhibited a sustained release. And the release rate was regulated by changing the amount of bPEI-OA on the proliposomes. The physical state characterization studies showed some interactions between GbE and other materials, such as hydrogen bonds and van der Waals forces during the process of preparation of proliposomes. The in situ single-pass perfusion and oral bioavailability studies were performed in rats. The significant increase in absorption constant (Ka) and apparent permeability coefficient (Papp) from bPEI-OA-functionalized proliposomes indicated the importance of positive charge for effective uptake across the gastrointestinal tract. The oral bioavailability of bPEI-OA-functionalized proliposomes was remarkable enhanced in comparison with control and conventional proliposomes. The bPEI-OA-functionalized proliposomes showed great potential of improving oral absorption of GbE as a suitable carrier. PMID:26635185

  11. Starch nanoparticles formed by rapidly cooling dispersions of amylose-oleic acid complexes

    Science.gov (United States)

    There is increasing interest in the preparation of starch-based nanoparticles for a variety of uses, such as biobased fillers in polymeric matrices to improve structural or barrier properties. Most established methods for preparing these nanoparticles involve acid hydrolysis of starch coupled with m...

  12. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO2F2. Studies on the effect of added LiNO3 or Na2WO4·2H2O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF6 content of WF6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF6

  13. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    Directory of Open Access Journals (Sweden)

    Adrie J. M. Verhoeven

    2009-10-01

    Full Text Available Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs and sterol regulatory element binding proteins (SREBPs, but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL. We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp. Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells.

  14. Clinical experience of immunotherapy based on oleic acid bound to glycosylated vitamin d-binding protein in localised and metastatic adenocarcinoma of the pancreas

    OpenAIRE

    Lynda Thyer; Branca, Jacopo J. V.; Margit Taubmann

    2014-01-01

    Adenocarcinoma of the pancreas still carries a dramatically poor prognosis and the survival rate for this disease has not improved substantially in the past 40 years. Therefore, new treatment options are urgently needed and this need motivates oncologists to search for novel approaches such as immunotherapy. Here we report two clinical cases successfully treated with an integrative immunotherapeutic approach based on oleic acid bound to glycosylated vitamin D-binding protein (OA-GcMAF). Consi...

  15. CLINICAL EXPERIENCE OF CANCER IMMUNOTHERAPY INTEGRATED WITH OLEIC ACID COMPLEXED WITH DE-GLYCOSYLATED VITAMIN D BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Emma Ward

    2014-01-01

    Full Text Available Proteins highly represented in milk such as α-lactalbumin and lactoferrin bind Oleic Acid (OA to form complexes with selective anti-tumor activity. A protein present in milk, colostrum and blood, vitamin D binding protein is the precursor of a potent Macrophage Activating Factor (GcMAF and in analogy with other OA-protein complexes, we proposed that OA-GcMAF could demonstrate a greater immunotherapeutic activity than that of GcMAF alone. We describe a preliminary experience treating patients with advanced cancers, often labelled as “incurable” with an integrative immunotherapy centred on OA-GcMAF. Patients with advanced cancer were treated at the Immuno Biotech Treatment Centre with OA-GcMAF-based integrative immunotherapy in combination with a very low carbohydrate, high protein diet, fermented milk products containing naturally produced GcMAF, vitamin D3 and low-dose acetylsalicylic acid. When the primary tumor or a metastasis could be measured by ultrasonographic techniques, we observed, on average, a decrease of tumor volume of approximately 25% in a week. We also observed a consistent increase in splenic blood flow that was interpreted in the context of generalised immune system activation and allowed to assess the degree of responsiveness of the individual patient. The results reported here are consistent with the results previously described in the experimental animal harbouring a human hepatocellular carcinoma as well as with the results reported for neoadjuvant chemotherapy. OA-protein complexes are bound to play a leading role in cancer therapy thanks to selectivity of antitumoral effects, absence of any side effects, safety and oral availability. We hypothesise that OA-GcMAF, combines the known anticancer effects OA-protein complexes with the well established immune stimulating effects of GcMAF.

  16. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic Acid and hydroxytyrosol in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Egeria Scoditti

    Full Text Available Adiponectin, an adipocyte-derived insulin-sensitizing and anti-inflammatory hormone, is suppressed in obesity through mechanisms involving chronic inflammation and oxidative stress. Olive oil consumption is associated with beneficial cardiometabolic actions, with possible contributions from the antioxidant phenol hydroxytyrosol (HT and the monounsaturated fatty acid oleic acid (OA, 18:1n-9 cis, both possessing anti-inflammatory and vasculo-protective properties. We determined the effects of HT and OA, alone and in combination, on adiponectin expression in human and murine adipocytes under pro-inflammatory conditions induced by the cytokine tumor necrosis factor(TNF-α. We used human Simpson-Golabi-Behmel syndrome (SGBS adipocytes and murine 3T3-L1 adipocytes as cell model systems, and pretreated them with 1-100 μmol/L OA, 0.1-20 μmol/L HT or OA plus HT combination before stimulation with 10 ng/mL TNF-α. OA or HT significantly (P<0.05 prevented TNF-α-induced suppression of total adiponectin secretion (by 42% compared with TNF-α alone as well as mRNA levels (by 30% compared with TNF-α alone. HT and OA also prevented-by 35%-TNF-α-induced downregulation of peroxisome proliferator-activated receptor PPARγ. Co-treatment with HT and OA restored adiponectin and PPARγ expression in an additive manner compared with single treatments. Exploring the activation of JNK, which is crucial for both adiponectin and PPARγ suppression by TNF-α, we found that HT and OA additively attenuated TNF-α-stimulated JNK phosphorylation (up to 55% inhibition. In conclusion, the virgin olive oil components OA and HT, at nutritionally relevant concentrations, have additive effects in preventing adiponectin downregulation in inflamed adipocytes through an attenuation of JNK-mediated PPARγ suppression.

  17. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic Acid and hydroxytyrosol in human adipocytes.

    Science.gov (United States)

    Scoditti, Egeria; Massaro, Marika; Carluccio, Maria Annunziata; Pellegrino, Mariangela; Wabitsch, Martin; Calabriso, Nadia; Storelli, Carlo; De Caterina, Raffaele

    2015-01-01

    Adiponectin, an adipocyte-derived insulin-sensitizing and anti-inflammatory hormone, is suppressed in obesity through mechanisms involving chronic inflammation and oxidative stress. Olive oil consumption is associated with beneficial cardiometabolic actions, with possible contributions from the antioxidant phenol hydroxytyrosol (HT) and the monounsaturated fatty acid oleic acid (OA, 18:1n-9 cis), both possessing anti-inflammatory and vasculo-protective properties. We determined the effects of HT and OA, alone and in combination, on adiponectin expression in human and murine adipocytes under pro-inflammatory conditions induced by the cytokine tumor necrosis factor(TNF)-α. We used human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes and murine 3T3-L1 adipocytes as cell model systems, and pretreated them with 1-100 μmol/L OA, 0.1-20 μmol/L HT or OA plus HT combination before stimulation with 10 ng/mL TNF-α. OA or HT significantly (Pwell as mRNA levels (by 30% compared with TNF-α alone). HT and OA also prevented-by 35%-TNF-α-induced downregulation of peroxisome proliferator-activated receptor PPARγ. Co-treatment with HT and OA restored adiponectin and PPARγ expression in an additive manner compared with single treatments. Exploring the activation of JNK, which is crucial for both adiponectin and PPARγ suppression by TNF-α, we found that HT and OA additively attenuated TNF-α-stimulated JNK phosphorylation (up to 55% inhibition). In conclusion, the virgin olive oil components OA and HT, at nutritionally relevant concentrations, have additive effects in preventing adiponectin downregulation in inflamed adipocytes through an attenuation of JNK-mediated PPARγ suppression. PMID:26030149

  18. PALMITIC AND OLEIC ACIDS AND THEIR ROLE IN PATHOGENESIS OF ATHEROSCLEROSIS

    Directory of Open Access Journals (Sweden)

    V. N. Titov

    2014-01-01

    Full Text Available On the basis of phylogenetic theory of general pathology, the cause of a noninfectious disease whose occurrence in a population is more than 5–7% is an impaired biological function or reaction to the environment. From the general biology viewpoint, high mortality rate related to cardio-vascular diseases and atherosclerosis (intercellular deficiency of polyenic fatty acids (PFA is just extinction of the Homo sapiens population upon adaptation to new environmental factors. The biological function of throphology (feeding and biological reaction of exotrophy (external feeding are impaired in several aspects, the major of which is nonphysiologically high dietary content of saturated fatty acids, primarily, of palmitic fatty acid (FA. The lipoprotein system formed at early stages of phylogenesis cannot transport and provide physiological deposition of great amounts of palmitic FA, which leads to the development of an adaption (compensatory and accumulation disease. This results in hypermipidemia, impaired bioavailability of PFA to cells, compesatory production of humoral mediators from ω-9 eicosatrienoic mead FA, disorders in physiological parameters of cell plasma membrane and integral proteins, nonphysiological conformation of apoВ-100 in lipoproteins, formation of ligandless lipoproteins (biological litter and impairments in the biological function of endoecology, utilization of ligandless lipoproteins in arterial intima by phylogenetically early macrophages that do not hydrolyze polyenic cholesterol esters, increase in the intensity of the biological reaction of inflammation, and destructive and inflammatory lesions in arterial intima of an atheromatosis or atherothrombosis type. Atheromatous masses are catabolites of PFA which were not internalized by phylogenetically late cells via receptor-mediated pathway.

  19. Associations between Orosensory Perception of Oleic Acid, the Common Single Nucleotide Polymorphisms (rs1761667 and rs1527483 in the CD36 Gene, and 6-n-Propylthiouracil (PROP Tasting

    Directory of Open Access Journals (Sweden)

    Melania Melis

    2015-03-01

    Full Text Available Orosensory perception of dietary fat varies in individuals, thus influencing nutritional status. Several studies associated fat detection and preference with CD36 or 6-n-propylthiouracil (PROP sensitivity. Other studies have not confirmed the latter association. We analyzed the relationship between orosensory perception of oleic acid, two CD36 variants, and PROP tasting. Thresholds of oleic acid perception were assessed in 64 subjects using a modification of the three-alternative forced-choice procedure. Subjects were classified for PROP taster status and genotyped for TAS2R38 and CD36 (SNPs: rs1761667 and rs1527483. Subjects homozygous for GG of the rs1761667 polymorphism showed higher sensitivity to oleic acid than AA subjects. The capability to detect oleic acid was directly associated with TAS2R38 or PROP responsiveness. PROP non-tasters had a lower papilla density than tasters, and those with genotype GG of the rs1761667 polymorphism had lower oleic acid thresholds than PROP non-tasters with genotype AA. In conclusion, results showed a direct association between orosensory perception of oleic acid and PROP tasting or rs1761667 polymorphism of CD36, which play a significant role in PROP non-tasters, given their low number of taste papillae. Characterization of individual capability to detect fatty acids may have important nutritional implications by explaining variations in human fat preferences.

  20. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    [18:1 n-9], M = caprylic acid [8:0]) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of C-13-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43% and...... 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  1. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    Science.gov (United States)

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease

  2. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    Science.gov (United States)

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. PMID:25782915

  3. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Science.gov (United States)

    Nemashkalova, Ekaterina L; Kazakov, Alexei S; Khasanova, Leysan M; Permyakov, Eugene A; Permyakov, Sergei E

    2013-09-10

    HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins. PMID:23947814

  4. A novel and stable "two-hit" acute lung injury model induced by oleic acid in piglets

    Directory of Open Access Journals (Sweden)

    Lv Xiaodong

    2009-03-01

    Full Text Available Abstract Background Children are susceptible to pulmonary injury, and acute lung injury (ALI often results in a high mortality and financial cost in pediatric patients. Evidence has showed that oleic acid (OA plays an important role in ALI. Therefore, it has special significance to study ALI in pediatric patients by using OA-induced animal models. Unfortunately, the animal model hs a high mortality due to hemodynamic instability. The aim of this study was to establish a novel hemodynamically stable OA-induced ALI model in piglets with two hits. Methods 18 Chinese mini-piglets were randomized into three groups: group C (received saline-ethanol solution, group T (received OA-ethanol solution in routine administration manner and group H (received OA-ethanol solution in two-hit manner. Hemodynamic and pulmonary function data were measured. Histopathological assessments were performed. Results Two piglets in group T died of radical decline of systemic blood pressure. Group T showed more drastic hemodynamic changes than group H especially during the period of 5 to 30 minutes after OA administration. Both Group T and group H all produced severe lung injury, while group C had no significant pathologic changes. OA-induced hypotension might be caused by pulmonary hypertension rather than comprised left ventricular function. Conclusion OA leads to severe pulmonary hypertension which results in hemodynamic fluctuation in OA-induced ALI model. It is the first report on hemodynamic stable ALI animal model in piglets using two-hit method. The two-hit ALI animal model fulfils the ALI criteria and has the following characteristics: hemodynamic stability, stable damage to gas exchange and comparability with pediatric patients in body weight and corresponding age. The two-hit ALI animal model can be used to study the basic mechanism and the therapeutic strategies for pediatric ALI.

  5. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S;

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  6. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qingming [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Nair, Jagadeesan [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)], E-mail: j.nair@dkfz.de; Sun Xin [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Hadjiolov, Dimiter [National Oncological Centre, Sofia (Bulgaria); Bartsch, Helmut [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)

    2007-11-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary {omega}-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N{sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3, N{sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in {omega}-6 PUFA induced colon carcinogenesis.

  7. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    International Nuclear Information System (INIS)

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary ω-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N6-ethenodeoxyadenosine (εdA) and 3, N4-ethenodeoxycytidine (εdC) by immunoaffinity/32P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in ω-6 PUFA induced colon carcinogenesis

  8. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Directory of Open Access Journals (Sweden)

    Lucia Regina Raddi de Araujo

    2006-06-01

    Full Text Available Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores.

  9. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Directory of Open Access Journals (Sweden)

    Natalia Mercer

    Full Text Available BACKGROUND: Alpha-lactalbumin (α-LA is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA acquires tumoricidal activity. Such a complex made from human α-LA (hLA is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells, and its tumoricidal activity has been well established. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext. A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2 and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. CONCLUSIONS/SIGNIFICANCE: We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal

  10. Determination of α-Linoleic Acid, Linoleic Acid and Oleic Acid in Hemp Seed by HPLC%HPLC同时测定火麻仁中α-亚麻酸、亚油酸和油酸含量

    Institute of Scientific and Technical Information of China (English)

    秦建平; 陆艳芹; 罗雪磊; 吴建雄; 李家春; 萧伟

    2012-01-01

    目的:建立同时测定火麻仁中的α-亚麻酸、亚油酸和油酸含量的HPLC方法.方法:色谱柱为Kromasil 100-5 C18(4.6 mm×250 mm,5 μm),以乙腈-o.1%磷酸(80∶20)为流动相,流速1 mL? min-1,柱温30℃,检测波长203 nm.结果:α-亚麻酸在34.625~554 mg? L-1(r=0.999 9),亚油酸在56.375~902 mg?L -1(r=1),油酸在17.125 ~ 274 mg? L-1(r =0.999 9)呈良好的线性关系;平均回收率α-亚麻酸为96.38%,RSD0.93%(n=6);亚油酸为97.79%,RSD 0.92%(n=6);油酸为97.06%,RSD 1.51% (n =6).结论:本法简便准确,专属性强,重复性好,可作为火麻仁的质量控制的参考.%Objective: To establish a HPLC method for the determination of a-linoleic acid, linoleic acid and oleic acid in Hemp Seed. Method; The Kromasil 100-5 C18 (4.6 mm ×250 mm, 5 μm) column was used with a mobile phase of acetonitrile-0. 1% phosphoric acid (80:20) , the flow rate was 1 mL ? Min-1 , the column temperature was at 30 ℃, the detection wavelength was at 203 nm. Result: The linear ranges of a-linoleic acid, linoleic acid and oleic acid were 34. 625-554 mg ? L-1 ( r = 0. 999 9) , 56. 375-902 mg ? L-1 ( r = 1 ) and 17. 125-274 mg ? L-1 (r=0. 999 9) respectively. The average recoveries were 96. 38% with RSD 0. 93% for a-linoleic acid, 97. 79% with RSD 0. 92% for linoleic acid, 97. 06% with RSD 1. 51% for oleic acid. Conclusion; The method can be used to control the quality of a-linoleic acid, linoleic acid and oleic acid in Hemp Seed, which is simple, accurate, convenient, specific and repeatable.

  11. Effect of oleic and conjugated linoleic acid in the diet of broiler chickens on the live growth performances, carcass traits and meat fatty acid profile

    Directory of Open Access Journals (Sweden)

    Stefano Rapaccini

    2010-01-01

    Full Text Available Olive oil and CLA enriched olive oil were compared with each other in a growth trial with broiler chickens, as energy supplements to the diet. A commercial CLA blend was used at the level of 1 kg per 100 kg mixed integrated feed. Two hundred and forty commercial hybrid broilers (Ross 308 were randomly subdivided and allotted to 8 pens of 30 birds each. Four pens of birds were fed the olive oil diet and considered the control group; the other 4 pens were fed the olive oil supplemented with CLA and considered the treated group. The experiment lasted 47 days. The live performance of the treated birds resulted different from the performance of the control ones: the final body weight was slightly lighter (2.544 kg vs 2.639 kg; P≤0.05 with a lower feed intake (4.886 kg feed vs 4.998 kg, P≤0.05 and, of course, an almost perfectly overlapping feed/gain ratio (1.90 vs 1.91. The fatty acid composition of the breast fat of the CLA treated birds resulted enriched by the two major CLA isomers, trans 10 cis 12 and cis 9 trans 11, whereas oleic acid and the linoleic, linolenic and arachidonic polyunsaturated acids showed a decrease (P≤0.05. CLA appears a recommendable ingredient in the diets of broilers as it improves the beneficial characteristics of poultry meat.

  12. H{sub 3}PW{sub 12}O{sub 40} (HPA), an efficient and reusable catalyst for biodiesel production related reactions. Esterification of oleic acid and etherification of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, Jorge H.; Vera, Carlos R.; Yori, Juan C.; Badano, Juan M., E-mail: jsepulve@fiq.unl.edu.a [Instituto de Investigaciones en Catalisis y Petroquimica, Santiago del Estero Santa Fe (Argentina); Santarosa, Daniel; Mandelli, Dalmo [Pontificia Universidade Catolica de Campinas, SP (Brazil). Faculdade Quimica

    2011-07-01

    In esterification of oleic acid with methanol at 25 deg C HPA displayed the highest activity. Moreover the HPA could be reused after being transformed into its cesium salt. In the reaction of etherification of glycerol HPA and Amberlyst 35W showed similar initial activity levels. The results of acid properties demonstrate that HPA is a strong protonic acid and that both surface and bulk protons contribute to the acidity. Because of its strong affinity for polar compounds, HPA is also seemingly dissolved in both oleic acid and methanol. The reaction in this case proceeds with the catalyst in the homogenous phase. (author)

  13. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L. and Germinated Jatropha Seeds (Jatropha curcas L. by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-11-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE was synthesized using germinated jatropha seeds (Jatropha curcas.L and rice bran (Oryza sativa as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the reaction time, were evaluated. The results show that lipase from germinated jatropha seeds had the hydrolitic and esterifi cation activity about 6.73 U/g and 298.07 U/g, respectively. Lipase from rice bran had the hydrolitic and esterifi cation activity about 10.57 U/g and 324.03 U/g, respectively. The optimum conditions of esterifi cation reaction using germinated jatropha seed lipase as biocatalyst were crude enzyme concentration of 0.31 g/ml, molar ratio of oleic acid to ethanol of 1 : 1.81, and reaction time of 50.9 min. The optimum conditions of esterifi cation reaction using rice bran lipase were crude enzyme concentration of 0.29 g/ml, molar ratio of oleic acid to ethanol of 1 : 2.05, and reaction time of 58.61 min. The obtained amounts of OAEE were 810.77 μmole and 626.92 μmole for lipases from rice bran and germinated jatropha seed, respectively. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  14. 油酸三乙醇胺皂化物的合成%Synthesis and Application of Oleic Acid Esterified Triethanolamine

    Institute of Scientific and Technical Information of China (English)

    甘黎明

    2015-01-01

    The single factor controlling variables method,with saponification value after deducting acid value evalu-ation,study on the reaction ratio,reaction temperature,reaction time on synthesis of triethanolamine oleate.The results show that the oleic acid and triethanolamine ratio of 1.2∶1 (mol /mol),a temperature of 130 ℃,reaction time was 3h,the most abundant system of oleic acid esterified triethanolamine reaction equilibrium.The use of syn-thetic esterified oleic acid triethanolamine deployment of water -based lubricants meets the relevant requirements.%采用单因素控制变量法,以扣除酸值后的皂化值为评价指标,研究了反应配比、反应温度、反应时间对合成油酸三乙醇胺皂化物的影响。结果表明,油酸和三乙醇胺配比为1.2∶1(mol /mol)、温度为130℃、反应时间为3h 时,反应达到平衡时体系中油酸三乙醇胺皂化物的含量最多。利用合成的油酸三乙醇胺皂化物调配成的水基润滑油符合相关要求。

  15. 柱前皂化HPLC法测定不同产地桃仁中亚油酸和油酸的量%Determination of linolic acid and oleic acid in Persicae Semen from different habitats by precolumn saponification HPLC method

    Institute of Scientific and Technical Information of China (English)

    刘威; 张帅; 付小环; 李红娟; 萧伟

    2013-01-01

    目的 建立柱前皂化HPLC测定不同产地桃仁脂肪酸中亚油酸、油酸的测定方法,为有效控制和科学评价桃仁药材质量提供依据.方法 桃仁以0.5 mol/mL氢氧化钾乙醇溶液皂化提取亚油酸、油酸,利用HPLC测定桃仁中亚油酸、油酸的量.色谱柱:Waters-Symmetry-RP-C18 (250 mm×4.6 mm,5μm),流动相为乙腈-0.1%磷酸水溶液(92∶8),体积流量1.0 mg/mL,检测波长205 nm,柱温30℃.结果 亚油酸进样量在8.193 2~163.864 μg/mL具有良好的线性关系(r=0.999 7),平均回收率为97.3%,RSD为2.7%;油酸进样量26.4~528.0 μg/mL具有良好的线性关系(r=0.999 5),平均回收率为98.0%,RSD为2.3%.结论 本方法准确,重复性好,简便易行,适用于桃仁脂肪酸中亚油酸、油酸的同时测定.%Objective To develop a precolumn saponification HPLC method for determining linolic acid and oleic acid in Persicae Semen from different habitats and to provide the basis for controlling the herb quality quickly and accurately.Methods The linolic acid and oleic acid in Persicae Semen were saponified with 0.5 mol/mL KOH/EtOH as saponifier.HPLC method was used to determine the contents of linolic acid and oleic acid.The column was Waters-Symmetry-RP-C18 (250 mm × 4.6 mm,5 μm),the mobile phase consisted of acetonitrile-0.1% aqueous phosphoric acid (92:8); The flow rate was 1.0 mg/mL; The absorbance was monitored at 205 nm; The column temperature was 30 ℃.Results The calibration curves of linolic acid and oleic acid were in a good linearity over the ranges of 8.193 2-163.864 μg/mL (r =0.999 7) and 26.4-528.0 μg/mL (r =0.999 5),and the average recoveries of linolic acid and oleic acid were 97.3% and 98.0% with RSD values of 2.7% and 2.3%,respectively (n =6).Conclusion This method is simple,sensitive,and accurate,which is suitable for the simultaneous determination oflinolic acid and oleic acid in Persicae Semen.

  16. Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate

    International Nuclear Information System (INIS)

    Stimuli-responsive hydrogel nanocomposites comprised of swollen polymer networks, in which magnetic nanoparticles are embedded, are a relatively new class of 'smart' soft materials presenting a significant impact on various technological and biomedical applications. A novel approach for the fabrication of hydrogel nanocomposites exhibiting temperature- and magneto-responsive behavior involves the random copolymerization of hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive) and 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) in the presence of preformed oleic-acid-coated magnetite nanoparticles (OA.Fe3O4). In total, two series of hydrogel nanocomposites have been prepared in two different solvent systems: ethyl acetate (series A) and tetrahydrofuran (series B). The degrees of swelling (DSs) of all conetworks were determined in organic and in aqueous media. The nanocrystalline phase adopted by the embedded magnetic nanoparticles was investigated by X-ray diffraction (XRD) spectroscopy. The obtained diffraction patterns indicated the presence of magnetite (Fe3O4). Deswelling kinetic studies that were carried out at ∼60 oC in water demonstrated the thermoresponsive properties of the hydrogel nanocomposites, attributed to the presence of the hexaethylene glycol side chains within the conetworks. Moreover, thermal gravimetric analysis (TGA) measurements showed that these materials exhibited superior thermal stability compared to the pristine hydrogels. Further to the characterization of compositional and thermal properties, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior exhibited by these materials depending on the amount of magnetic nanoparticles incorporated within the networks combined with their thermoresponsive properties may allow for their future exploitation in the biomedical field

  17. Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-jun; LING Feng; LI Zhi-qiang; LI Xiao-feng; LIU Ying-long; DU Jie; HAN Ling

    2013-01-01

    Background Animal models that demonstrate changes of renal function in response to acute lung injury (ALl) and mechanical ventilation (MV) are few.The present study was performed to examine the effect of ALl induced by oleic acid (OA) in combination with conventional MV strategy on renal function in piglets.Methods Twelve Chinese mini-piglets were randomly divided into two groups:the OA group (n=6),animals were ventilated with a conventional MV strategy of 12 ml/kg and suffered an ALl induced by administration of OA,and the control group (n=6),animals were ventilated with a protective MV strategy of 6 ml/kg and received the same amount of sterile saline.Results Six hours after OA injection a severe lung injury and a mild-moderate degree of renal histopathological injury were seen,while no apparent histological abnormalities were observed in the control group.Although we observed an increase in the plasma concentrations of creatinine and urea after ALl,there was no significant difference compared with the control group.Plasma concentrations of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C increased (5.6±1.3) and (7.4±1.5) times in the OA group compared to baseline values,and were significantly higher than the values in the control group.OA injection in combination with conventional MV strategy resulted in a dramatic aggravation of hemodynamic and blood gas exchange parameters,while these parameters remained stable during the experiment in the control group.The plasma expression of TNF-α and IL-6 in the OA group were significantly higher than that in the control group.Compared with high expression in the lung and renal tissue in the OA group,TNF-α and IL-6 were too low to be detected in the lung and renal tissue in the control group.Conclusions OA injection in combination with conventional MV strategy not only resulted in a severe lung injury but also an apparent renal injury.The potential mechanisms involved a cytokine response of TNF-α and

  18. Effect of partial liquid ventilation on lung function in oleic acid-induced lung injury model of piglets

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-zhuo; LI Ling-ke; ZHANG Yan-bo; LI Gang; XU Yu-lin; ZHU Yao-bin

    2013-01-01

    Background Pediatric patients are susceptible to lung injury that does not respond to traditional therapies.Partial liquid ventilation (PLV) has been developed as an alternative ventilatory strategy for treating severe lung injury.The aim of this study is to investigate the effect of PLV on lung function in immature piglets.Methods Acute lung injury was induced in 12 Chinese immature piglets by oleic acid (OA).The animals were randomly assigned to two groups (n=6 each group):(1) conventional mechanical ventilation (MV) group and (2) PLV with FC-77 (10 ml/kg) group.Mean arterial blood pressure (MAP),mean pulmonary arterial pressure (MPAP),central venous pressure (CVP),left atrial pressure (LAP),systemic vascular resistance (SVR),pulmonary vascular resistance (PVR),cardiac output (CO),mean pressure of airway (Paw),dynamic lung compliance (Cydn),and arterial blood gases were measured during the observation period.Results No piglet died in either group with severe lung injury.After four hours of ventilation,pH in the MV group gradually decreased to lower than 7.20,while in the PLV group,pH also gradually decreased but remained higher than 7.20 (P <0.05).Partial pressure of oxygen in artery (PaO2) decreased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Partial pressure of carbon dioxide in artery (PaCO2) increased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Paw increased in both groups,but was not significantly different (P >0.05).Cydn decreased in both groups,but without a significant difference (P >0.05).At four hours,heart rate (HR) and MAP in both groups decreased.MPAP in both groups increased,and there was a significant difference between the two groups (P <0.05).CVP was stable in both groups.At four hours,PVR and LAP were increased in both groups.CO was decreased in both groups (P <0.05).SVR was stable during the observation time.Conclusion PLV did not

  19. Atrial natriuretic peptide attenuates inflammatory responses on oleic acid-induced acute lung injury model in rats

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; ZHANG Yan-bo; LIU Dong-hai; LI Xiao-feng; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui

    2013-01-01

    Background An inflammatory response leading to organ dysfunction and failure continues to be a major problem after injury in many clinical conditions such as sepsis,severe burns,and trauma.It is increasingly recognized that atrial natriuretic peptide (ANP) possesses a broad range of biological activities,including effects on endothelial function and inflammation.A recent study has revealed that ANP exerts anti-inflammatory effects.In this study we tested the effects of human ANP (hANP) on lung injury in a model of oleic acid (OA)-induced acute lung injury (ALl) in rats.Methods Rats were randomly assigned to three groups (n=6 in each group).Rats in the control group received a 0.9% solution of NaCl (1 ml.kg1.h-1) by continuous intravenous infusion,after 30 minutes a 0.9% solution of NaCl (1 ml/kg) was injected intravenously,and then the 0.9% NaCl infusion was restarted.Rats in the ALl group received a 0.9% NaCl solution (1 ml·kg-1·h-1) intravenous infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the 0.9% NaCl infusion was restarted.Rats in the hANP-treated ALI group received a hANP (0.1μg·kg-1·min-1) infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the hANP infusion was restarted.The anti-inflammation effects of hANP were evaluated by histological examination and determination of serum cytokine levels.Results Serum intedeukin (IL)-1β,IL-6,IL-10 and tumor necrosis factor (TNF) α were increased in the ALI group at six hours.The levels of all factors were significantly lower in the hANP treated rats (P <0.005).Similarly,levels of IL-1β,IL-6,IL-10 and TNF-α were higher in the lung tissue in the ALI group at six hours.hANP treatment significantly reduced the levels of these factors in the lungs (P <0.005).Histological examination revealed marked reduction in interstitial congestion,edema,and inflammation.Conclusion hANP can attenuate inflammation in an OA-induced lung injury in rat model.

  20. Genetic, molecular and expression features of the Pervenets mutant leading to high oleic acid content of seed oil in sunflower

    Directory of Open Access Journals (Sweden)

    Lacombe Séverine

    2002-01-01

    Full Text Available Pervenets is a sunflower population that displays seed oil with a high oleic acid content [HOAC]. Our aim is to reconcile all the data gathered on this mutant in a unique explanatory mechanism. All Pervenets-derived [HOAC] lines display no accumulation or a very reduced accumulation of the DELTA12-desaturase transcript in the embryos during the stages for oil accumulation. They also carry oleHOS specific RFLP markers revealed by an DELTA12-desaturase cDNA used as a probe. The linoleic or [LO] genotypes do not carry this RFLP marker, but another allele: oleLOR (oleHL locus. Linkage disequilibrium between the oleHOS allele and [HOAC] was verified. We studied the mode of inheritance of [HOAC] in two segregating populations. A F2 progenies revealed one dominant allele for [HOAC] that co-segregated with the oleHOS allele showing that the Pervenets mutation and oleHOS were closely linked. F6 recombinant inbred lines, showed the [HOAC] trait due to two independent loci: the locus carrying the oleHOS allele and another locus sup. One allele, supole, at this second locus may suppress the effect of the oleHOS allele on the [HOAC] trait. Northern analyses performed on [HOAC] lines and F1 ([HOAC] x [LO] hybrids revealed under-accumulation of DELTA12-desaturase transcript. Thus Pervenets mutation acts in trans. The oleHOS genomic region that may carry the Pervenets mutation was cloned. A genomic library was constructed in lambdafixII with the DNA from the RHA345 [HOAC] line and screened with a DELTA12-desaturase cDNA as a probe. Two overlapping clones were entirely sequenced and revealed carrying a gene for an DELTA12-desaturase probably located in the RE. This corresponds to the invariant part of the oleHL locus. Another clone (11.1 probably carries DELTA12-desaturase repeated sequences that cause instability of the clone. We showed that the 11.1 clone carries most of cDNA sequence, but due to its organization it is not yet sequenced. A mutation mechanism

  1. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Science.gov (United States)

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  2. Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane.

    Science.gov (United States)

    Lazrak, A; Peres, A; Giovannardi, S; Peracchia, C

    1994-09-01

    In Novikoff hepatoma cell pairs studied by double perforated patch clamp (DPPC), brief (20 s) exposure to 20 microM arachidonic acid (AA) induced a rapid and reversible uncoupling. In pairs studied by double whole-cell clamp (DWCC), uncoupling was completely prevented by effective buffering of Cai2+ with BAPTA. Similarly, AA (20 s) had no effect on coupling in cells perfused with solutions containing no added Ca2+ (SES-no-Ca) and studied by DPPC, suggesting that Ca2+ influx plays an important role. Parallel experiments monitoring [Ca2+]i with fura-2 showed that [Ca2+]i increases with AA to 0.7-1.5 microM in normal [Ca2+]o, and to approximately 400 nM in SES-no-Ca solutions. The rate of [Ca2+]i increase matched that of Gj decrease, but [Ca2+]i recovery was faster. In cells studied by DWCC with 2 mM BAPTA in the pipette solution and superfused with SES-no-Ca, long exposure (1 min) to 20 microM AA caused a slow and virtually irreversible uncoupling. This result suggests that AA has a dual mechanism of uncoupling: one dominant, fast, reversible, and Ca(2+)-dependent, the other slow, poorly reversible, and Ca(2+)-independent. In contrast, uncoupling by oleic acid (OA) or halothane was insensitive to internal buffering with BAPTA, suggesting a Ca(2+)-independent mechanism only. PMID:7811915

  3. The influence of reaction temperatures and volume of oleic acid to synthesis SnS nanocrystals by using thermal decomposition method

    International Nuclear Information System (INIS)

    We report synthesis of SnS nanocrystals and their size variation with the reaction temperature, and volume of the oleic acid (OA) solvent. These nanocrystals were synthesized by using a tin precursor, Sn(OA)x prepared by tin oxide (SnO) with different moles of oleic acid and a mixture of sulfur and oleylamine (OLA) was injected into the solution at different temperatures under argon atmosphere by using thermal decomposition method. The SnS nanocrystals show orthorhombic crystal structure, and the average particle size is increased from 20 nm to 50 nm and finally 200 nm with an increase in temperature from 150 °C to 180 °C and to 210 °C. Careful observations indicate a gradual change in the shape of these nanocrystals from spherical to sheet like structure with the increase of the volume of oleic acid (2–5 mmol). The tin sulfide (SnS) films were grown by spin-coating method and subsequently the film was applied as an absorber for solar cells. The as-prepared SnS samples and films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to investigate the structure, phase composition, surface morphology and microstructure. The optical properties of SnS films were studied by using UV–visible spectroscopy. - Highlights: • Synthesis of SnS nanocrystals by using tin oxide (SnO) and sulfur powder as source is not reported before. • The SnS crystals obtained are in nanosizes with different morphologies. • This synthesized material is a potential for solar cell application

  4. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB: oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2010-05-01

    Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.

    From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10−11 cm2 s−1 for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

  5. Antioxidant Activities of Tannins to Oleic Acid%植物单宁对油酸抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    唐余玲; 刘会云; 孔佳超; 张振; 胡薇; 王茹

    2013-01-01

    以固载单宁皮粉(IT-HP)作为含单宁的成品革模型物,以油酸模拟皮革中的不饱和油脂类加脂剂,研究植物单宁对油酸的抗氧化性.系统研究了固载单宁皮粉中3种不同单宁对油酸的抗氧化作用,并优选抗氧化性最好的黑荆树单宁,考察了单宁用量、pH值和温度等条件对其抗氧化作用的影响.结果表明:3种单宁均具有良好的抑制油酸过氧化作用;抗油酸过氧化能力的强弱顺序为:黑荆树单宁>杨梅单宁>落叶松单宁;黑荆树单宁用量为20%时,抗氧化性最强;较高的pH值有利于黑荆树单宁的抗氧化作用;温度主要对油酸过氧化速度产生影响;在油酸过氧化反应初期,温度对黑荆树单宁抗氧化性的影响较小.%Tannin - immobilized hide powder (IT - HP) was employed as the leather model and oleic acid was used to mimic the unsaturated fat liquoring agent. The anti - oxidation for three kinds of tannins, black wattle tannin, bayberry tannin, and larch tannin, was investigated. The effects of tannin dosage, pH, and temperature on the anti - oxidation of black wattle tannin were studied in detail. Results show that all these three kinds of tannins have inhibition effect for oleic acid oxidation, with an anti -oxidation effect sequence of black wattle tannin > bayberry tannin > larch tannin. The anti - oxidation activity of black wattle tannin is found to increase with the increasing of tannin dosage. On the other hand, a higher pH is more propitious to anti - oxidation effect of black wattle tannin. Temperature mainly affects the oxidation rate of oleic acid, while it applies negligible impact to the anti - oxidation activity of the black wattle tannin in the initial stage of oleic acid oxidation.

  6. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2006-11-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential

  7. Use of oleic-acid functionalized nanoparticles for the magnetic solid-phase microextraction of alkylphenols in fruit juices using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Pastor-Belda, Marta; Torres, Aitor; Campillo, Natalia; Hernández-Córdoba, Manuel

    2016-05-01

    Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples. PMID:26946030

  8. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    Science.gov (United States)

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  9. Preparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents

    OpenAIRE

    Khajeamiri, Alireza

    2012-01-01

    A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of sulfuric acid for electropolymerization was 0.1 M in the presence of 0.045 M aniline in aqueous solu...

  10. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  11. Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Elsa M. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto Politecnico de Setubal, ESTBarreiro, Rua Americo da Silva Marinho, 2839-001 Lavradio (Portugal); Rego, Talita S. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Minas da Piedade, Manuel E., E-mail: memp@fc.ul.p [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2011-06-15

    Research highlights: {yields} We determined the {Delta}{sub sol}H{sub m} of solid nicotinic acid (NA) in water by solution calorimetry. {yields} We determined {Delta}{sub dil}H{sub m} of an aqueous nicotinic acid solution by flow calorimetry. {yields} We determined (aq, {infinity}) for the 3 NA species involved in acid/base equilibria. {yields} We determined the enthalpy of formation of NA(aq) under saturation conditions.. - Abstract: The molar enthalpy of solution of solid nicotinic acid (NA) at T = 298.15 K, to give an aqueous solution of molality m = 3.748 . 10{sup -3} mol {center_dot} kg{sup -1}, was determined as {Delta}{sub sol}H{sub m} = (19,927 {+-} 48) J {center_dot} mol{sup -1}, by solution calorimetry. Enthalpies of dilution, {Delta}{sub dil}H{sub m}, of 0.1005 mol {center_dot} kg{sup -1} aqueous nicotinic acid to yield final solutions with molality in the approximate range (0.03 to 0.09) mol {center_dot} kg{sup -1} were also measured by flow calorimetry. Combining the two sets of data and the results of pH measurements, with values of proton dissociation enthalpies and {Delta}{sub f}H{sub m}{sup 0}(NA, cr) selected from the literature, it was possible to derive the standard molar enthalpies of formation of the three nicotinic acid species involved in protonation/deprotonation equilibria, at infinite dilution: {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COOH.{infinity}H{sub 2}O,aq) = (328.2 {+-} 1.2) kJ {center_dot} mol{sup -1}, {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (325.0 {+-} 1.2) kJ {center_dot} mol{sup -1}, and {Delta}{sub f}H{sub m}{sup 0}(NC{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (313.7 {+-} 1.2) kJ {center_dot} mol{sup -1}. Finally, the enthalpy of solution of nicotinic acid at T = 298.15 K, under saturation conditions (m = 0.138 mol {center_dot} kg{sup -1}), and the standard molar enthalpy of formation of the corresponding solution could also be obtained as {Delta

  12. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel

    International Nuclear Information System (INIS)

    Highlights: • Preparation of nickel oxalate complex as catalyst precursor. • Incorporation of nickel oxalate complex into alumina support. • Characterization of the alumina supported nickel oxalate catalyst. • Hydrodeoxygenation of oleic acid with nickel oxalate catalyst. • Nickel oxalate catalyst reusability studies. - Abstract: In this study, nickel II oxalate complex (NiOx) was prepared by functionalization of nickel with oxalic acid (OxA) and incorporated into Al2O3 to synthesize alumina supported nickel oxalate (NiOx/Al2O3) catalyst for the hydrodeoxygenation (HDO) of oleic acid (OA) into biofuel. The synthesized NiOx/Al2O3 was characterized and the X-ray fluorescence and elemental dispersive X-ray results showed that NiOx was successfully incorporated into the structure of Al2O3. The X-ray diffraction and Raman spectroscopy results confirmed that highly dispersed Ni species are present in the NiOx/Al2O3 due to the functionalization with OxA. The catalytic activity of the NiOx/Al2O3 on the HDO of OA produced a mixture of 21% iso-C18 and 72% n-C18 at a 360 °C, 20 bar, 30 mg NiOx/Al2O3 loading pressure and gas flow rate of 100 mL/min. The presence of i-C18 was ascribed to the OxA functionalization which increased the acidity of NiOx/Al2O3. The NiOx/Al2O3 reusability study showed consistent HDO ability after 5 runs. These results are promising for further research into biofuel production for commercialization

  13. Quantitative Analysis of α-Linolenic Acid, Linoleic Acid and Oleic Acid in Guizhi Fuling Capsules%桂枝茯苓胶囊中α-亚麻酸、亚油酸和油酸的含量分析

    Institute of Scientific and Technical Information of China (English)

    尹权微; 王金玲; 杨素德; 黄文哲; 萧伟

    2016-01-01

    目的:建立同时测定桂枝茯苓胶囊中α-亚麻酸、亚油酸和油酸含量的高效液相色谱方法。方法:采用Waters Symmetry C18(250 mm×4.6 mm,5μm)色谱柱;以乙腈-0.1%磷酸为流动相,进行梯度洗脱;流速1.0 mL·min-1;柱温30℃;检测波长205 nm。结果:α-亚麻酸在0.66~10.50μg·mL-1(r=0.9998),亚油酸在6.31~100.92μg·mL-1(r=0.9997),油酸在5.00~79.92μg·mL-1(r=1.0)范围内呈良好的线性关系;平均加样回收率:α-亚麻酸为97.02%,RSD为0.88%;亚油酸为97.17%,RSD为0.80%;油酸为96.98%,RSD为0.78%(n=6)。结论:该方法进样精密度、重复性、溶液稳定性均良好,适合于测定桂枝茯苓胶囊中的活性成分,为质量控制提供参考。%Objective: To establish an HPLC method for the determination of α-linolenic acid, linoleic acid and oleic acid in Guizhi Fuling capsules. Methods: The Waters C18 (250 mm×4.6 mm, 5μm) column was applied with a mobile phase of acetonitrile-0.1% phosphoric acid (80∶20), the flow rate was 1.0 mL· min-1, the column temperature was 30℃, the detection wavelength was 205 nm. Results: The linear ranges of α-linolenic acid, linoleic acid and oleic acid were 0.66-10.50μg·mL-1 (r=0.9998), 6.31-100.92μg·mL-1 (r=0.9997) and 5.00-79.92μg·mL-1 (r=1.0), respectively. The average recoveries were 97.02% with RSD 0.88% for α-Linoleic acid, 97.17%, with RSD 0.80% for linoleic acid and 96.98% with RSD 0.78% for oleic acid (n=6). Conclusion: The method can be used to control the quality of α-linoleic acid, linoleic acid and oleic acid in Guizhi Fuling capsule, which is simple, accurate, convenient, specific and repeat-able.

  14. Ionisation constants of inorganic acids and bases in aqueous solution

    CERN Document Server

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  15. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  16. Study of free acidity determinations in aqueous solution

    International Nuclear Information System (INIS)

    The object of this work is the study of the principal methods which can be applied to the measurement of 'free' acidity. In the first part, we define the various types of acidity which can exist in aqueous solution; then, after having studied some hydrolysis reactions, we compare the value of the neutralisation pH of the hydrated cation and that of the precipitation of the hydroxide. In the second part we have started to study the determination of the acidity of an aqueous solution. After having rapidly considered the 'total' acidity determination, we deal with the problem of the 'free' acidity titration. We have considered in particular certain methods: extrapolation of the equivalent point, colorimetric titrations with or without a complexing agent, and finally the use of ion-exchange resins with mixed aqueous and solvent solutions. (author)

  17. Effect of oleic acid on the production of ethanol and fructose from glucose/fructose mixtures in an immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guenette, M.E. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering]|[IOGEN Corp., Ottawa, ON (Canada); Duvnjak, Z. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering]|[IOGEN Corp., Ottawa, ON (Canada)

    1995-12-31

    Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l.h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h{sup -1}. (orig.)

  18. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  19. Fermented Rhus verniciflua Stokes Extract Exerts an Antihepatic Lipogenic Effect in Oleic-Acid-Induced HepG2 Cells via Upregulation of AMP-Activated Protein Kinase.

    Science.gov (United States)

    Lee, Myoung-Sun; Kim, Joo-Seok; Cho, Sun-Mi; Lee, Seon Ok; Kim, Sung-Hoon; Lee, Hyo-Jeong

    2015-08-19

    Rhus verniciflua Stokes has been used as a traditional medicine and food supplement in Korea. In the present study, fermented R. verniciflua Stokes extract (FRVE), an allergen-free extract of R. verniciflua Stokes fermented with the yeast Saccharomyces carlsbergensis, was assessed for its lipid-lowering potential in an in vitro non-alcoholic fatty liver disease model. FRVE markedly suppressed lipid accumulation and intracellular triglycerides (TGs) in the presence of oleic acid (OA). Additionally, FRVE decreased both mRNA and protein levels of lipid-synthesis- and cholesterol-metabolism-related factors, such as sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), glycerol-3-phosphate acyltransferase (GPAT), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), in OA-induced HepG2 cells. Moreover, FRVE activated low-density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and fatty acid oxidation-related factors peroxisome proliferator activated receptor α (PPARα) and carnitine palmitoyltransferase 1 (CPT-1). Further, the AMPK inhibitor compound C suppressed the increased expression of AMPK phosphorylation induced by FRVE. Phenolics and cosanols in FRVE increased the phosphorylation of AMPK and decreased that of SREBP-1. Taken together, our findings suggest that FRVE has antilipogenic potential in non-alcoholic fatty livers via AMPK upregulation. PMID:26176317

  20. Polymerization of beta-amino acids in aqueous solution

    Science.gov (United States)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  1. Acidic aqueous uranium electrodeposition for target fabrication

    International Nuclear Information System (INIS)

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99Mo-99mTc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO22+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO2(NO3)2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  2. Industrial frying trials with high oleic sunflower oil

    OpenAIRE

    Niemelä, J. R.K.; Wester, I.; Lahtinen, R. M.

    1996-01-01

    High oleic sunflower oil has been developed for some special purposes where a good oxidation stability is needed and a healthy fatty acid profile is preferred. The oil is especially suitable for deep fat frying. These industrial frying trials with high oleic sunflower oil were part of the AIR-project CT 920687 "Utilisation of Sunflower Oils in Industrial Frying Operations". High oleic sunflower oil (HOSO) was tested against the traditional oils and fats in two industrial deep fat frying appli...

  3. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    OpenAIRE

    Abiney L. Cardoso; Soraia Cristina Gonzaga Neves; Marcio J. da Silva

    2008-01-01

    The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs) is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 i...

  4. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    OpenAIRE

    Qu Jing; Mao Hui-Zhu; Chen Wen; Gao Shi-Qiang; Bai Ya-Nan; Sun Yan-Wei; Geng Yun-Feng; Ye Jian

    2012-01-01

    Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less poly...

  5. Oleic Acid Increases Synthesis and Secretion of VEGF in Rat Vascular Smooth Muscle Cells: Role of Oxidative Stress and Impairment in Obesity

    Directory of Open Access Journals (Sweden)

    Mariella Trovati

    2013-09-01

    Full Text Available Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF action on vascular smooth muscle cells (VSMC. Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS. In VSMC from LZR we found the following: (a OA increases VEGF-A synthesis/secretion by a mechanism blunted by inhibitors of Akt, mTOR, ERK-1/2, PKC-beta, NADPH-oxidase and mitochondrial electron transport chain complex; (b OA activates the above mentioned signaling pathways and increases ROS; (c OA-induced activation of PKC-beta enhances oxidative stress, which activates signaling pathways responsible for the increased VEGF synthesis/secretion. In VSMC from OZR, which present enhanced baseline oxidative stress, the above mentioned actions of OA on VEGF-A, signaling pathways and ROS are impaired: this impairment is reproduced in VSMC from LZR by incubation with hydrogen peroxide. Thus, in OZR chronically elevated oxidative stress causes a resistance to the action on VEGF that OA exerts in LZR by increasing ROS.

  6. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies of...

  7. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    OpenAIRE

    Esam A. El-Hefian

    2009-01-01

    The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1) having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC) were then obtained from the plots of contact angle or conductivity versus concentration.

  8. Effects of butter oil blends with increased concentrations of stearic, oleic and linolenic acid on blood lipids in young adults

    DEFF Research Database (Denmark)

    Becker, Claus; Lund, Pia; Hølmer, Gunhild Kofoed;

    1999-01-01

    : Partially replacing milk fat with rapeseed oil seems to yield amore healthy spread. Stearic acid had a HDL-C lowering effect compared to milk fat, but did not affect LDL-Csignificantly. The addition of stearic acid did not improve the plasma lipoprotein profile for young men with lowcholesterol levels....... Bconcentrations. Fatty acid composition of plasma phospholipids, plasma cholesterol ester and platelets was alsodetermined. RESULTS: Significantly (P <0.05) lower total and LDL-cholesterol concentrations were observed after theBR and BS period, compared to BG. The effect of BR and BS did not differ. BG and BR...

  9. Partial liquid ventilation decreases tissue and serum tumor necrosis factor-α concentrations in acute lung injury model of immature piglet induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; FAN Xiang-ming; LI Xiao-feng; LI Zhi-qiang; WANG Qiang; SUN Li-zhong; LIU Ying-long

    2012-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury in children often results in high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study was designed to examine the hypothesis that PLV would attenuate the production of local and systemic tumor necrosis factor (TNF)-α in an immature piglet model of acute lung injury induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced acute lung injury by OA.The animals were randomly assigned to two groups of six animals,(1) conventional mechanical ventilation (MV) group and (2) PLV with 10 ml/kg FC-77 group.Results Compared with MV group,the PLV group had better cardiopulmonary variables (P <0.05).These variables included heart rate,mean blood pressure,blood pH,partial pressure of arterial oxygen (PaO2),PaO2/inspired O2 fraction (FiO2) and partial pressure of arterial carbon dioxide (PaCO2).PLV reduced TNF-α levels both in plasma and tissue compared with MV group (P <0.05).Conclusion PLV provides protective effects against TNF-a response in OA-induced acute lung injury in immature piglets.

  10. Black beams (Phaseolus vulgaris) diets' effects heating in different ways and times with or without methionine addition, in growth, liver and mice thyroid, using oleic acid 125 I

    International Nuclear Information System (INIS)

    Weanling rats were divided into 13 groups of six animals and were fed 'ad libitum' for four weeks with diets containing casein as protein source for the control group and bean cooked in an autoclave at 1200 C for 30, 45 and 60 minutes or cooked in an ordinary pot for 60, 120 and 180 minutes, with and without addition of methionine. Oleic acid 125 l, mixed with other nutrients, was added to the diets in order to study the distribution of radioactivity in the animal body and its excretion. The influence of heating the beans by different ways and times, with and without addition of methionine, on the growth of the animals was verified by means of the gain in weight, food efficiency ratio (FER) and protein efficiency ratio (PER). Studies in animal feces, urine and carcass were carried out. The quantity of lipids in the feces and carcass was determined. The influence of the diets on the liver and thyroid was verified by means of their weights and the quantity of radioactivity in these organs. (author)

  11. Gamma-irradiation of malic acid in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Graff, R.L.; Ponnamperuma, C.

    1980-12-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  12. Effects of butter oil blends with increased concentrations of stearic, oleic and linolenic acid on blood lipids in young adults

    DEFF Research Database (Denmark)

    Becker, Claus; Lund, Pia; Hølmer, Gunhild Kofoed; Jensen, H; Sandström, Brittmarie

    1999-01-01

    grams of the fat content of the habitualdiets was replaced by either butter/grapeseed oil (90:10) (BG); butter oil and low erucic rapeseed oil (65:35) (BR) orbutter blended in a 1:1 ratio with a interesterified mixture of rapeseed oil and fully hydrogenated rapeseed oil (70: 30)(BS). SUBJECTS: Thirteen......: Partially replacing milk fat with rapeseed oil seems to yield amore healthy spread. Stearic acid had a HDL-C lowering effect compared to milk fat, but did not affect LDL-Csignificantly. The addition of stearic acid did not improve the plasma lipoprotein profile for young men with lowcholesterol levels.......OBJECTIVE: The aim of this present project was to evaluate a more satisfactory effect on plasma lipoprotein profile ofspreads based on dairy fat. DESIGN: This study was designed as a randomised cross-over experiment with athree-week treatment separated by a three-week wash-out period. Sixty five...

  13. Chemical, thermal and viscous characterization of high-oleic sunflower and olive pomace acid oils and derived estolides

    Directory of Open Access Journals (Sweden)

    García-Zapateiro, L. A.

    2013-12-01

    Full Text Available This work deals with the chemical, thermal and viscous characterization of a variety of estolides, prepared from higholeic sunflower and olive pomace acid oils, using different acid-catalyzed synthesis protocols and reaction times. Estolides with weight-average molecular weights between 1.7 and 3.4 times higher than the original acid oils were obtained. The molecular weight of the estolides was higher when using the sulphuric acid-catalyzed method and a reaction time of 3-6 h. Estolides presented higher freezing temperatures than acid oils. In general, viscosity values are related to estolide molecular weight. Significant increments in viscosities were found in comparison with acid oils. Maximum viscosity values were obtained for estolides prepared using the sulphuric acidcatalyzed method. The largest viscosity increments in olive pomace acid oil-derived estolides were observed during the first 6 hours of reaction, due to an increase in the molecular weight; longer reaction times yielded adverse results. The temperature dependence of viscosity for all estolides studied is significantly larger than for the original acid oils.Este trabajo presenta la caracterización química, térmica y viscosa de estólidos preparados a partir de oleínas ácidas de girasol alto-oleico y de orujo de oliva, utilizando diferentes métodos catalizados por ácidos y diferentes tiempos de reacción. Se obtuvieron estólidos con pesos moleculares promedios en peso entre 1,7 y 3,4 veces más altos que las oleínas de origen. El peso molecular de los estólidos aumenta cuando se utiliza el método catalizado por ácido sulfúrico y un tiempo de reacción de 3-6 h. Los estólidos obtenidos presentan temperaturas de congelación más altas que las oleínas. En general, los valores de viscosidad están relacionados con el peso molecular del estólido. Se encontraron incrementos significativos de viscosidad en comparación con las oleínas. Los valores máximos de

  14. Protective Effects of 10-nitro-oleic Acid in a Hypoxia-Induced Murine Model of Pulmonary Hypertension

    Czech Academy of Sciences Publication Activity Database

    Klinke, A.; Moeller, A.; Pekarová, Michaela; Ravekes, T.; Friedrichs, K.; Berlin, M.; Scheu, K.M.; Kubala, Lukáš; Kolářová, Hana; Ambrožová, Gabriela; Schermuly, R.T.; Woodcock, S.R.; Freeman, B.A.; Rosenkranz, S.; Baldus, S.; Rudolph, V.; Rudolph, T.K.

    2014-01-01

    Roč. 51, č. 1 (2014), s. 155-162. ISSN 1044-1549 R&D Projects: GA MŠk(CZ) ED1.100/02/0123; GA ČR(CZ) GP13-40824P Grant ostatní: GAAV(CZ) M200041208 Institutional support: RVO:68081707 Keywords : NITRO-FATTY ACIDS * MUSCLE-CELL PROLIFERATION * ARTERIAL-HYPERTENSION Subject RIV: BO - Biophysics Impact factor: 3.985, year: 2014

  15. Association between hepatic cholesterol and oleic acid in the liver of rats treated with partially hydrogenated vegetable oil

    Directory of Open Access Journals (Sweden)

    Gabriela Salim Ferreira de Castro

    2012-02-01

    Full Text Available OBJECTIVE: The aim of the present study was to investigate the lipid profiles of the hepatic and adipose tissues of Wistar rats treated for 21 days with a diet high in saturated fat (high saturated fat, n=6 or high in hydrogenated fat, that is, having 50% partially hydrogenated vegetable oil in its composition (high hydrogenated fat, n=6, and compare them to those of a control group (control group, n=6. METHODS: Adipose tissue and total hepatic fat were higher in the saturated fat group than in the hydrogenated fat group. Hepatic lipid peroxidation was greatest in the saturated fat group, with consequent lower hepatic vitamin E and A levels. In contrast, serum vitamin A was highest in the saturated fat group. Analysis of hepatic lipid fractions found more cholesterol and less high density lipoprotein-cholesterol in the hydrogenated fat group. The hydrogenated fat group had the highest levels of triacylglycerols, followed by the saturated fat group. RESULTS: Significant amounts of trans fatty acids were detected in the hepatic and adipose tissues of the hydrogenated fat group. Among the identified fatty acids, 18:1n9 had a higher positive association with hepatic cholesterol and triacylglycerols, and a higher negative association with high density lipoprotein-cholesterol. Partially hydrogenated vegetable oil promotes greater accumulation of cholesterol and triacylglycerols in the liver than saturated fats. CONCLUSION: Trans fatty acids were incorporated into hepatocytes and adipocytes in a highly efficient manner.

  16. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E2P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed; Christensen, Søren Brøgger

    2011-01-01

    Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have...... particularly been implicated in decreasing high blood pressure. The ouabain binding site on Na,K-ATPase has also been implicated in blood pressure regulation. Thus, we aimed to determine how these two molecules modify pig kidney Na,K-ATPase. Oleic and linoleic acids did not modify reactions involving the E(1......) (Na(+)) conformations of the Na,K-ATPase. In contrast, K(+) dependent reactions were strongly modified after treatment. Oleic and linoleic acids were found to stabilize a pump conformation that binds ouabain with high affinity, i.e., an ion free E(2)P form. Time-resolved binding assays using...

  17. Amino Acids Catalyzed Direct Aldol Reactions in Aqueous Micelles

    Institute of Scientific and Technical Information of China (English)

    PENG Yi-Yuan; WANG Qi; DING Qiu-Ping; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ Since the discovery of its roles as a good small-organic-molecule catalyst in intramolecular aldol reactions, pro line has drawn considerable attention in synthetic chemistry due to its similarity to the type-Ⅰ aldolases. Recently,List and others have reported some new direct asymmetric intermolecular reactions catalyzed by proline, including aldol, Mannich, Michael, and other analogous reactions. Except for two recent examples, [1,2] proline catalyzed aldol reactions in aqueous micelles have not been reported, nor have other amino acids as organocatalysts in directly catalyzing aldol reaction been reported. Herein we wish to present our recent results regarding environmentally be nign direct aldol reactions catalyzed by amino acids including proline, histidine and arginine in aqueous media.

  18. Ternary mutual diffusion in aqueous (ethambutol dihydrochloride + hydrochloric acid) solutions

    International Nuclear Information System (INIS)

    Highlights: • Ternary diffusion coefficients for aqueous system ethambutol dihydrochloride and hydrochloric acid. • Diffusion of ethambutol dihydrochloride driven by hydrochloric acid gradients. • Coupled diffusion as indicated by cross-diffusion coefficients. - Abstract: Ternary mutual diffusion coefficients measured by the Taylor dispersion method are reported for aqueous solutions of {ethambutol dihydrochloride (1) + HCl (2)} at 25 °C and various carrier solution compositions. Mutual diffusion coefficients estimated from limiting ionic conductivities using Nernst equations are used to discuss the composition dependence of the measured diffusion coefficients. 1H NMR studies, combined with DFT calculations, confirm a fully extended conformation for the diprotonated form of the drug present under these conditions, and are consistent with an electrostatic mechanism for the strongly coupled diffusion of diprotonated ethambutol and HCl

  19. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2009-11-01

    Full Text Available The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1 having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC were then obtained from the plots of contact angle or conductivity versus concentration.

  20. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  1. Solubility of chlorine in aqueous hydrochloric acid solutions.

    Science.gov (United States)

    Alkan, Mahir; Oktay, Münir; Kocakerim, M Muhtar; Copur, Mehmet

    2005-03-17

    The solubility of chlorine in aqueous hydrochloric acid solutions was studied. The effects of HCl concentration and temperature on the solubility were evaluated, and the thermodynamic parameters of the dissolution were calculated. It was found that the solubility isotherms had a minimum at about 0.5M HCl concentration at all the temperatures studied and that solubility decreased with the increase of temperature at all the HCl concentration range investigated. PMID:15752843

  2. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Science.gov (United States)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  3. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  4. Protective effect of low potassium dextran solution on acute kidney injury following acute lung injury induced by oleic acid in piglets

    Institute of Scientific and Technical Information of China (English)

    WU Rui-ping; LIANG Xiu-bin; GUO Hui; ZHOU Xiao-shuang; ZHAO Li; WANG Chen; LI Rong-shan

    2012-01-01

    Background Low potassium dextran (LPD) solution can attenuate acute lung injury (ALI).However,LPD solution for treating acute kidney injury secondary to ALI has not been reported.The present study was performed to examine the renoprotective effect of LPD solution in ALI induced by oleic acid (OA) in piglets.Methods Twelve animals that suffered an ALI induced by administration of OA into the right atrium were divided into two groups:the placebo group (n=6) pretreated with normal saline and the LPD group (n=6),pretreated with LPD solution.LPD solution was injected intravenously at a dose of 12.5 ml/kg via the auricular vein 1 hour before OA injection.Results All animals survived the experiments with mild histopathological injury to the kidney.There were no significant differences in mean arterial pressure (MAP),creatinin and renal damage scores between the two groups.Compared with the placebo group,the LPD group had better gas exchange parameters at most of the observation points ((347.0±12.6)mmHg vs.(284.3±11.3) mmHg at 6 hours after ALI,P<0.01).After 6 hours of treatment with OA,the plasma concentrations of NGAL and interleukin (IL)-6 in both groups increased dramatically compared to baseline ((6.0±0.6) and (2.50±0.08) folds in placebo group; and (2.5±0.5) and (1.40±0.05) folds in LPD group),but the change of both parameters in the LPD group was significantly lower (P <0.01) than in the placebo group.And 6 hours after ALl the kidney tissue concentration of IL-6 in the LPD group ((165.7 ± 22.5) pg.ml-1.g-1 protein) was significantly lower (P <0.01) than that in placebo group ((67.2± 25.3) pg.ml-1.g-1 protein).Conclusion These findings suggest that pretreatment with LPD solution via systemic administration might attenuate acute kidney injury and the cytokine response of IL-6 in the ALl piglet model induced by OA injection.

  5. 单次鼻滴入油酸对SD大鼠的呼吸系统急性损伤作用%Acute Respiratory Injury on Rats after A Single Intranasal Administration of Oleic Acid

    Institute of Scientific and Technical Information of China (English)

    胡天羽; 李华; 马璟

    2013-01-01

    Seventy SD rats were randomly divided into the following 5 groups: blank control, bleomycin (5 mg/kg) and oleic acid (12, 60 and 120 mg/kg) groups. All test animals were administered intranasally at a single dose. Their respiratory rate (RR), tidal volume (TV) and minute volume (MV) were recorded by computer at 0.5, 1, 2, 4 and 8 h after administration. The animals were sacrificed in three batches on d3, d7, d21. The respiratory toxicity effect of oleic acid was evaluated according to total and classified inflammatory cell count, protein concentration and lactate dehydrogenase (LDH) activity in the bronchoalveolar lavage fluid (BALF) of the left lobe of lung. The hydroxyproline (HYP) content in right upper lobe of lung was determined and the histopathologic changes of right lower lobe were observed. The results showed that the RR level at 0.5 h of three oleic acid groups were obviously higher than that of blank control group, while the TV level were lower. Compared with the blank control group, the total number of inflammatory cells, neutrophilic granulocyte, eosinophilic granulocytes, protein concentration and LDH activity in BALF in high dose group of oleic acid were significantly increased and lung section showed inflammatory response and numerous foam cells. There were no significant differences between three oleic acid groups and blank control group in HYP content. It indicated that high dose of oleic acid had an acute injury on rat lung tissue and affected the respiratory function, but this effect was normally reversible.%将SD大鼠70只随机分为阴性对照组、博来霉素(5 mg/kg)对照组和油酸3个剂量(12、60和120 mg/kg)组,均采用单剂量鼻滴入给药.测定给药后0.5、1、2、4和8h时动物的呼吸频率、潮气量和每分通气量.给药后d3、d7和d21分批处死动物.取左肺叶进行支气管肺泡灌洗,进行灌洗液(BALF)中炎症细胞总数和分类计数,并测定全蛋白浓度和乳酸脱氢酶(LDH)活性;另取

  6. Antitumor effect of oleic acid; mechanisms of action: A review Efecto antitumoral del ácido oleico; mecanismos de acción: revisión científica

    Directory of Open Access Journals (Sweden)

    C. Carrillo

    2012-12-01

    Full Text Available Introduction: The beneficial effects of oleic acid in cancer processes can no longer be doubted, but little is known about the mechanisms of action behind this phenomenon. Aim: The aim of the present review is to clarify whether oleic acid has an effect on important mechanisms related to the carcinogenic processes. Methods: We searched electronic databases and bibliographies of selected articles were inspected for further reference. We focused our research on two cellular transformations characterizing cancer development: proliferation and cell death or apoptosis. Results: Numerous studies have reported an inhibition in cell proliferation induced by oleic acid in different tumor cell lines. Herein, oleic acid could suppress the over-expression of HER2 (erbB-2, a well-characterized oncogene which plays a key role in the etiology, invasive progression and metastasis in several human cancers. In addition, oleic acid could play a role in intracellular calcium signaling pathways linked to the proliferation event. Regarding cell death, oleic acid has been shown to induce apoptosis in carcinoma cells. The mechanisms behind the apoptotic event induced by oleic acid could be related to an increase in intracellular ROS production or caspase 3 activity. Several unsaturated fatty acids have been reported to induce apoptosis through a release of calcium from intracellular stores. However, evidence regarding such a role in oleic acid is lacking. Conclusions: Oleic acid plays a role in the activation of different intracellular pathways involved in carcinoma cell development. Such a role could be the root of its antitumoral effects reported in clinical studies.Introducción: Los estudios epidemiológicos atribuyen un papel protector al ácido oleico frente a determinados tipos de cáncer. Sin embargo, el conocimiento relativo al mecanismo por el cual tal ácido graso ejerce sus efectos es escaso. Objetivo: La presente revisión bibliográfica tiene como

  7. 一种新颖的油酸诱导乳猪急性肺损伤动物模型%A stable and reproducible piglet model of acute lung injury induced by injecting low-dose oleic acid

    Institute of Scientific and Technical Information of China (English)

    朱耀斌; 刘迎龙; 李晓锋; 王强; 张燕搏; 范祥明; 李志强; 许耀强; 凌峰; 刘爱军

    2011-01-01

    Objective To develop a hemodynamically stable and reproducible piglet model of acute lung injury by injecting low-dose oleic acid. Methods Six Chinese mini-piglets were injected with oleic acid-alcohol mixture (0. 1 mL/kg) via right atrial appendage cannula. The dose of each injection was 0. 1 mL and the interval was 90 seconds. Arterial oxygen pressure and the fraction of inspired oxygen were dynamically monitored. Circulation and respiratory function data were monitored. Right lower lung was histopathologically detected. Results There were significant differences in heart rate, mean arterial pressure, mean pulmonary arterial pressure, cardiac output, arterial oxygen pressure, arterial partial pressure of carbon dioxide, pH value, and arterial blood gas and oxygenation index between pre- and post-injection of oleic acid(Poleic acid.%目的 采用间断小剂量油酸注射方法,构建符合肺损伤标准、血流动力学稳定的乳猪急性肺损伤动物模型.方法 中华小型猪6只,经右心耳插管注射油酸-乙醇溶液0.1 mL/kg,0.1 mL/次,间隔90 s直至注射完毕.注射过程中监测循环、呼吸参数;实验结束取右下肺组织标本行组织病理检查.结果 油酸注射前、后心率、平均动脉压、平均肺动脉压、心输出量、动脉血氧分压、动脉血二氧化碳分压、pH值、氧合指数差异均有统计学意义(P<0.05).组织病理显示双肺呈弥漫性改变.结论 小剂量间断注射油酸可构建血流动力学稳定并符合肺损伤诊断标准的急性肺损伤动物模型.

  8. The reducibility of sulphuric acid and sulphate in aqueous solution

    International Nuclear Information System (INIS)

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100oC. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300oC. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130oC, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  9. Adsorption of itaconic acid from aqueous solutions onto alumina

    Directory of Open Access Journals (Sweden)

    JELENA J. GULICOVSKI

    2008-08-01

    Full Text Available Itaconic acid, IA (C5H6O4, was investigated as a potential flocculant for the aqueous processing of alumina powders. The adsorption of IA, as a function of its concentration and pH value of the solution, onto the alumina surface was studied by the solution depletion method. The stability of the suspensions in the presence of itaconic acid was evaluated in light of the surface charge of the alumina powder used, the degree of dissociation of IA, as well as the sedimentation behavior and rheology of the suspensions. It was found that the adsorption process is extremely pH dependent; the maximum adsorption of IA onto alumina surface occurring at a pH close to the value of the first IA dissociation constant, pKa1. Also, IA does not influence the value of the point of zero charge of alumina. It was shown that IA represents an efficient flocculant for concentrated acidic alumina suspensions.

  10. Radiation chemistry of amino acids and peptides in aqueous solutions

    International Nuclear Information System (INIS)

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions (-, OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  11. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    Science.gov (United States)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  12. Industrial frying trials with high oleic sunflower oil

    Directory of Open Access Journals (Sweden)

    Niemelä, J. R.K.

    1996-04-01

    Full Text Available High oleic sunflower oil has been developed for some special purposes where a good oxidation stability is needed and a healthy fatty acid profile is preferred. The oil is especially suitable for deep fat frying. These industrial frying trials with high oleic sunflower oil were part of the AIR-project CT 920687 "Utilisation of Sunflower Oils in Industrial Frying Operations". High oleic sunflower oil (HOSO was tested against the traditional oils and fats in two industrial deep fat frying applications, namely crisps and prefried frozen french fries. The frying trials took place in Raisio Groups factories in Pyhanta and Vihanti, Finland in 1993 and 1994. According to the trials, high oleic sunflower oil is very suitable for deep fat frying. Problems occurred when a hard fat was substituted for a liquid oil in the preparation of prefrozen French Fries. These problems could be partly overcome by adjustments in the processing line.

  13. Liquid to Semisolid Rheological Transition of Normal and High-Oleic Peanut Oils Upon Cooling to Refrigeration Temperatures

    Science.gov (United States)

    Rheological transitions of peanut oils cooled from 20 to 3ºC at 0.5ºC/min were monitored via small strain oscillatory measurements at 0.1 Hz and 1 Pa. Oils were from 9 different cultivars of peanut, and 3 oils were classified as high-oleic (approximately 80% oleic acid). High-oleic oils maintained...

  14. ADSORPTION FROM AQUEOUS SOLUTION ONTO NATURAL AND ACID ACTIVATED BENTONITE

    Directory of Open Access Journals (Sweden)

    Laila Al-Khatib

    2012-01-01

    Full Text Available Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, paint, cosmetics and food industries. Nowadays, more than 100,000 commercial dyes are available with a total production of 700,000 tones manufactured all over the world annually. About 10-15% of dyes are being disposed off as a waste into the environment after dyeing process. This poses certain hazards and environmental problems. The objective of this study is to investigate the adsorption behavior of Methylene Blue (MB from aqueous solution onto natural and acid activated Jordanian bentonite. Both bentonites are firstly characterized using XRD, FTIR and SEM techniques. Then batch adsorption experiments were conducted to investigate the effect of initial MB concentration, contact time, pH and temperature. It was found that the percentage of dye removal was improved from 75.8% for natural bentonite to reach 99.6% for acid treated bentonite. The rate of MB removal followed the pseudo second order model with a high correlation factor. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir isotherm model was found more representative. The results indicate that bentonite could be employed as a low cost adsorbent in wastewater treatment for the removal of colour and dyes.

  15. Processes for working-up an aqueous fluosilicic acid solution

    Directory of Open Access Journals (Sweden)

    Alpha O. Toure

    2012-11-01

    Full Text Available Aqueous fluosilicic acid solutions were once considered to be only adverse by-products of phosphoric acid production, which required treatment to prevent ecosystem destruction when discharged into the sea. However, a range of chemicals can be generated by the transformation of this industrial waste product. Through experiments undertaken in the laboratory, we have shown the possibility of caustic soda production. Volumetric analysis showed caustic soda to be present as a 6%– 7%solution with yields of about 70% – 80%by weight. Two processes were investigated for the caustification of sodium fluoride, using different precipitates: sodium chloride and ethanol and are described by modelling caustification curves. The activation energies of precipitation determined by semi-empirical correlations showed that precipitation by ethanol (EA = 933.536 J/mol was more successful than precipitation by sodium chloride (EA = 7452.405 J/mol. Analyses performed on the precipitates highlighted compositions that are essential and useful constituents in the cement industry.

  16. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  17. INTERACTION OF AQUEOUS SOLUTIONS OF CHLORINE WITH MALIC ACID, TARTARIC ACID, AND VARIOUS FRUIT JUICES, A SOURCE OF MUTAGENS

    Science.gov (United States)

    The interactions of aqueous solutions of chlorine with some fruit acids (citric acid, DL-malic acid, and L-tartaric acid) at different pH values were studied. iethyl ether extraction followed by GC/MS analysis indicated that a number of mutagens (certain chlorinated propanones an...

  18. Synthesis and physical properties of new coco-oleic estolide branched esters

    Science.gov (United States)

    Oils derived from vegetable oils tend to not meet the standards for industrial lubricants because of unacceptable low temperature properties, pour point (PP), and/or cloud point (CP). However, a catalytic amount of perchloric acid with oleic and coconut (coco) fatty acids produced a coco-oleic estol...

  19. Role of oleic acid in immune system; mechanism of action: a review Papel del ácido oleico en el sistema inmune; mecanismo de acción: revisión científica

    Directory of Open Access Journals (Sweden)

    C. Carrillo

    2012-08-01

    Full Text Available Introduction: Although n-3 polyunsaturated fatty acids have been widely described as anti-inflammatory fats, little is known about the role of oleic acid in immune system. Aim: The aim of the present review is to join all the reports available in order to analyze where exactly the knowledge concerning this topic is and what the causes of the controversial data could be. Methods: We searched electronic databases and bibliographies of selected articles were inspected for further reference. Results: Diets rich in oleic acid have beneficial effects in inflammatory-related diseases. In addition, a wide range of studies evaluate the effect of oleic acid in different cellular functions thus reporting a potential mechanism for the biological effect of such a fat. However, some controversial data can be found in literature, maybe related to the kind of study or even the dose of the reagent added. Conclusion: In conclusion, oleic acid could be reported as an anti-inflammatory fatty acid playing a role in the activation of different pathways of immune competent cells.Introducción: Los ácidos grasos poliinsaturados de la familia n-3 han sido ampliamente caracterizados por su potencial antiinflamatorio. Sin embargo, las evidencias relativas al papel del ácido oleico en el sistema inmune son escasas. Objetivo: El objetivo de la presente revisión bibliográfica es hacer una recopilación de todos y cada uno de los trabajos publicados a este respecto, al objeto de evaluar dónde se encuentra el conocimiento relativo a esta área y cuáles pueden ser las causas de los resultados contradictorios. Métodos: Se ha realizado una búsqueda bibliográfica a través de bases de datos electrónicas y las referencias de los artículos de interés han sido utilizadas como fuente de búsquedas más avanzadas. Resultados: Las dietas ricas en ácido oleico parecen estar asociadas con un beneficio en determinadas patologías de base inflamatoria. Además, un gran n

  20. Synthetic technology of castor oleic acid Trimethylolpropane ester%蓖麻油酸三羟甲基丙烷酯的合成工艺条件及性能

    Institute of Scientific and Technical Information of China (English)

    焦体; 胡文云; 唐志辉; 周诗磊; 邹晨

    2012-01-01

    以蓖麻油和三羟甲基丙烷为原料,通过皂化,酯化合成蓖麻油酸三羟酯,研究了原料配比,催化剂用量,反应温度,反应时间等对酯化反应的影响,最佳条件为:蓖麻油与三羟甲基丙烷的摩尔比为5∶4,,催化剂用量为蓖麻油酸质量的0.5%,反应温度180 ~ 200℃,反应时间4h.生成的蓖麻油酸三羟甲基丙烷酯为黄色透明液体,产率为86.48%,用红外光谱进行了定性分析,证明了目标产物的存在,采用了热重/差热综合热分析仪研究了其热稳定性,采用了运动粘度测定仪研究了其粘温性能.结果表明:其润滑性能、热稳定性、粘温性能满足工艺润滑油基础油的要求.%With castor oil and Trimethylolpropane as raw material, castor oleic acid ester was synthesized by the saponification and esterification. The ratio of raw material, catalyst dosage, reaction temperature and reaction time on the esterification of influence was studied. And the best conditions were as follows; castor oil and Trimethylolpropane mole ratio of 5: 4, catalyst dosage of the mass of oleic acid castor for 0. 5 % , reaction temperature 180-200 °C , reaction time 4 h. The Castor oleic acid Trimethylolpropane ester is a kind of yellow transparent liquid, production rate is 86.48%. It is proved the existence of the target product with infrared spectra of qualitative analysis. The results show that; the lubrication properties, thermal stability, glue temperature performance meet the technological requirements of base oil lubricating oil.

  1. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    Science.gov (United States)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  2. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Román-Leshkov, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Chemical Engineering; Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Chemical Engineering

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  3. Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid

    International Nuclear Information System (INIS)

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of α-aminobutyric acid were studied. • Density, electrolytic conductivity, refractive index, and viscosity of the solution were measured. • The concentrations of amino acid salt ranges from x1 = 0.009 to 0.06. • The temperature range studied was (303.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: In this study, density, electrical conductivity, refractive index and viscosity of aqueous potassium and sodium salt solutions of α-aminobutyric acid were presented. Measurements were done over the temperature range (303.15 to 343.15) K and atmospheric pressure for salt compositions from x1 = 0.009 to 0.062. A modified Graber et al. equation was used to correlate the density, electrical conductivity, and refractive index with temperature and composition leading to average absolute deviations (AAD) between the predicted and calculated values of 0.04%, 0.7%, and 0.01%, respectively. The viscosity data were represented as a function of temperature and composition via Vogel–Tamman–Fulcher (VTF) type equation at an AAD of 0.6%

  4. Adsorption of Carboxylic Acids on Reservoir Minerals from Organic and Aqueous Phase

    DEFF Research Database (Denmark)

    Madsen, Lene; Lind, Ida

    1998-01-01

    Adsorption of organic acids onto North Sea chalk and pure minerals from a hydrocarbon phase and an aqueous phase show that the maximum adsorption is larger for calcite than for silicate surfaces in the hydrocarbon phase. The opposite is observed, however, in the aqueous phase. This suggests that...

  5. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1.

    Science.gov (United States)

    Ziamajidi, Nasrin; Khaghani, Shahnaz; Hassanzadeh, Gholamreza; Vardasbi, Safura; Ahmadian, Shahram; Nowrouzi, Azin; Ghaffari, Seyed Mahmood; Abdirad, Afshin

    2013-08-01

    We evaluated the effect of chicory (Cichorium intybus L.) seed extract (CI) on hepatic steatosis caused by early and late stage diabetes in rats (in vivo), and induced in HepG2 cells (in vitro) by BSA-oleic acid complex (OA). Different dosages of CI (1.25, 2.5 and 5 mg/ml) were applied along with OA (1 mM) to HepG2 cells, simultaneously and non-simultaneously; and without OA to ordinary non-steatotic cells. Cellular lipid accumulation and glycerol release, and hepatic triglyceride (TG) content were measured. The expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor alpha (PPARα) were determined. Liver samples were stained with hematoxylin and eosin (H&E). Significant histological damage (steatosis-inflammation-fibrosis) to the cells and tissues and down-regulation of SREBP-1c and PPARα genes that followed steatosis induction were prevented by CI in simultaneous treatment. In non-simultaneous treatment, CI up-regulated the expression of both genes and restored the normal levels of the corresponding proteins; with a greater stimulating effect on PPARα, CI acted as a PPARα agonist. CI released glycerol from HepG2 cells, and targeted the first and the second hit phases of hepatic steatosis. A preliminary attempt to characterize CI showed caffeic acid, chlorogenic acid, and chicoric acid, among the constituents. PMID:23603006

  6. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  7. Succinic acid in aqueous solution : connecting microscopic surface composition and macroscopic surface tension

    OpenAIRE

    Werner, Josephina; Julin, Jan; Dalirian, Maryam; Prisle, Nønne; Öhrwall, Gunnar; Persson, Ingmar; Björneholm, Olle; Riipinen, Ilona

    2014-01-01

    The water vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experim...

  8. Radiation-induced destruction peculiarities of hydroxyl containing amino acids in diluted aqueous solution

    International Nuclear Information System (INIS)

    Amino acids aqueous solution of alpha-alanine and beta-alanine, serine, threonine (concentration 5*10-4 M) were irradiated with dose rate 0.35 Gy/s in range 100-1100 Gy and analysed. Effectiveness of radiation-induced decomposition process depends on row of factors: concentration of amino acid aqueous solution, pH, oxygen presence and other acceptors

  9. Development of high oleic soybean mutant and its stability across the environments

    International Nuclear Information System (INIS)

    Modifying seed oil composition has become a major goal in soybean breeding programs. Elevated oleic acid and reduced linoleic and linolenic acid content can improve the oxidative stability, flavor and nutritional value of soybean oil. It is also important to study the effect of the environment on the altered fatty acid content in soybean to determine their stability over different growing conditions. The objectives of this study were to develop a high oleic acid soybean mutant and to determine the stability of fatty acid composition of the same across different environments. A high oleic acid mutant (HOM) containing 40% of oleic acid compared to 27% in parent cultivar 'MACS 450' was selected from a mutagen treatment of 200Gy and 0.15% Ethyl Methane Sulphonate (EMS). To study the influence of the environmental factors on fatty acid composition, the HOM along with other four soybean lines MACS 1034, MACS 1055, MACS 1092 and Bragg were grown at 12 locations. Seeds of each genotype from each location were analyzed for fatty acid composition by gas chromatography. Eberhart and Russell's model was used to study the stability of fatty acids. In general, all the fatty acids were influenced by the environmental factors. Elevated oleic acid in HOM was less stable across the environments compared to oleic acid in other four cultivars. The mean oleic acid content in 'HOM' was 31.26-45.18% over the 12 locations. Linoleic acid content in 'HOM' and 'MACS 1034' was also showed significant deviation from unity for regression coefficient showing its unstable nature. This study shows that the elevated oleic and reduced linoleic acids in 'HOM' are highly influenced by the environmental factors. (author)

  10. Development of a High Oleic Soybean Mutant and its Stability Across the Environments

    International Nuclear Information System (INIS)

    Modifying seed oil composition has become a major goal in soybean breeding programmes. Elevated oleic acid and reduced linoleic and linolenic acid content can improve the oxidative stability, flavor and nutritional value of soybean oil. The objectives of this study were (1) to develop a high oleic acid soybean mutant and (2) to determine the stability of its fatty acid composition across different environments. A high oleic acid mutant (HOM), containing 40% of oleic acid compared to 27% in parent cultivar MACS 450, was selected from a treatment with 200Gy γ-rays and 0.15% ethyl methane sulphonate (EMS). To investigate the influence of environmental factors on fatty acid composition, the HOM, along with four other soybean lines (MACS 1034, MACS 1055, MACS 1092 and Bragg) was grown at 12 locations. Seeds of each genotype from each location were analyzed for fatty acid composition by gas chromatography. Eberhart and Russell's linear regression model was used to study the environmental stability of fatty acid composition. In general, all the fatty acids studied were influenced by environmental factors. Elevated oleic acid in the HOM was less stable across environments than the oleic acid content in the other four cultivars. The mean oleic acid content in the HOM was 31.26 - 45.18% over the 12 locations. Linoleic acid content in the HOM and in MACS 1034 also showed significant deviation from unity for their regression coefficient, indicating significant environmental effects. This study shows that extent of the elevation of oleic acid and reduction of linoleic acid content in the HOM are strongly influenced by environmental factors. (author)

  11. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    Science.gov (United States)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  12. 法国海岸松树皮提取物碧萝芷对长链游离脂肪酸诱导的巨噬细胞perilipin2基因表达的影响%Pycnogenol, an Extract from French Martime Pine, Suppresses Oleic Acid-induced perilipin2 Expression in Macrophages

    Institute of Scientific and Technical Information of China (English)

    范斌; 杜强; 谷剑秋; 张锦

    2011-01-01

    Abstract Objective To investigate the effect of Pycnogenol on oleic acid-induced perilipin2 expression in macrophages. Methods Realtime PCR and Western blot were performed to detect perilipin2 expression. Transient transfection and luciferase assay were employed to measure perilipin2 promoter activity. Results Oleic acid significantly induced perilipiti2 expression in a dose-and time-dependent manner in macrophages; oleic acid markedly enhanced perilipin2 promoter activity; Pycnogenol significantly suppressed oleic acid-induced perihpin2 expression and promoter activity. Conclusion For the first time,we demonstrated that Pycnogenol significantly suppressed oleic acid-induced perilipin2 expression and promoter activity.%目的 研究碧萝芷(PYC)对油酸诱导的巨噬细胞perilipin2表达的影响及其相关分子机制.方法 应用Real-time PCR 和Western blot测定油酸及PYC对perilipin2 mRNA和蛋白水平表达影响.应用荧光素酶活性分析方法检测油酸及PYC时perilipin2启动子活性的影响.结果油酸以剂量和浓度依赖方式上调perilipin2 mRNA和蛋白水平表达,并促进perilipin2启动子活性.PYC以剂量依赖方式抑制了油酸诱导的perilipin2表达及启动子活性.结论PYC抑制了巨噬细胞中油酸诱导的perilipin2的表达.PYC通过抑制perilipin2启动子活性,从而直接抑制perilipin2的表达.

  13. Interaction of ferroceneboronic acid with diols at aqueous and non-aqueous conditions - signalling and binding abilities of an electrochemical probe for saccharides

    International Nuclear Information System (INIS)

    Highlights: • Electrochemical characterisation of ferroceneboronic acid-diol interactions in non-aqueous solutions. • Elucidation of the signalling process and signalling mechanism of the ferroceneboronic acid upon interaction with diols in aqueous and non-aqueous solutions. • Effect of coordination of boron atom on electrochemistry of ferroceneboronic acid in free and bound forms with diols. - Abstract: Ferroceneboronic acid (FcBA) was employed as a model compound for clarification of binding and signalling properties of molecular probe for saccharides. As the simplest electrochemically active boronic acid, its interactions with diverse diols were studied in homogeneous phase under aqueous and non-aqueous conditions. The FcBA-diol system was examined by cyclic voltammetry resulting in two redox pairs corresponding to free and bound forms of FcBA. Redox potential of the bound form of FcBA was shifted in the cathodic direction in aqueous conditions due to coordination of the hydroxyl group to the boron atom. Oppositely, the anodic shift of the redox potential was observed upon the interaction of FcBA with diols in non-aqueous solvents. The binding properties and signalling mechanism of electrochemically active boronic acids were deduced and the assumptions resulting from the electrochemical behaviour were confirmed by 1H and 11B NMR spectroscopies. The binding constants of the tested diols in aqueous and non-aqueous media were determined and compared

  14. pH对油酸水解废水酸化发酵过程的影响%Effect of pH on the Acidification Fermentation Process in Oleic Acid Hydrolysis Wastewater

    Institute of Scientific and Technical Information of China (English)

    吴九九; 刘建平; 杨春燕

    2012-01-01

    pH对油酸水解废水酸化发酵影响的研究表明,pH不仅对酸化速率有很大影响,而且也会影响酸化产物的构成;不同pH值下酸化的主要产物是乙酸,但酸化的最佳pH值为6.5,此pH条件下VFA的产量最高可达12.53 g/L;在pH〉7时,明显有丙酸生成。%The impact of pH on the environment of acidification fermentation in oleic acid hydrolysis wastewater is studied, and the results show that pH has a great influence not only on the rate of acidi- fication ,but also on the composition of acidification products. The chief product of acidification is acetic acid under different pH value. The most favorable pH value in acidification is 6.5, at which the highest yielding of VFA ( 12.53 g/L) was obtained. The formation of propionic acid is apparent when pH 〉 7.

  15. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 109dm3mol-1s-1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>1010dm3mol-1s-1) while O- radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N3 radicals and SO4- radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may beo1 for N3? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  16. Effects of conjugated linoleic acid and high oleic acid safflower oil in the treatment of children with HPV-induced laryngeal papillomatosis: a randomized, double-blinded and crossover preliminary study

    Directory of Open Access Journals (Sweden)

    Louw Louise

    2012-10-01

    Full Text Available Abstract Background Surgery is the mainstay therapy for HPV-induced laryngeal papillomatosis (LP and adjuvant therapies are palliative at best. Research revealed that conjugated-linoleic acid (CLA may improve the outcome of virally-induced diseases. The effects of Clarinol™ G-80 (CLA and high oleic safflower oil (HOSF on children with LP (concomitant with surgery were evaluated. Design A randomized, double-blinded, crossover and reference-oil controlled trial was conducted at a South African medical university. Study components included clinical, HPV type/load and lymphocyte/cytokine analyses, according to routine laboratory methods. Participants Overall: ten children enrolled; eight completed the trial; five remained randomized; seven received CLA first; all treatments remained double-blinded. Intervention Children (4 to 12 years received 2.5 ml p/d CLA (8 weeks and 2.5 ml p/d HOSF (8 weeks with a washout period (6 weeks in-between. The one-year trial included a post-treatment period (30 weeks and afterwards was a one-year follow-up period. Main outcome measures Changes in numbers of surgical procedures for improved disease outcome, total/anatomical scores (staging system for papillomatosis prevention/viral inhibition, and lymphocyte/cytokine counts for immune responses between baselines and each treatment/end of trial were measured. Findings After each treatment all the children were in remission (no surgical procedures; after the trial two had recurrence (surgical procedures in post-treatment period; after the follow-up period three had recurrence (several surgical procedures and five recovered (four had no surgical procedures. Effects of CLA (and HOSF to a lesser extent were restricted to mildly/moderately aggressive papillomatosis. Children with low total scores (seven/less and reduced infections (three/less laryngeal sub-sites recovered after the trial. No harmful effects were observed. The number of surgical procedures during the trial

  17. Modelling the influence of palmitic, palmitoleic, stearic and oleic acids on apparent heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3

    OpenAIRE

    Mvou Lekogo, Brice; Coroller, Louis; Mathot, Anne Gabrielle; Mafart, Pierre; Leguérinel, Ivan

    2010-01-01

    Heat resistance of spores is affected by many factors such as temperature, pH, water activity (aw) and others. Previous studies have reported that free fatty acids can affect the germination and growth of bacterial spores. In this study, we investigated the influence of free fatty acids in heating medium or in recovery medium on the heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3. Four free fatty acids were studied: palmitic, palmitoleic, steari...

  18. Neodymium(3) complexing with bischloromethylphosphinic acid in aqueous solution

    International Nuclear Information System (INIS)

    High resolution spectrography is used to study Nd3+ complexing with (ClCH2)2POOH(HL) in aqueous solution. NdL2+ complex (lg Kstab = 0.44±0.04) with the corresponding absorption band with a maximum at λ=4283 A is formed in a system

  19. Change in the amino acid composition of calf skin collagen after. gamma. -irradiation in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Duzhenkova, N.A.; Savich, A.V. (Institut Biofiziki, Moscow (USSR))

    A study was made of the amino acid composition of calf skin collagen after ..gamma..-irradiation (/sup 60/Co) of 2.5x10/sup -6/ M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared.

  20. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.;

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...... hydrolysis are compared. The effects of temperature, acid concentration, composition of organic phase (for sulfuric acid), and pressure (for nitric acid) on the effectiveness of pretreatment were analyzed. It is shown that the use of organosolv with 0.5% sulfuric acid allows us to increase the reactivity of...

  1. Selectivity of colour reactions between elements and organic reagents in organo-aqueous acetic acid media

    International Nuclear Information System (INIS)

    Reasons, responsible for selectivity of photometric reactions in organo-aqueous acetic acid media, have been studied taking aluminium, gallium, and indium reactions as examples. Solution-and paper electrophoresis as well as distribution chromatography were used to examine the state of the elements in various media, including those for most selective determination of aluminium in the presence of gallium and indium. A high selectivity is due to the formation of an electrically neutral species of aluminium. And chloride complexes of gallium and indium in organo-aqueous acetic acid media. Coloured ternary complexes of aluminium with organic reagents and phosphoric acid are formed in the presence of the latter

  2. CATALYTIC GENERATION OF HYDROGEN FROM BIOMASS DERIVED LACTIC ACID VIA AQUEOUS PHASE REFORMING

    OpenAIRE

    Bosilj, Monika

    2015-01-01

    Hydrogen production from aqueous phase reforming (APR) of organic acids in aqueous phase and from residue of a biomass decomposition process over 3 wt% Pt/ZrO2 has been studied in the absence and presence of barium ions. The results have been compared with Pt/TiO2, Pt/C and Ni/C catalysts. Having identified barium hydroxide as a promising reagent in combination with Pt/ZrO2 catalyst for the hydrogen production out of organic acids, the method for the lactic acid conversion was extended. Lacti...

  3. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB: the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa

    2010-04-01

    Full Text Available We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB. The model is based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007, and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients.

    In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds can reach chemical lifetimes of many hours only if they are embedded in a (semi-solid matrix with very low diffusion coefficients (≤10−10 cm2 s−1. Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol

  4. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB: the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa

    2010-01-01

    Full Text Available We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB. The model is based on the PRA framework of gas-particle interactions (Pöschl et al., 2007, and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients.

    In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds can reach chemical lifetimes of multiple hours only if they are embedded in a (semi-solid matrix with very low diffusion coefficients (≤10−10 cm2 s−1.

    Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of

  5. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    Science.gov (United States)

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  6. Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid

    OpenAIRE

    Walsh, F. C.; Ponce De Leon, Carlos

    2014-01-01

    Ever tightening environmental pressure together with the continued need for coatings able to meet challenging service environments have stimulated advances in coating technology. In the case of electrochemical techniques, the classical techniques of electrodeposition and anodising are being upgraded to meet the need for modern surface engineering coatings (including nanostructured films) on metals. A major challenge is to retain conventional processing, including aqueous solutions, simple pow...

  7. EFFECT OF TEMPERATURE AND CONCENTRATION ON THE VISCOSITY OF AQUEOUS SOLUTIONS OF 3-AMINOPROPANOIC ACID, 4-AMINOBUTANOIC ACID, 5-AMINOPENTANOIC ACID, 6-AMINOHEXANOIC ACID

    Directory of Open Access Journals (Sweden)

    Carmen María Romero

    2011-12-01

    Full Text Available In this work we present the effect of temperatureon the viscosities of aqueous solutionsof 3-aminopropanoic acid, 4-aminobutanoicacid, 5-aminopentanoic acidand 6-aminohexanoic acid as a functionof concentration. The experimental measurementswere done from 293.15 K to308.15 K. At each temperature the experimentaldata were fi tted to the Tsangaris-Martin equation and the B viscosity coefficient was determined. The dependenceof the B coeffi cients on the number ofcarbon atoms of the amino acids is linear,so the contribution of polar and apolargroups was established. The results areinterpreted in terms of amino acid hydration.

  8. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia

    OpenAIRE

    Kim, Sung Bong; Lee, Sang Jun; Lee, Ju Hun; Jung, You Ree; Thapa, Laxmi Prasad; Kim, Jun Seok; Um, Youngsoon; Park, Chulhwan; Kim, Seung Wook

    2013-01-01

    Background Use of lignocellulosic biomass has received attention lately because it can be converted into various versatile chemical compounds by biological processes. In this study, a two-step pretreatment with dilute sulfuric acid and aqueous ammonia was performed efficiently on rice straw to obtain fermentable sugar. The soaking in aqueous ammonia process was also optimized by a statistical method. Results Response surface methodology was employed. The determination coefficient (R2) value w...

  9. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    International Nuclear Information System (INIS)

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent

  10. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyejeong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lim, Sangyong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Chung, Jinwoo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Soohyun [Glycomics Team, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Dongho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-06-15

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  11. Radiation-thermal decomposition of nitric and acetic acids in the aqueous nitrate solution

    International Nuclear Information System (INIS)

    Kinetics of radiation, thermal and radiation-thermal decompositions of nitric and acetic acid mixture was investigated in aqueous sodium nitrate solution in homogeneous conditions as well as by interaction of solid phase as sand rock. Temperature dependences of rate of radiation, thermal and radiation-thermal decompositions of the acids were calculated using experimental data. Resulting solutions make possible the calculation of acid decomposition dynamics accounting conditions of underground radioactive waste disposals

  12. Kinetics of oxidation of ethyldigol by vanadium(V) in aqueous acidic medium

    International Nuclear Information System (INIS)

    The kinetics of oxidation of ethyldigol by vanadium(V) in aqueous acidic medium has been carried out. The reaction is first order with respect to vanadium(V) and the substrate and is acid catalysed. Hammett acidity function (H0) and Bunnett hypothesis have been applied. The formation of free radicals during the course of the reaction has been indicated. A probable reaction mechansim is proposed. (Author)

  13. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    International Nuclear Information System (INIS)

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 3130K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 2980K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory

  14. V-型直链淀粉-油酸复合物的制备与结构表征%The preparation and characterization of V-type amylose-oleic acid complex

    Institute of Scientific and Technical Information of China (English)

    钱志伟; 杨留枝; 秦令祥; 李红; 李学红; 申瑞玲; 刘延奇

    2011-01-01

    B-type microcrystal starch was dissolved in DMSO and dispersed in the hot water.Then added a certain proportion of the oleic acid and alcohol,then the complexes were mixed,crystallized,centrifuged,washed,the amylose-were acquired.SEM,X-ray diffractometer,%以B-型微晶淀粉为原料,经二甲亚砜溶解后,分散至热水中,加入一定比例的油酸的乙醇溶液中,经过高温混合、结晶、离心分离、洗涤,制得淀粉-油酸复合物。采用扫描电子显微镜、X-射线衍射仪、红外光谱和DSC对得到的复合物进行分析和测试,结果表明:复合物颗粒直径约为2μm,X-射线衍射图形为典型的V-型结构,红外光谱中显示出了油酸复合物的相关特征,DSC分析表明V-型复合物的稳定性小于B-型微晶淀粉。

  15. The polymerization products of epoxidized oleic acid and epoxidized methyl oleate with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine as the initiator: Chemical structures, thermal and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, Aline; Martignago Mariath, Rubia [Laboratory of Instrumentation and Molecular Dynamics, Department of Physical Chemistry, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, CEP: 91501-970 Porto Alegre (Brazil); Agostini Martini, Emilse [Laboratory of Electrochemistry, University of Rio Grande do Sul, Av. Bento Goncalves 9500, CEP: 91501-970, Porto Alegre (Brazil); Santos Martini, Denise dos [Laboratory of Instrumentation and Molecular Dynamics, Department of Physical Chemistry, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, CEP: 91501-970 Porto Alegre (Brazil); Samios, Dimitrios, E-mail: dsamios@iq.ufrgs.br [Laboratory of Instrumentation and Molecular Dynamics, Department of Physical Chemistry, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, CEP: 91501-970 Porto Alegre (Brazil)

    2010-08-30

    Oligo and polyesters were prepared from epoxidized oleic acid (EOA) and methyl oleate (EMO) in polymerization reaction with cis-1,2-cyclohexanedicarboxylic anhydride (CH) and triethylamine (TEA) as the initiator at 165 deg. C for 3 h. In order to increase the molecular weight of the products, a small amount of butanodiol diglycidil ether (BDGE) was added. The different steps of the reactions were elucidated by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). These same techniques as well as size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and electric impedance spectroscopy (EIS) were used to characterize the products of the EMO/CH/TEA, EMO/CH/BDGE/TEA, EOA/CH/TEA and EOA/CH/BDGE/TEA reaction systems. The formation of internal ester groups was confirmed by NMR and FTIR. The Mw products are between 2500 g/mol and 85000 g/mol. The {Delta}{Eta} values are 44.6 KJ/ee and 42.7 KJ/ee for the EOA and EMO systems, respectively. The thermal degradations of the products start at temperatures higher than 180 deg. C. All of the products reveal glass transitions between - 57 deg. C and - 14 deg. C, while the EMO ones also present crystallization-like behavior at - 7 deg. C and 3 deg. C. The dielectric properties of the products include very high resistivity and low capacitance.

  16. The polymerization products of epoxidized oleic acid and epoxidized methyl oleate with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine as the initiator: Chemical structures, thermal and electrical properties

    International Nuclear Information System (INIS)

    Oligo and polyesters were prepared from epoxidized oleic acid (EOA) and methyl oleate (EMO) in polymerization reaction with cis-1,2-cyclohexanedicarboxylic anhydride (CH) and triethylamine (TEA) as the initiator at 165 deg. C for 3 h. In order to increase the molecular weight of the products, a small amount of butanodiol diglycidil ether (BDGE) was added. The different steps of the reactions were elucidated by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). These same techniques as well as size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and electric impedance spectroscopy (EIS) were used to characterize the products of the EMO/CH/TEA, EMO/CH/BDGE/TEA, EOA/CH/TEA and EOA/CH/BDGE/TEA reaction systems. The formation of internal ester groups was confirmed by NMR and FTIR. The Mw products are between 2500 g/mol and 85000 g/mol. The ΔΗ values are 44.6 KJ/ee and 42.7 KJ/ee for the EOA and EMO systems, respectively. The thermal degradations of the products start at temperatures higher than 180 deg. C. All of the products reveal glass transitions between - 57 deg. C and - 14 deg. C, while the EMO ones also present crystallization-like behavior at - 7 deg. C and 3 deg. C. The dielectric properties of the products include very high resistivity and low capacitance.

  17. 油酸/氨水-醇-汽油-水微乳体系拟三元相图的分析%Analysis on the phase diagrams of pseudo-tricomponent of oleic acid/ammonia-gasoline-alcohol-water microemulsion system

    Institute of Scientific and Technical Information of China (English)

    张强; 汪晓东; 金日光

    2001-01-01

    The phase diagrams of pseudo-tricomponent of microemulsions consisting of oleic acid/ammonia-gasoline-alcohol-water were plotted, and the properties of this microemulsion system were discussed. It was found that the size of microemulsion regions and maximum water content of microemulsion were related to the kinds of alcohols, in which the n-butanol had the largest size of microemulsion regions and maximum water content of microemulsions. In addition, with the content of gasoline and environmental temperature increased, the size of microemulsion regions and maximum water content of microemulsions decreased.%制备了油酸/氨水-汽油-醇-水微乳液系列,并采用拟三元相图对此微乳体系进行了研究.结果表明,助表面活性剂醇的种类对微乳汽油的微乳区面积及水最大增溶量具有很大影响,其中正丁醇体系的微乳区面积及水的增溶量最大.另外体系中汽油含量增大及环境温度的升高均导致体系微乳区面积和水增溶量的减小.

  18. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    Science.gov (United States)

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  19. Electrical conductivity of aqueous solutions of perrhenic acid

    International Nuclear Information System (INIS)

    The physiocochemical properties of perrhenic acid, HReO4, are studied; its salts form the basis of solutions for electrochemical production of rhenium. Information is presented from which the electrical conductivity of solutions in the temperature range 15-90 degrees can be determined from known concentrations of the acid in water and vice versa

  20. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids

    International Nuclear Information System (INIS)

    As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K2HPO4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K2HPO4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K2HPO4 systems because of their lower cost

  1. Aqueous citric acid as green reaction media for the synthesis of octahydroxanthenes

    Directory of Open Access Journals (Sweden)

    Camilo A. Navarro D.

    2013-08-01

    Full Text Available A simple, convenient and environmentally friendly one-pot procedure for the synthesis of 1,8-dioxo-octahydroxanthenes by the reaction of dimedone and aromatic aldehydes in aqueous citric acid is described. In this green synthetic protocol promoted by the reaction media, the use of any other catalysts and hazardous organic solvents are avoided, making the work up procedure greener and easier. The isolation of the products, obtained in good yields, is readily performed by filtration and crystallization from ethanol when required and the aqueous acidic media can be easily recycled and reused several times without significant loss of catalytic activity.

  2. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Science.gov (United States)

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  3. Modified density equation for aqueous solution with plutonium(IV) and nitric acid

    International Nuclear Information System (INIS)

    In order to calculate criticality parameters for solution systems, the number densities of nuclides are needed and usually calculated by use of density equations. For the system of aqueous solution with Pu(IV) and nitric acid, Maimoni's equation based on Hofstetters' density data was often used, but its reliability was not thoroughly examined. The author, therefore, derived a modified density equation by regression analysis for Hofstetters' data, adding the authors' density data of aqueous solution with nitric acid. Comparison between both equations showed that the modified density equation gives more reliable densities in the wide range of temperature and concentration. (author)

  4. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    International Nuclear Information System (INIS)

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA–MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species. (papers)

  5. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    Science.gov (United States)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  6. Dissolution state of cellulose in aqueous systems. 2. Acidic solvents.

    Science.gov (United States)

    Alves, Luis; Medronho, Bruno; Antunes, Filipe E; Topgaard, Daniel; Lindman, Björn

    2016-10-20

    Cellulose is insoluble in water but can be dissolved in strong acidic or alkaline conditions. How well dissolved cellulose is in solution and how it organizes are key questions often neglected in literature. The typical low pH required for dissolving cellulose in acidic solvents limits the use of typical characterization techniques. In this respect, Polarization Transfer Solid State NMR (PT ssNMR) emerges as a reliable alternative. In this work, combining PT ssNMR, microscopic techniques and X-ray diffraction, a set of different acidic systems (phosphoric acid/water, sulfuric acid/glycerol and zinc chloride/water) is investigated. The studied solvent systems are capable to efficiently dissolve cellulose, although degradation occurs to some extent. PT ssNMR is capable to identify the liquid and solid fractions of cellulose, the degradation products and it is also sensitive to gelation. The materials regenerated from the acidic dopes were found to be highly sensitive to the solvent system and to the presence of amphiphilic additives in solution. PMID:27474617

  7. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  8. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion

    OpenAIRE

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2007-01-01

    Abstract The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. In anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of saturated fatty acid (SFA) is observed that induces significant modification of phospholipid profile [1]. ...

  9. Uptake of hypobromous acid (HOBr by aqueous sulfuric acid solutions: low-temperature solubility and reaction

    Directory of Open Access Journals (Sweden)

    L. T. Iraci

    2005-03-01

    Full Text Available Hypobromous acid (HOBr is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45–70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201–252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H*=104-107 mol L-1 atm-1. H* is inversely dependent on temperature, with ΔH=-45.0±5.4 kJ mol-1 and ΔS=-101±24 J mol-1 K-1 for 55–70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into 55–70 wt% H2SO4, the solubility is described by log H*=(2349±280/T–(5.27±1.24. At temperatures colder than ~213 K, the solubility of HOBr in 45 wt% H2SO4 is at least a factor of five larger than in 70 wt% H2SO4, with log H*=(3665±270/T–(10.63±1.23. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Upon uptake of HOBr into aqueous sulfuric acid in the presence of other brominated gases, particularly for 70 wt% H2SO4 solution, our measurements demonstrate chemical reaction of HOBr followed by evolution of gaseous products including Br2O and Br2.

  10. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  11. ELECTRODEPOSITION OF METALLIC MOLYBDENUM FROM AQUEOUS ELECTROLYTES CONTAINING HYDROFLUORIC ACID

    Directory of Open Access Journals (Sweden)

    Natalia Ivanova

    2006-03-01

    Full Text Available  The influence of hydrofluoric acid on the cathodic reduction of molybdate ions has been investigated. It is shown that the mechanism of the process is determined by the acid concentration: in the range of concentrations less than 25 g·l–1 black or colored deposits are formed on the cathodic intermediate products of reduction of the molybdate ions the average valency of molybdenum in which is 3.6–4. At concentrations higher than 50 g·l–1 molybdate ions are completely reduced, forming on the cathode dense lustrous metal coatings 3–5 mm of thickness with good adhesion to the substrate. Addition of hydrofluoric acid prevents polymerization of molybdate ions. On the basis of Arrhenius equations, the effective activation energy of electroreduction of molybdate ions is determined, the ion size predetermining diffusion limitations of the processes proceeding at the film formed on the electrode surface.

  12. The photochemistry of neptunium in aqueous nitric acid solutions

    International Nuclear Information System (INIS)

    Photochemical reactions of Np(IV), (V) and (VI) have been investigated in nitric acid solutions using 254 and 300 nm excitation from standard mercury discharge lamps. Absorption spectrometry was used to monitor the concentrations of the various neptunium species in solution. In the absence of added reagents, all oxidation states of neptunium are converted to the pentavalent state. The effect of adding urea and mild reducing agents such as ethanol and hydrazine on the photolysis has also been examined. Quantum efficiencies for these reactions have been found to vary from 0.001 to 0.1, depending on the acid concentration, wavelength, and reaction conditions. (orig.)

  13. Interaction between N-Phospho-Amino Acids and Nucleoside in Aqueous Medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nucleosides were phosphorylated with different N- (O, O-diisopropyl) phosphoryl amino acids to give nucleoside mono phosphates in aqueous solution. 2', 3', and 5'-isomers had been confirmed by comparison with authentic samples on the basis of HPLC analysis. The conversion percentage of nucleoside indicated that N- (O, O-diisopropyl) phosphoryl aspartic acid reacted with adenosine and guanosine at a much higher rate than other kinds of N- phosphoryl amino acids, while phosphorylation of cytidine and uridine was relatively easy by using N- (O, O-diisopropyl) phosphoryl threonine. The result could give some clue to the prebiotic code origin of nucleic acid and protein.

  14. FT-RAMAN SPECTROSCOPY FOR MONITORING THE POLYMERIZATION OF ACRYLIC ACID IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Jiang Yu; Hui-zhou Liu; Jia-yong Chen

    1999-01-01

    FT-Raman spectroscopy was used to monitor the polymerization of acrylic acid in aqueous solution. A simple method to avoid the noise in the background during the signal processing via Fourier transformation was used in this work. The effects of the amount of initiator used on the polymerization are studied. When the amount of the initiator in the polymerization was increased, both the rate and extent of polymerization of acrylic acid will be increased.

  15. Thermodynamics of uranium and nitric acid extraction from aqueous solution of TBP/diluent

    International Nuclear Information System (INIS)

    A thermodynamically consistent procedure for predicting distribution equilibria for uranyl nitrate and nitric acid between an aqueous solution and 30 vol % tributyl phosphate (TBP) in a hydrocarbon diluent is studied. Experimental work is developed in order to obtain equilibrium data for the system uranyl nitrate, nitric acid, water and 30 vol % TBP in n-dodecane, at 250C and 400C. The theoretical equilibrium data, obtained with the aid of a computer, are compared with the experimental results. (Author)

  16. Salt dependent stability of stearic acid Langmuir-Blodgett films exposed to aqueous electrolytes

    NARCIS (Netherlands)

    Kumar, Naveen; Wang, Lei; Siretanu, Igor; Duits, Michel; Mugele, Frieder

    2013-01-01

    We use contact angle goniometry, imaging ellipsometry, and atomic force microscopy to study the stability and wettability of Langmuir–Blodgett (LB) monolayers of stearic acid on silica substrates, upon drying and exposure to aqueous solutions of varying salinity. The influences of Ca2+ and Na+ ions

  17. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  18. Kinetic study of CO2 with various amino acid salts in aqueous solution

    NARCIS (Netherlands)

    Holst, van J.; Versteeg, G.F.; Brilman, D.W.F.; Hogendoorn, J.A.

    2009-01-01

    A study towards the kinetics of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  19. Kinetic study of CO2 with various amino acid salts in aqueous solution

    NARCIS (Netherlands)

    van Hoist, J.; Versteeg, G. F.; Brilman, D. W. F.; Hogendoorn, J. A.; Holst, J. v

    2009-01-01

    A study towards the kinetics Of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  20. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    International Nuclear Information System (INIS)

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg[2+] or NO3[−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li+, Na+, K+, NH4+, Cl−, Br−, I−, NO3−, and SO42− at salt molalities of 0.5, 1.0, and 3.0 mol · kg−1, respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  1. The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions of trilaurylammoniumnitrate in cyclohexane

    International Nuclear Information System (INIS)

    The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions and solutions of trilaurylammoniumnitrate in cyclohexane has been investigated. The distribution of acid rises with increasing concentrations of nitric acid, methanol, ethanol and acetone in the mixed aqueous-organic phase. The effect of the organic additives in increasing the distribution of the acid is methanol< ethanol< acetone. The concentration of nitric acid in the organic phase can be calculated by a formula similar to that describing the extraction from pure aqueous solutions. The distribution curves of water, methanol and ethanol resemble each other, all of them showing a minimum, when the distribution ratio is plotted versus the nitric acid concentration in the mixed aqueous-organic phase. The acetone distribution decreases steadily with increasing nitric acid concentration. The shape of the curves is briefly discussed. (T.G.)

  2. Photodegradation of α-naphthaleneacetic acid in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Kinetic processes of α-naphthaleneacetic acid (NAA) photolysis were studied under different conditions. The results showed that the ultraviolet light was more effective than fluorescent light in promoting degradation, and the degradation of NAA under ultraviolet light followed the first order kinetics with the photolysis rate constant of 1.15 x 10-2 min-1 and half-life time (t1/2) of 60 min. Further, it was proved that the photolysis rate was higher in the presence of oxygen, titanium dioxide (TiO2), and low pH ( acidic solution). At last, two photolysis intermediates were identified by GC-MS and possible photolysis pathways were proposed.

  3. Synthesis of high molecular weight polylactic acid from aqueous lactic acid co-catalyzed by tin(II)chloride dihydrate and succinic anhydride

    Institute of Scientific and Technical Information of China (English)

    LEI Ziqiang; BAI Yanbin; WANG Shoufeng

    2005-01-01

    Polylactic acid was synthesized from commercial available cheap aqueous lactic acid (85%―90% w/w) using succinic anhydride and SnCl2·2H2O as catalyst in the absence of organic solvents. As a result, polylactic acid with a molecular weight of 60000 was prepared in 10 h. The new procedure is much simple, cheap and outstanding in that the start material is aqueous lactic acid; the catalytic system is environmentally benign.

  4. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  5. Radiolytical oxidation of ascorbic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Complete text of publication follows. Ascorbic acid, AsA (vitamin c), has been widely studied as an antioxidant or as an initiator of some technological processes, for example polymerization or nanoparticles formation. AsA can be easily oxidized to ascorbyl radical, in the first stage, and to dehydroascorbic acid, DHA, in the second stage. It has been found that several different ascorbyl radicals are formed during AsA oxidation but the main radical exists as the anion with the unpaired electron delocalized on a highly conjugated tricarbonyl system. Absorption spectrum of ascorbyl radical shows two bands with maxima at 300 and 360 nm, however only that at 360 nm is proportional to the dose and thus this wavelength was chosen for observations. We studied the oxidation of AsA by the following oxidizing radicals generated by the pulse radiolysis method ·OH, (SCN)2-·, Cl2-·, N3· and NO2·. The observed dependence of the yield and the formation rate of the AsA radical on the reduction potential of the oxidizing radical is discussed. The results obtained in water are compared with those obtained with AsA enclosed in the water pools of reverse micelles formed by AOT in n-heptane or by Igepal CO-520 in c-hexane. Somewhat surprising observation of different ascorbyl radical in pulse irradiated reverse micelles containing DHA is also commented.

  6. Study of aqueous process using hydrochloric acid for radioactive waste including uranium

    International Nuclear Information System (INIS)

    A lot of solid and liquid radioactive wastes had been produced in the various examinations. The wastes have been stored in Japan Nuclear Cycle Development Institute Ningyo-Toge Environmental Engineering Center. Amounts of solid wastes including fluorine and uranium are very much, so techniques of final disposal will be developed and the solid wastes will be disposed. This study estimates the applicability of aqueous process using hydrochloric acid for CaF2, NaF, Al2O3 and UF4, so examinations using those wastes were performed and mass balance and activity balance sheets were made. The conclusion is as below. 1. The process using hydrochloric acid to CaF2 is applicable. 2. The process using hydrochloric acid to NaF is applicable. 3. Dissolution of Al2O3 is difficult, but uranium in Al2O3 is almost dissolved, so application of aqueous process using hydrochloric acid for Al2O3 is possible. 4. Application of aqueous process using hydrochloric acid to UF4 has problem of insolubility of UF4. 5. Next subjects are a rise of solid/liquid ratio, a increase of efficiency of uranium precipitation and decrease of second wastes which are resins and aluminium as masking material to fluorine. (author)

  7. Colour reactions of aluminium, titanium and other elements in organo-aqueous media containing acetic acid

    International Nuclear Information System (INIS)

    Colour reactions of titanium, aluminium, gallium, and indium in water-organic media, which also contain organic acids (acetic, formic, or their mixtures with acetone and propanol) are considered with the aim of using them in photometric methods for determining these elements. The reactants used were 2.7-bisazosubstituted components of chromotropic acid. It was established that the rate of development of colouring, the contrast and selectivity increase in water-organic media as compared with aqueous solutions. A favourable effect of acetic acid on the development of colour reactions is noted

  8. Entrained solvent separation by charcoal adsorption from aqueous streams generated during uranium recovery from phosphoric acid

    International Nuclear Information System (INIS)

    During the two cycle solvent extraction process for the separation of uranium from phosphoric acid, solvents such as D2EHPA, di nonyl phenyl phosphoric acid (DNPPA), tri butyl phosphate (TBP), etc., get dissolved/entrained in the various aqueous phases such as WPA, ammonium carbonate solution, MGA and sulphuric acid. These solvents have to be separated both from process economy point of view and for industrial acceptability. Systematic experiments showed that recovery of solvents by diluent washing is not effective for alkaline solution. Hence studies were undertaken to study the feasibility of activated charcoal adsorption for entrained/dissolved solvent separation. (author)

  9. Spectrophotometric determination of uranium with benzohydroxamic acid in aqueous medium

    International Nuclear Information System (INIS)

    A spectrophotometric method has been developed for the determination of uranium with benzohydroxamic acid (BHA). Uranium in the hexavalent state forms a yellowish orange colored chelate with BHA. The absorbance of the complex is maximum at pH 6.0, excluding pH7 and complex is stable for more than 72 hours. The maximum absorbance at 304 nm is considered for quantification of uranium. The present method is validated and good agreement with spectrophotometric determination of uranium with thiocyanate. Uranium in the range 1-10 μg/ml has been determined with good precision. The described method is simple, precised and accurate. It can be applied for the determination of uranium in raffinates of Purex process, without producing the nuclear waste in organic phase

  10. Extraction and characterisation of aqueous organic acids from natural waters

    International Nuclear Information System (INIS)

    Humic and fulvic acids were extracted from large volumes of groundwater associated with the Broubster and Needle's Eye natural analogue sites, and the BGS research site at Drigg in Cumbria. Extractions were performed by both batchwise extraction and radial flow chromatography using DEAE-cellulose. Retained humic substances were eluted using NaOH and separated into humic and fulvic components by acidification to pH 1. After separation the humic component was purified by repetitive precipitation and dissolution whilst the fulvic component was purified by absorption chromatography. The resulting humic substances were shown to be of high purity with respect to metallic elements, with less than 1% of available sites being occupied. During elution the association of trace elements with humic substances was monitored and a high degree of association between humic substances, U and the Rare Earth Elements was noted. (author)

  11. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    Science.gov (United States)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  12. Scientific Opinion on application EFSA-GMO-NL-2007-45 for the placing on the market of herbicide-tolerant, high-oleic acid, genetically modified soybean 305423 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Pioneer

    OpenAIRE

    EFSA Panel on Genetically Modified Organisms (GMO)

    2013-01-01

    Soybean 305423 was developed through particle bombardment and contains gm-fad2-1 and gm-hra expression cassettes, conferring a high oleic acid profile and tolerance to acetolactate synthase (ALS)-inhibiting herbicides. Bioinformatic analyses and genetic stability studies did not raise safety issues. Levels of the GM-HRA protein in soybean 305423 have been sufficiently analysed. Soybean 305423 differs from the conventional counterpart in the seed fatty acid profile and for the presence of the ...

  13. A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid

    Science.gov (United States)

    Riipinen, I.; Svenningsson, B.; Bilde, M.; Gaman, A.; Lehtinen, K. E. J.; Kulmala, M.

    2006-12-01

    A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets. Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln( p) = 118.41 - 16204.8/ T - 12.452ln( T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented. According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.

  14. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, M.; Honda, K.; Kondo, T.; Rao, T.N.; Tryk, D.A.; Fujishima, A

    2002-10-15

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity.

  15. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    International Nuclear Information System (INIS)

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity

  16. Acid-base chemistry of omeprazole in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yang Rong; Schulman, Stephen G.; Zavala, Pedro J

    2003-03-28

    Omeprazole is a potent anti-acid drug. Its absorption and mode of action are closely related to its prototropic behavior. In the present study, omeprazole samples from different sources and in different forms were studied spectrophotometrically to obtain pK{sub a} values. In the neutral to alkaline pH region, two consistent pK{sub a} values of 7.1 and 14.7 were obtained from various samples. The assignment of these pK{sub a} values was realized by comparison with the prototropic properties of N(1)-methylated omeprazole substituted on the nitrogen at the 1-position of the benzimidazole ring, which was found to have a pK{sub a} of 7.5. The omeprazole pK{sub a} of 14.7 is assigned to the dissociation of the hydrogen from the 1-position of the benzimidazole ring and the pK{sub a} of 7.1 is assigned to the dissociation from the protonated pyridine nitrogen of omeprazole. The results presented are at variance with those of earlier work.

  17. Electrochemiluminescence of Tris(2,2'-bipyridyl)ruthenium(II) with Ascorbic Acid and Dehydroascorbic Acid in Aqueous and Non-aqueous Solutions.

    Science.gov (United States)

    Takahashi, Fumiki; Hattori, Kaoru; Matsuoka, Masanori; Jin, Jiye

    2016-01-01

    The electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) is studied in non-aqueous media using dehydroascorbic acid (DHA) as coreactant to validate the evidence for the mechanism of the ascorbic acid (H2A)/Ru(bpy)3(2+) ECL system in an aqueous media. DHA is electrochemically reduced around -1.2 V vs. Ag/Ag(+) in pure acetonitrile to generate the ascorbyl radical anion (A(•-)), which is confirmed by in-situ UV-visible absorption measurements using a thin-layer spectroelectrochemical cell. The ECL of the DHA/Ru(bpy)3(2+) system in non-aqueous media is not observed in the potential range from 0 to +1.4 V in anodic potential sweep mode; however, distinct ECL is detected using double potential step electrolysis from -1.2 to +1.4 V vs. Ag/Ag(+). The ECL may be generated by a homogeneous charge-transfer process between A(•-) produced during the first pulse potential step (-1.2 V) and Ru(bpy)3(3+) generated during the second pulse potential step (+1.4 V). The calculated standard enthalpy (-ΔH°) for the charge-transfer reaction between A(•-) and Ru(bpy)3(3+) is 2.29 eV, which is larger than the lowest excited singlet state energy of Ru(bpy)3(2+) (*Ru(bpy)3(2+); 2.03 eV, 610 nm). It is determined that the generated intermediate A(•-) is crucial in the Ru(bpy)3(2+) ECL reaction. PMID:27063718

  18. Zirconium distribution between two phases: di-2-ethyl-hexyl phosphoric acid diluted in dodecane and aqueous phase of nitric acid

    International Nuclear Information System (INIS)

    Zirconium extraction by di-2-ethyl-hexyl phosphoric acid, from 0.5 to 10M nitric acid solutions is measured. The mechanism is independent of the acidity of the aqueous phase; a carbonic complex of zirconium nitrate is extracted. From a concentration 6M HNO3, an important extraction of nitric acid is noted. Consequences are brought out

  19. Synthesis and physical properties of new coco-oleic dimer and trimer plus estolide branched esters

    Science.gov (United States)

    Estolides are a class of esters based on vegetable oils that are formed when the carboxylic acid functionality of one fatty acid reacts at the site of unsaturation of another fatty acid to form an ester linkage. The objective of this preliminary study was to separate coco-oleic estolide into two com...

  20. Highly-acidic aqueous solution as a medium for radiation chemical studies: redox chemistry of phenol

    International Nuclear Information System (INIS)

    Although the aqueous medium is a common choice for radiation induced generation of a variety of transients (radicals), typically a non-aqueous solvent (or even a frozen matrix) is employed to study a transient with a labile H+ (TrH.+), mainly to maintain low propensity of its deprotonation reaction TrH.+→Tr. + H+, that otherwise occur promptly in an aqueous type medium. However, in addition to the relative difficulty encountered in routine handling of such specific non-aqueous reaction media, low transient yield (GTrH.+) therein also restrict their use. Furthermore, any comparative study of the two species TrH.+ and Tr. remains unattainable. In this context we have probed the highly acidic aqueous solution as an alternative medium for radiation induced generation and subsequent chemical studies of acidic radical cation, TrH.+ vis-a-vis the de-protonated radical Tr.. This presentation highlights these results in three parts deals with (a) measurement of oxidizing and reducing radical yields for reactions in H2SO4 and HClO4 solutions, with highest acidity maintained at ∼14 M or Hammett acidity constant H0 - 7 in case of former and ∼10 M or H0 -5.2 in case of the latter; (b) measurement of the H-atom (the sole reducing radical) scavenging efficiency of dissolved O2 in such solution for maintaining exclusive oxidizing condition; and (c) employing these results, oxidation of phenol (C6H5OH) in such medium was probed and the reactions of its radical cation C6H5OH.+ against the phenoxyl radical C6H5O. were compared. Consequently, these studies also revealed an error in the previous measurement of the C6H5OH.+ pKa value (-2.0) which was corrected to -2.75. Details of these studies will be presented to show the efficacy of highly-acidic aqueous solutions as a regular medium for radiation chemical studies. (authors)

  1. Aqueous citric acid as green reaction media for the synthesis of octahydroxanthenes

    OpenAIRE

    Camilo A. Navarro D.; Cesar A. Sierra; Cristian Ochoa-Puentes

    2013-01-01

    A simple, convenient and environmentally friendly one-pot procedure for the synthesis of 1,8-dioxo-octahydroxanthenes by the reaction of dimedone and aromatic aldehydes in aqueous citric acid is described. In this green synthetic protocol promoted by the reaction media, the use of any other catalysts and hazardous organic solvents are avoided, making the work up procedure greener and easier. The isolation of the products, obtained in good yields, is readily performed by filtration and crystal...

  2. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    International Nuclear Information System (INIS)

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  3. Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid

    OpenAIRE

    Katerina Tzima; Stamatina Kallithraka; Yorgos Kotseridis; Dimitris P. Makris

    2014-01-01

    This study was undertaken with the aim of establishing a correlation between the extraction yield in total flavonoids from red grape pomace and the extraction temperature, using 0.5% (w/v) aqueous lactic acid as the solvent system. Extraction of flavonoids was found to obey second-order kinetics, and on such a basis, the yield in total flavonoids at saturation could be very effectively determined and correlated with temperature using non-linear regression. The results indicated that the extr...

  4. Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution

    OpenAIRE

    RASOULIFARD, Mohammad Hossein; MOHAMMADI, Seied Mohammad Mahdi DOUST

    2012-01-01

    Silver ion (Ag1+)-catalyzed peroxydisulfate was studied for the degradation of acid red 14 (AR-14) in an aqueous medium. The effect of different parameters, such as temperature, peroxydisulfate concentration, and dye and Ag1+ concentrations, were investigated. Application of Ag1+-catalyzed peroxydisulfate, as an advanced oxidation process, introduces an effectual method for wastewater treatment. An accelerated reaction using S2O82- to destroy dyes can be achieved via chemical activat...

  5. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N2O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N2O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N2O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N2O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  6. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    Science.gov (United States)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  7. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  8. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH4CN, CH3CN, and C2H4CN, that had received multikilogray doses of 60Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  9. Kinetic stability of indium(3) complexes with azaporphyrins in aqueous sulfuric acid

    International Nuclear Information System (INIS)

    Kinetic stability of octaphenyltetraazaporphynatochloroindium(3) and 3,7,13,17-tetramethyl-2,8,12,18-tetrabutyl-5,15-diazaporphynatochloroindium (3)= (ClInDAP) in aqueous 90-98% sulfuric acid was studied by the method of spectrophotometric titration. Kinetic parameters of solvo-protolytic dissociation of indium complexes were determined, the reaction mechanism being suggested. The state of ClInDAP in proton-donor medium was studied by the method of absorption spectroscopy and it was shown that two mesoatoms of nitrogen enter the interaction in series. Dissociation constants of the acid forms formed were determined

  10. Kinetics and Thermodynamics of Oil Extraction from Sun ower Seeds in the Presence of Aqueous Acidic

    OpenAIRE

    TOPALLAR, Hüseyin

    2000-01-01

    Oil extraction was performed in aqueous HCl, H2SO4 and H3PO4 solutions with n-hexane (C6H14) at 30, 40, 50 and 60 oC using 10 gr of sunflower seeds over 1 h with 10-min. sampling intervals. The optimum acid concentration was wt. 10% for each acid, and the highest oil yield was obtained in the extraction procedure with n-hexane containing H2SO4. The extraction process was observed with regard to the percent oil yield versus time, and the reaction order was found to be first-order kinetics by t...

  11. Application of Polyaniline Nano Composite for the Adsorption of Acid Dye from Aqueous Solutions

    OpenAIRE

    Baseri, J.Raffiea; P. N. Palanisamy; P. Sivakumar

    2012-01-01

    In this research, Polyaniline coated sawdust (Polyaniline nano composite) was synthesized via direct chemical polymerization and used as an adsorbent for the removal of acid dye (Acid Violet 49) from aqueous solutions. The effect of some important parameters such as pH, initial concentration of dye, contact time and temperature on the removal efficiency was investigated in batch adsorption system. The adsorption capacity of PAC was high (96.84 %) at a pH of 3-4. The experimental data fitted w...

  12. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    Science.gov (United States)

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  13. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    Science.gov (United States)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  14. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    Science.gov (United States)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  15. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine

    NARCIS (Netherlands)

    Rasrendra, C. B.; Girisuta, B.; van de Bovenkamp, H. H.; Winkelman, J. G. M.; Leijenhorst, E. J.; Venderbosch, R. H.; Windt, M.; Meier, D.; Heeres, H. J.

    2011-01-01

    The application of reactive extraction to isolate organic acids, particularly acetic acid, from the aqueous stream of phase splitted pyrolysis oil using a long chain aliphatic tertiary amine is reported. Acetic acid recovery was optimized by selecting the proper amine and diluent combination and adj

  16. The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil.

    Science.gov (United States)

    Wilson, Richard F

    2012-01-01

    Health related concerns for dietary 'trans-fat' in the U.S. have mediated a significant decline in the use of hydrogenated vegetable oils in edible applications. Oils having a natural abundance of oleic acid provide many functional properties that are derived from partial hydrogenation of polyunsaturated oils. However, the long term agronomic production capacity of existing high-oleic oil crops to replace hydrogenated oil ingredients is not sustainable. Although improvements are expected in processing technology, genetic modification of seed composition offers the most promising tactic to increase the overall supply of high-oleic commodity oils. Genetic enhancement of oleic acid concentration has been demonstrated experimentally in nearly every oilseed. Private companies have launched production of genetically enhanced oleic acid cultivars such as: Nexera™ Omega-9 canola and Omega-9 sunflower oils. The E. I. du Pont de Nemours and Company plans commercial production of Plenish™ high-oleic soybeans in 2012. The Monsanto Co. plans commercial production of Vistive-Gold™ low-saturated high-oleic soybeans possibly as early as 2013. These 'new' high-oleic oilseeds must not only exhibit superior oil quality but also sequentially improved yield potential. Genetic maps that help breeders identify, locate and track useful genes will facilitate accomplishment of that goal. However, a reference sequence map in soybean is the only available chromosome scale assembly of an oilseed genome. Knowledge of genome structure enables technological advances that help increase soybean yielding ability, improve crop protection against biotic stresses, and reveal alleles for genes that mediate expression of quality traits. Led by soybean, genetically enhanced high-oleic vegetable oils that now are becoming commercially available may capture greater than 40% of the domestic consumption of vegetable oil in the U.S. by 2020. This innovation in oilseed technology is a positive step toward

  17. Scientific Opinion on application (EFSA-GMO-NL-2010-78) for the placing on the market of herbicide-tolerant, increased oleic acid genetically modified soybean MON 87705 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto

    OpenAIRE

    EFSA Panel on Genetically Modified Organisms (GMO)

    2012-01-01

    This scientific opinion is a risk assessment of the genetically modified, herbicide-tolerant, increased oleic acid soybean MON 87705 for food and feed uses, import and processing. MON 87705 contains the soybean FAD2-1A/FATB1-A gene fragments down-regulating endogenous FAD2 and FATB enzymes and the CP4 epsps gene cassette conferring tolerance to glyphosate-containing herbicides. Bioinformatic analyses and genetic stability studies did not rais...

  18. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    Directory of Open Access Journals (Sweden)

    Renwu Zhou

    Full Text Available Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS. Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  19. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    Science.gov (United States)

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  20. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    Science.gov (United States)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  1. Effect of temperature on the dilution enthalpies of {alpha},{omega}-amino acids in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Romero, C.M., E-mail: cmromeroi@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Cadena, J.C., E-mail: jccadena@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Lamprecht, I., E-mail: ingolf.lamprecht@t-online.de [Institut fuer Biologie, Freie Universitaet Berlin, Berlin (Germany)

    2011-10-15

    Highlights: > The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. > The limiting experimental slopes of the enthalpies of dilution with respect to the molality change {Delta}m, are negative suggesting that the solutes interact with water primarily through their alkyl groups. > The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. > The comparison between the pairwise interaction coefficients for {alpha},{omega}-amino acids and {alpha}-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of {alpha},{omega}-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  2. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In separation processes,hydrogen bonding has a very significant effect on the efficiency of isolation of acetic acid (HOAc) from HOAc/H2O mixtures. This intermolecular interaction on aggregates composed of a single HOAc molecule and varying numbers of H2O molecules has been examined by using ab initio molecular dynamics simulations (AIMD) and quantum chemical calculations (QCC). Thermodynamic data in aqueous solution were obtained through the self-consistent reaction field calculations and the polarizable continuum model. The aggregation free energy of the aggregates in gas phase as well as in aqueous system shows that the 6-membered ring is the most favorable structure in both states. The relative stability of the ring structures inferred from the thermodynamic properties of the QCC is consistent with the ring distributions of the AIMD simulation. The study shows that in dilute aqueous solution of HOAc the more favorable molecular interaction is the hydrogen bonding between HOAc and H2O molecules,resulting in the separation of acetic acid from the HOAc/H2O mixtures with more difficulty than usual.

  3. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions

    Institute of Scientific and Technical Information of China (English)

    YANG Xi; ZHAN Man-jun; KONG Ling-ren; WANG Lian-sheng

    2004-01-01

    The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO3-(10 mmol/L, pH = 5) and NO2- (10 mmol/L, pH = 5) solutions under ultraviolet irradiation were at a same magnitude, 10-15 mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO3- and NO2- respectively, all comparable to the results of previous studies.

  4. ADSORPTION OF TANNIN ACID ONTO AN AMINATED MACROPOROUS RESIN FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A macroporous polymeric adsorbent NG-8 was synthesized with divinylbenzene using conventional suspension polymerization technique. Its aminated product NG-9 was prepared by introducing tertiary amino groups into NG-8 for removal of tannin acid from aqueous solutions. NG-9 could be used directly without a wetting process and had higher adsorption capacity than NG-8, which might be attributed to the enhanced adsorbent-adsorbate interaction due to the tertiary amino groups on the polymeric matrix. The Langmuir equation was successfully employed to describe the adsorption process. The adsorption enthalpy change further validated the uptake of tannin acid on NG-9 to be an enhanced physical adsorption because of the Lewis acid-base interaction. In addition, adsorption kinetic studies testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate maybe for the hindrance of the tertiary amino groups and water clusters built up.

  5. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    Science.gov (United States)

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-01

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine. PMID:26631424

  6. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    Science.gov (United States)

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. PMID:26616933

  7. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    International Nuclear Information System (INIS)

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L−1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the ∙OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while ∙H and eaq− played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation. - Highlights: • Gamma irradiation was efficient for removing cyclohexanebutyric acid from water. • The degradation kinetics of cyclohexanebutyric acid followed pseudo first-order reaction. • OH radical played a major role for oxidative degradation. • Some possible intermediate products were identified

  8. Sulfate Mineral Formation from Acid-weathered Phyllosilicates: Implications for the Aqueous History of Mars

    Science.gov (United States)

    Craig, Patricia; Ming, Douglas; Rampe, Elizabeth

    2014-11-01

    Phyllosilicates on Mars are common in Noachian terrains whereas sulfates are found in the younger Hesperian terrains and suggest alteration under more acidic conditions. Phyllosilicates that formed during the Noachian era would have been exposed to the prevailing acidic conditions during the Hesperian. The purpose of this project is to characterize the effects of acid-weathering on phyllosilicates to better understand the aqueous history of Mars. Nontronite, montmorillonite, and saponite were exposed to H2SO4 solutions at water-rock (WR) ratios of 50 and 25.X-ray diffraction (XRD) patterns of all three acid-treated minerals showed progressive collapse of the phyllosilicate basal spacing with increasing acid concentration. Bassanite formed as an intermediate phase in weathered nontronite and montmorillonite from extracted interlayer Ca. The octahedral cation determined which sulfate formed at high acid concentration: rhomboclase from nontronite, alunogen from montmorillonite, hexahydrite and kieserite from saponite. Gypsum and anhydrite also formed as intermediate phases in nontronite treated at WR=25, showing a change in sulfate hydration state with changing acid concentration (i.e. water activity). Scanning electron microscopy analyses detected phases not identified by XRD. Al-sulfate was found in nontronite weathered at WR=25 and Ca-sulfate in weathered saponite. Near-infrared reflectance spectra of the weathered samples showed decreasing intensity of the hydration/hydroxylation bands and a change or disappearance of metal-OH bands indicating dehydration and dissociation of the interlayers and octahedral layers, respectively, with increased acid weathering.Sulfate mineral formation from acid-weathered phyllosilicates may explain the presence of phyllosilicates and sulfates in close proximity to each other on Mars, such as in Gale Crater. The CheMin XRD instrument on Curiosity may find evidence for acid-weathered phyllosilicates in Mt. Sharp by comparing the 001

  9. Heterogeneous catalysis contribution for the denitration of aqueous nuclear radioactive waste with formic acid

    International Nuclear Information System (INIS)

    The chemical denitration aims to reduce the nitric acid concentration in nuclear fuel reprocessing aqueous wastes by adding formic acid as a reducing agent. The denitration reaction exhibits an induction period, which duration is related to the time needed by the key intermediate of the reaction, i.e. nitrous acid, to reach a threshold concentration in the reaction medium. The addition of a Pt/SiO2 catalyst in the reaction mixture suppresses the induction period of the chemical denitration. The aim of the present work is to identify the role of Pt/SiO2 in the catalytic denitration mechanism. The experimental work is based on the comparison of catalytic tests performed with various catalysts, in order to identify the intrinsic characteristics of Pt/SiO2 that might influence its activity for the reaction. Catalytic denitration results show that Pt/SiO2 acts only by speeding up the nitrous acid generation in the solution until its concentration reaches the threshold level of 0,01 mol L-1 in the experimental conditions. Catalysts activity is evaluated by quantifying the nitrous acid generated on the platinum surface during the induction period of the homogeneous denitration reaction. The large platinum aggregates reactivity is greater than the one of nano-sized particles. The study of the key step of the catalytic denitration reaction, the catalytic generation of nitrous acid, clarifies the role of Pt/SiO2. The homogeneous denitration is initiated thanks to a redox cycle on the catalyst surface: an initial oxidation of Pt0 by nitric acid, which is reduced into nitrous acid, followed by the reduction of the passivated 'Ptox' by formic acid. Furthermore, a platinum reduction by formic acid prior to the catalytic test prevents any platinum leaching from the catalyst into the nitric solution, being all the more significant as platinum dispersion is high. (author)

  10. Inhibition of gastric acid secretion by the aqueous extract and purified extracts of Stachytarpheta cayennensis.

    Science.gov (United States)

    Vela, S M; Souccar, C; Lima-Landman, M T; Lapa, A J

    1997-02-01

    Stachytarpheta cayennensis Schauer (Verbenaceae) is used in folk medicine to treat gastric and intestinal disturbances. The freeze-dried aqueous extract of the whole plant tested to rodents up to the dose of 2 g kg-1, p.o., did not produce signs of toxicity. The extract (0.5-2 g kg-1, p.o.) increased the intestinal motility and protected mice against ulcers induced by restraintin-cold, ethanol or indomethacin. Injected into the duodenal lumen the extract inhibited the basal acid secretion as well as that induced by histamine and bethanecol in pylorus-ligated mice. Partition of the aqueous extract in organic solvents yielded semipurified fractions whose antiacid activity guided further chemical purification. All the fractions were chromatographically characterized, the main substances in the active extract being flavonoids and amines; some substances were revealed only under UV light. The most purified active fraction obtained presented a specific activity 5-10 times higher than that detected in the original extract. Data from pharmacological studies indicate that the antiulcer activity of S. cayennensis is related to a specific inhibition of gastric acid secretion. Cholinergic and histaminergic stimulation of acid secretion were similarly reduced by the extracts suggesting inhibition of common steps in both pathways, possibly at the level of histamine release/H2 receptor interaction, or at the proton pump. Whatever the mechanisms involved, the present data confirm the plant effectiveness as antiacid/antiulcer and laxative. PMID:9063095

  11. The effect of electron irradiation on aqueous dispersions of humic acids and lignin

    International Nuclear Information System (INIS)

    The effect of irradiation by accelerated electrons on optical absorption of diluted aqueous solutions of lignin and humic acids was studied under two different irradiation conditions: when thickness of irradiated solution layer was less than the electrons range in the solution (mode I) and vice versa (mode II). Dominating agglomeration and sedimentation of the compounds has been demonstrated to take place under irradiation in mode I, maximal effect being achieved at absorbed dose 5–15 kGy. Under irradiation in mode II, i.e. when all the incident electrons were being absorbed, the radiation-induced coagulation was depressed. The dependence of radiation effect on irradiation conditions may be caused by stabilizing action of accumulating excess charge of absorbed electrons on negatively charged micelles of lignin and humic acids. - Highlights: • Electron irradiation promotes coagulation in aqueous dispersions of lignin and humic acids. • Maximal effect of coagulation is achieved at absorbed dose 5–15 kGy. • Negative charge accumulating by absorption of incident electrons results in stabilizing negatively charged micelles

  12. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    Science.gov (United States)

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available. PMID:26936478

  13. Alginic acid and hyaluronic acid, effective stabilizers of carthamin red colour in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Koshi Saito

    2014-02-01

    Full Text Available Sodium salts and free forms of two heterosaccharides, alginic and hyaluronic acids were mixed with carthamin in a buffer at pH 5.5 and their preservation effects of carthamin red colour were screened after incubation for 24 h at 3-5oC in the dark. The effects observed were (alginic acid/hyaluronic acid, % on average: 69.3/60.3, for which the values are higher by 40.9 and 29.1%, respectively, compared with those of the control which was conducted with no addition of heterosaccharides. Alginic acid is a more promising stabilizer than haluronic acid, indicating that active groups such as hydroxyls, carboxyls and amino groups on the building units of the macromolecules are associated closely with the carthamin red colour preservation. The empirical outcomes are referred to the practical application of carthamin as a colourant of food products.

  14. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    Science.gov (United States)

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  15. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  16. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    International Nuclear Information System (INIS)

    Kinetics of bromide catalysed oxidation of dextrose by CeIV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO4-] or [SO42-] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  17. A Greener, Efficient Approach to Michael Addition of Barbituric Acid to Nitroalkene in Aqueous Diethylamine Medium

    Directory of Open Access Journals (Sweden)

    Hany J. Al-Najjar

    2014-01-01

    Full Text Available An efficient method for the synthesis of a variety of pyrimidine derivatives 3a–t by reaction of barbituric acids 1a,b as Michael donor with nitroalkenes 2a–k as Michael acceptor using an aqueous medium and diethylamine is described. This 1,4-addition strategy offers several advantages, such as using an economic and environmentally benign reaction media, high yields, versatility, and shorter reaction times. The synthesized compounds were identified by 1H-NMR, 13C-NMR, CHN, IR, and MS. The structure of compound 3a was further confirmed by single crystal X-ray structure determination.

  18. A greener, efficient approach to Michael addition of barbituric acid to nitroalkene in aqueous diethylamine medium.

    Science.gov (United States)

    Al-Najjar, Hany J; Barakat, Assem; Al-Majid, Abdullah M; Mabkhot, Yahia N; Weber, Manuel; Ghabbour, Hazem A; Fun, Hoong-Kun

    2014-01-01

    An efficient method for the synthesis of a variety of pyrimidine derivatives 3a-t by reaction of barbituric acids 1a,b as Michael donor with nitroalkenes 2a-k as Michael acceptor using an aqueous medium and diethylamine is described. This 1,4-addition strategy offers several advantages, such as using an economic and environmentally benign reaction media, high yields, versatility, and shorter reaction times. The synthesized compounds were identified by 1H-NMR, 13C-NMR, CHN, IR, and MS. The structure of compound 3a was further confirmed by single crystal X-ray structure determination. PMID:24445342

  19. A Greener, Efficient Approach to Michael Addition of Barbituric Acid to Nitroalkene in Aqueous Diethylamine Medium

    OpenAIRE

    Hany J. AL-Najjar; Assem Barakat; Al-Majid, Abdullah M.; Mabkhot, Yahia N.; Manuel Weber; Ghabbour, Hazem A.; Hoong-Kun Fun

    2014-01-01

    An efficient method for the synthesis of a variety of pyrimidine derivatives 3a–t by reaction of barbituric acids 1a,b as Michael donor with nitroalkenes 2a–k as Michael acceptor using an aqueous medium and diethylamine is described. This 1,4-addition strategy offers several advantages, such as using an economic and environmentally benign reaction media, high yields, versatility, and shorter reaction times. The synthesized compounds were identified by 1H-NMR, 13C-NMR, CHN, IR, and MS. The str...

  20. Temperature effect on adiolysis of deaerated acid aqueous solutions of ferrous sulfate

    International Nuclear Information System (INIS)

    In the course of γ-radiolysis (60Co, dose rate=3.75 Gr/c, doses=1.575-3.375 kGr) of deaerated acid aqueous solution 3.6x10-3 mol/l of ferrous sulfate in the 20-250 deg C range the hydrogen molecules radiochemical yield per 100 eV of absorbed energy G(H2) decreases from 3.82±0.12 to 2.72±0.26, whereas G(Fe3+) independently of temperature is equal 8.34±0.36

  1. Hydrogen peroxide yields in the radiolysis of aerated aqueous solutions of formic acid

    International Nuclear Information System (INIS)

    Radiation-chemical yields of hydrogen peroxide during radiolysis of formic acid deaerated aqueous solutions were measured under the action of gamma and accelerated electron radiation in the range of high doses up to (10-15 kGy) and average dose rate of 10 Gy/s. It was ascertained that growth of radiation dose involves at first increase in concentration of hydrogen peroxide formed, passing through a maximum, and then decrease to actually zero values at doses exceeding 1.5 kGy. The character of the dependence is explained by gradual consumption of oxygen with the dose increase

  2. Removal of copper ions from aqueous solutions by a new sorbent: Polyethyleneiminemethylene phosphonic acid

    OpenAIRE

    Ferrah, Nacer; ABDERRAHIM, Omar; DIDI, Mohamed Amine; VILLEMIN, Didier

    2011-01-01

    The sorption of copper(II) from sulphate medium on an extractant polymer containing phosphonic acid has been studied in batch mode. Since the extraction kinetics were fast, with a mixture of 0.01 g of extractant and 5 mL of copper(II) 31.75 mg/L solution, extraction equilibrium was reached within 20 min of mixing. The sorption process follows a pseudo-second-order kinetics. The influence of some parameters such as initial copper(II) ion concentration, initial pH of aqueous solution, ion stren...

  3. Amination of oxy acids in aqueous solution by gamma-irradiation

    International Nuclear Information System (INIS)

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  4. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    Indian Academy of Sciences (India)

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  5. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    International Nuclear Information System (INIS)

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔHo), entropy (ΔSo) and free energy change (ΔGo) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  6. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  7. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    Science.gov (United States)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  8. Formation of isomers of anionic hemiesters of sugars and carbonic acid in aqueous medium.

    Science.gov (United States)

    Dos Santos, Vagner B; Vidal, Denis T R; Francisco, Kelliton J M; Ducati, Lucas C; do Lago, Claudimir L

    2016-06-16

    Hemiesters of carbonic acid can be freely formed in aqueous media containing HCO3(-)/CO2 and mono- or poly-hydroxy compounds. Herein, (13)C NMR spectroscopy was used to identify isomers formed in aqueous solutions of glycerol (a prototype compound) and seven carbohydrates, as well as to estimate the equilibrium constant of formation (Keq). Although both isomers are formed, glycerol 1-carbonate corresponds to 90% of the product. While fructose and ribose form an indistinct mixture of isomers, the anomers of d-glucopyranose 6-carbonate correspond to 74% of the eight isomers of glucose carbonate that were detected. The values of Keq for the disaccharides sucrose (4.3) and maltose (4.2) are about twice the values for the monosaccharides glucose (2.0) and fructose (2.3). Ribose (Keq = 0.89)-the only sugar without a significant concentration of a species containing a -CH2OH group in an aqueous solution-resulted in the smallest Keq. On the basis of the Keq value and the concentrations of HCO3(-) and glucose in blood, one can anticipate a concentration of 2-4 µmol L(-1) for glucose 6-carbonate, which corresponds to ca. of 10% of its phosphate counterpart (glucose 6-phosphate). PMID:27111726

  9. [Changes in the collagen amino acid composition of calf skin after gamma-irradiation in an aqueous solution].

    Science.gov (United States)

    Duzhenkova, N A; Savich, A V

    1983-01-01

    A study was made of the amino acid composition of calf skin collagen after gamma-irradiation (60Co) of 2.5 X 10(-6) M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared. PMID:6657935

  10. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-08-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH/sub 4/CN, CH/sub 3/CN, and C/sub 2/H/sub 4/CN, that had received multikilogray doses of /sup 60/Co ..gamma.. radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond.

  11. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation

    International Nuclear Information System (INIS)

    The photochemical decomposition of perfluorooctanoic acid (PFOA) in aqueous periodate (IO4-) was investigated under two types of low-pressure mercury lamps: one emits at 254 nm light (UV light) and the other emits both 254 nm and 185 nm light (VUV light). PFOA decomposed efficiently under VUV light irradiation while it decomposed poorly under UV light irradiation. The addition of IO4- significantly increased the rate of decomposition and defluorination of PFOA irradiated with UV light whereas it decreased both processes under VUV irradiation. Reactive radical (IO3·) generated by photolysis of IO4- initiated the oxidation of PFOA in UV process. Aquated electrons (eaq-), generated from water homolysis, scavenged IO4- resulting in decrease of reactive radical species production and PFOA decomposition. The shorter-chain perfluorocarboxylic acids (PFCAs) formed in a stepwise manner from long-chain PFCAs.

  12. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    Science.gov (United States)

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-02-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range.

  13. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  14. Influence of charge exchange in acidic aqueous and alcoholic titania dispersions on viscosity.

    Science.gov (United States)

    Rosenholm, Jarl B; Dahlsten, Per

    2015-12-01

    Charging effects resulting from adsorption of acid, acid anions, and protons on titania (anatase) surfaces in anhydrous or mixed alcohol-water dispersions is summarized. The suddenly enhanced conductivity as compared to titania-free solutions has previously been modeled and explained as surface-induced electrolytic dissociation (SIED) of weak acids. This model and recently published results identifying concurrent surface-induced liquid (solvent) dissociation (SILD) are evaluated with experimentally determined conductivity and pH of solutions, zeta-potential of particles, and viscosity of dispersions. Titania (0-25wt%)-alcohol (methanol, ethanol, and propanol) dispersions mixed with (0-100wt%) water were acidified with oxalic, phosphoric, and sulfuric acids. It was found that the experimental results could in many cases be condensed to master curves representing extensive experimental results. These curves reveal that major properties of the systems appear within three concentration regions were different mechanisms (SILD, surface-induced liquid dissociation; SIAD, surface-induced acid dissociation) and charge rearrangement were found to be simultaneously active. In particular, zeta-potential - pH and viscosity - pH curves are in acidified non-polar solvents mirror images to those dependencies observed in aqueous dispersions to which hydroxyl is added. The results suggest that multiple dispersion and adsorption equilibria should be considered in order to characterize the presented exceptionally extensive and complex experimental results. PMID:26520241

  15. Dissolution of nickel ferrite in aqueous solutions containing oxalic acid and ferrous salts

    International Nuclear Information System (INIS)

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni1.06Fe1.96O4. The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite. It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel

  16. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions.

    Science.gov (United States)

    Hajnic, Matea; Osorio, Juan I; Zagrovic, Bojan

    2015-09-01

    Despite the paramount importance of protein-nucleic acid interactions in different cellular processes, our understanding of such interactions at the atomistic level remains incomplete. We have used molecular dynamics (MD) simulations and 15 μs of sampling time to study the behavior of amino acids and amino-acid sidechain analogs in aqueous solutions of different mimetics of naturally occurring nucleobases, including dimethylpyridine (DMP) and unsubstituted purine and pyrimidine rings. By using structural and energetic analysis, we have derived preference scales for the interaction of amino acids and their sidechain analogs with different nucleobase mimetics and have exhaustively compared them with each other. A close correspondence with a standard hydrophobicity measure in the case of the pyrimidine mimetic DMP and purines suggests that the hydrophobic effect is the main defining factor behind such interactions. We analyze our findings in the context of the origin of the genetic code and the recently proposed cognate mRNA-protein complementarity hypothesis. Most importantly, we show that unsubstituted purine and pyrimidine rings alone cannot differentiate between predominantly purine- and pyrimidine-coded amino acids, suggesting that for such specificity to exist, it must primarily reside in ring substituents. PMID:26219945

  17. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    Science.gov (United States)

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution. PMID:26866669

  18. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The optimum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liquid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  19. Nanoporous carbon synthesized from sol-gel template for adsorbing gibberellic acid in aqueous solution

    International Nuclear Information System (INIS)

    A novel method, based on dynamic carbonization and silica template formed by sol-gel, was developed to prepare nanoporous carbon materials with tailored pore structures. The effects of the sol-gel reaction and carbonization process on the final nanoporous carbon product were investigated by pore features such as specific surface area, the total pore volume, and pore size distribution, which were systemically characterized by iodine index, transmission electron microscopy, and nitrogen adsorption. The experimental results indicate that the pore structures of the prepared nanoporous carbon are tunable on the nano-scale by controlling the preparation process in the proposed method. The nanoporous carbon prepared under the optimal conditions has a high total pore volume of 1.26 cm3/g, a large specific surface area of 1744 m2/g, and a maximal adsorption capacity of 9.2 mg/g to gibberellic acid in aqueous solution, which is nearly 6 times that of commercial activated carbon. Highlights: → Silica formed by sol-gel as template for nanoporous carbon preparation. → Pore structures are tunable on the nano-scale. → High total pore volume and large specific surface developing. → Adsorption of gibberellic acid in aqueous solution carrying out.

  20. Deprotonation of salicylic acid and 5-nitrosalicylic acid in aqueous solutions of ethanol

    Directory of Open Access Journals (Sweden)

    Faraji Mohammad

    2011-01-01

    Full Text Available The protonation constant values of two hydroxybenzoic acids (salicylic and 5-nitrosalicylic acid were studied in some water-ethanol solutions using spectrophotometric and potentiometric methods at 25°C and in an ionic strength of 0.1 M sodium perchlorate. The results indicated that the pKa values increase with increasing proportion of ethanol in mixed solvent. The dependence of the protonation constants on the variation of the solvent were correlated by the dielectric constants of the media. Furthermore, for a better understanding of the solvent influence, the obtained results were explained in terms of the Kamlet-Taft parameters α (hydrogen-bond donor acidity, π

  1. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    International Nuclear Information System (INIS)

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations

  2. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2011-06-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008 proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM–10 mM was oxidized by OH radical. Products were analyzed by ion chromatography (IC, electrospray ionization mass spectrometry (ESI-MS, and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  3. Removal of Basic Dyes from Aqueous Solution by Chloroacetic Acid Modified Ferula Communis Based Adsorbent: Thermodynamic and Kinetic Studies

    OpenAIRE

    Salih, Shameran Jamal

    2014-01-01

    ABSTRACT: This research aimed to propose an alternative cheap and abundantly available adsorbent (Ferula communis) for the removal of basic dyes from aqueous solutions. Chloroacetic acid modified Ferula communis (MFC) shows a great potential for the removal of basic red 9 dyes (BR9) from aqueous solution with the effects of solution capacity under pH, temperature, contact time, adsorbent dosage, and initial dye concentration condition on BR9 removal were examined. The adsorption equilibrium d...

  4. Partition of Chiral pharmaceutical intermediate R(-)-Mandelic Acid in Aqueous Two-Phase System of Poly(ethylene glycol)-Ammonium Sulfate

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoping; Li Zhongqin; Chen Jiebo; Huang Xinghua

    2004-01-01

    An aqueous two-phase system of poly (ethylene glycol)-ammonium sulfate was employed to separate R (-)-mandelic acid.The result showed that R (-)-mandelic acid has priority to partition in PEG-rich top phase. This indicated that aqueous two-phase is a very suitable system for separation of R(-)-mandelic acid.

  5. A stable liquid–liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems

    OpenAIRE

    Pereira, Jorge F. B.; Santos, Valéria Carvalho; Johansson, Hans-Olof; J. A. Teixeira; Pessoa Júnior, Adalberto

    2012-01-01

    The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular ...

  6. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    International Nuclear Information System (INIS)

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77

  7. High acceleration of the direct aldol reaction cocatalyzed by BINAM-prolinamides and benzoic acid in aqueous media

    OpenAIRE

    Guillena Townley, Gabriela; Hita López, María del Carmen; Nájera Domingo, Carmen

    2006-01-01

    The enantioselective direct aldol reaction, organocatalyzed by recoverable BINAM-prolinamide derivatives can be highly accelerated by a catalytic amount of a carboxylic acid without a detrimental of the obtained enantioselectivities. From the study of suitable acids and reaction conditions, benzoic acid in aqueous DMF or in water was shown to give the best results with high yields and enantioselectivities. Thus, the reaction between p-nitrobenzaldehyde and acetone catalyzed by (Sa)-B...

  8. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  9. Adsorption of Bezanyl Red and Nylomine Green from aqueous solutions by natural and acid-activated bentonite

    OpenAIRE

    BENGUELLA, B.; YACOUTA-NOUR, A.

    2009-01-01

    The adsorption of two acid dyes, namely, Red Bezanyl and Green Nylomine, onto natural bentonite and acid activated bentonite from aqueous solutions were studied in a batch system. The kinetic data show that at the equilibrium, the acid-activated bentonite fixes more Bezanyl Red and Nylomine Green than the natural bentonite. Adsorption equilibrium was reached within 2 h. The results also showed that the kinetics of adsorption is best descibed by a pseudo second-order expression than a first or...

  10. Extraction of nitric acid from aqueous media with OφD(iB)CMPO-n-dodecane

    International Nuclear Information System (INIS)

    A study of the extraction characteristics of nitric acid with octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide [OφD(iB)CMPO or, simply, CMPO] was conducted. In the experimental program, CMPO was dissolved in n-dodecane to produce the organic extracting medium. The objectives of the project were to infer extraction stoichiometry and to estimate equilibrium constants for the extraction of nitric acid with the CMPO extractant. Experiments were performed over a limited range of concentrations to avoid conditions favoring formation of a third phase. Aqueous nitric acid concentrations were limited to 0.30 M at 25 C, 1.0 M at 40 C, and 3.0 M at 50 C. The data indicate that CMPO extracts nitric acid with a 1:1 stoichiometry. The value of the equilibrium constant is estimated at 2.66 ± 0.09 at 25 C. The enthalpy of the extraction is estimated to be -5.46 ± 0.46 kcal/mol

  11. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge

    International Nuclear Information System (INIS)

    Batch biosorption experiments were carried out for the removal of Acid Yellow 17 from aqueous solution using non-living aerobic granular sludge as an effective biosorbent. The effects of solution pH value, biosorbent dosage, initial Acid Yellow 17 concentration, NaCl concentration and temperature on the biosorption were investigated. The experimental results indicate that this process was highly dependent on pH value and the pH value of 2.0 was favorable. The Temkin isotherm was more applicable for describing the biosorption equilibrium at the whole concentration range than the Freundlich and Langmuir isotherm. The results of kinetics study show that the pseudo-second-order model fitted to the experimental data well. Both intraparticle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic studies demonstrate that the biosorption process was spontaneous and exothermic. The FTIR analysis before and after Acid Yellow 17 binding indicated that functional groups such as amine, hydroxyl, carboxyl and either on the non-living aerobic granular sludge would be the active binding sites for the biosorption of the studied dye. These results show that non-living aerobic granular sludge could be effectively used as a low-cost and alternative biosorbent for the removal of Acid Yellow 17 dye from wastewater.

  12. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-05-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous to atmospheric aerosol and is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggest citric acid solution droplets become ultra-viscous or perhaps even glassy under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  13. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  14. Diglycolamic acid functionalized PAMAM-SDB chelating resin for removal of Th(IV) from aqueous and nitric acid medium

    International Nuclear Information System (INIS)

    Removal of radionuclides based on solid phase extraction (SPE) also known as solid-liquid extraction is developed considerably in the last few decades due to their simplicity, rapidity, easy operation and cost effectiveness. Various types of sorbents such as organic, inorganic, bio-sorbent, composites and carbon based material have been developed for the recovery of radionuclides. Among the solid sorbents, chelating resins are being increasingly used due to their high adsorption capacity and selectivity. The chelating resins are prepared either by impregnating or grafting the chelating agents on solid substrate. Generally, the adsorption efficiency depends on the type of chelating agent and to some extent on the size and physiochemical properties of the resin. Recovery of actinides from aqueous waste using chelating agent containing >P=O, >C=O or other functional groups of desired basicity and stereochemistry have been extensively studied. Removal of thorium from aqueous solution using diglycolamic acid (DGA) functionalized poly(amido)amine (PAMAM) dendron-styrene divinyl benzene (SDB) chelating resin is presented in this paper

  15. Kinetics of Formic Acid-autocatalyzed Preparation of Performic Acid in Aqueous Phase

    Institute of Scientific and Technical Information of China (English)

    孙晓英; 赵雪冰; 杜伟; 刘德华

    2011-01-01

    Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol^-1 and 40.4 kJ·mol^-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol^-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.

  16. Acidity control of the oxidation reactions induced by non-thermal plasma treatment of aqueous effluents in pollutant abatement processes

    International Nuclear Information System (INIS)

    The acid properties of a non-thermal plasma in humid air (e.g., a gliding arc device) induced in an aqueous solution may deeply affect the efficiency of the matching oxidising properties, especially when the aqueous targets involve organic solutes. Hence, their oxidation rate may be strongly modified. A series of buffers is proposed to control the pH of aqueous target for at least one-hour treatments. The selected acid-base systems were selected for their inertia towards oxidation reaction, to cover a very large range of acidity. The reported results are essential from both fundamental and applied points of view. They first allow the acute controlling of the degradation rate of organic compounds. They also enable estimating the efficiency of the gliding arc treatments in environmental applications. Besides, they allow getting reliable data on the bactericidal effect on the plasma treatments, which are a merging application of the electric discharges. (author)

  17. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    International Nuclear Information System (INIS)

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660±0.092 at 25 C, and extraction enthalpy is -5. 46±0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 x 106±3.56 x 104 at 25 C; reaction enthalpy was -9.610±0.594 kcal/mol. Nitration complexation constant is 8.412±0.579, with an enthalpy of -10.72±1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured

  18. Quality Characteristics of High-Oleic Sunflower Oil Extracted from Some Hybrids Cultivated Under Egyptian Conditions

    OpenAIRE

    Awatif I. Ismail; Shaker M. Arafat

    2014-01-01

    This work was conducted to study the oil content, quality criteria of different seven sunflower hybrids growing under local environmental condition. Three high-oleic hybrids (2031, 2033 and Olivico), two mid-oleic hybrids (A12 AND A15) and two traditional hybrids (120 and 53) were studied to determine the oil content, physico-chemical properties, total tocopherol, oxidative stability by Rancimat method at 100ºC and fatty acid composition by GC during2012-2013.According to the results, the hyb...

  19. Aqueous chlorination of mefenamic acid: kinetics, transformation by-products and ecotoxicity assessment.

    Science.gov (United States)

    Adira Wan Khalit, Wan Nor; Tay, Kheng Soo

    2016-05-18

    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination. PMID:27062128

  20. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    International Nuclear Information System (INIS)

    Densities, ρ, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, Vφ, partial molar volume at infinite dilution, Vφo, and experimental slope, SV were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the (∂Vφ0/∂T)P values. The partial molar volume of transfer, ΔVφ0 from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of Vφ0 with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH3+COO-, and CH2 groups to Vφ0.

  1. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 °C

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Ternary mutual diffusion coefficients of aqueous L-dopa plus hydrochloric acid at 25 °C. • Diffusion of L-dopa driven by HCl gradients. • Coupled diffusion of L-dopa and HCl. - Abstract: Ternary mutual diffusion coefficients (D11, D22, D12 and D21) measured by the Taylor dispersion method are reported for aqueous solutions of {levodopa (L-dopa) + HCl} solutions at 25 °C and HCl concentrations up to 0.100 mol · dm−3. The coupled diffusion of L-dopa (1) and HCl (2) is significant, as indicated by large negative cross-diffusion coefficients. D21, for example, reaches values that are larger than D11, the main coefficient of L-dopa. Combined Fick and Nernst–Planck equations are used to analyze the proton coupled diffusion of L-dopa and HCl in terms of the binding of H+ ions to L-dopa and ion migration in the electric field generated by L-dopa and HCl concentration gradients

  2. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-06-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  3. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amalendu, E-mail: palchem@sify.co [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India); Chauhan, Nalin [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India)

    2011-02-15

    Densities, {rho}, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V{sub {phi}}, partial molar volume at infinite dilution, V{sub {phi}}{sup o}, and experimental slope, S{sub V} were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the ({partial_derivative}V{sub {phi}}{sup 0}/{partial_derivative}T){sub P} values. The partial molar volume of transfer, {Delta}V{sub {phi}}{sup 0} from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V{sub {phi}}{sup 0} with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH{sub 3}{sup +}COO{sup -}, and CH{sub 2} groups to V{sub {phi}}{sup 0}.

  4. Density and activity of perrhenic acid aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Highlights: • Water activity and osmolality measurements on highly concentrated perrhenic acid binary solutions have been carried out. • The study led to a new expression of the stoichiometric activity coefficient γ±vs. m. • The parameters of the two most frequently referenced Pitzer and specific interaction theory models have been determined. • The partial molar volume has been calculated. • The density law of the binary solution as a function of its concentration has been determined. - Abstract: Published isopiestic molalities for aqueous HReO4 solutions at T = 298.15 K are completed. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for perrhenic acid HReO4 are determined by direct water activity and osmolality measurements. The variation of the osmotic coefficient of this acid in water is represented mathematically according to a model recommended by the National Institute of Standards and Technology and according to the specific interaction theory. The data are also used to evaluate the parameters of the standard three-parameters of Pitzer’s ion-interaction model, along with the parameters of Archer’s four-parameter extended ion-interaction model, to higher molalities than previously advised. Experimental thermodynamic data are well represented by these models. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scales

  5. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    Science.gov (United States)

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution. PMID:27442887

  6. Electrochemical oxidation of loop diuretic furosemide in aqueous acid medium and its analytical application

    Directory of Open Access Journals (Sweden)

    Shikandar D. Bukkitgar

    2016-12-01

    Full Text Available An investigation of oxidative–reductive mechanisms of pharmaceutically important molecules gives us information about the metabolic fact of targeted drug. As compared to recent ongoing, time-consuming and costly techniques, there is an urgent needing for development of a sensitive technique, which can help easy understanding of these pathways. Therefore, in the present work, an effective, low-cost and time-saving technique to investigate the reaction mechanism of furosemide in aqueous acid medium is attempted. Furosemide undergoes two-proton and two-electron transfer reaction. The product obtained was analysed by UV spectra. It was found that the chemical oxidation and electrochemical oxidation of furosemide follows two different pathways. In addition, an effective technique has been developed to determine furosemide in its trace level. Good recoveries and low detection limit accomplished the magnitude of the proposed method. The proposed method was adopted for furosemide determination in human urine and pharmaceutical samples.

  7. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    Science.gov (United States)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; Rampe, E. B.; Crisp, J. A.

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  8. Solubility and metastable zone width of DL-tartaric acid in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang-Yang; Wang, Xiaofang; Hao, Lin; Yang, Xiaowu; Dang, Leping; Wei, Hongyuan [School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin (China)

    2012-11-15

    Solubility and metastable zone width (MSZW) of DL-tartaric acid (DL-TA) in aqueous solution have been determined. Solubility of DL-TA was measured in the temperature range from 0 to 50 C at atmospheric pressure by means of the conventional polythermal method using Turbidity Monitoring Technique, which was verified by a gravimetric method. The dissolution enthalpy and entropy of DL-TA were then calculated from the solubility data using van't Hoff equation. Two approaches was used to estimate the nucleation kinetics from the measured metastable zone width data, the self-consistent approach and the approach based on 3D nucleation. In addition, the metastable zone width slightly decreases with increasing agitation rate and was independent of working volume. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Interpolymer reactions of nonionic polymers with polyacrylic acid in aqueous solutions

    Directory of Open Access Journals (Sweden)

    E. Shaikhutdinov

    2012-03-01

    Full Text Available Results of fundamental investigations in the intermacromolecular reactions and interpolymer complexes to be performed by authors with co-workes within last 20 years have been intergrated and summarized in the present review. The raw of fundamental regularities in the effect of factors of different nature (pH, ionic strength, temperature, hydrophilic-hydrophobic balance of macrochain, etc. on the complexation of nonionic polymers with polycarboxylic acids in aqueous solutions has been revealed. Critical pH upon complexation (pHcrit. has been used for evaluation of the complexing ability of the polymers. It was shown tha tdepending on pHcrit. all systems can be divided into 2 groups, namely, weak complexing and strongly complexing. The existence of two critical pH upon complexation responsible for formation typical interpolymer complexes and hydrophilic associations has been demonstrated by the method of luminescence spectroscopy.

  10. Kinetic of the COLUMBO-TANTALITE dissolution in aqueous solutions of hydrofluoric acid

    International Nuclear Information System (INIS)

    The dissolution rate of a columbo-tantalite of the San Luis Province in aqueous solutions of hydrofluoric acid has been studied.Experiments at different temperatures were carried out in a pressure reactor.The experimental results show that the mineral dissolution increases with the reaction time.This effect is greater when the temperature increases from 348 up to 396 K, but it is little 493 K. The experimental data were treated with different models, which have been deduced for the kinetic study of solid-fluid non-catalytic heterogeneous reactions. As a result, the better model that fit the experimental data is a model based on the nucleation and growth theory.This model is physically according to the attack observed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDXS) on the mineral residues.These residues show an irregular located-type attack

  11. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    Science.gov (United States)

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  12. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Tan, Huaping, E-mail: hptan@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Hu, Xiaohong [School of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion.

  13. Treatment of sugi (Cryptomeria japonica D.) sapwood with aqueous solution of acetic acid

    Institute of Scientific and Technical Information of China (English)

    LUBao-wang; DUGuang-hua; MATSUITakanao; MATSUSHITAYoh-ichi

    2003-01-01

    Sugi sapwood samples were processed with aqueous solution of acetic acid in order to find the response of the weight of sugi sapwood and the treatment of aqueous solution of acetic acid. The result showed that loss of weight for the treated sugisapwood was about equal to yield of extracts from sugi sapwood, and increased with the increment of the concentration of aqueous solution of acetic acid. Fourier transform infrared spectroscopy spectra changes of the treated sugi wood and extracts from sugi sapwood were analyzed by FT-IR spectroscopic technique. Increasing tendency of absorption intensities of the stretching vibration at 3 400 cm-1 of hydroxyl group (OH) and C=C in lignin stretching vibration at 1510 cm-1 of benzene ring inlignin were observed from FT-IR of the treated sugi sapwood. From FT-IR spectra of extracts from sugi sapwood by aqueoussolution of acetic acid, the dissolution of lignin was observed during the treatment with 30% acetic acid solution aqueous.

  14. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    International Nuclear Information System (INIS)

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion

  15. Oenocarpus bataua Mart. (Arecaceae) : rediscovering a source of high oleic vegetable oil from Amazonia

    OpenAIRE

    Montufar, R.; Laffargue, Andreina; Pintaud, Jean-Christophe; Hamon, Serge; Avallone, Sylvie; Dussert, Stéphane

    2010-01-01

    The fatty acid (FA) composition of Oenocarpus bataua oil from 38 samples collected over a large geographical range (i.e. French Guiana and Peru) was analyzed. Fifteen fatty acids were obtained from the mesocarp of this palm species. Oleic (72.7%) and palmitic (18.1%) acids were the predominant FAs. Minor FAs were cis-vaccenic acid (2.3%), linoleic acid (1.9%), stearic acid (1.7%), palmitoleic (0.9%) and alpha-linolenic acid (0.8%). The mean lipid content of the dry mesocarp was 51.6%. The O. ...

  16. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    DU GaoXiang; ZHENG ShuiLin; DING Hao

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The op-timum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liq-uid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  17. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    Science.gov (United States)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  18. Calcium isotope fractionation in liquid chromatography with benzo-18-crown-6 resin in aqueous hydrobromic acid medium

    International Nuclear Information System (INIS)

    Liquid chromatography operated in a breakthrough mode was employed to study calcium isotope fractionation in the aqueous hydrobromic acid medium. Highly porous silica beads, the inner pores of which were embedded with a benzo-18-crown-6 ether resin, were used as column packing material. Enrichment of heavier isotopes of calcium was observed in the frontal part of respective calcium chromatograms. The values of the isotope fractionation coefficient were on the order of 10-3. The observed isotope fractionation coefficient was dependent on the concentration of hydrobromic acid in the calcium feed solution; a higher HBr concentration resulted in a smaller fractionation coefficient value. The present calcium isotope effects were most probably mass-dependent, indicating that they mostly came from isotope effects based on molecular vibration. Molecular orbital calculations supported the present experimental results in a qualitative fashion. Chromatography operated in aqueous HBr media is a better system of Ca isotope separation than that operated in aqueous HCl media. (author)

  19. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.

    Science.gov (United States)

    Bunce, N J; Chartrand, M; Keech, P

    2001-12-01

    Acid mine drainage (AMD) is a serious environmental problem in the mining industry. The present work describes electrolytic reduction of solutions of synthetic AMD, comprising FeSO4/H2SO4 and CuSO4/H2SO4, in flow-through cells whose anode and cathode compartments were separated using ion exchange membranes. In the case of FeSO4/H2SO4 at constant flow rate, the pH of the effluent from the catholyte increased progressively with current at a variety of cathodes, due to electrolytic reduction of H+ ions to elemental hydrogen. Near-quantitative removal of iron was achieved by sparging air into the catholyte effluent, thereby precipitating iron outside the electrochemical cell, and avoiding fouling of the electrodes. The anode reaction was the oxidation of water to O2, a proton-releasing process. Using cation exchange membranes and sodium sulfate as the supporting electrolyte in the anode compartment, the efficiency of the process was compromised at high currents by transport of H+ competitively with Na+ from the anode to the cathode compartments. Higher efficiencies were obtained when anion exchange membranes were used, and in this case no additional supporting electrolyte other than dilute H2SO4 was needed, the net reaction being the electrochemically driven transfer of the elements of H2SO4 from the cathode to the anode compartments. Current efficiencies approximately 50% were achieved, the loss of efficiency being accounted for by ohmic heating of the solutions. In the case of CuSO4/H2SO4 and anion exchange membranes at high currents, reduction of Cu2+ and H+ ions and transport of SO4(2-) ions out of the catholyte caused unacceptably high potentials to be generated. PMID:11763043

  20. 油酸包覆的机油基Fe3 O4磁流体的制备及表征%Preparation and Characterization of Fe3 O4 Engine oil-based Magnetic Fluid Enveloped by Oleic Acid

    Institute of Scientific and Technical Information of China (English)

    洪勇; 史红兵; 刘杰; 张俊斌; 何美清; 吴奇兵

    2015-01-01

    In this article,the superparamagnetic Fe3 O4 nano - particles were prepared with chemical co - precipitation method firstly,and than oleic acid was enveloped after cleaning the particles;then stabilized engine oil-based magnetic fluid was obtained. The products were characterized with XRD,TEM,VSM,IR and TGA. The mechanism of surfactants that modified Fe3 O4 magnetic particles were discussed. The studies have shown that magnetic fluid has good dispersion and stability,the saturation magnetization of the pure Fe3 O4 particles and the particles coated with oleic acid are 79. 886emu/g and 73. 991emu/g respectively,coating process leads the saturation magnetization to decrease.%首先利用化学共沉淀法制备了具有超顺磁性的纳米Fe3 O4颗粒,然后用油酸对其进行包覆,得到稳定的Fe3 O4机油基磁流体。分别用XRD、IR、TEM、VSM和TGA对所制备的产物进行表征,探讨了油酸包覆Fe3 O4纳米颗粒的形成机理。研究表明,所得磁流体具有高的饱和磁化强度和稳定性,制备的纳米Fe3 O4颗粒的饱和磁化强度为79.886emu/g,用油酸包覆后的颗粒的饱和磁化强度达到73.991emu/g,油酸的包覆使得Fe3 O4颗粒的饱和磁化强度有所降低。

  1. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    Science.gov (United States)

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  2. Oxidation of hydrogen peroxide by [NiIII(cyclam)]3+ in aqueous acidic media

    Indian Academy of Sciences (India)

    Sankaran Anuradha; Venkatapuram Ramanujam Vijayaraghavan

    2013-09-01

    The kinetics of oxidation of H2O2 by [NiIII(cyclam)]3+, [NiIIIL1], was studied in aqueous acidic media at 25°C and I = 0.5M (NaClO4). The [NiIIIL1] to [NiIIL1] reduction was found to be fast in the presence of Cu(II) ion than the oxidation of the cyclam ligand by ·OH. The rate constant showed an inverse acid dependence on H+ ion at the pH range 1-1.5. The presence of sulphate retards the reaction. Macrocylic ligand oxidation was followed spectrophotometrically by examining the oxidation of nickel(II) complexes of macrocyclic ligands such as 1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane (L2), -5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L3), rac-Me6[14]-4,11-dieneN4 (L4) by reaction with hydrogen peroxide. The rate constant for the cross reaction is discussed in terms of Marcus relationship.

  3. A chemiluminescence-based continuous flow aqueous ozone analyzer using photoactivated chromotropic acid.

    Science.gov (United States)

    Takayanagi, Toshio; Dasgupta, Purnendu K

    2005-05-15

    Ozone has become the oxidant of choice for water disinfection, especially in large water treatment facilities. This paper describes a fast and sensitive method for the determination of ozone content by reaction with photoactivated chromotropic acid (CA, 4,5-dihydroxynaphthalene-2,7-disulfonic acid), which results in intense chemiluminescence (CL). Freshly ozonated water from a recirculating ozonizer/reservoir is injected into a carrier stream of deionized water in the flow-injection mode. This flow mixes with a stream of photoactivated CA solution in a spiral cell placed directly on top of an inexpensive miniature (8mm diameter active area) photomultiplier tube (PMT). Alkaline CA is photoactivated by passing it through a FEP-Teflon((R)) coil (residence time approximately 50s) wrapped around a 1W UV lamp emitting at 254nm; without photoactivation, the signal is approximately 70-fold lower. The S/N=3 limit of detection for aqueous ozone is 3mugl(-1) and good response slope is obtained up to an ozone concentration of 1.4mgl(-1), the highest that could be made in this study. The response obeyed a quadratic equation with r(2)=0.9984. No interference from permanganate ion is observed. The proposed system was applied to the monitoring of ozonation status of a playa lake water that exhibited significant ozone demand. PMID:18970059

  4. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    International Nuclear Information System (INIS)

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 oC. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe+2 complexes and Fe+2 chelates with phthalamates prevented steel from further corrosion.

  5. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    Directory of Open Access Journals (Sweden)

    Yao Shuhua

    2012-12-01

    Full Text Available Abstract Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  6. Biosorption of Methyl Blue Onto Tartaric Acid Modified Wheat Bran From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shuhua Yao

    2012-12-01

    Full Text Available Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made thismaterial a suitable adsorbent to remove 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that theoverall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of theLangmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methylblue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  7. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, M.H.; Wang, B.B.; Yu, H.S.; Wang, L.L.; Yuan, S.H. [Environmental Science Research Institution, College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, J., E-mail: chenjing@mail.hust.edu.cn [Environmental Science Research Institution, College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-07-15

    The photochemical decomposition of perfluorooctanoic acid (PFOA) in aqueous periodate (IO{sub 4}{sup -}) was investigated under two types of low-pressure mercury lamps: one emits at 254 nm light (UV light) and the other emits both 254 nm and 185 nm light (VUV light). PFOA decomposed efficiently under VUV light irradiation while it decomposed poorly under UV light irradiation. The addition of IO{sub 4}{sup -} significantly increased the rate of decomposition and defluorination of PFOA irradiated with UV light whereas it decreased both processes under VUV irradiation. Reactive radical (IO{sub 3}{center_dot}) generated by photolysis of IO{sub 4}{sup -} initiated the oxidation of PFOA in UV process. Aquated electrons (e{sub aq}{sup -}), generated from water homolysis, scavenged IO{sub 4}{sup -} resulting in decrease of reactive radical species production and PFOA decomposition. The shorter-chain perfluorocarboxylic acids (PFCAs) formed in a stepwise manner from long-chain PFCAs.

  8. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.

    Science.gov (United States)

    Gong, Yanyan; Wang, Lin; Liu, Juncheng; Tang, Jingchun; Zhao, Dongye

    2016-08-15

    Fully stabilized magnetite (Fe3O4) nanoparticles were prepared with a water-soluble starch as a stabilizer and tested for removal of aqueous perfluorooctanoic acid (PFOA). The presence of starch at ≥0.2wt% can fully stabilize 0.1g/L as Fe of the Fe3O4 nanoparticles. The particle stabilization technique resulted in 2.4 times higher PFOA uptake. Fourier transform infrared spectra suggested that the main PFOA removal mechanism was inner-sphere complexation. Batch kinetic experiments revealed that the starch-stabilized nanoparticles facilitated a rapid PFOA uptake with a sorption equilibrium time of 30min, and the sorption process followed a pseudo-second-order kinetic model. The Langmuir model was able to well interpret the adsorption isotherm, with a maximum adsorption capacity of 62.5mg/g. Increasing pH from 4.7 to 9.6 led to a sharp increase (by 2.6 times) in PFOA uptake. The presence of 12mg/L humic acid inhibited PFOA uptake by 96%, while effect of ionic strength (CaCl2=0-2mmol/L) was negligible. The nanoparticles significantly reduced the biological toxicity of PFOA. The results demonstrated promise of starch-stabilized Fe3O4 nanoparticles as a "green" adsorbent for effective removal of PFOA in soil and groundwater. PMID:27100000

  9. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution.

    Science.gov (United States)

    Yao, Shuhua; Lai, Hong; Shi, Zhongliang

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  10. Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch.

    Science.gov (United States)

    Li, Yi-Xuan; Lim, Seung-Taik

    2016-04-20

    Aqueous dispersions prepared with OSA-modified high amylose starch were investigated in comparison with native high amylose starch and beta-cyclodextrin using alpha-lipoic acid as a model substance. Alpha-lipoic acid (ALA), a lipophilic antioxidant essential for energy metabolism in human, was dispersed in gelatinized starch solutions (1.0% w/v) at different temperatures (50-90°C) and times (3-12h). High amylose starch modified with 3% OSA (dry starch base) was most favored in maximizing the dispersibility of ALA (84% recovery) under mild heating (70°C for 3h). The optimally prepared dispersion was milky white and contained particles with a narrow size distribution (200-300nm). The precipitate isolated from the dispersion contained crystalline V-complexes of ALA and amylose while the supernatant contained free ALA accounting for 1/3 of total ALA, indicating OSA-modified high amylose starch stabilized ALA either by complexing with amylose or by retarding aggregation of ALA. PMID:26876852

  11. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Science.gov (United States)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  12. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  13. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

    Directory of Open Access Journals (Sweden)

    Cai LL

    2013-12-01

    Full Text Available Lulu Cai,1,* Neng Qiu,2,* Mingli Xiang,3,* Rongsheng Tong,1 Junfeng Yan,1 Lin He,1 Jianyou Shi,1 Tao Chen,4 Jiaolin Wen,3 Wenwen Wang,3 Lijuan Chen31Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, 2College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 3State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China; 4Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada *These authors contributed equally to this paperAbstract: The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa methoxy poly(ethylene glycol methyl ether (mPEG to gambogic acid (GA-mPEG2000 through an ester linkage and characterized by 1H nuclear magnetic resonance. The GA-mPEG2000 conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG2000 micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyl tetrazolium bromide tests demonstrated that the GA-mPEG2000 micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG2000 micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG2000 micelles may have promising applications in tumor therapy.Keywords: gambogic acid, poly(ethylene glycol-drug conjugate, micelle, antitumor, toxicity

  14. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    Science.gov (United States)

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and overall CHD risk. PMID:26567193

  15. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  16. Polyvinyl alcohol fibers with functional phosphonic acid group. Synthesis and adsorption of uranyl (VI) ions in aqueous solutions

    International Nuclear Information System (INIS)

    PVA functionalized with vinylphosphonic acid was prepared as a new adsorbent for uranyl (VI) adsorption from aqueous solutions. The vinylphosphonic acid was cografted onto PVA fibers by preirradiation grafting technique. The adsorbent were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorbent was observed to possess a fibrous structure and was bonded with phosphonic acid groups successfully. The adsorbent was used for the adsorption of low levels uranyl (VI) ions from aqueous solutions. The influence of analytical parameters including pH, adsorption time, amount of adsorbent, metal ion concentration, and temperature were investigated on the recovery of uranyl (VI) ion in aqueous solution. The maximum adsorption capacity (32.1 mg g-1) and fast equilibrium time (30 min) were achieved at pH of 4.5 at room temperature. Thermodynamic parameters (ΔH° = 2.695 kJ mol-1; ΔS° = 31.15 J mol-1 K-1; ΔG° = -6.748 kJ mol-1) show the adsorption of an exothermic process and spontaneous nature, respectively. The possible coordination mechanism was illustrated. Adsorption and desorption coexist in aqueous solutions and then the system becomes equilibrium. (author)

  17. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  18. Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media

    International Nuclear Information System (INIS)

    3-Mercaptopropionic acid-capped core/shell ZnS:Cu/ZnS and ZnS:Mn/ZnS doped quantum dots (QDs) prepared through hydrothermal methods exhibit high photoluminescence intensity as well as good photostability. These water-dispersible nanoparticles exhibit high fluorescence sensitivity to folic acid due to the high affinity of the carboxylate groups and nitrogen atoms of folic acid towards the Zn surface atoms of the doped dots. Quenching of the fluorescence intensity of the QDs allows the detection of folic acid concentrations as low as 11 μM, thus affording a very sensitive system for the sensing of this biologically active molecule in aqueous solution. The possible quenching mechanism is discussed. - Graphical abstract: A sensitive method for the detection of folic acid based on the fluorescence quenching of Mn- or Cu-doped ZnS quantum dots was developed. Highlights: ► Quenching of the fluorescence intensity of doped ZnS QDs in the presence of folic acid. ► New fluorescent sensors for folic acid. ► Detection of folic acid concentrations as low as 11 μM in aqueous solution. ► The Perrin model and fluorescence lifetimes of ZnS:Mn QDs demonstrate a static quenching mechanism. ► Quenching efficiency of ZnS:Cu QDs correlates with the Stern-Volmer model.

  19. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    Science.gov (United States)

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  20. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through